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Abstract. The use of models is intrinsic to any scientific activity. In par-
ticular, formal/mathematical models provide a relevant tool for scientific
investigation. This paper presents a new Membrane Computing based
computational paradigm as a framework for modelling processes and
real-life phenomena. P systems, devices in Membrane Computing, are not
used as a computing paradigm, but rather as a formalism for describing
the behaviour of the system to be modelled. They offer an approach to the
development of models for biological systems that meets the requirements
of a good modelling framework: relevance, understandability, extensibil-
ity and computability.

Keywords: Membrane Computing · Multienvironment P systems ·
Multicompartimental P systems · Population Dynamics P systems

1 Introduction

Scientists regularly use abstractions with the aim to describe and understand the
reality they are examining. Computational modelling is the process of represent-
ing real world problems in mathematical terms in an attempt to find solutions
to their associated complex systems. A formal model is an abstraction of the
real-world onto a mathematical/computational domain that highlights some key
features while ignoring others that are assumed to be secondary. A formal model
should not be considered as representation of the truth, but instead as a state-
ment of our current knowledge of the phenomenon under research.

It is desirable for a model to fulfill four properties: relevance, understandability,
extensibility and computability [19]. A formal model must be relevant capturing the
key featureswhile ignoringothers assumed tobe secondary.Theabstract formalism
used should adecquately match the informal concepts and ideas from the investi-
gated phenomenon. Mathematical models should also be extensible to higher level
of organizations, like tissues, organs, organisms, etc, in the case of cellular systems.
Finally, a formal model should be able to be implemented in a computer so that we
can run simulations to study the dynamics of the system in different scenarios, as
well as the qualitative and quantitative reasoning about its properties.
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One of the main objectives of any model is to provide a predictive capability,
that is, the possibility to make guesses in terms of plausible hypotheses related to
the dynamics of the observed phenomenon in different scenarios that are of interest
to experts.

Cellular systems and population biology often depend on many parameters
related to the observed behaviours. Since they define the dynamics of the system,
parameters must satisfy some conditions, which can be referred to as the invariants
of the associated behaviour. Some of these invariants can be expressed by rules
and can be obtained by carrying out experiments, while others cannot be mea-
sured or they are very expensive to estimate. Therefore, before simulations can be
performed in order to make predictions, we need to calibrate our model. Several
parameters values are tested by calibration and the results corresponding to the
state parameters are compared with the observed/expected behaviour of the sys-
tem for the same state parameters. In some cases, the design of the model has to be
reconsidered [15].

Nowadays ordinary/partial differential equations (ODEs/PDEs) constitute
the most widely used approach in modelling complex systems. Nevertheless, in
some cases such as molecular interaction networks in cellular systems, any model
described by means of a system of ODEs/PDEs is based on two assumptions:
(a) cells are assumed to be well stirred and homogeneous volumes so that concen-
trations do not change with respect to space; and (b) chemical concentrations vary
continuously over time in a deterministic way. This assumption is valid if the num-
ber of molecules specified in the reaction volume are sufficiently large and reactions
are fast.

Membrane Computing is an emergent branch of Natural Computing intro-
duced by G. Paun at the end of 1998. This new computing paradigm starts from
the assumption that processes taking place in the compartmental structure of a
living cell can be interpreted as computations. In contrast to differential equations,
P systems explicitly correspond to the discrete character of the components of a
complex system and use rewriting/evolution rules on multisets of objects which
represent the variables of the system. The inherent stochasticity, external noise
and uncertainty in cellular systems is captured by using stochastic or probabilistic
strategies. A general bioinspired computing modelling framework, called multien-
vironment P systems is introduced.

The paper is structured as follows. First, the framework of multienvironment
P systems is defined in a formal way. Section 3 is devoted to multicompartmen-
tal P systems, the stochastic approach. Besides, four case studies at cellular level
are presented in this Section. Population dynamics P systems, the probabilistic
approach, are studied in Section 4 and three case studies related to real ecosystems
are described. Finally, some conclusions are drawn.

2 Multienvironment P System

A multienvironment P system of degree (m,n, q) taking T time units is a tuple

(G,Γ,Σ, µ, T,Π1, . . . ,Πn,R, E1, . . . , Em,RE)
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where:

– G = (V, S) is a directed graph. Let V = {e1, . . . , em} whose elements are called
environments;

– Γ is the working alphabet and Σ � Γ.
– µ is a rooted tree with q nodes.
– T is a natural number that represents the simulation time of the system;
– Πk = (Γ, µ,M1,k, . . . ,Mq,k,R), 1 ≤ k ≤ n, is a basic P system of degree q, and

R is a finite set of rules of the type u[v]αi −→ u′[v′]βi .
– Ej ∈ Mf (Σ), 1 ≤ j ≤ m.
– RE is a finite set of communication rules among environments of the following

forms (x)ej
−→ (y1)ej1

. . . (yh)ejh
and (Πk)ej

−→ (Πk)ej′ .
– No rules from R and RE compete for objects.
– Each rule of the system has associated a computable function whose domain is

{0, . . . , T}.

A multienvironment P system can be viewed as a finite set of environments and
a finite set of P systems, such that: (a) the links between environments are given
by the arcs taken from a directed graph; (b) each P system has the same working
alphabet, the same membrane structure and the same evolution rules; and (c) each
environment contains several P systems, where each evolution rule has associated
a computable function and each one of them has an initial multiset which depends
on the environment; and (d) there is a finite set of rules among the environments.
Furthermore, inside the environments, only objects from a distinguished alphabet
can exist.

It is worth pointing out that this bioinspired computational approach has some
qualitative advantages with respect to ordinary/partial differential equations app-
roach:

– They use a language closer to experts than differential equations.
– They are not affected by the usual constraints present when defining differential

equations based models.
– They aremodular, that is, once an initial version of themodel is designed, adding

modifications is relatively easy. On the one hand, small changes in the system
entails small changes in the model. On the other hand, when using differential
equations most times we have to start from scratch.

3 Stochastic Approach:Multicompartmental P Systems

A multienvironment P system of degree (m,n, q) taking T time units, is said to be
stochastic if:

(a) the computable functions associatedwith the rules of theP systems are propen-
sities: they are computed from stochastic constants by applying
the law of mass-action law (the reaction rate depends proportionally on the
product of the concentrations of the reactants), and the stochastic constants
are obtained from the kinetic constants in an easy way [18]; these rules depend
on time but not on the environment;
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Fig. 1. A multienvironment extended P system

(b) at the initial moment, the P systems Π1, . . . ,Πn are ramdomness distributed
between the m environments; for instance, as in the picture.

These kind of P systems are called multicompartmental P systems.
The dynamics of these systems is captured by either the multicompartmental

Gillespie’s algorithm [18] or the deterministic waiting time algorithm [2].
Gillespie’s algorithm [10–13] provides an exact method for the stochastic simula-
tion of systems of bio-chemical reactions; the validity of the method is rigorously
proved and it has been already successfully used to simulate biochemical processes
and it is based on the inversion method of Monte Carlo theory. The deterministic
waiting time algorithm is based on the fact that in vivo chemical reactions take
place in parallel in a asynchronous manner. The time taken for the formation of
each molecule, called waiting time, is calculated and the rule (reaction) with the
least waiting time is applied, changing the concentration in their respective com-
partments. Each time there is a change in the concentration of a molecule in any
compartment, the waiting time for reactions “using” that molecule needs to be
recalculated for the compartment.

Infobiotics workbench is a computational framework implementing a synergy
among multicompartmental stochastic simulations, formal model analysis and
structural/parametermodel optimisation for computational systemsandsynthetic
biology (http://www.infobiotics.org/index.html)

In this section somepractical examples ofmulticompartmentalP systemsappli-
cations for modelling cellular systems are presented.

3.1 Apoptosis Mediated by FAS Protein

The FAS-induced apoptotic signalling pathway was shown to be one of the most
relevant processes for understanding and combating cancer, AIDS and neurode-
genrative diseases such as Parkinson’s disease, Alkzheimer, etc.

http://www.infobiotics.org/index.html
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Two pathways activated by FAS have been identified [23], and are referred to
as type I (death receptor pathway) and type II (mitochondrial pathway), where cas-
pases play a crucial role for both the initiation and execution of apoptosis (pro-
grammed cell death). The pathways diverge after activation of initiator
caspases andconverge at the endbyactivating executor caspases. In the type Ipath-
way, initiator caspases activate executor caspases directly. In the type II pathway,
a more complicated cascade is activated involving the disruption of mitochondrial
membrane potential.

We have designed a multicompartmental P system with only one environment
that consists of 53 objects and99 evolution rules (see [2] for details) in order to study
when a cell chooses the mitochondrial pathway or the death receptor pathway to
produce apoptosis.

A Java simulator has been implemented and it accepts as input a Systems Biol-
ogy Markup Language (SBML) file containing the rules to be simulated and initial
concentrations for the molecules in the system. We used theCell Designer package
to generate the SBMLsource file for the reactions (CellDesigner is a structured dia-
grameditor for drawing gene-regulatory andbiochemical networks).The simulator
engine mimics the biological cell and it is designed in a modular way so that it can
use different strategies for different pathways if needed.The specific strategy, based
on the deterministic waiting time algorithm, will be executed depending on the ini-
tial concentrations of various objects present in the system.A simulator designed in
Scilab, a scientific software package for numerical computations providing a pow-
erful open computing environment for engineering and scientific applications [23],
using the multicompartmental Gillespie algorithm has been also considered [2].

The consistency between the framework and the experimental results in the
paper [14] validates our model. We have stated that our discrete methods handle
low levels of molecules in a different way that ODE/PDE techniques. To further
investigate the differences between discrete and ODE/PDE methods, we have cho-
sen to focus on one rule from the FAS-mediated pathway (a transformation)

Multicompartmental P systems constitute an alternative to ordinary/partial
differential equationsmethods.Wehave argued that thediscrete nature of our tech-
niquemightbebetter for simulating the evolutionof systems involving lownumbers
of molecules.

3.2 Gene Regulation Systems in Lac Operon in E. coli

In most bacteria, gene expression is highly regulated in order to produce the nec-
essary proteinic machinery to respond to environmental changes. Therefore, at a
given time, a bacterial cell synthesises only those proteins necessary for its survival
under the particular conditions of that time.

Many of the genes in Escherichia coli (E. coli) are expressed constitutively; that
is, they are always turned on. Others, however, are active only when their products
are needed by the cell, so their expression must be regulated. The most direct way
to control the expression of a gene is to regulate its rate of transcription. Adding
a new substrate to the culture medium may induce the formation of new enzymes
capable of metabolising that substrate. An example of this phenomenon happens
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when we take a culture of E. coli that is feeding on glucose and transfer some of the
cells to a medium containing lactose instead. In this case a revealing sequence of
events takes place.

A multicompartmental P system modelling the gene expression control in the
Lac Operon has been designed (see [20] for details). Specifically, the system has
only one environment, the total number of symbols in the working alphabet is 51
and there are 55 evolution rules. The novelty of this design is that the objects can
be symbols or strings over the alphabet. In this context, finite multisets of strings
within membranes represent the genetic information encoded in DNA and RNA.
Thecentral dogmaofmolecular cell biology states thatgenetic information is stored
in the DNA. This information is transcribed into mRNA which in turn is translated
into proteins. It is worth pointing out that transcription and translation have been
modelled as rewriting and concurrent processes on strings.

Using the Multicompartmental Gillepie’s Algorithm and a simulator developed
in Scilab, we have studied the behaviour of the system for different environmental
conditions to see how the system is able to sense the presence of different substrate
(glucose and lactose).

The delay between the sensing of the signal and the expression of different genes
is not explicitly modelled but emerges as a consequence of the formulation of our
approach. Our results agree well with experimental observations and results
obtained by using other approaches.

3.3 Quorum Sensing in Vibrio Fischeri

Bacteria are generally considered to be independent unicellular organisms. Never-
theless, in somecircumstancesbacteria exhibit coordinatedbehaviourwhichallows
an entire population of bacteria to regulate the expression of specific genes depend-
ing on the size of the population.This phenomenon is called quorum sensing, that
is, a cell density dependent gene regulation system. It was first investigated in the
marine bacteriumVibrio Fischeri. The bacteria colonise specialised light organs in
the squid which cause it to become luminescent. Vibrio Fischeri only causes lumi-
nescence when colonising the light organs and do not emit light when in the plank-
tonic free-living state. Luminescence in the squid is involved in the attraction of
prey, camouflage and communication between different individuals.

Bacteria colonies behave like multicellular organisms. Each bacterium must be
able to sense and communicate with other units in the colony to express some spe-
cific genes in a coordinated way. The cooperative activities carried out by members
of the colony generate a social intelligence [17].

In this case, we have designed a multicompartmental P system of degree
(25, n, 1), with 25 environments containing each of them an ordinary P system only
having the skin membrane (see [21] for details) This model has been represented in
the Systems Biology Markup Language using Cell Designer [9].

The emergent behaviour of the system has been studied for three colonies of
different size (10, 100 and 3000 bacteria) to examine how bacteria can sense the
number of individuals in the colony and produce light only when such number is
big enough.
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Our simulations show that Vibrio fischeri has a quorum sensing system where a
single bacterium can guess that the size of the population is big enough and start to
produce light. This bacterium starts to massively produce signals, but if the signal
does not accumulate in the environment it means that the guess was wrong and it
switches off the system. In contrast, if the signal does accumulate in the environ-
mentmeaning that thenumber of bacteria in the colony is big enough, a recruitment
process takes place that causes the entire population of bacteria to become lumi-
nescent. Let us stress that this emergent behaviour is a result of local interactions
in the environments between different simple agents, the bacteria, which are only
able to produce and receive molecular signals. These results agree well with in vitro
observations.

4 Probabilistic Approach: Population Dynamics
P Systems (PDPSystems)

A multienvironment functional P system with active membranes of degree
(q,m, n) taking T time units, is said to be probabilistic if:

(a) the computable functions associated with the rules of the systems are probabil-
ity functions verifying some conditions (these rules depend on the environment
but not on the time, they are constant functions);

(b) the total number of P systems Πk is equal to the number of environments: each
environment contains one P system; and

(c) the rules among environments are only of the form: (x)ej
−→ (y1)ej1

. . .
(yh)ejh

Fig. 2. A Population Dynamics P system
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This kind of P systems are called Population Dynamics P systems [5]. The dynam-
ics/semantics of these systems is captured by ad hoc algorithms such as Binomial
block based simulation algorithm (BBB) [1], Direct Non Deterministic distribution
with Probabilities algorithm (DNDP) [7] and Direct distribution based on Consistent
Blocks algorithm (DCBA) [16], among others.

The BBB algorithm follows a strategy based on the binomial distribution and
blocks of rules with the same left-hand side. In general, each simulation step is
divided into two main stages: selection and execution. In the first one, the algo-
rithm decides which rules will be applied, and the number of applications for each
one (taking into account their left-hand sides and the available objects in the cur-
rent configuration). In the second stage, the selected rules are applied, consuming
themultisets of the rules’ left-hand sides andadding themultisets of the rules’ right-
hand sides the selected number of times, and possibly changing the polarization of
membranes.

The DNDP algorithm performs a non-deterministic distribution of objects along
the rules, but considering the probabilities. The algorithm is split into two phases,
selectionandexecution.This time, selectionphase is divided into twomicro-phases:
selection phase 1 (consistency) and selection phase 2 (maximality). Together with
an initialization phase, it has a total of four phases. The first selection phase calcu-
lates amultiset of consistent applicable rules.This is performedby looping the rules
in a random order, and applying each one (if consistent with the already selected
rules) using the binomial distribution according to the probabilities. The second
selection phase eventually increases the multiplicity of some of the rules in the pre-
vious multiset to assure maximal application, obtaining a multiset of maximally
consistent applicable rules. Again, there is a loop over the remaining rules, check-
ing the maximality condition. Although the DNDP algorithm achieves better results
than its predecessor (BBB), the behaviour still produces some distortion in many
situations (it is biased towards the rules with the highest probabilities).

The DCBA algorithm is based on the idea of proportionally distributing the
amount of objects along the rule blocks. A proportional calculus is made in such a
way that rules requesting for more objects are penalized. However, this calculation
can be adapted to the biological semantics to be captured by the model. Probabil-
ities are applied to rule blocks locally. The simulation algorithm consists on two
phases, selection and execution. But this time, selection is split into three micro-
phases: phase 1 (distribution), phase 2 (maximality), and phase 3 (probabilities).
Selection phase 1 uses a distribution table, where rows represent objects inside
regions, and columns are rule blocks. A normalized distribution of the objects is
performed over the rows. Phase 2 iterates the remaining rule blocks assuring max-
imality, and phase 3, once rule blocks have been selected, calculates multinomial
distributions for each one (according to the selected number for it, and the proba-
bilities of the corresponding rules). DCBA is able to reproduce the desired semantics
for the model of PDP systems. However, its efficient implementation is a challenge
(the distribution table can be very large).

P-Lingua (http://www.p-lingua.org/wiki/index.php/Main Page) is a pro-
gramming language for Membrane Computing which aims to be a standard to

http://www.p-lingua.org/wiki/index.php/Main_Page
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define P systems, in particular, population dynamics P systems. MeCoSim (http://
www.p-lingua.org/mecosim/) is a visual environment to model, simulate, analyse
and verify solutions based on P systems, by defining custom apps for virtual exper-
imentation under different scenarios.

In what follows some practical examples of PDP systems applications for mod-
elling real ecosystems are presented.

4.1 Bearded Vulture

The Bearded Vulture is a cliff-nesting and territorial large scavenger distributed in
mountains ranges in Eurasia and Africa. This is one of the rarest raptors in Europe
(150 breeding pairs in 2007). This endangered species feeds almost exclusively on
bone remains of wild and domestic ungulates. Its main food source is bone remains
of dead small and medium-sized animals.

The ecosystem to be modelled is in the Pyrenean and Prepyrenean mountains
of Catalonia (NE Spain) and it is composed of 13 species: (a) three avian scav-
engers (Bearded vulture,the Egyptian vulture and the Griffon vulture as predator
species); (b) six wild ungulates (Pyrenean Chamois, Red deer, Fallow deer, Roe
deer, Mouflon and Wild boar); and (c) four domestic ungulates (sheep, cow, goat
andhorse) that are found inanextensive or semi-extensive regimeproviding carrion
for the avian scavengers and considered as prey species. Prey species are herbivores
and their remains form the primary food resource for the avian scavengers in the
study area.

In order tomodel this real ecosystem, a population dynamics P systemwith two
environments containing each of them an ordinary P system of degree 2 has been
considered (see [3] for details). The model addresses:

(a) the population dynamics previously mentioned;
(b) the interactions among the 13 species;
(c) the presence of two zones in the study area;
(d) the communication protocol between the two areas; and
(e) the ecosystem maximum load capacity for each of the areas.

The algorithmic scheme of the proposed model is shown in Figure 3 and it is
structured following a series of modules which are run sequentially corresponding
to the passing of 1 year in the ecosystem.

We have studied the dynamics of the ecosystem modifying the initial conditions
in order to analyse how the ecosystem would evolve if different biological factors
were modified either by nature or through human intervention. We have designed
a population dynamics P system with only one environment and 49 types of rules.
For each type of animal the number of biological parameters are related to repro-
duction,mortality, feeding and other general processes of the species itself.Wehave
shown the robustness of the model with respect to a modified order of application
of the different processes modules.

MeCoSim software has been used for the execution of the model. The population
trend of the three scavenger species and the sixwild ungulates has been obtained by

http://www.p-lingua.org/mecosim/
http://www.p-lingua.org/mecosim/
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Fig. 3. Algorithmic scheme of the Bearded vulture model [3]

the model with respect to data recovered by direct censuses from 1994 to 2008. The
model has been experimentally validated with data experimentally obtained cor-
responding to the years from 1994 to 2008 (the input being the number of animals
in 1994) covering a period of 14 years.

4.2 Pyrenean Chamois

Pyrenean Chamois (Rupicapra p. pyrenaica) is an ungulate species inhabiting the
Catalan Pyrenees. It is of great interest, not only from a hunting standpoint, but
also naturalistic and touristic. In recent years, several diseases have caused adrastic
decrease in the number of individuals. In particular, the disease associated to a
pestivirus is having a very important impact on a social and economic scale in the
Pyrenees. Since they provide significant economic contributions in the area and
constitutes an important food resource for obligate and facultative scavengers, it
is very interesting to provide a model in order to facilitate the management of their
ecosystems.

We have given the first computational model of a real ecosystem from the Cata-
lanPyrenees involving thePyreneanChamois. Specificallywe have designed a pop-
ulation dynamics P system model [6] which consists of four environments contain-
ing each of them an ordinary P system of degree 11. The system uses 47 types of
rules and considers four separated areas in the Catalan Pyrenees where the species
lives. Weather conditions, especially in winter (particularly the thickness of the
snow layer), influences the values of biological parameters of thePyreneanChamois
species[8]. Causes of death for this species include: natural death, hunting and dis-
eases. Only Pestivirus infection has been taken into account.

The algorithmic scheme of the proposed model is shown in Figure 4. The algo-
rithm has been sequenced, but all animals evolve in parallel. The processes to be
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modelled will be the weather conditions (snow), reproduction, regulation of den-
sity, food, natural mortality, hunting mortality and mortality due to a disease.

Fig. 4. Algorithmic scheme of the Pyrenean Chamois model [6]

We have shown the robustness of the model with respect to the order of appli-
cation of different rules.

There are experimental data available from 1988 on, although censuses where
not carried out annually so that, experimental series is not a continuous one. Using
the censuses in 1988 as input for the model, 22 years have been simulated repeating
the process 50 times for each of the years simulated. In general, the model behaves
well in all cases.

4.3 ZebraMussel

The Zebra Mussel (Dreissena polymorpha) is a long known invasive species in Mid-
dle East, Europe or even Northern USA rivers and fresh water lakes. This species
provokes serious ecological and socioeconomic impacts. It is an agent of radical
ecologic change, threatening colonized ecosystems in the short and half terms by
modifying certain water and sediments parameters, causing the displacement of
autochthonous species.

In Spain, its colonizationbegan inEbro river, in the summer of 2001 [22], threat-
ening not only the infrastructure of several reservoirs but also tourism and the eco-
logical sustainability of the affected ecosystems.

The ecosystem to bemodelled is very complex as a consequence of the combined
effect of different features: the biological cycle of Zebra Mussels, the heterogeneity
of the physical environment, the size of the reservoir, and its water turnover. Thus,
the variations in the level of water can be considered negligible. As a result, the
application of conventional techniques for modelling may be unfeasible.

In order to study the population dynamics of the Zebra Mussel in the fluvial
reservoir of Riba-roja, the following factors have been considered:
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(1) The basic biological processes of the species, determined by the thermal con-
ditions and the substrate suitability in the reservoir;

(2) the features of the special habitat under study, that is, an artificial reservoir
with water currents and eddies, and changes in water renewal depending on the
depth and time of year, according to the reservoir management for hydropower
and characteristics of incoming water;

(3) the possibility of external larvae entering from an upstream reservoir and the
transfer of individuals to the reservoir by boats.

The algorithmic scheme of the proposed model is shown in Figure 5. Each indi-
vidualmay initiate the loopatdifferent times.Theprocesses sequenced in thefigure
are run in parallel in an area at the same time.Theprocesses are out of sync between
areas. The passing of a year is represented by running the loop twice.

A population dynamics P system based model for the Zebra Mussel at the Rib-
arroja reservoir (Spain) has been presented [4]. The system consists of 17 environ-
ments containing each of them an ordinary P system of degree 40. The system uses
55 types of rules. The main goal of this model is to provide a management tool
to aid in the decision-making process, with the aim of controlling (eradicating or
decreasing) the population of these invasive mussels.

Three different scenarios have been studied:

– The first set of simulations is addressed to determine the effect of the current
water flow on the reservoir.

– Thegoal of the second set of simulations is to obtainawaterflow(water turnover)
that allows the elimination of theZebraMussel in the reservoir, keeping the other
conditions constant.

– The last set of simulations aimed to test one of the main hypotheses concerning
the invasion of the Zebra Mussels in the reservoir. It studies the effect of the
external introduction of larvae considering the current hydrological regime.

The software tool MeCoSim has been used to design the simulator interface.
Input values (i.e., parameters and value variables of the model) are introduced
directly into the interface of the simulator. In order to study the behaviour of the
model in a specific scenario, we simply need to change the input values in this inter-
face.

The results obtained by the simulation of the presented model under the given
scenarios are consistent with those published by other authors and observed by the
experts responsible for the monitoring and management of the population of Zebra
Mussels in the reservoir of Riba-roja.

5 Conclusions

In this paper, a general bioinspired computing modelling framework, called mul-
tienvironment P systems, is introduced. The framework is based on Membrane
Computing and two approaches are described: stochastic approachwhich is usually
applied to modelmicro-level systems (such as signalling pathways, gene expression
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Fig. 5. Algorithmic scheme of the Zebra Mussel model [4]

control, bacteria colonies, etc.), and the probabilistic approach which is normally
used formacro-level modelling (such as real ecosystems). Stochastic multienviron-
ment P systems are called multicompartmental P systems, and probabilistic mul-
tienvironment P systems are called population dynamics P systems. The dynamics
of multicompartmental P systems is captured by either the multicompartmental
Gillespie’s algorithm or the deterministic waiting time algorithm. The dynamics of
the population dynamics P systems is captured by ad hoc algorithm such as bino-
mial block based simulation algorithm (BBB), direct non Deterministic distribu-
tion with probabilities algorithm (DNDP), the direct distribution based on consis-
tent blocks algorithm (DCBA).
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Several case studies are presented in order to illustrate the bioinspired comput-
ing modelling framework. Specifically, three cases for multicompartmental P sys-
tems (apoptosis mediated by FAS protein, gene regulation system in Lac Operon
in E. coli and quorum sensing in Vibrio Fischeri) and three cases for population
dynamicsPsystems (real ecosystems related tobeardedvulture,PyreneanChamois
and Zebra Mussel).
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