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ABSTRACT Cloud computing constant evolution requires dynamic adjustments to service pricing and
billing terms, considering provider infrastructures, customer requirements, and discount policies, among
others. In this context, Customer Agreements (CA) are used to regulate the service provision including,
among other information, the agreed service level in SLAs, pricing, and billing terms. Although many
existing proposals and industrial tools support the definition of pricing and billing of cloud services, there
is a lack in terms of customisation and automated monitoring tools integrated with the billing process. In
this article, we provide a flexible billing proposal supporting CA that considers not only SLA terms but also
customisable pricing and billing terms, possibly including compensations (i.e. discounts or overcharges)
that apply when specified conditions are met. In addition, we developed an automated monitoring and
analysis tool that we validate in a real-world industrial scenario. Moreover, we analyse and compare more
than 50 existing industrial tools with our proposal, highlighting the advantages of its rule-based approach.

INDEX TERMS Billing, cloud services, customer agreements, monitoring, pricing, service level agreements.

I. INTRODUCTION
Within the highly dynamic and evolving cloud computing
market, a proper service pricing and billing life cycle defi-
nition is crucial for providers and consumers alike. On the
one hand, providers need to customise their service offerings,
taking into account several aspects such as their own infras-
tructure, the target market, incurred costs, discount policies,
purchasing options, and the actual billing process life cycle,
which can vary from fixed billing during a period of time to
a real-time, fluctuating price based on demand-and-supply
chains [1]–[3]. On the other hand, customers face an ever
growing number of service offerings to choose from, where
they need to analyse which are the optimal options with
respect to their requirements and budget, as well as carefully
monitor that the billing conforms to the Customer Agree-
ment (CA) and especially to its associated Service Level
Agreement (SLA) [4], [5], i.e. services are correctly billed
according to the consumed resources, the service level actu-

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong .

ally offered, the contractual price, and applicable discounts,
amongst other variables.

In this context, CAs usually consist of a textual document
that is predefined by providers, and which is common to
all their consumers. Mostly, their associated SLAs specify a
number of service level objectives (SLO) on known metrics
such as latency or availability, together with one or more
compensations to be applied if not fulfilled [6]. In absence
of automated tools, consumers are solely responsible for
checking any SLA violations that may occur in order to claim
for penalties to be applied in the following billing cycles.

Nevertheless, CAs in general and SLAs in particular can
play a more relevant role in cloud infrastructure governance,
enabling its automatic monitoring, dynamic adaptation to
comply with the SLOs, and the application of compensa-
tions during the billing process. In order to do so, agreement
documents should be augmented with additional information
and features, such as higher flexibility and expressiveness
on the metrics or SLOs, pricing models to be applied at
service provision time, billing customisation, and compensa-
tions containing discount rules based on such pricing models,
to be applied at billing time.

44374 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-0303-2740
https://orcid.org/0000-0002-9746-5511
https://orcid.org/0000-0001-8157-9146
https://orcid.org/0000-0001-9827-1834
https://orcid.org/0000-0003-4868-5726


J. M. García et al.: Flexible Billing Life Cycle for Cloud Services Using Augmented CA

In this article, we propose a flexible service billing process
governed by CAs and their associated SLAs, so that providers
can customise their billing life cycle with respect to the
pricing model, discounts, and the metrics that are relevant
to the process. The main contributions of our work can be
summarised as follows:

1) We provide a model to specify pricing and
billing information augmenting CA documents. Thus,
we leverage billing life cycle definition as a first-class
citizen in CAs and discuss how SLAs influence the
activities carried out during the billing process.

2) We propose an automatic billing generation based on
rules derived from our pricing and billing model. Our
solution enables the dynamic optimisation of revenues
according to actual use of infrastructures and services,
gathered from service monitoring, while benefiting
consumers with more accurate and possibly discounted
bills.

3) We present an analysis of automated billing sys-
tems and a prototype tool that allows providers to
customise the life cycle and generate bills accord-
ing to the CAs they offer. We apply the developed
tool in an industrial use case, evaluating its perfor-
mance under different workloads, and comparing it
with the 53 industrial tools we analysed.

The rest of the article is structured as follows. First,
in Sec. II we present the real-world scenario that motivated
this work and we identify the faced challenges. Then, Sec. III
presents our proposal to dynamically generate bills with
respect to monitored service level and discount rules. We val-
idate our solution in Sec. IV, applying it to the motivating
scenario, evaluating its performance, and also comparing
some tools which can be used to support billing.1 We discuss
in Sec. V the related work regarding cloud pricingmodels and
billing mechanisms. Finally, Sec. VI concludes the article,
discussing our results and identifying future work.

II. MOTIVATION AND CHALLENGES
The contributions presented in this work are motivated in the
context of a real scenario. In the following, we describe this
scenario, from which we derive the actual challenges related
to the cloud services billing life cycle.

A. MOTIVATING SCENARIO
Our scenario consists on a distributed provision of Software
as a Service (SaaS) for educational platforms in the public
administration of Andalusia (the biggest region of Spain in
terms of size and population), which have to be dynamically
deployed and scaled up to support online teaching needs.
In this context, the Educational Administration (EA) con-
tracts a SaaS provider (SP) to deliver the platforms for a net-
work of over 2,000 schools distributed geographically across

1A landing page with supplementary material including our prototype
and the comprehensive comparative analysis is available at https://isa-
group.github.io/2020-10-billing-lifecycle/

the region; each of those schools represent a community of
end-users (EU) for a given provided educational platform.
Specifically, the SP has to set and maintain a flexible infras-
tructure that can scale to dynamically deploy the requested
instances of educational platforms (based on the Moodle
Framework) by the EA. Furthermore, privacy regulations
oblige the chosen provider to satisfy all the privacy and data
protection needs, initially resulting in a requirement to host
those platforms in a private cloud infrastructure deployed in
the data centres owned by EA.

In order to address these requirements, a container-based
solution was implemented; this approach provides a flexible
deployment and operation model that allows the reconfigu-
ration and evolution required in the scenario. Specifically,
Fig. 1 shows the architecture of the platform based on the
contaniner orchestratorKuberneteswhere all the components
are deployed. In this environment, the platforms manager
operates (from SP) the system with a provisioning tool that
generates the educational platforms instances on demand,
based on the requests from the EA, setting up the appropriate
persistency layer by means of a clustered database with the
appropriate configuration registry and data backups. From a
consumer standpoint, each school represents a set of EU that
access their dedicated instance by means of the Kubernetes
proxy. All those components are orchestrated by the k-master
core module that is responsible to integrate and monitor all
the containers.

In this context, the initial scenario was a fixed reserved
physical server owned and operated by the SP but installed in
the EA data centers. This resulted in a recurring bill depend-
ing on the number of platforms deployed without taking into
account the actual usage of each platform. Unfortunately,
this initial model proved to be unsatisfactory for both the
EA and the SP. On the one hand, from the EA perspective,
even though there was a dynamic billing depending on the
number of platforms used on every day, there was also a min-
imum base cost derived from the maintenance and operation
of the fixed reserved infrastructure. On the other hand, from
the SP perspective, there was a continuous under-usage of
the infrastructure that could not be used for other customers
in order to generate new business possibilities, and increase
its revenue.

To overcome these limitations, both the EA and the SP
acknowledged to explore an alternative pricing model to
migrate the reserved physical server to a data center owned
by the SP as a private cloud for its customers. By using this
shared infrastructure model, it is still feasible to reserve parts
of the infrastructure, but during periods when usage loads
by the administration are low (e.g. at nights or on vacations)
the provider can allocate more computing resources to other
customers with the subsequent gain, while the administra-
tion gets a discount for the low usage load. In this sce-
nario, a CA was settled defining a set of rewards for the
administration in case the reserved resources (in terms of
computing, memory or disk) were not used during a certain
period.
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FIGURE 1. Motivating scenario.

B. CHALLENGES TOWARDS CUSTOMISATION OF THE
BILLING LIFE CYCLE
The dynamic scenario previously described poses a series
of requirements with respect to scalability, adaptability, cost
optimisation, and privacy issues that impose significant chal-
lenges to achieve a truly flexible and customisable billing life
cycle:

1) Specification of all billing-related information within
the same CA together with the relevant service infor-
mation. Since billing rules are based on service metrics,
which in turn are usually defined in relevant CAs, they
should be considered as a first-class citizen. Thus, CAs
augmented with billing specifications should drive the
billing life cycle of associated services, including con-
tracting, monitoring, charges and billing generation.
By addressing this challenge, solutions will enable eas-
ier adaptation and customisation of service offerings.

2) Highly-expressive billing rules, supporting the defi-
nition of not only pricing terms depending on dif-
ferent metrics, but also discounts and compensations.
This expressiveness will facilitate cost optimisations
for both consumers and providers.

3) Automated analysis tools, supporting metrics monitor-
ing, billing generation, and simulation. Billing support
systems should provide analytical platforms to auto-
matically compute bills according to metrics gathered
from the cloud infrastructure. Additionally, these tools
should take scalability and privacy issues into account.

III. CUSTOMISABLE BILLING GENERATION PROCESS
In order to allow the level of customisation required for
the dynamic billing scenario described before addressing the
identified challenges, we propose a billing generation frame-
work based on CAs that are augmented with SLAs, pricing
and billing rules, in addition to the service terms. In the
following sections, we exemplify our proposal using the
results from an industrial research project named POETISA,
which was conducted to provide a solution to the challenges
identified in Sec. II-B.

A. CHARACTERISING THE BILLING LIFE CYCLE
Figure 2 shows a representation of a prototypical billing life
cycle using a BPMN diagram. The process begins with the

service provision, which establishes the relationship between
provider and customer, enacting a CAwhich usually contains
the pricing information, billing rules that defines billing peri-
ods and conditions to generate the actual bills, as well as vari-
ous terms that specify the provided service. This information
is considered within the proper billing cycle, as delimited by
the billing rules included in the CA, where the monitoring
and the billing subprocesses are performed iteratively for the
provided service, until the service is decommissioned. All
these different tasks comprising the billing life cyclemay vary
from one provider to another, offering custom made alterna-
tives depending on their business capabilities and the market
characteristics. These tasks and some common alternatives
are further discussed in the following.

1) SERVICE PROVISION
Whenever a customer wants to make use of a service, they
must choose between offerings that provide different configu-
rations regarding the service capabilities as well as the billing
life cycle instantiation. The latter results in varying schemata
that define billing periods, charge dates, and discounts based
on the options finally chosen. Among the most common
options, not necessarily exclusive, are the following:

• Pay-on-demand. The most simple and usual option,
where customers pay for services which they have actu-
ally used during a billing period. Customers usually
just need to register on the service, so that any later
usage implies implicitly the CA acceptance, which is
usually predefined, and the subsequent billing. How-
ever, resources can be unavailable because of outages or
limitations, such as too many customers accessing the
service at the same time.

• Reservation. Customers request the exclusive use of a
resource for a period, such as a year, in order to avoid
problems of unavailability. Reservations make the cus-
tomers eligible for discounts. Amazon was one of first
providers to offer reserved instances to customers.

• Auction. Providers offer a dynamic, usually cheaper
price for unused resources, such as reservations not
currently being active, to increase their revenue. Thus,
customers bid for their usage, with the risk that such
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FIGURE 2. Process diagram representing a prototypical billing life cycle.

usage can be interrupted in case the actual customers
who reserved them need to use those resources. As an
example, Amazon offers the so-called spot instances as
a kind of auction to its customers.

• Subscriptions. Customers request a period of flat-rate
usage of resources, such as a year, or a personalised
plan. Subscriptions usually have the largest discounts.
Rackspace was one of first providers to offer pre-
payment options to customers.

2) MONITORING AND BILLING CYCLE
Once the CA has been enacted after provisioning the service,
the actual billing cycle starts according to the conditions
stated in the CA. During a billing cycle, providers monitor
the service usage to gather relevant metrics so that they can
afterwards compute the bills with relevant data. Both mon-
itoring methods and data should be accessible to customers,
in order to allow them to validate the billing process and claim
any miscalculation due to SLA violations not considered by
the provider. Unfortunately, it is not always that way [7].

After the billing cycle ends, the billing subprocess depicted
in Fig. 2 takes the monitoring data as well as the pricing
and billing terms in order to generate bills and send due
charges to the customer account. Depending on the billing
life cycle chosen at service provision time, we can classify
charge models as follows:
• Prepayment. Customers pay a single, preliminary
charge, including larger discounts, in case of subscrip-
tions, such as Rackspace options.

• Upfront. Customers pay a preliminary payment in case
of reservations, like with Amazon reserved instances.
Later, ordinary usage is charged as well, but with some
discounts.

• Ordinary. Customers pay periodically for ordinary
usage, usually monthly, including discounts in case of
reservation or auction.

3) SERVICE DECOMMISSION
Finally, the billing life cycle comes to an end depending
on the conditions and terms agreed upon in the CA. Most

common conditions that trigger the service decommission
subprocess are the following:

• Expiration. CAs may include an expiration date in their
service terms, as when subscriptions are in place.

• Disuse. Customers simply stop using the resources.
On pay-on-demand schemata, if resources are not used,
then there are no charges, since the CA does not apply.

• Cancellation. CAs may include explicit termination
conditions or other limitations, such as amaximumnum-
ber of API invocations during a period (as Amazon API
Gateway), or under a termination fee (as Rackspace’s
Master Services Agreement).

4) CONTEXT OF OUR SOLUTION
Aswe discussed in Sec. II-B, in order to address the identified
challenges we need to provide a high degree of flexibility to
the whole billing life cycle presented above. Focusing on the
monitoring and billing subprocesses, which are fundamental
to our proposal, both providers and customers have different
perspectives and expectations towards dynamic management
and customisation of the billing life cycle:

• Billing generation. On the one hand, providers clearly
need to bill their customers according to the actual usage
of the relevant services. In order to do so, both accessing
the monitoring data and appropriately applying billing
rules (pricing and discounts) are mandatory features.

• Billing validation. On the other hand, customers should
have the capacity for using the same billing rules to
check that the billing carried out by the provider con-
forms to their agreement, thus avoiding discrepancies
between them that could lead to legal claims.

• Billing estimation. Apart from validation, customers
may also require the simulation of subsequent billing
periods [8]. This opens opportunities for comparing with
other providers for strategical and/or tactical purposes.

Nevertheless, there are situations where a business entity
may act as service consumer and provider at the same time,
which leads to intertwined needs related to billing generation,
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FIGURE 3. UML model excerpt of iAgree elements including our proposed Billing extension.

validation, and estimation. In the following, we focus our
contribution on the billing generation scenario, proposing a
solution that addresses the previously identified challenges
based on dynamic pricing models specified alongside SLAs,
serving as the foundations to customise the billing generation
process.

B. PRICING MODEL SPECIFICATION
Our proposed pricing model is included within iAgree,2 an
agreement model that is partially depicted in Fig. 3. iAgree
faces the first research challenge we identified in Sec. II-B
since it supports modelling CAs including both SLA terms
(c.f. dark grey area) and billing terms by means of our pro-
posed extension (c.f. light grey area). To further illustrate
this extension, we also provide in Fig. 4 an excerpt of the
CA which corresponds to the motivating scenario exposed
in Sec. II-A. Line references in the text below refer to such
excerpt.

The iAgree model is basically comprised of a set of Terms
and some Context information, such as the parties involved
in the agreement and a set of JSON-Schema Definitions to
be used in metrics, objectives, and compensations. As an
example, the BillingDiscount schema at lines 8-10 is
used in the reward describing a billing discount at line 28.

In this model, Pricing appears as a first-class term, just
as Metrics or Guarantees. On the one hand, a Metric term
includes its schema, and a computer URL that references a
RESTful API that is required to monitor its current values.
As an example, the URL at line 40 provides the average
memory consumption (AMC) of the cloud infrastructure.
On the other hand, aGuarantee term specifies the service level
objective to be fulfilled during a timewindow, as theUptime
≥ 99.00 condition at line 45. Optionally, as presented in [6]

2http://iagree.specs.governify.io/Specification/

a compensable guarantee may penalise or reward the under or
over-fulfilling of the service level objective, respectively.

Focusing in our proposed extension, a Pricing term spec-
ifies the current currency and a base cost. Starting from this
base cost, additional quantities can be added or subtracted for
a specific billing period by considering a set of compensation
values over the cost schema in a similar way as proposed
compensations for guarantees. Note that a pricing compen-
sation refers to either an overcharge or a discount instead of
penalties and rewards on service level. As an example, the
Daily Platform Cost (DPC) is established at line 19 as the
base cost per educational platform with a value of 0.78.
Since our proposed model supports highly-expressive cost
specifications by means of rules, the final cost at lines 21 and
24 not only considers the DPC, but also the Number of
Moodle platforms (NM) and the Number of Days of the
Month (NDM), which are additional metrics. These final cost
formulas apply if conditions on NM in lines 22 and 25 hold,
respectively.

Note that the billing rule specified in line 24 denotes that
the billing process in this example follows a reservation
schema, because the final cost is not affected up to 150 NMs.
If the provider wanted to offer a pay-on-demand option
instead, it would just specify a higher base cost (e.g. 0.9),
removing the conditional terms with respect to the NMs. Fur-
thermore, the final cost in the scenario can be also modified
by a monthly billing discount of 10% if the AMC metric is
less than 30 Gb, as defined in the reward in line 28.

C. AUTOMATIC BILLING GENERATION
From the pricing and billing terms specified using the format
described above, we derive a set of rules that are evalu-
ated using a rule engine [9]. Thus, as shown in Fig. 5, our
proposal first analyses the iAgree specification in order to
extract the metrics information by using each computer URLs
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FIGURE 4. Excerpt of POETISA Customer Agreement in iAgree.

declared (as in line 40 of Fig. 4). We query those computers
components specifying the relevant time window to generate
the corresponding bill. The values obtained are injected into
the rule engine’s working memory as facts. For instance,
if the AMC obtained for a given time window were 20 GB,
our solution would introduce the fact AMC = 20 into the
working memory of the rule engine.

Together with the metrics information, our proposal trans-
forms the iAgree conditions and values into a rule with the
format condition→ action. For instance, the discount
compensation specified in lines 28-32 of Fig. 4 corresponds
to the following rule:

AMC < 30→ BillingDiscount += 10

Note that line 29 specifies the aggregation operator in case
several rules are applied over the same billing parameter (i.e.
BillingDiscount). These rules are injected into the rule
engine’s production memory.

Then, after transforming the pricing model specification
into rules and obtaining the metrics values as facts, we make
use of a rule engine (we use json-rules-engine3 in the pro-
totype described in Sec. IV-A), so that we can compute dis-
counts and final price according to the iAgree specification.

3https://www.npmjs.com/package/json-rules-engine

FIGURE 5. Transformation from iAgree to rules.

For instance, considering the previously described rule and
the fact containing the AMC metric value, the rule engine
would fire that rule, since the condition holds, modifying its
working memory to indicate a 10% increment for the billing
discount parameter. After the rule engine finishes processing
the rules, our solution queries the working memory to retrieve
the corresponding billing parameters to generate the final bill.

By using this approach, our solution addresses the second
challenge identified in Sec. II-B, taking advantage of the
expressiveness of rule engines to describe complex conditions
and generate bills using arbitrary formulas for computing
discounts and service costs, in terms of the action part of
the rules obtained from the analysis and transformation of the
iAgree document.

IV. TOOLING SUPPORT AND VALIDATION
In order to evaluate the suitability of our conceptual solution,
we developed a software prototype that was deployed in the
context of the real motivational scenario described in Sec. II,
addressing the third challenge discussed in Sec. II-B. Based
on this deployment, a validation process was carried out to
gather metrics from the live platform and perform a billing
analysis for the provider during the course of an industrial
project called POETISA.

In this section, we detail the structure of the implemented
prototype, outline the POETISA use case validation, and
analyse its performance under different conditions. Finally,
a review of the current industrial tooling support is offered,
not only providing an analysis of the features supported by
most relevant commercial tools, but also pointing out the
strengths and weaknesses of our proposed tooling.

A. PROTOTYPE ARCHITECTURE
From an architectural point of view, Fig. 6 depicts the dif-
ferent elements that conform the validation scenario; specifi-
cally, this architecture includes an ecosystem of components
(at the bottom part of the figure) that are integrated with
the preexisting provisioning infrastructure (at the top part of
the figure) for educational platforms. The overall system is
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FIGURE 6. Prototype architecture.

deployed into a Kubernetes platform that provides a manage-
ment infrastructure for architectures based on containers to
support reliability and availability. Specifically, the prototype
is deployed in a single-node Kubernetes cluster (k-master)
that could be extended with additional nodes (k-minions)
to extend the computing capabilities; in this context, the
k-master node provides an extensive API to actuate and mon-
itor all the artefacts deployed in the infrastructure.

From a global standpoint, in Fig. 6 we can see how the
Customer Agreements are managed and updated in the sys-
tem by the CA Manager using the Render component that
triggers (on behalf of the manager) the different billing com-
putations showing back its results; the billing computation
itself is orchestrated by the Billing component that gather the
appropriate Metrics Values from the Metric component and
generates the set of Rules and Facts that should be resolved
in the Evaluator component that calls a rule engine. It is
important to highlight, that this general process described is
based on background parallel monitoring activity developed
by theMonitor component that is configured by the specific
Metric configurations sent from the Billing component in
order to harvest the actual monitoring data using the Heap-
ster framework and collect them in the time series database
InfluxDB, which theMetric component can efficiently query
later on.

Specifically, the prototype consists of the following
elements:
• Monitor component integrates Heapster (responsi-
ble for gathering events monitored from the cluster),
InfluxDB (a persistence store with query capabilities
specialised in time-series and events), and Grafana
(providing a visual dashboard for service operation).
Fig. 7 shows a screenshot of the Grafana dashboard we
created.

• Metrics component manages the calculation of an spe-
cific element that is significant for the CA, based on the
event data harvested from the cluster.

• Billing component includes the parsing and analysis of
the CA and the gathering of metrics in order to generate
a set of rules and facts that can be computed by the
evaluator component to calculate a bill.

• Evaluator component encapsulates the rule engine to
compute the actual cost and compensation for a given
set of rules and facts.

• Finally, theRender component provides a user interface
(as shown in Fig 8) for the management of princing
and SLA terms of the CA. Note that in the screenshot
presented, a billing has been generated so that objectives
and condition rewards are marked in green if met, red
otherwise. All of them can be changed in order to simu-
late variations in the billing process.

The prototype follows the principles of microservices
architectures where each component have a well-defined
responsibility and can be evolved and deployed in an inde-
pendent way; in this context, each component implements a
RESTful interface modeled based on the OpenAPI Specifica-
tion that is enriched with interactive documentation and test-
ing portals generated using the Swagger-UI Node.js module.

The microservices paradigm deployed in a Kubernetes
platform represents a scalable model that allows the seamless
replication of each microservice in order to prevent bottle-
necks. For example, in a scenario with a high number of
metrics or complex rules the appropriate component could be
scaled with multiple instances.

From a metric gathering perspective, as the monitor is
based on the InfluxDB persistency platform, the current pro-
totype could be easily extended with the usage of Telegraf
Plugins4 that provide the mechanism to incorporate metrics
from different public cloud providers (such as AWS, Azure
or Google) and distributed tracing system implemented with
Zipkin that can be used to monitor microservice architectures

4https://www.influxdata.com/products/integrations/
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FIGURE 7. Screenshot of the Grafana dashboard component.

or Function as a Service (Faas) platforms as Apache
OpenWhisk.

B. INDUSTRIAL VALIDATION RESULTS
Our prototype implementation was developed and deployed
within the course of an industrial research project (POET-
ISA), whose setting resembled the same motivating scenario
described in Sec. II. The service provider that were running
the educational platforms service infrastructure tested our
proposal directly on the production environment, thanks to
the capabilities of the Kubernetes platform to hot deploy the
components presented before.

As a result, this deployment provided support to the shift
from the pre-existing billingmodel to a fine-grained, dynamic
billing. On the one hand, the pre-existing model was defined
as: MonthlyBill = BaseCost ∗ PlatformCount ∗ ActiveDays
where ActiveDays is independent of the usage of each plat-
form and it just represents the availability of the platform.
On the other hand, the evolved billing were tailored with
compensations based on the real-time usage of each plat-
form; concretely, the discount model defined is based on
three usage metrics in the infrastructure (Memory consump-
tion, CPU load, and disk space) which could potentially
result in much competitive billings with up to 75% of total
reductions over the pre-existing cost. Figures 7 and 8 show
actual data from the industrial validation and the CA applied,
correspondingly.5

C. PERFORMANCE ANALYSIS
Billing management is typically a crucial task for organi-
zations and, depending on the size and business model, the

5The complete CA used in this validation scenario and the
InfluxDB dataset generated during the project be found at https://isa-
group.github.io/2020-10-billing-lifecycle/

execution of this process could be challenging. Consequently,
in order to analyse the operational limits of our approach,
in this section we detail the results of a set of performance
experiments to assess the system under different conditions
in order to characterise an estimation of its performance in a
wide range of scenarios in terms of the following dimensions:

• D1: Number of metrics used in the CA. Each metric
may correspond with monitored data harvested in the
platform, a single artefact measure (direct metric), or an
aggregation calculated in terms of other measures (indi-
rect metric).

• D2: Number of pricing or SLA terms of the CA. Each
term correspond with a guarantee that should be anal-
ysed along with a general penalty or reward definition
that is derived from the over- or under-usage of the
platform, correspondingly.

• D3: Rules complexity. The complexity of expres-
sions used in the definition of the billing rules
can vary from a simple, fixed threshold (e.g.
TotalAverageCPU < 90) to multiple combinations of
logical operators that result in complex conditions (e.g.
(Node1CPU < TotalAverageCPU ) ∨ (Node1MEM <

TotalAverageMEM )).
• D4: Simultaneous billing requests. In realistic settings
multiple billings for different customers should be cal-
culated in parallel. In order to calculate the throughput
of the system, it is important to characterise the paral-
lelism limit6 where the system have a billing genera-
tion capacity that provides a stable performance level.
We can overcome these operational limits by scaling up
the number of microservices on the affected components

6This limit is highly dependent from the underlying infrastructure and
deployment mechanism.
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(typically the billing and evaluator components) and/or
deploying the system in a more advanced instance in
an IaaS provider. The study of how the system could
perform in different types of IaaS instances is out of the
scope of this work.

• D5: Data points volume per metric. Different scenar-
ios would require different types of metrics with vari-
able resolutions that represent a particular volume; e.g.
a given metric could have higher resolution depending if
the monitoring data is harvested every second or every
minute.

In the following, we first introduce the infrastructure used
in the performance analysis tests, then we discuss the exper-
imental process outlining the different kinds of experiments
developed in order to assess the identified dimensions, and
finally we present the results of the analysis highlighting the
key performance aspects found.

1) TESTBED
In order to define a controlled set of experiments, the devel-
oped prototype has been isolated from the production kuber-
netes platform and deployed separately in a single dedicated
machine using a set of docker containers, as opposed to the
industrial validation described in Sec. IV-B. Nevertheless,
we exported the real dataset of metrics harvested in that
scenario, so that wewere able to use it for several of the exper-
iments as we detail later in Sec. IV-C2. From an infrastructure
perspective, the experimental testbed consists of a single
dedicated machine with an Intel Core i7-7700HQ 2.80GHz
runningWindows 10 with a total 16 GB of RAM. In this host,
the prototype were deployed over a Docker desktop platform
with a configuration of 2 CPUs and 2 GB of RAM, while the
experiment runner (built on a Node.js stack) were configured
with a limit of 8 GB of RAM.

Specifically, the experiments ecosystem7 of the testbed is
based on a core runner that generates a CA and metrics data
based on a set of parameters, and then requests a billing gener-
ation from the prototype, measuring its performance. In this
context, the different experiments are defined by means of
scripts that parameterize the core runner with a specific
configuration. In addition, the experiment runner includes a
metric generator which has been designed to complement
the real dataset to analyse the capabilities of the platform
concerning D1 dimension.

Specifically, the configuration input for the core runner can
be grouped in three sets as follows:
• Customer agreement generation parameters. These
parameters include the number of terms for the CA to
be generated (metrics, pricing, guarantees, and com-
pensations) and the rule set to generate the guarantee
objective expression. Currently, three different complex-
ity generation rules are available (simple, medium, and
complex) ranging from simple conditions that contains

7The complete list of scripts and datasets generated for the different exper-
iments are available at https://github.com/isa-group/billing-performance

a single comparison operator with literals, to complex
aggregated expressions combining logical, algebraic,
and comparison operators.

• Metrics generation parameters. These parameters guide
the generation of the data points that will be inserted
in the metrics database that serves as a source of infor-
mation for the billing generation. The interval of the
metrics data points generated corresponds with the same
interval of the real dataset monitored in the industrial
validation (i.e. 13 months) in order to have a comparable
context, though the resolution (data points per second) is
parameterized to allow different data point densities.

• Invocation parameters. These parameters include the
iteration number and parallelism used to invoke the pro-
totype allowing a repetition of calculations in a sequen-
tial and parallel model.

2) EXPERIMENTAL PROCESS
In order to assess the performance of our approach amongst
the different identified dimensions, we designed an experi-
mental study. Specifically, for each dimension, we performed
a corresponding experiment using the testbed and adjusting
the core runner parameters accordingly with different con-
figurations that explore those dimensions. Thus, each experi-
ment run (using a specific configuration) is repeated a number
of times (100 in our case) in order to calculate the average and
standard deviation, and to assure a statistical significance of
the results. Specifically, we developed 5 successive experi-
ments with 43 different configurations (for a total duration of
over 20 hours considering experimental setup and runtime):

• Exp1. In order to explore D1 dimension, we used 10
different configurations to generate CAs with a number
of metrics ranging from 1 to 1024 following a growth
factor of 2.

• Exp2. With respect to D2, we used 10 different config-
urations to generate CAs with a number of guarantee
terms ranging from 1 to 1024 following a growth factor
of 2.

• Exp3. In order to considerD3 impact, we used 3 different
configurations to generate CAs with different complex-
ity degrees for guarantee objectives.

• Exp4. For exploring D4, we used 10 different configu-
rations to assess the behaviour with different scenarios
of parallel billing generations, ranging from 1 to 10
concurrent users.

• Exp5. In order to explore D5, we set up 10 different
configurations of data point densities per metric, starting
with 6 data points and following a growth factor of 3.

3) EXPERIMENTAL RESULTS
The summary of the results of each experiments are depicted
in Figure 9. As a global conclusion, we can identify a linear
correlation between the number of CA terms and the perfor-
mance obtained while there is no correlation with the data
points density for each metric or the complexity of terms.
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FIGURE 8. Screenshot of the Render component.

Specifically, as shown in Fig. 9, the obtained performance
presented a 2nd-order polynomial and linear proportion with
the size of the CA depending on the number of metrics (Exp1)
and the number of guarantee terms (Exp2), correspondingly.
Thus, our solution can manage a sufficiently high number of
metrics and terms without incurring into performance issues
for billing generation.

Concerning the expression complexity (Exp3), Fig. 9
shows it does not impact the overall performance, since aver-
age values are close to 1 second, within approximately 100ms
of deviation in the different runs of our experiment (according
to the error bars shown). This phenomenon can be due to the
fact that expression evaluation is performed by the native run-
time of the rule engine that provides a highly efficient model.

Concerning the parallel invocations of billing calculations
(Exp4), the system scales in a linear proportion without over-
lapping effects so we could forecast the expected behaviour
for a given estimated rate of requests per second using a direct
interpolation.

In a production environment, Exp4 should be repeated
to characterise the baseline performance of the production
infrastructure. Since the whole components are based on
Node.js stack, the core computation model is based on a non-
blocking, event driven I/O. Consequently, while gaining a
high level of throughput, each microservice operates on a
single-thread that prevents the parallelism of computations.
This computation model is effective in our scenario since the
different calculations are fragmented in different microser-
vices and most of them doesn’t imply CPU intensive tasks.

However, it is important to highlight that the characteri-
sation of the operational limits of a particular deployment
is crucial: in our performance experimental study (based on

the testbed configuration described in section IV-C1) we have
observed a linear response behaviour while the number of CA
terms/metrics are under a certain threshold (around 512 met-
rics / terms). In turn, once past this threshold, computations
on the different microservices overlap and the performance
quickly degrades. In order to achieve a higher performance in
more demanding scenarios, we can use, for example, a more
performant infrastructure (in terms of CPU) or Docker con-
figuration (in our experiments we used a cap limit of 2GB
of RAM and 2 cores). Moreover, in the specific case that the
single thread architecture of Node.js represents an important
penalty for the concurrent usage of a given stressed microser-
vice, the container model allows the scalability of several
instances of the stressed microservice, incorporating a load
balancing element that would represent a cluster that accept
parallel requests overcoming the single thread limitation.

Concerning Exp5, Fig. 9 shows the data point density
of the dataset generated does not have an impact in the
performance of the system, with an average response time
below 1 second and a standard deviation under 100 ms,
according to our experiments. Consequently, since we rely
on the query mechanisms of the underlying InfluxDB time
series database, our system can provide a proper throughput
of billing generations in scenarios with vast numbers of data
points.

D. ANALYSIS OF INDUSTRIAL TOOLING
In addition to the aforementioned prototype development
and industrial validation, we also analysed the support to
the billing life cycle of commercial tools, providing a com-
parison framework. The analysed tools were obtained using
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FIGURE 9. Summary of the five experiments results.

Capterra8 and Software Advice9 web sites, which are devoted
to software searching. The keywords used for the queries
were ‘‘billing and invoicing’’. Additional filters restricted the
selection to tools used by more than 1000 users. Finally,
we included in our study 53 tools, which support cloud-
based billing and offer a pricing model. Table 1 showcases
our study results in alphabetical order,10 while Fig. 10 sums
up the comparison, where we highlight the percentage of
tools which support each analysed feature. Noteworthy, our
prototype tool supports most of these features, except for real-
time forecasting. In the following, we discuss our findings,
comparing the capabilities of industrial tools and our proposal
when addressing the challenges identified in Sec. II-B

1) SPECIFYING THE PRICING MODEL
First, we analyse how industrial tools address the first chal-
lenge we identified in Sec. II-B, focusing on the facilities

8https://www.capterra.es/
9https://www.softwareadvice.com/
10The unabridged version of our initial study can be found at https://isa-

group.github.io/2020-10-billing-lifecycle/

they provide to specify pricing models. Providers are mostly
interested in monetising their cloud infrastructure to obtain
revenues. This includes one or more of the following opera-
tions and features:

• Selecting a proper pricing model including subscription
plans and discount policies. This is usually carried out
by means of forms and templates.

• Quoting products according to the pricing model. As an
example, in cloud context, the rating is a kind of quoting,
consisting of setting the base prices per unit for services
and resources.

• Configure a catalog of products, both services and
resources.

Catalogs configuration, pricing and discounts, and quot-
ing together are known as CPQ management [10], a key
aspect in the context of revenue management. There
are 15 tools that offer CPQ-like operations, namely
Biltrix24, ChargeOver, HarmonyPSA, HostBill,
jBilling, Jerasoft, Neon, OneBill, Oracle’s
Financial Cloud, PandaDoc, Salesboom, Sales-
force, SpryBill, Unicorn Billing, and Zuora.
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FIGURE 10. Summary of industrial tooling support.

In comparison to our solution, it also offers CPQ-like
operations, since one can define different CAs offering cus-
tomised pricing and billing models. Furthermore, CAs are
fundamental in our approach, leveraging them as first-class
citizen for governing the cloud infrastructures.

2) SUPPORTING THE BILLING LIFE CYCLE
With regards to the billing specification, customisation
and support of the subprocesses involved, we focus our
analysis in four characteristics related to the second chal-
lenge identified in Sec. II-B. First, in order to control
the infrastructure usage, most providers have a subscrip-
tion management for consumers. These subscriptions usu-
ally consist of allowing subscribed consumers to use
the infrastructure, but no more. Only 10 of the anal-
ysed providers offer CA-like subscriptions which regulate
these relationships, namely Billwerk, BluBilling,
GoodSign, HarmonyPSA, Oracle’s Financial
Cloud, PandaDoc, Salesboom, Salesforce, Soft-
ex Platform, and SpryBill. In turn, our proposal
treats CAs as main artefacts, including the subscription data
together with specific pricing and billing options, as we
previously discussed.

Once the infrastructure is being used, providers are also
interested in the billing generation of invoices for consumers
to pay. This process typically consists of two subprocesses:
• Charging, where the usage records are evaluated to
obtain the corresponding charges, applying the applica-
ble rating.

• Billing, where the charge records are collated and the
invoice is generated.

From the analysed tools, 12 of them offer charg-
ing and billing features, such as Amdocs Optima,
BluBilling, Chargify, Fusebill, GoodSign,
HostBill, jBilling, OneBill, Oracle’s Finan-
cial Cloud, SpryBill, TimelyBill, and Unicorn
Billing. Our proposal also supports both charging and
billing, by means of the CAs established between consumers
and providers.

Most analysed tools provide forms and/or templates to
specify and customise the billing life cycle. However, this

is somehow limited, since their underlying models remain
hidden, or they are not editable. Rules allow to improve
customisation to a greater extent. As providers may have
different business and pricing models, this variability may be
tackled with rules configuring different discounts, penalties,
and other business conditions. Although some tools offer
pre-defined rules with ad hoc processing, most advanced
tools have a rule-specific language, including complex con-
ditions involving flexible metrics and scoping, and allowing
complex actions to be executed in response to conditions.
These rules are processed by rule engines integrated in
cloud infrastructures. Concretely, there are 11 tools that
offer advanced rules, namely BluBilling, GoodSign,
Invoiced, Neon, OneBill, Oracle’s Financial
Cloud, Salesforce, SpryBill, Subscription
DNA, Unicorn Billing, and Zuora. In turn, our pro-
posal allows providers to include advanced rules in pricing
and billing terms of CAs, enabling customer personalization
by means of instantiating the proper rules when creating the
agreement.

There are other features and subprocesses in the billing
life cycle, such as showback, chargeback, payment options,
integrationwith payment gateways, and accountability, which
are out of the scope of our comparison framework.

3) DASHBOARDS
Finally, we analyse how industrial tools tackle the third chal-
lenge we identified in Sec. II-B, with regards to how they
facilitates the automation of the different activities discussed
in Sec. III-A.

Consumers are interested in using services and resources
from providers, as cheaply and efficiently as possible, while
checking that the billing generation is correct. Usually, tools
aimed at consumers consist of a dashboard which collects
data from multiple sources, requiring transparency from their
providers, the integration of third-party services, and the
use of time-series databases. Once data is collected, these
dashboards offer a set of data analytic operations for sup-
porting customers to understand the billing validation or
billing estimation, such as usage trends, anomaly detection,
budget monitoring, and budget forecasting. In addition to data
analytics, these tools may also include different comparisons
among providers to support consumers in decision making.

In turn, in order to help providers in managing the billing
life cycle, tools also include additional data analytics specific
to them, especially regarding to billing, budget monitoring
and forecasting.

As shown in Table 1, there are 12 tools providing
data analytics, anomaly detection, together with budget
monitoring or forecasting, i.e. Billwerk, Chargebee,
Cloudability, Flexera’s FlexNet Optima,
GoodSign, HarmonyPSA, Neon, OneBill, Opencell
Billing, Soft-ex Platform, SpryBill, and
Unicorn Billing. However, only 11 tools offer real-
time forecasting, such as Cloudkick, Flexera’s
FlexNet Operations, Hyperic, Jerasoft,
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TABLE 1. Industrial tools supporting the billing life cycle.
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Monitis, Nimsoft, Oracle’s Financial Cloud,
Salesforce, TimelyBill, Waldur’s Dashboard,
and Zabbix.
Our developed tooling provides both a dashboard, which

renders the CA using actual metrics and pricing values,
highlighting anomalies whenever they may appear, as well
as a customisable representation of the CA containing the
billing rules defined, as showcased in Figures 7 and 8, corre-
spondingly. In our proposal, we focus on current data metrics
from actual running services, but we do not support billing
forecasting.

V. RELATED WORK
We organise our study of the related work in two perspec-
tives, one analysing works on pricing models, and the other
analysing works related with the billing process.

A. ON PRICING MODELS
Several comparative analysis that can be found in the litera-
ture [11]–[13] show the evolution of pricing models adopted
by cloud providers. The main conclusion they observe is that
these models vary from static subscriptions to much more
dynamic and complex schemes applying variants of pay-
on-demand, subscription, and auction-based pricing. Some
authors propose the addition of trust models to verify billable
events in the cloud [14], [15]. On the one hand, Park et al. in
[14] propose THEMIS, a secure and non-obstructive billing
system using a cloud notary authority to generate mutually
verifiable binding information that can be used to resolve
efficiently potential disputes between an user and a cloud
service provider. On the other hand, Chen et al. in [15] present
BitBill, a scalable, robust, and mutually verifiable billing
system to ensure a natural and intuitive peer-to-peer verifi-
cation of billable events in the cloud, leveraging a Bitcoin-
like mechanism. Although THEMIS includes a component to
monitor SLAs, neither THEMIS nor BitBill provide, as far as
we know, support for specifying discounts and other elements
included in our proposed pricing model.

In a recent work [16], Zhang et al. provides an OWL-based
ontology defining pricing and performance features of IaaS
providers. However, although they mention a way to describe
price exceptions in natural language (e.g. special rate when
network traffic egress between zones in the same region) they
do not provide a way to specify compensations or discounts
as defined in our proposal. Other recent works are focus-
ing on defining pricing models considering resources allo-
cation optimisation mechanisms, as in [1], where Alzhouri
et al. investigate a dynamic pricing for re-using stagnant vir-
tual machines. Specifically, their approach manages multiple
classes of virtual machines in order to achieve the maximum
expected revenue within a finite discrete time horizon.

Similarly, in [2] Lai et al. propose to tackle the fee-setting
problem of cloud providers by means of a chance-constrained
bi-level optimisation model, where the fee-setter acts as a
leader, and all the clients act as followers whomake decisions
based on the price they receive. A similar problem is tackled

by Roy et al. [17] by proposing PRIME, a pricing scheme
supporting an optimised and unbiased distribution of profit
among different actors in mobile sensor-cloud architectures.
Yao et al. [3] provide an optimal overbooking policy to
maximize providers’ profits and enhance cloud users’ expe-
riences by decreasing the number of SLA violations. They
achieve these goals by establishing a cooperative gamemodel
of providers organised in a cloud federation with sharing
resources, and making a reasonable profit distribution. Such
a technique has proved to be applicable to optimise pricing
and user experience in data-centric computing frameworks
by Huang et al. [18]. In turn, Zhang et al. [19] design an
online auction for dynamic resource scaling and pricing,
where cloud users repeatedly bid for resources into the future
with increased amounts, according to their scale-up/out pref-
erences.

Other authors, such as Tortonesi and Foschini [20],
explore an approach using genetic algorithm to dynamically
reconfigure IT service components placement, in order to
respond to pricing changes, and to control and guarantee
the SLAs defined by service providers. Finally, in [21],
Vinu Prasad et al. explore the problem of cloud users procur-
ing arbitrary bundles of resources from cloud providers. They
propose a combinatorial auction mechanism in which users
submit their requirements, and in turn vendors submit bids
containing their offered bundles of resources, price, and qual-
ity of service.

However, only some of the aforementioned authors con-
sider the underlying SLA model in their proposals [3], [20].
As far as we know, these works do not allow describing
billing discounts as opposed to our proposal, even though they
are commonly specified in customer agreements by cloud
providers.

B. ON BILLING PROCESS
Focusing on proposals related to the billing process and life
cycle, several works can be found [7], [22]–[27]. Among
them, one of most relevant is CYCLOPS [22]. This frame-
work has been developed in the context of T-NOVA project,
funded by the European Commission (EC). It proposes a rule-
based process to develop a dynamic rating, charging, and
billing for cloud service providers. CYCLOPS includes an
SLA module to get the violation conditions and penalties to
be applied during the billing. The main difference with our
proposal is the central role of CAs that in our case includes
both, SLA terms and all kind of rules for billing governance.
Thus, the billing process can be customised by means of
instantiating specific rules for each customer agreement to be
created. In contrast, rules in CYCLOPS are inserted into the
framework by their administrators, so that rules govern the
billing process, but they are not specific for each customer
and cannot be dynamically adapted.

There are other proposals related to the billing pro-
cess, though, as far as we know, they do not support
the billing customisation facilities that our proposal pro-
vides. Thus, in [23], [24], Elmroth et al. introduce a billing
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and accounting architecture for federated clouds, taking
into account the time-varying resources, migrating services
between datacenters, and different pricing schemes. In [28]
Lindner et al. propose a cloud supply chain relying on an
underlying monitoring framework combined with a billing
and accounting framework, both based on a common infor-
mation model. These works have been developed in the con-
text of RESERVOIR project, funded by the EC, too. In turn,
Harsh et al. [25] introduce a uniform API, billing, and mon-
itoring features in SLA-governed, federated clouds, so that
resources from different providers can be integrated seam-
lessly as a single, homogeneous cloud. It has been developed
in the context of CONTRAIL EC funded project.

Apart from billing generation, which is the main concern
of our work, there are also proposals focused on validation
and estimation. For instance, in [7] Mihoob et al. introduce
improvements on accounting models for providers to make
easier both billing validation and estimation, so avoiding
discrepancies between providers and customers. It applies
on Amazon Simple Storage Service (S3) and Elastic Com-
pute Cloud (EC2). Zarnekow [26], introduce a pricing and
accounting model for customers to know the impact of adopt-
ing a cloud infrastructure, and gives a comparison among
the most usual providers. Finally, in [27], Cho et al. propose
an IaaS cost estimation model that enables real-time cost
monitoring. By knowing in advance such estimated costs,
consumers may avoid the higher cost of performing a con-
tinuous monitoring.

VI. CONCLUSION
Service billing customisation is a challenging task for cloud
providers that need to adapt their pricing and discount rules
dynamically, according to business goals, customer agree-
ments, and their corresponding SLAs. Nevertheless, service
consumers can also benefit from customised billing policies,
adapted to their actual needs. Our proposal focus on the
definition of said policies, which results in an integrated
monitoring and billing process. From a set of customisable
metrics and billing rules, our solution generates the corre-
sponding bills, while also considering CAs monitoring and
enforcement.

As shown in our validation scenario, by means of a cus-
tomised service billing we can adjust generated bills to
achieve both consumers and providers goals. Thus, our pro-
posed solution allows them to define highly-expressive cus-
tomer agreements including SLAs and pricing terms. These
pricing terms support specifying discounts based on a set of
service metrics. We have validated the proposal by devel-
oping an automated tool used in an industrial scenario pro-
viding a monitoring dashboard to analyse the suitability of
the policies and obtain evidences to sustain the generated
billing information. Furthermore, we have evaluated the tool
performance by means of 5 experiments that evaluates its
response time under different conditions of load and CAs
expressiveness.

Finally, we have analysed 53 industrial tooling that support
pricing and billing processes. As a result, we conclude that
none of the analysed tool support all the features of our
proposed solution, which addresses the three key challenges
we identified, namely the specification of pricing and billing
related information within the CA, the use of highly expres-
sive models to describe billing rules, and the automation of
the billing generation process based on said models.

As future work, we will research on how our proposed
model can be applied to billing validation and estimation,
which are related processes mainly relevant to service con-
sumers. In addition, since terms as Customer Agreements,
Agreements, SLAs, are used by providers but with some
slight semantic differences, a further interesting research
may include a unified model for all agreement-related terms.
Moreover, an interesting potential evolution of the current
work would be to incorporate prediction techniques based
on Machine Learning to provide useful dashboards for both
providers and consumers in order to forecast their future bills
and understand the pricing tendencies.
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