
Automated Configuration Support for Infrastructure Migration to the Cloud
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Abstract

With an increasing number of cloud computing offerings in the market, migrating an existing computational infras-
tructure to the cloud requires comparison of different offers in order to find the most suitable configuration. Cloud
providers offer many configuration options, such as location, purchasing mode, redundancy, extra storage, etc. Often,
the information about such options is not well organised. This leads to large and unstructured configuration spaces,
and turns the comparison into a tedious, error-prone search problem for the customers. In this work we focus on
supporting customer decision making for selecting the most suitable cloud configuration – in terms of infrastruc-
tural requirements and cost. We achieve this by means of variability modelling and analysis techniques. Firstly, we
structure the configuration space of an IaaS using feature models, usually employed for the modelling of variability-
intensive systems, and present the case study of the Amazon EC2. Secondly, we assist the configuration search
process. Feature models enable the use of different analysis operations that, among others, automate the search of
optimal configurations. Results of our analysis show how our approach, with a negligible analysis time, outperforms
commercial approaches in terms of expressiveness and accuracy.
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1. Introduction

The clear benefits of cloud-based infrastructures are increasing the number of companies that are migrating their
private and expensive data centers to the cloud. An Infrastructure as a Service (IaaS) enables the dynamic provisioning
of computational & data resources (often on-demand), reducing costs (for short term workloads), speeding up the
start-up process for many companies, and decreasing resource and power consumption (among other benefits).

Deciding the most suitable provider is often challenging, as each provides a number of possible configurations.
As an example of the dimension of this problem, there are over 100 public cloud providers [1], and just for Elastic
Compute Cloud (EC2) [2], the Amazon Web Services (AWS) computing service, we have identified 16, 991 different
configurations1. As each user/company that plans to use a cloud computing infrastructure is likely to have their
own specific requirements, it is necessary to identify the most relevant provider and subsequently the most suitable
configuration. Identifying such configuration within a large potential search space is a tedious and error-prone task
that requires for an automated support.

In recent times, software tools and research contributions have emerged to support this decision process, but we
have found these to have limitations, providing either incomplete configuration spaces or/and imprecise results. On
the commercial side, providers such as Amazon or Rackspace provide tools that suggest specific configurations for
migrating an on-premise infrastructure [3, 4]. However, such tools ignore some configuration options, forcing for
example in the case of Amazon to choose Linux as the only operating system. Other companies, like CloudScreener
[5], provide their own comparators to decide which provider and configuration best fit user needs. Nonetheless, such

∗Corresponding author. Tel.: +34659108324
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tools lack information about the configuration space they work with, and some tests have revealed false positives in
their optimal results. Recent academic work [6, 7] also suffers from similar concerns, as they generally only consider
a small subset of the available configurations of services like EC2 or Azure virtual machines. In order to overcome
these limitations, any approach must ensure for each provider to model its complete configuration space.

In this work, we assist the customer in determining the most suitable configuration of an IaaS. For that purpose,
we present the case study of AWS EC2. As outlined previously by us [8], AWS is one of the most variable and
complex providers in terms of configuration options and pricing. Indeed, understanding EC2 configuration space can
be challenging, as it is scattered across several pages, tables and paragraphs. We believe that modelling a complex
provider eases the task of modelling simpler providers. Additionally, AWS is one of the most widely used IaaS
providers, being present in all the current configuration tools. For focusing on one provider, enables us to check their
precision and compare to our approach. Among all the different services AWS offers, we focus on EC2 and Elastic
Block Storage (EBS)– additional disk for computing instances, which are considered as core infrastructure services.

We interpret an IaaS as a variability-intensive system, so we can rely on variability modelling and analysis tech-
niques to support the configuration process. In particular, we propose the modelling of IaaS– and EC2 in concrete – as
Feature Models (FMs), a kind of model widely used for variability-intensive systems. In this way, first we represent
the configuration space in a complete, structured and compact manner, and second we provide the user with a model
to ease the configuration process. This modelling enables the use of the so-named Automated Analysis of Feature
Models (AAFM), a set of analysis operations that extracts information from the models, which we subsequently use
to assist decision-making. We use some of them to verify the validity and completeness of the FM with respect to
the service configuration space, and to determine which configuration is the most suitable for any given requirements.
We interpret the most suitable configuration as the one that meets customer’s requirements and optimises the cost.
Our approach presents two main benefits: first, we consider the complete configuration space, so that the real op-
timal solution is obtained for given customer requirements; second, assisting the configuration process for such a
highly-configurable service like AWS EC2 enables the same approach to be used for other providers, such as Azure
or Rackspace.

For evaluation purposes, we (i) verify our proposed model, (ii) compare our approach to existing commercial
applications in term of expressiveness and accuracy, and (iii) check and improve the performance of our approach.
To verify our model, we describe the EC2 FM using a plain-text language, extract the list of configurations within
our model, and check that it matches exactly the available configurations of EC22. The validation of the analysis
is performed by means of two different implementations: FaMa Framework – a well-known tool for the AAFM–
and a reasoner based on the IBM CPLEX solver. We compare the performance of both approaches, where the latter
implementation shows improved and negligible execution times when calculating the most suitable configuration.
We also compare the obtained results with the output of CloudScreener, which can be improved by the use of our
approach.

This paper extends our previous work [8] in several ways. In particular, we provide i) an explicit description of
the configuration problem, ii) a modelling methodology to describe the configuration space of an IaaS as a FM, iii) a
verification of the configuration space represented by the FM by means of analysis operations and iv) an evaluation of
the expressiveness, accuracy and performance of our approach.

The rest of the paper is structured as follows: Section 2 briefly describes the state of the art in variability modelling
and analysis. Section 3 states the problem we tackle in this work. Section 4 describes our modelling methodology
for the configuration space of an IaaS, while Section 5 presents a modelling case study with Amazon EC2. Section 6
presents our analysis approach for the search of the optimal configuration, and explains the details of the analysis
operations. We present an implementation of our approach in Section 7, and we evaluate it in Section 8. Related work
is described in Section 9. Finally, Section 10 discusses our proposal and proposes future directions in our research.

2. Feature Models

Feature Models (FMs) [9] are used to represent all the possible products that can be built in variability-intensive
systems such as Software Product Lines (SPLs). FMs are tree-like data structures where each node represents a product

2We exclude spot instances and micro instances since they are not intended to be persistent, and EBS optimised instances because we do not
consider IOPS provisioning for EBS.
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Figure 1: Example of a FM
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Figure 2: IaaS Configuration Space Description and Analysis as a FM.

feature. Figure 1 shows a FM that represents general features of a fictional IaaS provider. Features are bound by means
of hierarchical (mandatory, optional and set) and cross-tree relationships. These relationships define how features can
be combined in a product, defining the configuration space of the system. In a FM, a feature does not necessarily
represent a specific functionality but can be used as abstract features [10] which represent domain decisions such as
Linux based feature (Figure 1). IaaS is the root feature that represents the overall functionality of the system. It
has two children, an optional feature (white circle) named Storage, and a mandatory feature (black circle) named
OS. Both features present set relationships whose cardinality indicates the number of child features that can be chosen
at the same time.

FMs can also have attributes that represent non-functional properties, leading to attributed FMs. These attributes
are linked to a specific feature. In the FM sample, the size attribute is linked to the Storage feature, and monthly
cost attribute is linked to the root feature. Optionally, it is possible to define constraints that describe the relationships
among attributes.

FMs contain valuable information about all the possible configurations and their properties. From a FM we can
deduce a number of possible outcomes, such as the total list of possible products, the set of common features among
products, the set of products that meet a given criterion and the product with a minimum cost. Analysing the FM
manually is a tedious and error-prone task. Many researchers have focused on the AAFM [11] [12], that currently
offers over 30 different analysis operations, each of them solved by means of different declarative approaches such as
constraint programming, SAT problems or binary decision diagrams.
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3. Problem

Migrating existing applications to the cloud has received significant interest recently. Cloud benefits, like cost
savings, scalability and on-demand features, make large companies and Small and Medium Enterprises (SME) want
to embrace the cloud. However, this process requires facing a number of issues, such as the need to carry out feasibility
studies, provider selection or code/ application modifications. Recently, a Cloud Reference Migration Model has been
proposed [13] to address such issues. This reference model encompasses three main phases: planning, execution and
evaluation.

Selecting the most suitable provider and its configuration are relevant decisions in the migration planning process.
Each provider offers several configuration options, each with up to dozens configuration values, which may be slightly
or very different from one vendor to another. Moreover, the information and constraints about the configuration space
are often poorly organised. For instance, the configuration options and values of EC2 are scattered among three
different pages, making it difficult to manually search for suitable configurations. Rackspace presents the configuration
space of its servers also in a similar way. The size, interconnections and organisation of the configuration space makes
configuration a tedious and error-prone process requiring an automated solution.

In this work, we identify and tackle two challenges, as depicted in Figure 2

1. Model the configuration space of a cloud provider in a structured and compact way. Configuration information
is commonly described in an unstructured way using natural language, and therefore subject to ambiguity.
It is necessary to model and structure it to enable ease of use and understanding of the services by an end-
user, and to enable automated support. Most of the academic works that have approached migration issues
[6, 7, 14, 15, 16, 17, 18] deal with reduced subsets of the providers’ configuration spaces. However, when
we plan for cloud adoption (or migration), we have to address the whole configuration space to find the most
suitable configuration.

2. Assist the search of the most suitable configuration. Even with a well-structured configuration space, most of
the providers offer thousands of different configurations. Assisting the search for the most suitable configuration
would save time and effort for the users, and could ensure that the selected configuration really fits customer
needs. In this paper, we define the most suitable configuration as the one that fulfils the customer requirements
and minimises the total cost.

3.1. Scenario

Table 1: Migration case study
Purpose # instances Cores RAM Disk Location OS Hours / Months
Production 2 2 4 2 TB Europe Linux-based 730 / 12
Pre-production 1 2 4 250 GB - Linux-based 160 / 12
Perf. testing 1 8 4 1 TB - RedHat 40 / 12

We present a migration scenario of a SME, which has multiple application servers and a server for pre-production
tasks. They plan to migrate to the the AWS cloud, and they look for servers with the characteristics shown in Table 1.
In addition to the the two application and one pre-production servers, they are currently involved in new develop-
ments that require performance testing. Therefore, they also need a large compute-intensive instance for testing. The
application instances must be running 24/7, while the pre-production instance is needed 40 hours per week. The
performance testing instance will be used around 40 hours per month.

We have chosen AWS and EC2 as the provider and service under study for several reasons. First, AWS is one of
the most widely used providers of infrastructure services. Second, the number of configuration options and values of
EC2 leads to thousands of different configurations that necessitates automated assistance. Finally, the complex price
policy turns the modelling into an even more challenging task.
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4. Modelling

In this section, we describe our approach to model an IaaS configuration space as a FM. First, we present a brief
taxonomy of the typical IaaS configuration options offered by commercial providers. We then propose a modelling
methodology to describe such configuration options as a FM.

4.1. IaaS Configuration Options

IaaS commercial providers aim to address the needs of different kinds of customers. From those looking for on-
demand virtual machines to big companies such as Netflix requiring massive computation and storage, IaaS providers
offer them multiple configuration options to meet their requirements. For this taxonomy of the IaaS configuration
space, we have studied four main providers: Google [19], Amazon [2], Microsoft [20] and Rackspace [21]. Most of
the providers enable configuration options based on the following factors:

• Instance type. Each instance type determines the basic characteristics of the computing instance – RAM and
number of cores. Depending on the provider, a default storage, linked to the instance, is also offered. The
instance type range is usually broad, from small instances with a single core to large clusters.

• Operating system. Most of the providers offer different flavours of Windows and Linux OS.

• Storage. Although some providers offer a default storage depending on the instance type, all of them allow to
hire additional storage linked to the instance. This storage is usually limited to a number of GBs per instance,
and can be based on Solid State Disks (SSDs).

• Geographic location. The infrastructure services offered by IaaS providers are delivered through different
datacenters, spread across multiple geographic locations around the world.

• Purchasing mode. While all the providers offer their services on-demand, usually billing the use per hour, most
of them also provide additional commitment plans or purchasing modes to hold their customers while they get
significant savings.

4.2. Modelling Methodology

In order to describe the aforementioned configuration options as a FM, we provide a description about the method
we follow. Lee et al. [22] propose some guidelines to identify and organise features that we extend to support attribute
modelling as follows:

Table 2: IaaS mapping to FM
IaaS Aspect Example FM
Config point Location Abstract feature
Config value US Virginia Leaf feature

Usage data Months Attribute
Service att. Cost hour Attribute

1. Tree definition. The tree structure of the FM, i.e. the features and their relationships, is defined at first.

(a) Features definition. A feature [9] is a tree node which can be selected or removed. Traditionally, two
types of features have been considered: leaf features to express the configuration values that define the
configuration space, and abstract features to organise semantically related features. We interpret all the
values that make any two IaaS configurations to be different as leaf features in the FM. We also identify a
number of abstract features, that we will define as the configuration options. These features may also be
grouped, such OS, geographical location, or instance type – see Table 2.
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(b) Relationships definition. Once we have defined the leaf features and the configuration options and its pos-
sible values from the provider documentation, we create the tree like structure by means of relationships.
The root feature is placed at the top representing the whole configuration space of the IaaS. At a second
level, all configuration options are placed as children of the root feature, having either a mandatory or
an optional relationship depending on the optional character of the feature. At a third level, all the leaf
features are placed as child of the corresponding configuration option. Since only one leaf feature can be
selected at a time for each configuration option, they are grouped by means of a set relationships with a
1..1 cardinality. Once all the leaf features are placed in the model, we introduce some intermediate abstract
features to ease configuration and to represent higher-level decisions.

2. Attributes definition. At this point, there exist elements that cannot be modelled as features, because their
domain is not boolean and/or because their values is the result of a calculation from other attributes or features.
For example, an instance cost per hour is clearly a non-boolean value that depends on the cost of the selected
features. Such elements are modelled as attributes – with units and domain – and are linked to their related
feature. We also identify two kinds of attributes, as shown in Table 2:

• Usage data: information about the usage which is provided by the customer, e.g. instance hours per
month.

• Service derived attributes: attributes whose values are obtained from other decisions, like the RAM size
or number of cores of an instance, which depend on the instance type.

3. Constraints definition. Finally, we define constrains on the features and attributes of the FM to adequately
represent the IaaS configuration space. These constraints encompass the instance cost hour, availability, char-
acteristics and additional dependencies. For most of the cases, the only source to obtain constraints associated
with the configuration space is the cloud provider’s website. While the extraction of some constraints is trivial,
others have to be inferred from the description of the service in natural language. An example of the former
is the pricing of the instances, usually structured in tables, such as in Amazon, Rackspace or Microsoft Azure.
For instance, consider the following constraint:

(M3.large AND OneYear AND Sydney AND RedHat AND Public) IMPLIES (upfrontCost==249

AND costHour==0.235)

In order to automate the extraction of this kind of constraints, we can use web scraping techniques. It is
important to note that the configuration space of commercial providers evolves often, so manual adjustments in
the scraper or advanced scraping techniques may be required in such cases. However, the extraction of other
constraints, such the total cost per year of the infrastructure

Total Cost = Cost Hour × Hours Per Month × Number Of Months + Upfront Cost + EBS

cost

cannot be automated, and must be formulated manually.

5. Modelling Case Study: Amazon EC2

In this section, we exemplify our modelling approach by means of a case study: the description of Amazon EC2 as
a FM. First, we briefly describe the main aspects and configuration options of EC2. Second, we present the EC2 FM,
result of the methodology described in the previous section. Finally, we suggest some guidelines for the configuration
of an EC2 instance using the EC2 FM.
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Figure 3: Feature Model of EC2 and EBS

5.1. AWS Elastic Compute Cloud

AWS provides services for computation, storage, databases, clusters or content delivery among others. Due to
the wide range of services, several PaaS and SaaS providers like Heroku or Netflix run over AWS. As defined by
Amazon, EC2 “provides resizable compute capacity in the cloud” [2] on pay-per-use basis. In this paper, we work
with the AWS snapshot for EC2 and EBS of 12th June 2014. On this date, Amazon provides five main configuration
options for EC2, which match the general configuration options of IaaS providers depicted in the previous section:

• Instance type. EC2 offers 32 different instance types, grouped under different categories, depending on the
purpose: General Purpose, Compute Optimized, GPU Instances, Memory Optimized and Storage Optimized,
distinguishing also between current and previous generations. Each instance type has a specific RAM size,
a number of cores and disk storage. In this point, we ignore micro instances, since they are intended for
short CPU burst purposes. Consequently, they lack disk storage, and their performance is highly variable and
unpredictable.

• Operating system. Three different Linux distributions (Amazon Linux, Suse and Red Hat) and a Windows
version (Windows Server) with an optional SQL Server in different flavours (Express, Web and Standard) are
available.

• Storage. AWS provides a fixed disk size for EC2 instances, depending on each instance type. If the default
storage needs to be extended, the EBS service provides additional storage. In this sense, we must say that we do
not consider provisioned IOPS (input/output operations per second) EBS, and neither EBS optimised instances,
that “enable EC2 instances to fully use the provisioned on an EBS volume’’.

• Geographic location. Amazon offers 8 geographic locations, distributed among different areas of North Amer-
ica, Europe, Asia and South America.

• Purchasing mode. EC2 instances may be purchased on demand or in a reservation way. While users pay per
use in both modes, cost hour is lower for reserved instances in exchange for an upfront payment. In total, there
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are seven different purchasing modes. We exclude here spot instances, because Amazon determines their price
and availability dynamically based on supply and demand. Indeed, AWS recommend the use of spot instances
only for time-flexible and fault-tolerant tasks.

Additionally, an EC2 instance may run on a dedicated machine, guaranteeing an additional isolation in exchange
of an additional cost.

5.2. EC2 Feature Model

The resulting EC2 FM is defined in a plain-text language and presents 81 features, 17 attributes and more than 20
000 constraints 3. It is based on the description of EC2 of the day 12 June 2014 [2]. The huge amount of constraints
needed to represent pricing and instances availability makes necessary to automate their extraction by means of a
web scraper, whose details are explained in Section 7. Due to the difficulty of representing the complete model using
feature diagrams, only an excerpt is shown in Figure 3.

The root feature, EC2 Instance, groups the configuration options and defines 4 attributes: totalCost, costMonth,
upfrontCost and totalStorage. There are 6 configuration options where only one leaf feature can be selected at the
same time: (i) OS is composed by Linux and Windows variants. We include some abstract features and SQL Server
options for more flexibility in the decisions. Since SQL Sever Express is included by default in any Windows variant,
we exclude it from the FM. (ii) The additional Block Storage is defined as optional, and can be SSD or magnetic
based. It has three attributes: extraStorage for the size, costGB for the GB cost per month, and costMonth, which
value is calculated as extraS torage × costGB. (iii) Instance contains general purpose, high mem, high CPU, high
IO and GPU features. Due to spatial constraints the specific instances types are shown separately in Table 3. We
define 6 attributes for this configuration option: cores for the number of cores of the instance, ram for the memory,
ecu for the EC2 Compute Units, costHour, defaultStorage for the default storage of the instance, and ssdBacked to
show if the instance storage is SSD backed. (iv) Dedication determines if the EC2 instance is based on shared or
dedicated hardware resources. This kind of isolation implies additional cost, so we have defined an attribute, named
fee, to represent it. (v) Location groups all the available locations for EC2 instances by continent and state/country.
Finally, (vi) Purchase represents the purchasing options, and also defines use hours and number of months, by means
of usage and period attributes.

Table 3: EC2 instance categories and specific types
Category Specific types

General purpose M3.medium, M3.large, M3.xlarge,
M3.2xlarge, M1.small, M1.medium,
M1.large, M1.xlarge

Compute opt C3.large, C3.xlarge, C3.2xlarge,
C3.4xlarge, C3.8xlarge, C1.medium,
C1.xlarge, CC2.8xlarge

Memory Opt M2.xlarge, M2.2xlarge, M2.4xlarge,
CR1.8xlarge, R3.large, R3.xlarge,
R3.2xlarge, R3.4xlarge, R3.8xlarge

Storage Opt I2.xlarge, I2.2xlarge, I2.4xlarge,
I2.8xlarge, HS1.8xlarge, HI1.4xlarge

GPU G2.2xlarge, CG1.4xlarge

5.3. Customer Requirements on EC2 FM

Representing the EC2 configuration space as a FM has several benefits. Our model represents the EC2 configura-
tion space in a compact and well-structured way, so it is easy for the customer to see the big picture. Abstract features

3Available at https://dl.dropboxusercontent.com/u/1019151/EC2FM.pdf
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Table 4: Customer requirements for the case study
Instance Location OS Dedication Cores RAM Total storage Usage Period

Production IR LinuxBased Public 2 4 2,000 730 12
Pre-production - LinuxBased Public 2 4 250 160 12

Testing - RedHat Public 8 4 1,000 40 12

let users make high-level decisions, and attributes like RAM, storage and period add the ability to make decisions
about user terms besides EC2 configuration terms. Moreover, FMs enable the use of the AAFM analysis operations
to assist the decision-making.

We propose to represent customers’ infrastructure requirements relying on the EC2 FM. Customers can make
decisions on the different configurations points of our model. They can decide whether to select a feature or not, and
specify preferences about attributes. At least, customers should make the next mandatory decisions:

• Assign values to attributes period and usage.

Optionally, we recommend costumers to make decisions on the following elements:

• Select a child feature of OS, Dedication and Location.

• Remove or select a child feature of EBS.

• Assign values to ram, cores/ecu (one of them) and ssdBacked.

We take the case study of Section 3.1 and Table 1 as an example. Table 4 shows the decision making we propose
for each server. As we can see, we select abstract feature for some cases, which give us higher-level decisions, and
specific features in others. For attributes, the value is constrained with a greater or equal relational constraint (≥),
since it is possible that EC2 cannot match exactly the value.

6. FM Analysis

Modelling the configuration space of an IaaS as a FM enables the extraction of information by means of AAFM
operations. Benavides et al. [12] define the AAFM as “the process of extracting information from FMs using auto-
mated mechanisms”. The AAFM provides a catalogue of analysis operations, where each operation retrieves different
kinds of data from the model. An analysis operation can be interpreted as a black-box procedure that receives a FM
and any operation-specific parameter as inputs and retrieves a different kind of output data depending on the operation.
Examples of AAFM operations are products listing (that enumerates all the products described by a FM), valid con-
figuration (that checks whether it is possible to find at least one product given user requirements), or error checking
(that searches for different kinds of semantic errors).

The main goal of this work is to automate the search of the most suitable configuration of a given IaaS provider –
AWS EC2 in our case – that meets a set of user requirements. Prior to configuration search, we need verify that the
FM correctly represents the configuration space of service. For that purpose, we identify two tasks to perform that can
be solved relying on AAFM capabilities: (1) error checking, to ensure the absence of semantic errors [23] in the FM
and (2) product listing, to obtain a list of all the possible configurations. In this section we detail the use of AAFM
operations in order to accomplish these tasks.

6.1. Error Checking
As Trinidad et al. propose [23, 24], it is a good practice to check that a FM is free of errors prior to perform

any further analysis operation. When cross-tree constraints and attributes are used, contradictory information can
be introduced in a FM provoking undesirable effects and making the FM not to represent the configuration space
correctly. The AAFM provides the Error Checking operation (Figure 4.a) that determines if a FM has any of four
kinds of errors:

1. Void FM: a FM that describes no product at all due to contradictory relationships or constraints.
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Figure 4: AAFM operations support for EC2 configuration

2. Dead features: a feature that cannot be selected and therefore appears in no product.

3. False-optional features: a feature that despite of being modelled as optional, must be selected as far as its parent
feature is selected being a de facto mandatory feature.

4. Wrong cardinals: any number of child features in a set relationship that cannot be selected at the same time.

Just in case any error were found, the AAFM provide an error explanation operation that proposes different reasons
why the errors appear in a model. These explanations can be used to identify the source of the errors and repair them
manually.

6.2. Configurations Listing

Despite error checking is a good practice that increases the confidence in the correctness of a FM, it does not
guarantee that the FM represents all and just all the products in a configuration space. We need to list all the available
configurations in the IaaS FM and check each of them against the retrieved information of the IaaS provider. We
explain how we check them or the particular case of EC2 in Section 7.

Throughout this paper, we have been referring to the enormous size of the EC2 configuration space. In particular,
we have referred to the potential number of configurations (22,848 for EC2), i.e. all the possible combinations of
the different values of its configuration points, and to the available configurations (16,991). The reason is that not
all the potential configurations are really available. For example, some locations and purchasing modes exclude the
availability of several instance types. In order to obtain the list of available configurations, we use the All Products
operation [12]. This operation, as its name denotes, returns the list of products that a FM represents. But first we still
need to match the concepts of IaaS configuration and FM product.

We consider a configuration as the set of required decisions to make in order to run a cloud service instance. In the
case of an IaaS computing instance, such decisions match the configuration points previously defined: OS, instance
type, dedication, location and purchasing mode. Additionally, for EC2 we have to decide also on the dedication. In
a FM, a product is a set of selected features that satisfies all the relationships and constraints [12]. It is necessary
to remark that this definition matches for basic FMs that contain no attributes. This makes necessary to review the
product concept for attributed FMs.

In an attributed FM, users can not only make any decision about features, but also about attribute values. A
product is defined when a decision is made about all the features and yet all the relationships and constraints are
satisfied. Due to the reasoning techniques used to perform the AAFM, it is not possible to list the products defined by
an attributed FM with precision. An approximated way to perform this operation consists of removing attributes and
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their constraints from the model to obtain a basic FM just with features and relationships. Using this basic FM, we
can perform the All Products operation to get the list of the available products of an attributed FM.

In an attributed FM, attribute constraints could discard certain combinations of features because of the values of
their linked attributes. When attributes and constraints are removed from the FM, these combinations are available
again, so we cannot expect that the set of basic products coincides with the set of attributed products. In order to
check if a basic product is also a valid attributed product, the Valid Configuration operation can be used to check if it
satisfies all the constraints in the attributed FM. Repeating this operation for each basic product in the list, we obtain
the list of attributed products that satisfies all the relationships and constraints in an IaaS FM.

Figure 4.b depicts the process to obtain the list of IaaS configurations. First, the IaaS FM is transformed into
a basic FM, removing all the attributes and their related constraints. In the specific case of EC2, EBS feature is
also removed, since in this point we are only interested in EC2 configurations. Afterwards, we invoke All Products
operation, which returns the list of available basic products, and for each of them, we check if it is valid for the
attributed model. In this way, we obtain the number of total EC2 configuration: 16,991

6.3. Most Suitable Configuration

Once the FM is checked to define the IaaS configuration space correctly, we can perform any analysis operation
with confidence. The main goal of this work is assisting the users in the search of the most suitable configuration.
Previously, we have defined the most suitable configuration as the one that satisfies customer requirements while the
cost is minimised. This problem can be interpreted as an optimisation problem, where user requirements are hard
constraints and the optimisation criterion is minimising the cost.

Prior to solving any optimisation problem, we should check that the user requirements are valid and define at least
one configuration in the configuration space. The AAFM provides the Valid Partial Configuration operation that takes
a FM and a set of user decisions as inputs, and returns a boolean value indicating if these decisions are consistent with
the FM and therefore it is possible to find at least one product for such requirements.

Once the requirements are checked for validity, an optimisation problem can be defined and solved using the
Optimisation operation. The optimisation operation takes as inputs a FM, a set of user decisions and an objective
function and returns a configuration that satisfies the decisions and optimises the function. In our case, the objective
function refers to the minimal TotalCost attribute value. Figure 4.c shows our proposed approach.

7. Implementation and Verification

In this section, we describe the implementation and verification details of our approach. First, present the im-
plementation of the analysis operations of Section 6. Second, we briefly motivate and describe the web scraper we
employ to build the EC2 FM. And finally, we detail the implementation and verification of the EC2 FM.

7.1. Analysis Operations Implementation

The analysis operations proposed in Section 6 are implemented in the FaMa Framework. FaMa Framework4 [25]
is an AAFM open-source tool that supports more than 20 different analysis operations with 4 different reasoners.
What we had to develop was the proposed transformation from attributed FMs to basic FMs in Section 6, in order to
obtain the number of configurations of an IaaS FM.

FaMa employs different logical paradigms, such as propositional logic or CSP, to perform the AAFM. This means
that the FM is translated to logic variables and constraints, which are interpreted and resolved by off-the-shelf solvers.
Features and attributes are mapped as variables, while relationships and constraints are mapped as different kinds
of constraints. Depending on the AAFM operation, additional inputs can be mapped, and different operations are
invoked on the solver. More details about the AAFM and its mappings, and details about the operations are available
in [12].

However, the traditional mapping of the AAFM– and consequently FaMa – presents performance issues for spe-
cific operations, and especially for the Optimisation operation. For this reason, we have decided to add a new reasoner

4www.isa.us.es/fama
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to FaMa, based on the CPLEX CP Optimizer solver 5, to tackle these performance problems. This new reasoner
implements the Optimisation operation, and present three main changes:

• Alternative FM mapping. Traditionally, the default mapping to CSP that solvers proposed in the literature maps
each feature to a boolean variable [11]. This is the mapping that all the FaMa reasoners adopt. In our alternative
implementation, however, we have mapped each of the six configuration options of the EC2 FM as an integer
variable. Each variable has as many values as leaf features the configuration option has.

• CPLEX tuples. By default, every FM constraint is translated to a solver constraint by the FaMa reasoners.
Nonetheless, in models with thousands of constraints this may lead to an overhead in the solvers. For this kind
of models, CPLEX provides tuples, which improve dramatically the performance by describing all the elements
within a set one by one. Our alternative implementation represents the availability and pricing constraints using
CPLEX tuples. We also modelled attributes internally as integers, since CPLEX tuples lack support for real
numbers. Anyway, the impact in the accuracy of the total cost is negligible, as Table 8 shows.

• Search strategy. We use a customised search strategy, defining the configuration options of EC2 as the decision
variables of the problem.

7.2. EC2 Web Scraper
As stated in Section 5, the EC2 FM presents more than 20,000 constraints. Most of such constraints determine

the exact cost hour of each configuration, and the configurations that are not available for different reasons. The
constraints are presented by AWS in tables in its EC2 website, but its number make its manual processing tedious and
error-prone.

The retrieval of the pricing and availability constraints from Amazon EC2 can be considered as an additional
challenge. There is no standard interface to retrieve this information directly from the provider. This requires the use
of automated techniques, such as web scraping [26] on the provider’s website, to get the data. Although we perform
this technique to build the model, it is an implementation aspect to verify our proposal – it is a means to our end but
not the end itself. Another issue related to the information retrieval is the evolution or variation of the configuration
space. This happens often in commercial cloud services, and requires manual work to adjust the scraper and or update
manually the model. We are aware of this limitation, and therefore in this paper we work with a snapshot of Amazon
EC2 from 12th June 2014.

We have developed a web scraper to automatically extract the constraints from the EC2 website. We have to remark
that this is a basic and non-adaptable scraper, i.e. it is not intended to adapt itself for the changes and evolution of the
EC2 website, but to automate the constraints extraction. The scraper is developed in Java using the jSoup library 6 and
takes as input the FM tree and attributes, and their correspondence with the elements in the EC2 website. It processes
the characteristics and pricing tables, and produces as output the characteristics of each instance type – RAM, ecu and
cores – and the pricing tables of EC2 as FM constraints in the FaMa plain text format – see next subsection for this
format. In the case that a configuration does not appear in the pricing tables it means that is unavailable, so the scraper
generates a constraint to remove such configuration from the EC2 FM.

This scraper only extracts instance characteristics, pricing and availability constraints. Changes in the instance
pricing or availability are supported by our EC2 scraper. However, any change in the configuration options or their
values, or in the presentation or format of the EC2 website would require manual fixes on the scraper. Indeed, during
the realisation of this paper, we have made adjustments on the scraper two times due to changes in the website format
and the addition of new instances.

7.3. EC2 FM
Although there are several formats to define FMs, we have chosen the FaMa plain text format [25, 27]. The most

well known notation is the so-named feature diagram, employed for the excerpt of Figure 3. This format is adequate
for illustration purposes and simple FMs. However, in our case, our EC2 FM is large and complex enough to use a text

5http://www-01.ibm.com/software/commerce/optimization/cplex-cp-optimizer/
6http://jsoup.org/
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format. There are different alternatives for FM text formats [28], but only a few of them provide automated analysis
support. Since we take advantage of the analysis operations already provided by FaMa, we use the FaMa notation to
define the EC2 FM in plain text.

The proposed methodology to build an IaaS FM relies on a deep understanding of the service and on automated
information retrieval mechanisms. While in this paper we have implemented a basic scraper for the latter, some errors
may appear due to the former during the definition of the tree, the attributes or some constraints. Consequently, we find
useful to employ some of the analysis operations of Section 6 to verify the model. On the one side, we want to calculate
the completeness and correctness of the EC2 FM with respect to the retrieved configuration space information. On the
other side, we want to ensure that the EC2 FM is free of FM errors, as described also in Section 6. Note that finding
errors in the FM may not imply that there are errors on the building on the model, but on the configuration space of
the service.

Completeness and Correctness
We need to ensure that the EC2 FM gathers all the available EC2 configurations, but no more. That is, we need

to check the completeness and correctness of the EC2 FM. For this purpose, we employ several of the operations
explained in Section 6 and Figure 4. First, we parse the tables of the EC2 website to get the EC2 available config-
urations. Then, we check that each and every retrieved configuration is contained in the EC2 FM, by means of the
Valid Configuration operation. In this way, we measure the completeness of the EC2 FM. If all the valid EC2 con-
figurations are represented in the FM, we get the number of configurations of the FM, and compare with the number
of configurations retrieved from the tables. If the number is the same, we can say that our EC2 FM is correct and
complete.

The EC2 FM required several iterations to correctly represent the configuration space. Initially, the model repre-
sented several spurious configurations, due to some unavailable configurations are just excluded from the EC2 pricing
tables instead of be marked as “N/A”. After three rounds of fixes, we made the necessary changes to remove the fake
configurations and consider all the available ones.

Error Checking
In this step, we verify, using FaMa and its analysis operations, the validity of the EC2 FM. As stated in Section

6.1, the error checking operation detects behaviours that suggest a wrong modelling, or errors in the configuration
space. The execution of this operation in FaMa detects no errors.

8. Evaluation

In this section we compare, in terms of optimal cost and expressiveness, the results obtained by our approach with
the results obtained in commercial tools, in particular CloudScreener (CS) and Amazon TCO. Besides, we present an
experimental study to check the performance of our prototype.

8.1. Comparison to Other Approaches

Our first comparison study shows that, in terms of expressiveness, our EC2 FM provides the users more freedom
to express decisions than two “competitors”: AWS TCO tool and CloudScreener. AWS TCO [3] is a tool provided by
Amazon to “compare the cost of running your applications in an on-premises or collocation environment to AWS”.
CloudScreener [5] is a web application to “easily identify your need in terms of infrastructure and compare available
offers upon many criteria”. While both of them provide web interfaces, we use the EC2 FM for expressing user
requirements. Table 5 shows a comparison about the main elements of the three approaches. Except for choosing
among different providers, our approach presents more configuration options for the measured configuration aspects.
For instance, AWS TCO ignores all the OS but Linux. About CloudScreener, for example, they only offer four fixed
values to express hours per month information.

The second comparison study, about the optimality of the results, shows how our analysis approach improves the
results of CloudScreener, which sometimes even violates the user requirements. For this comparison, we have taken
5 test cases. We have used them as input for our analysis, and also for the web application of CloudScreener using
the “expert mode”. The inputs and results of the comparison are shown in Table 6, and a record of the process is also
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Table 5: Expressiveness comparison among EC2 FM, Amazon TCO and CloudScreener.
EC2 FM AWS TCO CS

Multi-provider No No Yes
OS Generic &

specific
Linux Generic

Location State &
Continent

AWS areas Area

Dedication Yes No No
Usage data hours/

month
% of 3 years 4 values

Period 1 to 48
months

% of 3 years 1, 3, 6,
12, 24, 36
months

RAM GB GB GB
Comp. unit ecu, cores processors,

cores
CS units

Storage GB GB GB

Table 6: Comparison of results with CloudScreener. m3.large instances present 7.5 GB of RAM, while c3.xlarge instances present 14 ECU.

Cloud Screener Our approach
OS Area ECU/CSPU RAM Config Cost/h Sat. reqs Config Cost/h

C1 Linux Virginia / US East 12/6 8 m3.large 0.14 $ No m3.xlarge 0.28 $
C2 Linux South America 4/2 9 m3.xlarge 0.381 $ Yes m2.xlarge 0.323 $
C3 Windows Singapore 8/4 40 hs1.8xlarge 5.901 $ Yes r3.2xlarge 1.292 $
C4 Linux California / US West 68/34 160 r3.8xlarge 3.12 $ Yes r3.8xlarge 3.12 $
C5 Windows Europe 16/8 5 c3.xlarge 0.376 $ No c3.2xlarge 0.752 $

available 7. In order to facilitate the comparison, we have even set as constant the following properties: Storage ≥
0, period = 1, usage = 24 h/day = 730 hours/month, and dedication = public, since CloudScreener ignores dedicated
instances. CloudScreener uses an own unit, CSPU, to define the computing power, as “an equivalent to EC2 unit
(ECU)”. Therefore, we divide by 2 the ECU of our inputs when translating to CloudScreener. As Table 6 shows, our
approach improves CloudScreener results for four of the five test cases. CloudScreener results for C1 and C5 are not
even valid, since they violate customer requirements – RAM for C1 and ECU for C5 –. For C2, and specially for C3,
our analysis improves the instance selection, obtaining a cheaper instance that still satisfies user needs.

Table 7: Experimental settings groups and ranges.
Cases ECU RAM Disk Usage Period SSD OS Location Dedicated

Group 1 [1,20] [1,10] [1, 1 000] [1, 730] [1, 36] bool Enum Enum boolGroup 2 [6,60] [10,40]
Group 3 [20,108] [40,244] [1 000, 10 000]

8.2. Performance Study

Although the migration is not a real-time task, we want to ensure that our approach performs the analysis in a
reasonable time.

7http://youtu.be/apQmFV5ilUA
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With the intention of testing our analysis approach and its performance, we have implemented an automated
generator of user requirements for EC2. This generator produces decisions about the main configuration options
described at the end of Section 5, that is, location, OS, dedication, instance characteristics and usage data. Most of
the decisions are randomised on the domain of the configuration option, as Table 7 shows. For instance, location
value may be a specific area like Virginia, or a group of areas like NorthAmerica. In contrast, we have managed in a
different way RAM, ECU and storage values. Such properties have large domains, but instance types are distributed
exponentially along the domain, as Figure 5 shows with its logarithmic scale. Consequently, we have defined three
different groups of test cases, in order to aim for areas where different instances can satisfy customer requirements.
We have generated 200 test cases for area, for a total of 600 test cases.
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Figure 5: Instance types distribution in terms of RAM and ECU (log10 scale). Each coloured rectangle denotes a different area of test cases.

Both analysis approaches – FaMa and CPLEX-based reasoner – produce the same output configurations, but in
terms of performance, our CPLEX-based reasoner outperforms FaMa up to several orders of magnitude. While FaMa
lasts for minutes in most of the cases, the alternative implementation outputs the same result in less than a second. As
shown in Table 8, the average difference in the analysis time is three orders of magnitude (103), while the standard
deviation follows the same scale. Total cost errors, due to the round of real variables to integer variables, are negligible,
since average and standard deviation values are around cents of dollars.

Table 8: Comparison between FaMa based impl and our alternative impl in terms of performance and output
Performance (ms) Total cost diff.($)

Impl. Avg. (µ) SD (σ) Avg. (µ) SD (σ)
FaMa 1.73 × 105 1.9 × 105

0.4 0.33
Alternative 5.19 × 102 2.15 × 102

9. Related work

9.1. Cloud Migration
Jamshidi et al. [13] present a systematic literature review of existing research works (up to 23) about planning,

executing and validating migration of legacy systems towards cloud-based software. The authors identify a reference
model for the migration process, where they classify the different works depending on their scope. They also identify
a general lack of tool support for the migration process, which we try to palliate in this paper. Frey et al. [29, 6,
30] propose an overall migration approach, based on the concept of CDO (Cloud Deployment Option). A CDO
represents “a combination of a specific cloud environment, deployment architecture, and runtime reconfiguration
rules for dynamic resource scaling”. This approach provides CDOSim [29], a simulator to evaluate CDOs costs
and response times, and CDOXplorer [6], an evolutionary algorithm to search for well-suited CDOs in terms of
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response time, cost and SLA violations. Both approaches are integrated in CloudMig [30], a suite to assist the
migration of applications to the cloud. Differently from our work, which is focused on infrastructure migration,
they are concerned about migrating applications. Khajeh-Hosseini et al. [31, 32] describe the challenges the users
face when they plan to adopt the cloud. They introduce the cloud adoption toolkit to tackle such challenges, which
provides a framework to assist the users in the decision process. This tool provides support to analyse, among others,
technology suitability, energy consumption and cost prediction of providers and configurations. However, they provide
exhaustive information rather than automating the search for the most suitable configuration. CloudGenius framework,
an approach by Menzel and Ranjan [33], provides a process and decision support for migrating to the cloud. Their
approach comprises a formal mathematical model and a migration process, whose goal is to lead to a VM image
and cloud infrastructure selections. However, the tool support is still in a preliminary stage. Beserra et al. [14]
present CloudStep, a decision process to support the migration of legacy applications to the cloud. CloudStep relies
on template-based profiles of the migrating company, its legacy application and the candidate providers. Such profiles
are cross analysed to identify and solve constraints, and to create a migration strategy. Kwon and Tilevich [34] propose
an automated transitioning for applications to use cloud-based services. This approach can be seen as a crosscutting
concern of the migration to the cloud, and in particular of our proposal to assist the configuration.

There is a number of works that focus on algorithms to automatically evaluate or rank cloud services configu-
rations. Truong and Dustdar [35] present a service for estimating, monitoring and analysing costs associated with
scientific applications in the cloud. They rely on cost models and experiment with real-world applications. Trummer
et al. [17] interpret the outsourcing of part of the IT-stack as a constraint optimisation problem, that they solve using
existing solvers. Tsai et al. [18] consider a similar approach, choosing between different cloud providers using data
mining and trend analysis techniques, and looking for minimising cost. In a related research, Sundareswaran et al
[16] propose indexing and ranking cloud providers using a set of algorithms based on user preferences. Venticinque et
al. [36] describe an approach to collect cloud resources from different providers that continuously meet requirements
of user applications. The related work of Borgetto et al. [37] is oriented to software reallocation in different virtual
machines in order to decrease energy consumption.

Some other works propose processes and methodologies to assist the migration, and identify factors and tasks.
The work of Mohagheghi and Sather [38] presents some software engineering challenges related to migrating legacy
systems to cloud services. They identify application modernization and understanding cloud technologies as the main
issues. Tak et al. [7] identify cost key factors when migrating to the cloud. Different deployment alternatives, based
in Azure and Amazon services, are benchmarked and detailed in terms of cost. Lloyd et al. [39] discuss which
factors should be accounted when deploying to a cloud. The authors focus on bottlenecks which appear when scaling
applications, and the impact of provisioning variation. Zardari and Bahsoon [40] rely on goal oriented requirements
engineering (GORE) and specific tasks to assist users in the adoption of cloud services.

9.2. Variability, Ontologies and Cloud Services

Applying Software Product Lines and variability techniques to cloud services is attracting attention. Quinton
et al. [15] propose a software product lines based approach that supports stakeholders while configuring a cloud
environment and automates the deployment of such configurations. They also use FMs for the configuration process,
but while they consider features as deployable artefacts of cloud environments, we consider features as configuration
points and specific values of commercial cloud services. In the same line, Schroeter et al. [41] use FMs to configure
IaaS, PaaS and SaaS, and also present a process to manage the configuration of several stakeholders at the same time.
Dougherty et al. [42] also uses FMs to model IaaS, but the goal in this case is reducing energy cost and energy
consumption, towards the development of a “green cloud”. In a different way, Cavalcante et al. [43] proposes the
extension of traditional software product lines with cloud computing aspects. Our work differs from these approaches
in a key way: while they focus on deployable cloud environments, and consider features as deployable artefacts,
we focus on commercial cloud services, and consider features as configuration points and specific values of the
services. Wittern et al. [44, 45] present the so-named service feature modelling, for the representation of service
design concerns, and to capture their potential combinations. They also also provides a method [45] to rank service
design alternatives based on stakeholder preferences. While they focus on capturing diverse aspects of cloud services
in a general way, we focus on the complete modelling and analysis of a particular service, EC2, and compare our
approach against commercial applications.
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The use of ontologies has been proposed by several authors to assist the modelling and selection of cloud services.
Han et al. [46] construct a cloud ontology consisting of a taxonomy of concepts of Cloud services, in order to support
a cloud service discovery system. Dastjerdi et al. [47] propose an ontology-based discovery to provide QoS aware
deployment of appliances on Cloud service providers. Ngan et al. [48] also present a semantic cloud service discovery
and selection system, based on OWL-S. The proposed system supports dynamic semantic matching of cloud services
described with complex constraints. Garcia-Rodriguez et al. [49] propose a semantically-enhanced platform to assist
the process of discovering the cloud services, stored in a semantic repository, that best match user needs. While
ontologies are an excellent option for a modelling approach, they present performance issues and reasoning lacks on
integer and real variables, which are inherent to the problem we tackle in this paper.

9.3. Commercial Approaches

Configuring and analysing cloud platforms/providers is continuing to receive significant attention also from the
business community. Besides previously referred CloudScreener [5], there are a number of companies and start-ups
providing comparisons, benchmarks and configuration support for cloud services. Cloudorado [50] also provides
a cloud services price comparison engine. CloudHarmony [1] is a startup which looks for obtaining metrics about
cloud providers performance, and provides a comparison framework for many services providers. PlanForCloud [51]
is another start-up, focused on configuring and simulating cost of several cloud platforms, like Amazon, Azure or
Rackspace. They provide interesting options, like creating elastic demand patterns, and filtering by options like OS or
computing needs.

As shown in the evaluation section, our proposal improves the expressiveness and configuration results returned by
some of these approaches. In particular, CloudScreener returned false positives for the search of the best configuration
that we improved with our analysis. However, we still lack cross-provider support. In future works, where we will
consider different cloud providers and metrics, we may extend our evaluation with some of these approaches.

10. Conclusions

We have presented an approach to assist the configuration selection when migrating an in-house computing in-
frastructure to the cloud. In terms of expressiveness, our modelling approach provides greater degree of freedom for
the customer when making decisions about such configuration, compared to commercial applications like AWS TCO
and CloudScreener. In terms of accuracy, we have proved that our analysis approach improves results compared to
CloudScreener, which sometimes even violates user requirements. In terms of performance, we have implemented an
analysis prototype to obtain the most suitable configuration whose execution times are negligible, being most of the
times less than a second.

For such purposes, we have presented a modelling methodology to describe an IaaS as a FM. Modelling the config-
uration space of a large cloud provider, such as AWS, as a FM provides a well-structured and compact representation
to express user infrastructure requirements. The resulting model still contains, for the particular case of EC2, lots of
information, with a huge number of constraints – more than 20,000. The addition of abstract features and attributes
eases the decision making, since information like RAM, period of commitment or total storage is closer to the user
than specific instance types, purchasing options or EBS extra storage.

We have also proposed the use of the AAFM to assist the configuration when migrating to an IaaS. With the
support of the AAFM operations, user requirements can be validated and employed to obtain suitable EC2 configu-
rations. From the variability management perspective, we have (1) demonstrated the applicability of the AAFM for
the configuration cloud services, (2) defined the product listing for attributed FMs, and (3) proved that off-the-shelf
AAFM mappings, such as the one provided by FaMa framework, can be improved to dramatically reduce execution
times.

Our approach can be generalised to other scenarios – including those considered in this work, primarily focusing
on a migration to the cloud. In a recent work [52], we propose the adaptation of a multi-tenant service to satisfy the
changing needs of the users. In this sense, our analysis approach could be applied to IaaS reconfiguration scenarios
where the user needs to change and the current configuration becomes unsuitable. Our analysis approach could also
be integrated with existing tools. An integration, for instance with the AWS calculator, would provide us with a
reliable way to get the exact pricing of EC2, and it would provide the calculator with capabilities for the automated
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search of the most suitable configuration for given needs. The modelling methodology has also the potential for a
cross-provider analysis. However, in this case, we would have to propose a common IaaS FM, and also address issues
related to ontology alignment between the concepts of different providers.

However, our approach still has limitations and room for improvement, that may motivate new works in this area.
In addition to a cross-provider analysis, we think that FMs and our modelling methodology could be employed for
different cloud services. We also consider defining a metamodel for the configuration of cloud services, based on
FMs, but with specific mechanisms to get beyond some limitations of FMs and the current language. For instance,
there should be a better and more compact way to define price policies and temporal-aware requirements [53, 54].
It is also necessary to enable a way to express constraints over several instances of the same services, such as the
discount policies for multiple hired services, which is a current limitation of FMs. On the customer’s side, FMs lack
mechanisms to express fuzzy needs or preferences [55] as well as requirements. An extension would provide users
with greater capability to specify their needs. The aforementioned AWS calculator could be used also to verify that
we have described the EC2 pricing policy correctly. Finally, we think that we can derive additional benefits from the
AAFM. It is necessary to analyse in depth the applicability of all the existing operations of AAFM to the services
field.
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