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Abstract: Egg yolk is a multifunctional ingredient widely used in many food products, wherein
proteins are the dominant component contributing to this functionality. However, the potential risk
of foodborne illness associated with egg use forces us to ensure that foodstuffs based on egg yolk
are managed in a safe and sanitary manner. Lowering the pH under a certain value by adding acids
could serve this purpose, but it can also greatly modify the rheological and functional properties
of egg yolk. This research aims to assess the influence of citric acid on the rheological properties
and microstructure of chicken egg yolk dispersions and their heat-set gels. The dispersions were
prepared from fresh hen’s eggs yolks by adding water or citric acid to obtain a technical yolk (45 wt.%
in solids) at the desired pH value. Viscoelastic measurements were carried out using a control stress
rheometer, and microstructure was evaluated by cryo-scanning electronic microscopy (CryoSEM).
An evolution of the viscoelastic properties of egg yolk dispersions from fluid to gel behavior was
observed as the pH decreased until 2 but showing a predominantly fluid behavior at pH 3. The
profile of viscoelastic properties along the thermal cycle applied is modified to a great extent, also
showing a strong dependence on pH. Thus, the sol–gel transition can be modulated by the pH value.

Keywords: egg yolk; acidified foods; heat-set gels; viscoelastic properties; cryo-scanning electron
microscopy (CryoSEM); citric acid

1. Introduction

Eggs are one of the most widespread foods all over the world, whose consumption
has rapidly grown in recent years. According to data from the FAO, global egg production
increased from 61.7 million tons in 2008 to 80.7 million tons in 2018 [1]. Eggs have been
classically recognized as a high nutritional source of protein, being cheaper than fish or
meat. However, this growth undergone in the past two decades may be associated with
the change in medical criteria regarding the erroneous negative effect of egg consumption
on health [2]. From a nutritional point of view, eggs contain high-quality proteins and also
provide a high number of essential micronutrients such as minerals and vitamins, apart
from having a low calorific value due to their moderate and well-balanced lipid content.

On the other hand, eggs are widely used in the food industry due to their well-known
functional properties. Therefore, egg components may be used to take full advantage of
their excellent ability to form food emulsions and foams, provide color and flavor, or act
as a food thickener and binding agent [3]. Particularly, egg yolk is a key ingredient in the
manufacture of foodstuffs such as sauces, desserts, baked goods, or ready meals, which
need to be subjected to a gelation process [4,5].

Egg yolk (EY) may be considered as an oil-in-water emulsion, almost half of it com-
posed by water, where lipids and proteins (a third and a sixth part of EY, respectively)
are suspended in the “aqueous phase”, mainly associated as lipoprotein complexes [6,7].
Particularly, proteins are responsible for the gelling properties of egg yolk, which become
apparent when attractive and repulsive interactions are no longer equilibrated in their
native state (sol) and denaturation takes place. Many compounds such as acids, bases,
inorganic salts, solvents, and other chemicals as well as some treatments such as heat or
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pressure could be able to partially denature the supramolecular structure of proteins and
lead to aggregation [8–13]. This partial denaturation is also affected by the protein structure
itself and the environmental conditions (pH, type of salt, and ionic strength). Moreover,
protein aggregates can eventually form a gel when the protein concentration overcomes a
critical value, depending on the balance between stabilizing and destabilizing forces.

Heat treatments are the major technological processes to inactivate microorganisms,
although high-pressure processing (HPP) and acidification can also reduce the risk of
microbiological contamination [14]. It is well known that heat-induced gelation causes
irreversible changes in the structure of egg yolks, in accordance with the heat gelation
model for globular proteins [15–18]. Regarding the pH, any deviation from the isoelectric
point (IEP) can modify the functional properties of proteins to a large extent. Previous
work highlighted the modulating effect of a strong acid such as hydrochloric acid when the
systems were subjected to high pressure [10] or heating [17], as well as when k-carrageenan
is added to acidified egg yolk systems and subjected to heat treatment [19]. Citric acid is
an organic weak acid naturally found in fruits and vegetables, capable of causing protein
denaturation at low temperature [20] and is widely used in the food industry. Recently,
Nielsen and Knøchel [21] have reported that Salmonella strains cultured in raw egg yolk
resulted in a >4 log reduction when the pH was reduced to pH 2.9 using lemon juice and
the systems were stored at 25 ◦C for 24 h. However, egg yolk acidification would most
likely imply evolution in its viscoelastic properties toward a reduction in the flowability of
the systems. This, together with the unpredictable high amount of lemon juice needed to
achieve the desired pH value, may reduce the potential use of acidified egg yolk as a safe
multifunctional ingredient when non-thermal processes are applied in the food industry.
On the other hand, it is interesting to study how egg yolk acidification may affect the
evolution of viscoelastic properties as heat processing proceeds, particularly for those food
products based on egg yolk gels (e.g., egg pudding, custards, or pancakes).

The objective of this study is to assess the influence on linear viscoelastic properties
that cause the reduction of pH from its native value using steady amounts of citric acid.
Heat-induced gelation of acidified egg yolk systems was also monitored in order to evaluate
how they are affected by temperature. Thus, the rheology of egg yolks may be considered
essential to control any disturbance from their native state due to the use of citric acid
and/or temperature. The microstructure of dispersions and their heat-set gels has been
also evaluated by cryo-scaning electron microscopy (CryoSEM).

2. Materials and Methods
2.1. Materials and Sample Preparation

The egg yolk was obtained from fresh chicken eggs labeled as class L and category A
in accordance with the CE Regulation no. 2295/2003 and purchased from Matinés Ibérica
SL in a local market (Seville, Spain). Any damaged or broken egg was discarded, and
yolks were carefully separated from whites using the method developed by Harrison
and Cunningham [22]. Albumen was manually separated, and the yolk was rolled on a
previously wet absorbent towel paper to eliminate any residual albumen. Then, the yolk
membrane was punctured, and the liquid yolk was collected in a beaker. A minimum
of six egg yolks per batch was thoroughly mixing by hand, obtaining a raw material
named native egg yolk. The solid content of this batch (48.07 ± 0.02 wt.%) was determined
after drying 2–3 g of sample in an oven at 105 ◦C for 24 h and subsequently cooling in a
desiccator to room temperature before weighing [23]. The native yolk was reconstituted
with water to prepare a technical reference yolk with a fixed concentration of 45 wt.% in
solids, giving rise to a pH value close to 6 (i.e., 5.96 ± 0.02). This value is close to the
isoelectric point, IEP, which has been reported to be between 5 and 6 [24].

Pure-grade 2-hydroxypropane-1,2,3-tricarboxylic acid (anhydrous citric acid) was
purchased from Panreac (Barcelona, Spain) and 1, 2, 3, and 5 M solutions were prepared
in order to use them as a pH regulator. The initial pH value was determined for 25–30 g
of native yolk by means of a Digit 501 pH-meter (Crison Instruments, Barcelona, Spain),
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and adequate amounts of acid solutions and/or water were added to obtain the technical
egg yolk dispersions (45 wt.%) at desired pH values (i.e., 2, 3, 4, 5, and 6 ± 0.2). Finally,
samples were stored in a refrigerator (approximately 4 ◦C) for at least 24 h before carrying
out any rheological measurements.

2.2. Methods

All rheological tests were performed in an AR 2000 controlled stress rheometer (TA
Instruments, New Castle, DE, USA). Low-inertia 60-mm-diameter plate–plate geometry
(Aluminum PP60 mm) was used for stress and frequency sweep tests at 20 ◦C. Temperature
ramp tests were carried out using a 40-mm-diameter serrated plate–plate geometry built in
stainless steel (SST PP40 mm). The temperature was controlled by a Peltier system that
allows measurements in a wide range of temperatures. The distance between the plates
(“gap”) was established at 1 mm. Sealed beakers with samples, stored at 4 ± 0.5 ◦C, were
reconditioned at room temperature for 30 min before being placed on the measurement
system. The sample was sealed using petroleum jelly to avoid drying problems during
measurements. In order to impose the same thermomechanical history, the studied systems
were kept in the measurement system for 20 min before starting any test.

2.2.1. Sweep Stress Tests

Before any measurement, the linear viscoelastic range (LVR) of egg yolk dispersions
was determined by stress sweeps for all the systems studied at a constant frequency and
a temperature of 20 ◦C. For each system, three stress sweeps were performed between
0.01–100 Pa at constant frequency values of 0.1, 1, and 10 rad/s, establishing the linear
viscoelastic interval for these frequencies. Likewise, critical shear stresses or strains (γ)
within the linear viscoelastic range were determined for all the systems studied at a constant
frequency of 6.28 rad/s (1 Hz) and 20 ◦C.

2.2.2. Frequency Sweep Tests

Small amplitude oscillatory shear tests (SAOSs) were carried out as a function of
frequency (frequency values between 10−2 and 102 rad/s). Since the linear viscoelastic
response of each system is different in the frequency interval studied, the entire interval
was subdivided into different subintervals with common extremes. A unique mechanical
spectrum was recorded for each system at 20 ◦C by imposing stress values below the critical
stress for each subinterval and checking that similar values of both viscoelastic moduli
were obtained in the overlapping area of these subintervals.

2.2.3. Temperature Ramps

Taking into account experiences carried out in previous studies, three stages were
defined for the temperature ramps [25]: a first fluid zone between 20 and 60 ◦C, a sol–gel
transition between 60 and 80 ◦C, and a final gel stage up to 90 ◦C. Consequently, the change
in viscoelastic properties of samples with temperature was recorded at a constant frequency
of 6.28 rad/s (1 Hz) and a stress value within the linear viscoelastic range of each stage.
A heating rate of 1.5 ◦C/min was set between 20 and 90 ◦C. Subsequently, the thermal cycle
applied to the samples went ahead with an isothermal zone at 90 ◦C for 30 min. Finally, a
cooling ramp of −5 ◦C/min was applied from 90 to 20 ◦C.

2.2.4. Cryo-Scanning Electron Microscopy (CryoSEM)

The surface of gels at pH 2, 4, and 6 before and after thermal treatment was analyzed
by CryoSEM, using a ZEISS EVO Scanining Electron Microscope (Oberkochen, Germany)
at −120 ◦C. Small pieces of the samples (2–3 mm) were frozen in nitrogen slush (−210 ◦C),
transferred quickly to the cryo specimen chamber, etched at −90 ◦C for 7 min in order to
remove surface ice, and then, gold coated. The microscopy was operated at an acceleration
voltage of 8 kV with a beam current of 70 pA and a working distance of 6 mm, and analyses
were carried with approximately 4500× g magnification.
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2.3. Statistical Analysis

The results reported in this work were the average result of at least three replicates per
sample. Statgraphics Centurion 18 software (The Plains, VA, USA) was used to perform
one-way ANOVA tests (p < 0.05). Standard deviations were calculated and included
as uncertainties, whereas significant differences from ANOVA tests were indicated by
different letters.

3. Results
3.1. Linear Viscoelastic Properties of Egg Yolk Acidified with Citric Acid

Figure 1 shows the values of the storage (G′) and loss (G′′) moduli obtained from stress
sweep tests of native egg yolk (45 wt.% solids) acidified with citric acid (pH 4) at three
different frequencies (0.1, 1.0, and 10 rad/s) (Figure 1A). Moreover, results obtained from
stress sweep tests at different pH values (2, 4, 5, and 6) and constant frequency (1 rad/s)
are compared in Figure 1B. Regardless of frequency value, all the profiles obtained for
the stress sweep tests at pH 4 were similar, corresponding to a fluid behavior with a
predominantly viscous character (G′′ > G′). The profiles are characterized by a linear
viscoelastic zone (where the viscoelastic functions remain independent of the strain or
stress applied) until reaching a limit, where both moduli decreased with the shear strain
applied. This limit defines the onset of the non-linear viscoelastic region and, therefore,
the critical strain. This response has been previously found for other highly concentrated
protein dispersions [26,27].
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Figure 1. Viscoelastic moduli values as a function of the shear strain applied performed at different
frequencies (0.1, 1.0, and 10 rad/s) for the egg yolk (45% in solids) acidified with citric acid at pH 4
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pH values for the egg yolk (45% in solids) acidified with citric acid (B).

All tests presented in Figure 1A show a viscoelastic character with a predominant vis-
cous behavior without a flow point (G′ = G′′) because the sample exhibited G′′ > G′ values
across the entire measuring range at any frequency studied. This dependence indicates that
the protein is maintained in its native state, and protein denaturation has hardly started.
Hence, no aggregation mechanism can be undertaken at this pH. Furthermore, higher G′

and G′′ values are shown in Figure 1A as a higher frequency was tested. This tendency
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might indicate a behavior showing less flexibility of the internal structure and, possibly,
higher stiffness as the motion was faster in comparison to its behavior at frequency nearer
rest (0.1 rad/s).

As for the effect of pH on the linear viscoelastic region, Figure 1B shows that the
egg yolk dispersions exhibit the same viscous-predominant behavior at pH 4, 5, and 6.
However, the elastic modulus was above the viscous modulus when samples were tested
at pH 2. Thus, a reduction from the native pH to pH 2 led to an increase in the values
of G′ and G′′. This behavior was previously reported in scientific literature, and it was
related to the formation of a protein gel network involving a multistage mechanism that
starts with protein denaturation promoted by a drastic change in pH [28]. In any case, an
apparent linear viscoelastic region was obtained regardless of pH, where the viscoelastic
moduli became lower as the pH value was closer to the IEP (pH 6), as a consequence of
the progressive reduction in electrostatic interactions [29]. Similarly, a steeper fall of the
storage modulus can be observed after LVR was overcome when pH was increased, which
may indicate a more brittle fracture of the internal structure as pH departed from the IEP.

Moreover, as stated in Table 1 and can be seen in Figure 1A, the critical deformation
also depended on pH value. Thus when the pH value was not far from the egg yolk’s
isoelectric point (IEP, 5.7) [11], the higher viscoelastic moduli observed in Figure 1B also
led to a higher interval for the γc. Previous results in protein dispersions evidenced that
electrostatic repulsions play a role when the net charge of the protein increases as pH
deviates from its IEP, at which the net surface charge is zero. At extreme pH values, protein
unfolds, facilitating its aggregation and the formation of a network, which increase the
γc [30].

Table 1. Values of critical deformation (γc) within the linear viscoelastic range for egg yolk acidified
with citric acid at different pH and frequency values. Different letters indicate significant differences
(p < 0.05).

Critical Deformation (γc)

rad/s pH = 3 pH = 4 pH = 5 pH = 6

0.1 9.2 ± 2.2 a 1.26 ± 0.31 b 1.04 ± 0.27 b 1.21 ± 0.08 b

1 0.92 ± 0.22 b 0.34 ±0.08 c 0.30 ± 0.07 c,d 0.18 ± 0.05 d

10 0.11 ± 0.02 d,e 0.26 ± 0.06 c,d 0.13 ± 0.03 d,e 0.09 ± 0.02 e

These results confirm that the dependence of viscoelastic moduli on frequency must
be taken into account when selecting a suitable deformation to carry out the linear vis-
coelastic tests within a frequency interval (typical from frequency sweep tests). Thus, the
temperature and frequency sweep tests were carried out using several intervals in different
temperature and frequency ranges, setting a stress value lower than the critical value for
each interval. This ensured that the viscoelastic properties were always determined within
the linear viscoelastic range.

3.2. Heat Treatment of Egg Yolk Dispersions Acidified with Citric Acid

Although egg yolk is broadly used as an efficient ingredient for stabilizing food
emulsions, it can be also used as a gelling, texturing, or binding agent in baked food. Thus,
it is worth considering the effect of heating on acidified egg yolk dispersions. Figure 2
shows the evolution of the linear viscoelastic moduli (G′, G”) of the native egg yolk
(45 wt.%) obtained at a constant frequency of 6.28 rad/s (1 Hz) as a function of pH value
(2, 3, 4, 5, and 6), during the thermal cycle described in Section 2.2.3. Different zones,
which are associated with the different mechanisms taking place over protein gelation,
were observed upon application of the three stages of the thermal cycle:
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Figure 2. Evolution of storage modulus (A) and loss modulus (B) with temperature for the egg yolk acidulated with citric
acid as a function of pH (2, 3, 4, 5, and 6).

1. The heating stage (25–90 ◦C). This stage led to three different zones:

a. Fluid-like region (25–60 ◦C). This initial zone (with G′′ > G′) was characterized
by a moderate decrease in both moduli, with temperature reaching a minimum
value at the time, tm, and temperature Tm. This behavior has been previously at-
tributed to structural relaxations of heated protein dispersions as a consequence
of the increased thermal agitation [11,31].

b. Sol–gel transition region (60–80 ◦C). This stage started with a sudden increase
in both viscoelastic moduli (S-shaped evolution), leading to a crossover point,
from which a clear predominance of the elastic modulus was observed. The
time and temperature at which the crossover point was observed were named
as tc and Tc, respectively, whereas the value of the viscoelastic moduli crossover
(G′ = G′′) corresponded to Gc. Some authors have used the crossing point
between both modules as an approximate criterion to establish the gelation
point [32,33].

c. Gel region (80–90 ◦C). The gel network was further enhanced in this region.
However, a remarkable decrease in the slope of both viscoelastic thermal pro-
files was apparent, eventually reaching a maximum value of G′ and G′′.

The latter two regions (b and c) may be explained in terms of a multistage mechanism.
According to Clark et al. [15], the gelation mechanism starts with partial protein
denaturation leading to protein aggregation, which explains the increase in G′ and
G′′, followed by the association of protein aggregates to form a three-dimensional
network. In addition, some covalent crosslinking bonds (i.e., disulfide bonds) may
also contribute to the reinforcement of the protein gel network [34].

2. The isothermal stage (90 ◦C). It can be noticed that, for the present study, this stage
was applied once the maximum values for the gel region were achieved (i.e., the gel
network was fully developed). As a consequence, the viscoelastic properties of the gel
only underwent a slight enhancement, which was mainly reflected in G′, particularly
in the absence of charges (at the IEP). As protein charges increased (lowering the pH),
the enhancement in G′ vanished and even reversed over this stage at pH 2 and 3. In
fact, a maximum in G′ (and G′′) was noticed at these pH values, taking place even
before the isothermal stage. In any case, these results seem to confirm that a period of
stabilization of the structural network was reached.

3. The cooling stage (90–25 ◦C). Near the IEP, this stage involved an apparent reinforce-
ment of the protein network (leading to higher G′ and G′′ values) as the physical
interactions were recovered. At low pH, the electrostatic interactions become so rele-
vant that they hinder such enhancement. This recovery of the physical interactions
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also depends on the protein system, being lower for egg yolks than that found with
egg albumin proteins [35].

This result can be explained on the basis of the two models presented by Tombs for
globular proteins: random aggregation or a “string of beads” structure [36]. According
to Doi [37], myosin, β-lactogloblin, ovalbumin, serum albumin, and lysozyme form both
these types of gels depending on the pH and ionic strength. As referred to above, random
aggregates are formed when proteins are denatured by heat near the IEP (see Figure 5A.6).
This is due to hydrophobic interactions between uncharged denaturated molecules of
protein that lead to the most heterogenous and strongest gels, as can be inferred from
Figure 2. However, as pH is reduced, more positively charged protein molecules are
present and electrostatic repulsive forces between them hinder the formation of random
aggregates, giving rise to a more linearly ordered and weaker network. It is consistent with
the evolution observed form pH 6 to 3 in Figure 2 and Figure 5A.4–A.6, shown later in
Figure 5.

On the other hand, pH lowering by the use of only citric acid can also cause protein
denaturation and eventually form a gel. This acid-induced gelation has been reported for
myosin, meat, fish, and milk fat gels among others [38]. Lucey and Singh proposed that the
mechanism involved could be explained by the fractal theory. According to this, spherical
particles of a determined radius can move by Brownian motion, being able to aggregate
when they encounter each other. These aggregates can then form fractal clusters, which are
considered the building blocks of the gel [39]. This might be the reason for the increase in
linearity and size of clusters observed from Figure 5B.2–B.6 as well as the exceptionally
high initial values of both moduli observed in Figure 3 for pH 2.
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Figure 3. Dependence of complex moduli (G*) (A) and loss tangent (tan δ) (B) on frequency value for the egg yolk acidulated
with citric acid before thermal cycle (BTC) and after thermal cycle (ATC) as a function of pH (2, 3, 4, 5, and 6).

Table 2 summarizes the values of the temperature (Tm) at which a minimum in G′

was reached, as well as the crossover point between G′ and G (Gc) and the temperature,
at which the crossover took place (Tc) for egg yolk acidified with citric acid at pH 2, 3, 4,
5, and 6. From the values of Tm, it is possible to confirm the existence of an anticipation
of the minimum peak as the pH value is lowered. This temperature set the value at
which each acidified system would acquire its maximum flowability. Similar results were
obtained for egg yolk acidified with hydrochloric acid, and it was related to the fact that
electrostatic repulsions increased as the pH value decreased, which was a consequence
of higher surface charges [11,40]. However, the minimum value (G′m) became lower as
the pH value increased. At the same time, the increase of the viscoelastic moduli was also
delayed with the rise of pH. It seems that the electrostatic interactions interfere with the
effect of the thermal agitation, hindering the thermal-induced reduction in G′m.
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Table 2. Parameters for the systems gelled after the thermal cycle (pH 3, 4, 5, and 6). Values of
temperature where G′ reaches the minimum in the temperature ramps (Tm) and where the storage
and loss moduli are crossed (Tc), as well as the crossover value of the viscoelastic moduli (Gc) as
a function of pH for the yolk acidulated with citric acid. Different letters within a row, indicate
significant differences (p < 0.05).

Parameter pH = 3 pH = 4 pH = 5 pH = 6

Tm (◦C) 36.9 ± 1.1 a 48.2 ± 4.2 b 58.0 ± 2.6 c 65.4 ± 4.2 d

Tc (◦C) 61.1 ± 1.3 a 67.4 ± 1.1 b 72.4 ± 1.6 c 76.3 ± 4.2 c

Gc (Pa) 330 ± 115 a 117 ± 26 b 67 ± 27 c 9 ± 5 d

As for the values related to the crossover point (Tc and Gc), which evidence the sol–gel
transition, an increase in Gc and a decrease in Tc were observed when reducing the pH
value. This reduction in pH also led to the anticipation of the above-mentioned minimum
value of Tm and a reduction in the slope of the growth for both viscoelastic functions during
the second stage. In other words, the rheokinetics of yolk gelation was slowed down as pH
departed from the IEP (to approximately 5.7), because of repulsive interactions that disturb
the development of the protein gel network. The exception to this behavior corresponded
to pH 2, which, as shown above, presented a gel-like behavior from the beginning of the
test and, therefore, there was no precise delimitation between the first and second stage.
However, as may be seen in Figure 2A, the final G′ values obtained were in the same order
of magnitude for all pH values under study. This means that the binding and texturing
properties of egg yolk would be maintained roughly unchanged when pH value was 3
or higher. As above-mentioned [20], acidification with citric acid (by lemon juice) near
pH 3 contributed to a remarkable reduction of Salmonella contamination. Hence, egg yolk
processed at pH 3 using citric acid could be used as a safe binding and texturing agent in
egg yolk-based foodstuffs.

Subsequently, during the isothermal heating stage, viscoelastic moduli may undergo
a slight increase (at pH 6 and 5), no variation (at pH 4 and 3), and a slight reduction
(at pH 2). It seems that repulsive interactions also modulate the dependence of G′ and
G′′ on pH, in this stage. Thus, heating at the isothermal stage can still contribute some
reinforcement when repulsive interactions are weak (i.e., at pH close to the IEP), but no
further strengthening is possible when repulsive interactions become stronger (at pH 4 or
lower). In addition, these repulsions also lead to a change in the aggregation mechanism
(as stated below), favoring the formation of linear aggregates [41]. All this can explain the
anticipation in the Tm value (and the growth in G′ and G′′).

Eventually, the pH value also influenced the behavior of the egg-yolk gels during the
fourth stage (cooling stage) but not in the magnitude observed during the heating stage.
As expected, a structural reinforcement took place upon cooling at pH between 4 and 6 as a
consequence of the recovery of hydrogen bonds. However, a clear decrease in viscoelastic
moduli was observed over the cooling stage at the lowest pH values (2 or 3). This result
suggested that the greater amount of surface charges, corresponding to the more acidic pH
values, involved a slight structural weakening, which seemed to be favored by the decrease
in temperature [40]. Thus, the greater quantity of electrostatic interactions produced a
displacement of the balance of forces by inhibiting the formation of physical interactions,
as is the case of hydrogen bonds [42].

3.3. Influence of Acidic Processing and Combined Acidic-Heating Processing on the Linear
Viscoelastic Properties of Egg Yolk Acidified with Citric Acid

Figure 3 shows the results of the frequency sweep tests obtained within the linear
viscoelastic range at 20 ◦C for the yolk samples acidified with citric acid, before and after
the application of the thermal cycle (BTC and ATC, respectively) at different pH levels
(pH 2, 3, 4, 5, and 6). As may be observed, all the systems (BTC and ATC) follow a power-
law relationship over the experimental frequency range. The complex modulus shows a
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significant dependence on both frequency and pH, as well as a dramatic increase after the
application of the thermal cycle (higher than five orders of magnitude).

As may be observed, BTC samples exhibited a liquid-predominant behavior (with tan
δ > 1, Figure 3B), where the values for the complex modulus highly depended on frequency
values (Figure 3A), regardless of the pH value, except for pH 2. As above-mentioned,
this system exhibited a gel behavior even before the thermal cycle, and consequently, this
system led to the rheological response corresponding to a weak gel-like system [43]. This
means that egg yolk processed with citric acid at pH 3 could be further used (BTC) as
an emulsifying agent still remaining a liquid, but with the added benefit of being a safer
ingredient as a consequence of the reported inactivation of Salmonella strains in emulsified
food products such as mayonnaise, salad dressing, and cream. Furthermore, egg yolk
garnish could be obtained by immersing sugared yolk in a citric acid solution of pH 2.

It is also worth highlighting that the G* frequency profiles tend to flatten after the
thermal cycle (Figure 3A), confirming the effect of temperature on the mechanical spectra
of the gels obtained. In fact, the slope of the power-law functions shifts from approximately
0.9 for the BTC systems to approximately 0.06 for the ATC (and BTC at pH 2). More
specifically, the system at pH 2 BTC and ATC follows a similar gel pattern even with
lower G* values after the application of the thermal cycle. This can be considered as a
consequence of the increase in temperature, which could help a determined number of
clusters to reach enough energy to be disrupted while maintaining their linearity to some
extent. The tan δ values ranged between 3.5 and 10 for protein systems BTC (except at
pH 2), whereas they ranged from 0.2 to 0.07 for all the gel systems. These values together
with the low values for the power-law slopes for G*-ω observed in Figure 3A, indicate that
these systems follow a strong gel behavior [44]. The viscoelastic response of the systems
prepared at different pH values was also quite different BTC and ATC. Thus, in the absence
of heat treatment (BTC), G* led to higher values as pH was reduced from the IEP. However,
once the thermal cycle was applied, the highest viscoelastic moduli were obtained for
the system close to the IEP (pH 6). This contrasting effect of pH reflects the differences
in protein interactions before and after the thermal cycle and the different mechanisms
involved in both treatments (heat and/or acid) mentioned above.

Figure 4 includes the values of G* at 6.28 rad/s (1 Hz), G*1, as well as the tan δ values
at 1 Hz 6.28 rad/s (1 Hz), tan δ1, of the egg yolk systems BTC and ATC. This figure confirms
the above-mentioned effects, evidencing the much stronger impact of the application of the
thermal cycle (BTC and ATC) as compared to the unique effect of pH.
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Processes 2021, 9, 1842 10 of 13

Before heat treatment, an increase in the electrostatic repulsions among positive
surface charges takes place (as pH departs from the IEP), leading to an increase in the
viscoelastic functions (e.g., G*1, Figure 4). However, electrostatic repulsions also interfere
with hydrophobic interactions, affecting the aggregation of protein molecules and the
development and strengthening of the gel network [45]. On the other hand, the absence
of net surface charges promotes the process of aggregation and formation of the protein
network through hydrophobic bonds after protein denaturation and disulfide bridges
were favored, so the gel developed more easily [46,47]. Thus, the consistency of these gels
obtained by heat treatment is in direct relation with proximity to the isoelectric point, which
explains the decrease in viscoelastic functions of the gels taking place as pH was reduced.

It is worth mentioning that the egg yolk dispersion at pH 4 (BTC) showed higher
values than the dispersion at pH 3, as can be observed in Figures 3A and 4A. It should be
taken into account that the egg yolk is a quite complex system that consists of a mixture
of different proteins with the contribution of a wide variety of amino acids. In point of
fact, a possible explanation for this odd effect could be associated with the aminoacidic
composition of egg yolk. According to Lunven et al., aspartic and glutamic acids are the
most abundant amino acids present in hen’s egg yolks [48]. As the pKa values of their
residues are 3.65 and 4.25, respectively, aspartic and glutamic acids will be protonated below
pH 3.65. This means that electrostatic repulsions between proteins would be decreased to
some extent due to this reduction of negatively charged residues, leading to a drop in the
complex modulus at pH 3. In any case, further research should be carried out to confirm
this explanation. This effect cannot be observed after thermal processing.

3.4. Cryo-Scanning Electron Microscopy (CryoSEM) of Egg Yolk Gels Acidified with Citric Acid

Figure 5 shows the images obtained by means of CryoSEM for six egg yolk (45 wt.%)
samples at pH 2, 4, and 6 BTC (Figure 5B.2,B.4,B.6) and ATC (Figure 5A.2,A.4,A.6), where
the last digit corresponds to the pH value. This figure shows an apparent difference
between unheated egg yok at pH 2 and at pH 4 and 6, which is consistent with the dramatic
difference in rheological behavior from an elastic gel network (pH 2) to a viscous liquid
dispersion (pH 4 and 6). In the first case, acidification-induced protein denaturation
occurred, leading to aggregate formation [49,50]. It is worth outlining that this aggregation
was conditioned by the strong electrostatic repulsions present. In this way, the image
obtained at pH 2 BTC (Figure 5B.2) illustrates the formation of clusters that led to a string of
beads network structure [9,16,51,52], explained by the fractal aggregation theory. However,
egg yolk proteins at pH 4 (Figure 5B.4) and pH 6 (Figure 5B.6) essentially maintained
their native structure, where both images correspond to frozen samples of a randomly
distributed egg yolk protein dispersion.

As for the heated egg yolk gels, there is a difference in microstructure depending on
the pH value. At pH 2 (Figure 5A.2), some linearity may be still identified. However, the
thermal cycle applied seems to produce an evolution toward a more heterogeneous gel in
line with the other two systems. This heat-induced evolution can explain the reduction
in G* values at this pH. On the other side, near the isoelectric point (Figure 5A.6), the
hydrophobic interactions induced by the thermal cycle applied are capable of producing
relatively large random aggregates, driven by hydrophobic interactions, which lead to
the formation of a heterogeneous particulate gel network in the absence of electrostatic
repulsions [49]. This microstructure was the one that corresponded to gels of greater
rheological consistency.
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4. Conclusions

The native egg yolk at room temperature showed a relatively simple rheological
behavior typical of a fluid with moderate interactions and viscoelastic functions. After
adding citric acid and reducing the pH level of the unheated egg yolk, an increase in the
values of both viscoelastic properties occurred for all the cases studied. As the pH moved
away from the native value (pH 6), the net surface charge of the yolk proteins increased,
producing a clear increase in repulsive interactions that led to an increase in the level
of both viscoelastic functions. Although this fact implies a reduction in the flowability,
the acidified egg yolk system at pH 3 showed a predominant liquid-like behavior that
would enable it to be used in food emulsions and creams more safely by preventing the
risk of foodborne illness. Furthermore, when the electrostatic interactions become strong
enough, a fully developed protein gel network can be formed even at room temperature
(e.g., pH 2). This gel formation in absence of any heat processing can be attributed to a
denaturation process induced by acidification, which in combination with the electrostatic
repulsions present led to the formation of linear clusters and that eventually leads to
a “string of beads” gel network. The results obtained from linear viscoelastic tests and
scanning electron microscopy confirm the formation of this type of protein gel network.

The application of the heat treatment generally produces a net structural reinforcement
that is also greatly dependent on pH. At native pH, close to the isoelectric point, the thermal
treatment induced a remarkable growth in viscoelastic functions that can be explained
in terms of the typical multistage mechanism that applies for globular proteins [9]. This
evolution, as well as the sol–gel transition, can be tailored by selecting the initial pH of
the medium. The eventual protein gel network can be regarded as the result of a balance
between heat-induced interactions (mainly hydrophobic interactions and disulphide bonds)
and pH-dependent electrostatic repulsions. In any case, the final viscoelastic properties
achieved after heat processing are in the same order of magnitude regardless of the acidic
process applied. This effect, which resulted from the combination of acidic and heat
processing, highlights the potential use of an acidified egg yolk system at pH 3 as a safer
binding and texturing agent.
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