A test suite for an Agreement Document
Analyser (v 1.0)

Carlos Miiller, Sergio Segura, A. Ruiz—Cortés

{cmuller, sergiosegura,aruiz}@us.es

G)isa

Applied Software Engineering Research Group
University of Seville, Spain
March 2012

Technical Report ISA—12-TR-03

This report was prepared by the

Applied Software Engineering Research Group (ISA)
Department of computer languages and systems

Av/ Reina Mercedes S/N, 41012 Seville, Spain
http://www.isa.us.es/

Copyright(©2012 by ISA Research Group.

Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and ’No Warranty’ statements are included with all
reproductions and derivative works.

NO WARRANTY

THIS ISA RESEARCH GROUP MATERIAL IS FURNISHED ON AN ’AS-IS’ BASIS. ISA
RESEARCH GROUP MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY
OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR RESULTS OB-
TAINED FROM USE OF THE MATERIAL.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the
trademark holder

Support: This work has been partially supported by the European Commission (FEDER) and
Spanish Government under CICYT project SETI (TIN2009-07366) and by the Andalusian Gov-
ernment under projects ISABEL (TIC-2533) and THEOS (TIC-5906).

List of changes

Version

Date

Description

1.0

March 2012

testing of ADA without table of all test cases

i

Contents

1 Introduction 3
2 Inputs selection 5
2.1 Equivalence partitioning.o 5
2.2 Brror @uessing.o e e e e e 6
3 Inputs combination 9
3.1 Pairwise testing (also called 2-wise testing). 9
4 Test cases report 11
5 Test cases adequacy criteria 13
5.1 Errors detected while handling documents. 13
5.2 Errors detected while analysing documents. 13

1l

v

Abstract

The automated analysis operations of WS—Agreement documents proposed in recent works [1,
2, 3, 4] uses complex techniques of constraint programming as well as auxiliary code for agree-
ment documents handling (XML documents mappings to constraint satisfaction problems (CSP),
predicates parsings to CSP, etc). Implementing such document handling and CSP-based analy-
sis operations is a time-consuming and complex task that easily leads to defects in detection and
explanation solutions. In this context, we need specific testing mechanisms to increase our con-
fidence in the quality and reliability of our developed tool. In this technical report, we present
a test suite for an Agreement Document Analyser (ADA) framework. For the test suite design
several popular techniques from the software testing community were used to develop a set of
implementation—independent test cases to validate the functionality of the eight most significant
ADA analysis operations. Specifically, we used three black-box testing techniques to design our
test cases, namely: equivalence partitioning, pairwise testing, and error guessing. The suite is
composed of 1074 test cases. Each test case is designed in terms of the inputs (an agreement offer,
a template, or both) and expected outputs of the ADA analysis operations under test.

2 A test suite for an Agreement Document Analyser

ISA Research Group - U. of Seville Technical Report ISA—-12-TR-03

Chapter 1

Introduction

The automated analysis operations of WS—Agreement documents proposed in recent works [1,
2, 3, 4] uses complex techniques of constraint programming as well as auxiliary code for agree-
ment documents handling (XML documents mappings to constraint satisfaction problems (CSP),
predicates parsings to CSP, etc). Implementing such document handling and CSP-based analy-
sis operations is a time-consuming and complex task that easily leads to defects in detection and
explanation solutions. In this context, we need specific testing mechanisms to increase our con-
fidence in the quality and reliability of our developed tool. In this technical report, we present
a test suite for an Agreement Document Analyser (ADA)! [5]. The test suite comprises a set of
implementation—independent test cases to validate the functionality of the eight most significant
ADA analysis operations.

For the test suite design we inspired in [6] in which popular techniques from the software
testing community were used to develop a representative set of input-output combinations were
used to test FAMA a feature model analysis tool. Specifically, we used three black-box testing
techniques to design our test cases, namely: equivalence partitioning [7, 8], pairwise testing [9,
10], and error guessing [9]. The suite is composed of 1074 test cases. Each test case is designed
in terms of the inputs (an agreement offer, a template, or both) and expected outputs of the ADA
analysis operations under test. Table 1 shows the general inputs and outputs for each ADA analysis
operation under test?.

"http://www.isa.us.es/ada
2for more information about the inputs and outputs see the wsdl interface at http://www.isa.us.
es:8081/ADAService?wsdl

4 A test suite for an Agreement Document Analyser

Table 1.1: Inputs and outputs for ADA analysis operations addressed in the suite

Operation ID | ADA operation Input Output

incs inconsistencies detection WS-Ag doc Boolean value

incsExp inconsistencies explanation | WS-Ag doc Collection of (term, agreement
elements)

deadTerms dead terms detection WS-Ag doc Collection of terms

deadTermsExp | dead terms explanation WS-Ag doc Collection of (term, agreement
elements)

ludTerms ludicrous terms detection WS-Ag doc Collection of terms

ludTermsExp | ludicrous terms explanation | WS-Ag doc Collection of (term, agreement
elements)

compliance compliance detection Template, Offer | Boolean value

nonComplExp | non-compliance explanation | Template, Offer | Collection of (Offer term, con-
flicting template elements)

ISA Research Group - U. of Seville Technical Report ISA—-12-TR-03

Chapter 2

Inputs selection

We found two testing techniques to be helpful for the selection of a suitable set of input WS-
Agreement document, namely: equivalence partitioning and error guessing. Next, we explain
these techniques and how we used them.

2.1 Equivalence partitioning.

This technique is used to reduce the number of test cases to be developed while still maintaining
a reasonable test coverage (i.e. the degree to which the test cases verifies the test requirements)
[7, 8]. In this technique, the input domain of the program is divided into disjoint partitions (also
called equivalence classes) in which the program is expected to process the set of data input in a
similar (i.e. equivalent) way. According to this testing approach, only one or a few test cases of
each partition are needed to evaluate the behavior of the program for the corresponding partition.
Thus, selecting a subset of test cases from each partition is enough to test the program effectively
while keeping a manageable number of test cases.

The potential number of input WS—Agreement documents is limitless due to the possible in-
finite number of nested term compositors (it is not limited in WS—Agreement specification [11])
and the possible agreement element combinations including terms and creation constraints han-
dling different kinds of predicates. To select a representative set of these, we propose dividing
input WS—Agreement documents into equivalence classes according to the different comprised
agreement elements, i.e. context elements, guarantee terms with or without qualifying conditions,
creation constraints, etc. Therefore, according to this technique, if a WS—Agreement document
with a single agreement element (e.g. a conditional guarantee term) is correctly managed by ADA,
we could assume that those with more than one agreement element of the same type would also
be processed successfully.

To keep equivalence classes in a manageable level, we propose dividing the input domain into

6 A test suite for an Agreement Document Analyser

the following four groups of partitions! for those analysis operations with just a WS—Agreement doc-
ument as input:

1. Templates with different terms, but fixed context and creation constraints. Inputs from these
partitions would help us to reveal failures when processing templates with isolated terms or
a set of them. 11 partitions have been created including or excluding: nested term compos-
itors, conditional guarantee terms, service level objective with integer or string predicates,
and term scopes.

2. Templates with different creation constraints, but fixed terms. Inputs from these partitions
would help us to reveal failures when processing templates with isolated creation constraints
or a set of them. 7 partitions have been created including or excluding items and general
constraints of integer or string predicates.

3. Agreement Offers with different context, but fixed terms. Inputs from these partitions would
help us to reveal failures when processing agreement offers with isolated context. 2 parti-
tions have been created depending on the specification of a mandatory information in the
context.

4. Agreement Offers with different terms, but fixed context. Inputs from these partitions would
help us to reveal failures when processing agreement offers with isolated terms or a set of
them. 11 partitions have been created including or excluding: nested term compositors,
conditional guarantee terms, service level objective with integer or string predicates, and
term scopes.

As a result of the application of this technique we got 31 WS—Agreement documents repre-
senting a manageable part of the input domain for such analysis operations with a single WS—
Agreement document as input.

2.2 Error guessing.

This is a software testing technique based on the ability of the tester to predict where faults are
located according to its experience on the domain [9]. Using this technique, test cases are specifi-
cally designed to exercise typical error-prone points related to the type of system under test.

Following the guidelines of error guessing, we propose using conflicting WS—Agreement doc-
uments including one or more conflicts inside as suitable inputs to check whether inconsistencies,
dead terms, ludicrous terms, and non-compliance are correctly detected or explained by ADA
analysis operations. This way, we kept the number of input documents for this techniques under
test in a reasonable level while still having a fair confidence in the ability of our tests to reveal
failures. For each kind of conflict we designed a different set of inputs comprising 11 Templates

"We assume that obtained partitions are non-disjoint and they do not completely cover the domain, due
to the high number of different agreement elements in WS—Agreement documents.

ISA Research Group - U. of Seville Technical Report ISA—-12-TR-03

2.2. Error guessing. 7

Template — Translate it! (1.0)
Context:
Responder: Translator , as ServiceProvider
All
SDT1: Service Description for TranslationService //by default values
InputFile = // modifiable in offers
SourceLang =
TargetLang =
InputFileSize = 10

SP1: Service Property for TranslationService
TranslationTime — measured by metric:Time — related to SDTI
// Description: % of source text typos
InputErrors — measured by metric:Percent — related to SDTI/InputFile

GTInputFileSize: Guaranteed by ServiceConsumer:
SLO: InputFileSize < 10

GTInputFileSizeQC: Guaranteed by ServiceProvider

QC: NOT ImageTranslation
SLO: InputFileSize > 10

Creation Constraints:
Items:

Constraints :

MinSize: InputFileSize < 30 => NOT ImageTranslation

Figure 2.1: Template got from error guessing with an inconsistency between three agree-
ment elements that make conflicting the document

and 7 agreement offers for conflicts of one WS—Agreement document; and 7 template-offer pairs
for compliance conflicts.

For instance the template of Fig. 2.1 was included to check if ADA realized about conflicts
involving several agreement elements. Specifically, the template has an inconsistency between
GTInputFileSize and GTInputFileSizeQC by MinSize constraint. The reason for that
inconsistency is as follows: as the GTInputFileSize SLO makes the MinSize implica-
tion antecedent be fulfilled, the implication consequent is taken into account. Such a consequent
satisfies the qualifying condition of GTInputFileSizeQC and so its SLO is enabled being in-
consistent with GTInputFileSize. Note that although SDT1 description term includes the
inconsistent constraint InputFileSize=10 it is not considered because service description
terms values in templates are simply by default values.

Due to the complexity of handling a template and an agreement offer together in order to
analyse compliance conflicts, we prepared 20 template-offer pairs more guided by our experience.
They were divided in the following three groups:

1. 7 pairs of templates with different terms, but fixed context and creation constraints; against

C. Miiller et al. Seville, March 2012

8 A test suite for an Agreement Document Analyser

fixed agreement offers.

2. 7 pairs of templates with different creation constraints, but fixed terms; against fixed agree-
ment offers.

3. 6 pairs of agreement offers with different terms, but fixed context; against fixed templates.

ISA Research Group - U. of Seville Technical Report ISA—-12-TR-03

Chapter 3

Inputs combination

We found pairwise testing technique to be helpful for the inputs combination in order to get a
wider inputs sample for our test suite. Next, it is summarized the technique description and our
own application.

3.1 Pairwise testing (also called 2-wise testing).

This is a combinatorial software testing method focusing on testing all possible discrete combi-
nations of two input parameters [9, 10]. According to the hypothesis behind this technique, most
common errors involve one input parameter. The next most common category of errors consists of
those dependent on interactions between pairs of parameters and so on. Thus, the main goal of this
technique is to address the second most common cases of errors (those involving two parameters)
while keeping the number of test cases in a manageable level.

Although pairwise is specially recommended to combine input values in those programs re-
ceiving more than one input parameter we used it for such analysis operations that receive just
a single WS—Agreement document as input as follows: we consider interesting to combine the
agreement elements of two of the partition classes exposes in previous section in order to obtain a
more significant number of use cases covering more combinations of agreement elements. Thus,
we used a pairwise combination strategy to create a test case for each possible combination of
elements of two partition classes. As an example, we create templates with different terms and
different creation constraints combinations; or agreement offers with different terms and a context
without several information. Note that some combinations were not applicable (e.g. agreement
offers cannot include creation constraints). Thus, our test suite is improved with 81 additional
input documents for the use of this pairwise strategy.

For compliance and nonComplExp analysis operations, that receives two WS—Agreement doc-
uments as inputs (an agreement offer and a template), we applied pairwise by creating a test case
for each possible combination of agreement offers and templates got from the equivalence parti-

9

10 A test suite for an Agreement Document Analyser

tions selected for the analysis operations that receive a single document as input.

As an example, consider the operation incs. In previous section, we studied these inputs
in isolation and selected representative 18 templates and 13 agreement offers. Using pairwise
testing for compliance and nonComplExp analysis operations, we may create 234 test cases, a
test case for each possible combination of documents (i.e. 18%13 potential test cases). Due to
some combination were not applicable (e.g. fixed template—fixed offer is dummy) and to create a
manageable number of inputs we just consider such 120 pairs including: templates with different
terms and creation constraints, against fixed offers (42 inputs); and templates against offers both
with different terms and creation constraints (78 inputs).

ISA Research Group - U. of Seville Technical Report ISA—-12-TR-03

Chapter 4

Test cases report

To conclude the design of our suite, we organized the selected inputs and their expected outputs
into test cases; 1074 in total as table 4 shows. For their specification, we followed the guidelines
of the IEEE Standard for Software Testing Documentation [12]. As an example, Table 4.2 depicts
four of the test cases included in the suite to test explaining operations. For each test case, an ID,
description, inputs, expected outputs and intercase dependencies (if any) are presented. Intercase
dependencies refer to the identifiers of test cases that must be executed prior to a given test case.
The four samples included in Table 4.2 requires the previous execution of a detection technique to
assure that inputs includes a conflict inside. As an example, test case EI-31 tries to reveals failures
when obtaining the explanation of inconsistencies between a guarantee term of a nested term
compositor and a service description term. Note that test case /-3/ should be executed beforehand
to assure that there exist an inconsistency in such an input. As a more complex test case example,
test case ENC-105 tries to reveals failures when obtaining the explanation of non-compliance
between a guarantee term of the agreement offer and an item of the template. Note that test case
IC-105 should be executed beforehand to assure that there exist a non-compliance conflict in such
an input. Moreover, IC-105 requires a previous execution of CDC-13, and CDC-24 test cases to
assure each input were conflict-free, and so on.

11

12 A test suite for an Agreement Document Analyser

Table 4.1: Number of inputs got from each testing technique for the ADA analysis oper-
ations

Operation ID | Inputs by equiva- | Inputs by error | Inputs by pair- | Total test
lence partitioning | guessing wise cases
incs 18 130
incsExp 130
deadTerms 31 18 81 130
deadTermsExp 130
ludTerms 18 130
ludTermsExp 130
compliance 0 7420 120 147
nonComplExp 147
Total each number is a different set of inputs 1074

Table 4.2: Four of the test cases included in the suite

TestCase ID | Description Input Expected Output Deps
EI-31 Detecting errors while | Agreement Offer with | SDT1_Image- I-31
explaining inconsistencies | OneOrMore term | Translation inconsistent

between a guarantee | compositor with a | by GTTranslationTime2
term of a nested term | nested ExactlyOne of
compositor with a service | 2 guarantee terms
description term
EDT-124 Detecting errors while ex- | Agreement Offer with | GTInputErrors1 is dead | DT-124
plaining the origin of two | two guarantee terms | by GTInputErrorsl; GT-
dead terms by the use of a | with contradictory | InputErrors2 is dead by
contradictory predicates in | qualifying conditions | GTInputErrors2
qualifying conditions
ELT-18 Detecting errors while ex- | Template with 2 | GTTranslationTimel LT-18
plaining the origin of two | items, a general con- | is Iudicrous by
ludicrous terms by the | straint with an integer | Item_TranslationTime;
same item od creation con- | predicate, and a an- | GTTranslationTime2

straints other constraint with | is ludicrous by
an string predicate Item_TranslationTime
1C-105 Detecting errors while | Template with a ser- | The Agreement Offer is | CDC-13,

checking the compliance | vice description term | non-compliant with the | CDC-24
between a guarantee term | and 2 items; and an | Template
of the offer and an item | Offer with guarantee
of the template creation | term with qualifying

constraints condition

ENC-105 Detecting errors while | Template with a ser- | GTTranslationTimel 1C-105
explaining the origin of | vice description term | of the Offer s
non-compliance between a | and 2 items; and an | non-compliant with

guarantee term of the offer | Offer with guarantee | Item TranslationTime of
and an item of the template | term with qualifying | the Template
creation constraints condition

ISA Research Group - U. of Seville Technical Report ISA—-12-TR-03

Chapter 5

Test cases adequacy criteria

The test suite adequacy can be denoted by many factors such as a simple enumeration of errors
detected by the test suite; or more exhaustive techniques as mutation testing [13] to refine the test
cases; or studying the whole code covering of the test suite to know the tested part of the code. In
future work we will apply such exhaustive techniques but currently, for the sake of simplicity, we
expose the adequacy of our test suite by an enumeration of the detected errors. Thanks to the test
cases we found more than 10 errors while handling or analysing WS—Agreement documents with
ADA.

5.1 Errors detected while handling documents.

We found that several mandatory agreement elements were not correctly managed by ADA. This
is the case of the creation constraint section in templates and template name and identifier in the
agreement offers context. Moreover, WS—Agreement documents with variants and scopes were
not correctly managed because a NullPointerException were thrown. Both cases were solved with
an adequate exception treatment.

5.2 Errors detected while analysing documents.

We found several errors while analysing WS—Agreement documents with specific combinations
of agreement elements':

e Attribute-value pairs of service description terms in templates are by default values but it
were considered as value assignments.

'Errors found while analysing IsCompliant and ExplainNonCompliance operations are not included
here yet.

13

14 A test suite for an Agreement Document Analyser

e In WS—Agreement documents with variants inside, dead and ludicrous terms were returned
by deadTerms and 1udTerms operations in the same number of variants that include
them.

e When deadTerms or ludTerms operation were used with a conflicting document a Null-
PointerException were returned.

e When a term were dead or ludicrous by an attribute-value pair assignment of a service
description term, the responsible value assignment were not explained by deadTermsExp
or ludTermsExp operation.

e When the cause of a term to be dead or ludicrous were not found in a variant, the term
were classified as non dead or ludicrous by deadTermsExp or ludTermsExp operation
before studying the other variants.

e When several dead or ludicrous terms were included in the same variant of a document
and all of them with the same qualifying condition, only one of them were returned by
deadTerms or ludTerms operation.

e When the cause of a term to be dead or ludicrous is itself, the explanation were not correctly
returned by deadTermsExp or ludTermsExp operation.

Acknowledgments

We would like to thank Antonio Jurado, as member of our technical staff for his work and dedica-
tion to this ADA test suite.

ISA Research Group - U. of Seville Technical Report ISA—-12-TR-03

Bibliography

(1]

(2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

Martin-Diaz O, Ruiz-Cortés A, Durdn A, Miiller C. An Approach to Temporal-Aware
Procurement of Web Services. In: Proc. of The 3"¢ International Conference on Service-
Oriented Computing (ICSOC); 2005. p. 170-184.

Miiller C, Ruiz-Cortés A, Resinas M. An Initial Approach to Explaining SLA Inconsisten-
cies. In: Proc. of the 6" Int. Conf. on Service-Oriented Computing (ICSOC). vol. 5364 of
LNCS. Sydney, Australia: Springer Verlag; 2008. p. 394-406.

Miiller C, Resinas M, Ruiz-Cortés A. Explaining the Non-Compliance between Templates
and Agreement Offers in WS-Agreement*. In: Proc. of the 7% International Conference on
Service-Oriented Computing (ICSOC). vol. 5900 of LNCS. Sweden, Stockholm: Springer
Verlag; 2009. p. 237-252.

Miiller C, Resinas M, Ruiz-Cortés A. Conflict Taxonomy and Explanation Mechanisms for
WS—Agreement Documents. Submitted to ACM Transactions on the Web (TWEB). 2011;.

Miiller C, Resinas M, Ruiz-Cortés A. A Framework to Analyse WS—Agreement Docu-
ments. In: Proc. of The 4* Workshop on Non-Functional Properties and SLA Management
in Service-Oriented Computing (NFPSLAM-SOC’10). Ayia Napa, Cyprus: Springer Verlag;
2010. .

Segura S, Benavides D, Ruiz-Cortés A. Functional Testing of Feature Model Analysis Tools:
A Test Suite. IET Software. 2011;5:70-82.

Myers GJ, Sandler C. The art of software testing. Wiley & Sons; 2004.
Pressman RS. Software engineering: a practitioner’s approach. McGrap-Hill; 2001.

Copeland L. A practitioner’s guide to software test design. Artech House, Inc., Norwood,
MA, USA; 2003.

Grindal M, Offutt J, Andler SE. Combination testing strategies: a survey. Software Test-
ing, Verification and Reliability. 2005;15(3):167—-199. Available from: http://dx.doi.
org/10.1002/stvr.3109.

Andrieux et al . Web Services Agreement Specification (WS-Agreement) (v. GFD.107);
2007. OGF - Grid Resource Allocation Agreement Protocol WG.

15

16 A test suite for an Agreement Document Analyser

[12] Draft IEEE Standard for software and system test documentation (Revision of IEEE 829-
1998); 2007. Available from: http://ieeexplore.ieee.org/xpls/abs_all.
Jjsp?arnumber=4432350.

[13] DeMillo RA, Lipton RJ, Sayward FG. Hints on Test Data Selection: Help for the Practicing
Programmer. Computer. 1978 april;11(4):34 —41.

ISA Research Group - U. of Seville Technical Report ISA—-12-TR-03

