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Cyber-Physical Systems for Remote Animal Monitoring
Carmen Lozano Pons

Abstract

The aim of this project is to find a procedure for the acoustic recognition of a target species, the lesser
kestrel (Falco naumanni). A bibliographical research in birdsong recognition has been made to find all
possible tools out.

Among several techniques for feature extraction and data classification, Mel Frequency Cepstrum
Coefficients and a shallow neural network have been chosen, respectively, to test their functionality.

For that task, recordings of different species of birds are required, so a database has been prepared
based on local recordings found in Xeno-canto database.

Once the method has been evaluated, it is implemented in the microcontroller of a commercial low-cost
device, AudioMoth, specifically designed for acoustic monitoring. This was performed by modifying and
expanding the functionality of the project developed by the company.

Keywords: Acoustic, Lesser kestrel, Birdsong, Automated recognition, MFCC, Neural network, Com-
mercial
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1.2

Chapter 1

Introduction

Fast environmental changes can impact species populations, producing rising, decline or even extinctions
of species, having a dramatic impact on biodiversity.

For conservation programs, it is necessary to evaluate the size of populations and to keep tracking of
them in the long term. Acoustic monitoring tools are very useful when monitoring breeding behaviour
or population dynamics, allowing for continuous recording without constant direct-human monitoring.
These tools also resolve monitoring in inaccessible ecosystems.

However, they can produce weeks or months of field recordings, which is time-consuming for an
expert to verify how many and what species appear. Therefore automatic recognition can help in this
process.

This project, which has been realized in collaboration with Dofiana Biological Station', pursues
automatic recognition of Falco naumanni (Fleischer, 1818) in their natural habitat employing a low-cost
acoustic detector.

In this chapter, objectives are presented, followed by a brief description of the target species and the
state of the art.

In subsequent chapters, the chosen procedure and its implementation in the acoustic monitoring tool
will be detailed.

Objetives

The aim of this work is to develop a method for automatic recognition of F. naumanni, based on the
sounds that this species emits. It would allow to discern target species from those ones which it coexists
with, so subsequent ecological studies about size colony or population state could be accomplished.
This method will be evaluated and afterwards, implemented on a low-cost platform, AudioMoth,
which is a device intended for acoustic detection.
The whole system may be applied to the monitoring of a local colony in the future, relating number of
occurrences to number of breeding pairs and their reproductive success.

Lesser kestrel

As said before, our target species is the lesser kestrel (F. naumanni), a small falcon of the order Falconi-
formes.

"http://www.ebd.csic.es/inicio
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Biology and distribution
These birds are gregarious, and they hunt in flocks chiefly flying insects [PMHO1]. This kind of living, in
colonies, has to be taken into account because they are likely to produce simultaneous vocalizations.

In Spain, breeding population is mainly distributed in the south-west (below parallel 42). Mediter-
ranean populations come from reintroduction programs (except for a small population in Murcia). The
species makes premigratory movements towards the north of the Peninsula before beginning migration to
Africa. During this stay (late June to early October) they can congregate in large roosts of more than 1000
individuals. In Spain, some of them spend the winter in the Ebro valley, Castilla y Ledn, Extremadura
and Andalusia, although most stay in Africa. However, the exact wintering areas of the population are
unknown [TS04].

In their colonies there are frequently jackdaws, parrots, sparrows, starlings, swift, doves...

Threats
The major cause of the decline of kestrels has been habitat degradation due to agricultural intensification
and land use changes [IB10]. Main threats can be summarized in:
1. Breeding success reduction. Factors that lead to that are decrease access to prey, loss of suitable
breeding sites or deliberate destruction of nest sites.
2. Adult mortality increase. Electrocution in electrical facilities and elimination of pre-migration
roosting sites are the reasons for this increase.
3. Lack of effective conservation. That happens because protection and monitoring of migration areas
are difficult to coordinate.

Sounds

Songbird vocal production apparatus is composed of the lungs (source of airpumping), the syrinx and
the vocal tract (cavities formed by the trachea, mouth and beak). The songbird syrinx (Fig. 1.1) contains
two sound sources, each consisting of a pair of labia. They are set into vibration by a passing airstream.
This primary acoustic signal is then filtered as it passes through the vocal tract [RG10]. This process is
outlined in Fig. 1.2.
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Figure 1.1: Schematic of a cross section of the syrinx. ML and LL indicate the labia [RG10].
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Figure 1.2: Sound production model [Pot+14].

Birds produce different sounds to communicate. These can be categorized in calls, songs and
mechanical sounds (bill-clapping, drumming...). Calls are usually composed of short monosyllabic sounds
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that may have many functions (begging, warning, alarm, territorial...). While all birds produce calls, only
some birds make songs, which are longer and with a more complex structure [Pot+14].

A bird may generate the same song with short or long duration in different situations. Further, they
adapt their sounds according to the environment or also generate incomplete calls in critical situations,
especially during the breeding season when they are occupied with incubation and chick rearing [PMC18].

Specifically, the vocalizations of kestrels are heard manly in the breeding season, and consist of
screams or chattering notes. Also, many species protest loudly when the nest is visited [CL11].

A lesser kestrel can produce different kinds of sounds: begging calls, alarm calls, plaintive and rising
whee trills, interaction calls and flying calls. Last ones are the most representative and easy to hear, so they
were selected for identification. It consists of a trisyllabic rasping chae-chae-chae (very different from
common kestrel [RP20] [PMHO1]). Sometimes, they extend this call, making a polysylabic sequence. Its
spectrogram can be observed in Fig. 1.3. In that figure, three vocalizations are distinguished. They exhibit
different levels of distortion because of the distance between the bird and the microphone.

s o=
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Figure 1.3: Flying calls of F. naumanni marked by boxes?.

1.3 State of the art

1.3.1

In this section, the methods currently available related to the essential parts of a birdsong recogniser
are summarised. These main parts are preprocessing (specifically noise reduction), call detection or
segmentation, feature choice, and classification.

Noise reduction

Field recordings include any sounds that the recorder can detect, including birdsong of interest and many
other biophonies, geophonies and anthrophonies. Removing the noise prior to birdsong detection and
recognition is constrained by the temporal and frequency overlap of the noise and the birdsong.

The most common approach is to apply standard signal processing techniques and to perform noise
profiling, followed by filtering. However, there are situations where high-pass, low-pass, or band-pass
filters cannot be applied successfully (because they would remove frequency components of the birds’
frequency range [PMC18]).

It can be heard in https://drive.google.com/file/d/1FAtR--VGPLO6PtRSfeogR_aOEMHLsi28/view?usp=
sharing
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The Wiener filter is not useful for birdsong because it assumes that the signal and noise are stationary
and that spectral information is available. Unfortunately, the solution for this, adaptative Wiener filter,
suffers from signal distortion [PMC18].

A recent approach is the use of wavelets to remove noise from field recordings collected with automatic
sound recorders. Wavelet denoising eliminates this quasi-stationary noise no matter whether it is wideband
or narrowband, provided that it is approximately Gaussian [Pri+20].

An alternative to audio analysis is treating the spectrograms as images and applying image analysis
methods to clean them, but this method does not permit the construction of a denoised sound file from the
cleaned spectrogram [PMC18].

Segmentation

In order to recognise the birdsong in the recording, it is needed to isolate calls first. This is not simple
because sometimes syllables are not followed by a silent interval and are not separated clearly. Merging the
syllables that are very close to each other is common practice in syllable detection. Further, background
noise challenges isolation.

This step has been approached in different ways [PMC18]:

* Energy-based song detection coupled with thresholding, based on the assumption that the sections
where the birds sing carry more energy than the other parts. This depends on the present noise and
the proximity to the recorder. It tends to fail to detect faint songs, but also detects periods of noise
that exceed the chosen threshold.

* Treating the spectrogram as an image and use median clipping, whereby points are identified as
birdsong if they are greater than some pre-defined multiple of the median of the relevant column
and row of the spectrogram. This procedure together with basic shape morphology methods can be
used to improve the process.

* Applying a sinusoidal detection method (assuming that the number of species in a given recording
is known).

* Methods that are based on the temporal patterns in the frequency bands of the target species and on
the noise estimation from each band followed by spectral subtraction to avoid noise.

However, for long field recordings, which often contain a great deal of ambient noise in addition to
the sounds of various animals, separating segmentation from recognition is not always effective. Firstly,
each loud sound in the recording will be extracted, even those that are not biophonic, and secondly, quiet
calls will be ignored since they do not rise sufficiently far above the noise level. Finally, the recorded
soundscape often combines a small number of species of interest together with more common species,
and segmenting all of the sounds individually is inefficient [Pri+20].

Feature extraction

To produce inputs for a classification algorithm, relevant features must be extracted from the call.

Possible features can be as simple as the sequence of amplitudes or the raw spectrogram values, but
usually is better to utilize more descriptive features.

Features can be based on the amplitude plot (bandwidth, number of zero crossings...), on the energy
of the signal within the window, or on the short-time Fourier transform data.

Some examples that have been used in the literature are Linear Predictive Coding (LPC) and its
extension, Linear Prediction Cepstrum Coefficients (LPCC), that were initially used for encoding human
speech, as well as Mel Frequency Cepstral Coefficients (MFCC), that use the Mel scale filter bank. Mostly,
MFCC are used with their first and second order derivatives in order to capture dynamic features of the
vocal tract [PMC18].

Another option is employing features learnt automatically from data, for example, creating learnt
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bases using spherical k-means to obtain an automatic feature transformation [SP14].

Wavelet analysis is an alternative too, and it can avoid the trade-off in time-frequency resolution,
present in Fourier analysis [Pri+20].

Despite the amount of techniques that have been proposed, there is no clear evidence for and against
different representations for birdsong [PMC18].

Data classification

Once a feature representation has been chosen, feature vectors extracted from the sound are fed into
a machine learning algorithm, which will cluster those that are similar, either in an unsupervised or
supervised way.

Machine learning algorithms that have been used in the literature for birdsong recognition are briefly

described below [PMC18]:

* A statistical learning method called Gaussian Mixture Model (GMM). It assumes that observations
(such as recorded bird song) come from a weighted combination of inputs that can be described by
Gaussian random variables.

* The most commonly-used form of machine learning for birdsong recognition is the Neural Network
(NN). However, its ability to discriminate between species degrades as a larger variety of calls is
introduced.

* Neural networks that perform unsupervised learning cluster similar calls together rather than using
human labels to recognise calls from the same species. These ones are also commonly used,
particularly the Self-Organising Map (SOM).

* Support Vector Machine. It is a machine learning approach that maps data into a higher dimensional
space where it can be linearly separated.

* Decision trees. At each node of the tree, a split is performed using just one of the features from the
input vector. A sequence of these splits enables a decision as to species. Random forests are used
too. They consist of a collection of decision trees created with random partitions of the data. Their
outputs are combined by majority voting.

 In order to recognise a sequence of syllables, the Hidden Markov Model (HMM) can be applied.
This method creates a time-dependent probability distribution showing how likely certain syllables
are to follow from others.

* Spectrogram cross-correlation takes a segment of the spectrogram and computes the cross-correlation
with a set of template calls. It is proven to be successful when scanning a specific species with
limited call variations.

The performance of most of these methods progressively degrades as more calls from more species

are introduced [PMC18].
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Chapter 2

Audio signal processing and inference

This chapter describes how the dataset was acquired and presents the song identification algorithm.

It is worth mentioning that segmentation has been avoided because of the reasons explained in Subsec.
1.3.2, whereas for feature extraction, MFCCs will be employed since they have been widely used in
automatic bird recognition.

Finally, data classification will be performed by a neural network, because [PMC18] recommends this
approach when there are few labelled data available, which is this case.

This is visually outlined in Fig. 2.1.

/? ﬁ"| X "l I'.H _f‘f)i\-’ﬂ""f"iﬂ"“ m-I Vi'a "T-.I;meElM4 Call

&  J)) |

e b b
"L O

| c.ft L-‘ * * # * *

= |F/NF F/NF  F/NF  F/NF  F/NF F/NF|

Figure 2.1: Procedure for lesser kestrel recognition. The signal is divided in segments, MFCCs are
extracted from each one of these segments, and the neural network classifies them in one of two possible
classes, Falco and Not-Falco (N/NF).

Data selection
Database

For a real-world application, it is important to work with data from real field. To accomplish that, several
audio recordings have been downloaded from www.xeno-canto.org, a collaborative project dedicated to
share bird sounds.
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Location is associated with each song (see Fig. 2.2), so those ones recorded in western Andalusia
were selected, due to the fact that there can be large intra-species song variability [PMC18].

Quality of audio recordings are also specified with letters ‘A’, ‘B’, ‘C” and ‘D’. In this work, audio
recordings labelled with ‘A’ and ‘B’ were used. The theory seems to be that by using high quality data for
training, the algorithms will deal well with noise in true recordings, although this is not tested, and does
not seem particularly likely [PMC18].

All recordings have a sampling rate of 44100 Hz.
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Figure 2.2: Map representation of the places where there are recordings.

Apart from lesser kestrel, other species which live in the same area were selected (Table 2.1). The
total time of audio signal after data preparation of each species (Subsec. 2.1.2) is indicated, as well as the
number of resulted inputs (groups of MFCC for training the neural network).

Species Total time (s) Inputs to NN
Falco naumanni 222.50 8747
Streptopelia decaocto 19.08 801
Sturnus unicolor 41.00 1720
Falco tinnunculus 12.13 473
Coloeus monedula 17.07 682
Apus Apus 76.67 3241
Emberiza calandra 85.87 3673
Upupa epops 45.67 1862
Columba livia 332.66 14146
Passer passer 37.40 1542
Background 477.42 20560

Table 2.1: List of species selected to perform the training of the system.

2.1.2 Data preparation

Syllable segmentation was done manually employing Audacity!, a free and open-source digital audio
editor, to make sure that quiet intersyllabic sounds are not employed in data training. Thus, reverberation

Ihttps://www.audacityteam.org



2.2

2.2.1

Audio signal processing and inference 25

has been carefully avoided, as it can be seen in Fig. 2.3.

Audacity can point regions with power spectrum below or above a chosen power value. To delimit the
volume of a detectable sound, that value was fixed to -20 dB, so all lesser kestrel sounds for training are
above that level.

Figure 2.3: Syllable segmentation. Audacity generates labels indicating a sound pressure level above -20
dB (labels below). However, the manually extracted segments (labels above) avoid reverberation.

Feature exiraction

As said before, feature extraction is based on MFCCs. In this section, its basis is presented, as well as
some details about its implementation. This procedure is applied both to the training data and to the data
to classify.

MFCCs

MFCCs are a representation of an acoustic signal as a result of a cosine transform of the real logarithm of
the short-term energy spectrum expressed on a mel-frequency scale. Davis and Mermelstein were the
first who used "Mel Frequency Cepstral Coefficient’ term [DM80]. They combined perceptual distributed
triangular filters with cosine transform of logarithms of the energy filter outputs. They only propose a
general description (without detailing number, shape or overlap between filters), so researchers adapt the
algorithm to their experiments.

They have been widely used in speech recognition because they are based on human auditory
perception (which may not be applicable for birds).

The calculation of these features includes the following steps [RV14]:

1. Apply the following pre-emphasis filter:

xp(n) =x(n)—a-s(n—1) 2.1

where a is usually between 0.9 and 1. The signal is filtered with the aim to amplify high frequencies,
which are affected by a -6 dB/decade attenuation caused by sound production in humans [d’ A+05].
Not all authors consider this step.

2. Frame the signal into short frames with optional overlap. For stable acoustic characteristics, signal
needs to be examined over a sufficiently short period of time. Therefore, signal analysis must always
be carried out on short segments where the speech signal is assumed to be stationary. Short-term
spectral measurements are typically carried out over 20 ms windows.

3. Multiply each frame with a Hamming window to keep the continuity of the boundaries in the frame,
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in order to enhance the harmonics, smooth the edges, and reduce the edge effect while taking the
Discrete Fourier Transform (DFT) on the signal. The Hamming window equation is given by:

2
w(n) = 0.54 — 0.46cos (le) 0<n<N-1 2.2)

where N is the number of points of the window.

Hamming window (N = 1024)

0.8r
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04r

0.2r
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Figure 2.4: Hamming window of 1024 points.

4. Calculate the power spectrum of each frame.
5. Warp the spectrum along the frequency axis into the mel-frequency axis. The human auditory

system does not perceive pitch linearly, so a transformation to a scale based on human perceived
frequency is done:

ms(f) = 11271n(1 + £/700) (2.3)
Mel scale

3000 f
€ 2000
1000 |

0 ‘ ‘ ‘ ‘

0 0.5 1 15 2

Frequency(Hz) «10%

Figure 2.5: Mel scale.

where f denotes physical frequency in Hz and my denotes perceived frequency.
6. The resulted warped spectrum is convolved with band-pass filters, implemented in frequency
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domain:
N—1
s(m)= Y [X(K)Ha(k)]  0<m<M-—1 (2.4)
k=0

where M is the number of mel filters. H,, (k) is the weight given to the k-th energy spectrum bin
contributing to the m-th output band. The most commonly used filter shape is triangular. One
possible definition of these bins can be given by:

0 k< fim—1)
2k—f(m-1)) _
Ha(k) =\ Sy T Eks s 2.5)
Toni o S (m) <k < f(m+1)
0 k> f(m+1)

with m ranging from O to M — 1. This expression is represented by Fig. 2.6. The filter bank,
normalized by its area, is shown in Fig. 2.7.
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Figure 2.6: Mel filter banks without area normalization.
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Figure 2.7: Mel filter banks with area normalization.
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7. Take the logarithm of all filter bank energies. Then, take the Discrete Cosine Transform (DCT) of
the log filter bank energies:

. n=0,1,2,..,C—1 (2.6)

M-l n(m—0.
ctn) = X Toglstneos | ™10
m=0

M

where c(n) are the cepstral coefficients and C is the number of MFFCs. The logarithm is done
because to perceive doubled volume, it is necessary to increase the energy eight times. Additionally,
the DCT decorrelates the energies, which tend to be correlated in adjacent bands since the vocal
tract is smooth.

Traditional MFCC systems use only 13 cepstral coefficients because high coefficients represent fast
changes and degrade performance. The zeroed coefficient is often excluded since it represents the
average log-energy of the input signal (little speaker-specific information).

With the aim of capturing temporal dynamic information, the first derivatives of cepstral coefficients
are also calculated, and they are the so-called delta coefficients. They represent MFCC changes. For a
given MFCC ¢; in a temporal sequence, the delta features are given by:

erzl i(ci+m (n) - Cifm(n))
2yl

Scm(n) = 2.7

where ¢,,(n) denotes the n-th feature for the m-th time frame and 7 is the number of successive frames
used for computation. A typical T value is 2.

Use of MFCCs

After explaining the general procedure of MFCC extraction, we next describe how it has been applied to
the present work.

The incoming audio signal was resampled to 32 kHz and it was divided into frames of 32 ms (to adjust
the window length to 1024 samples and make easier the subsequent programming in C). Then, in each
frame, MFCCs were extracted following the scheme of Fig. 2.8, in order to reduce dimensionality.

Instead of calculating the power spectrum, the absolute value of the FFT was taken to reduce
computational cost. The number of filters banks was 41, which [Gra+10] found appropriate to reduce the
error rate.

The weights of each band-pass filter were normalized by its corresponding area (Fig. 2.7).

On the other hand, the number of coefficients were 12, so the zeroth MFCC was not included. Both
the shape of Mel filter banks and the exclusion of the zeroth coefficient resulted in better performance
when tested (see Sec. C).

Delta-MFCC were calculated too, employing the difference of five MFCCs (T = 2), as indicated in
Fig. 2.9. On the other hand, when calculating deltas, it was necessary to repeat the first and last MFCC
coefficients T /2 times at the beginning and at the end in order to not produce a discontinuity.

In conclusion, the feature vector included 12 MFCCs and their 12 corresponding deltas.

To see the code of the implemented script, please consult Appendix B. A specific code has been
developed instead of using the MATLAB predefined function, for better control of parameters. With
the same parameters, results from our code and MATLAB code have been compared, showing the same
behaviour.
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x[n]

Figure 2.8: Block diagram of the Mel Frequency Cepstral Coefficients extraction procedure.
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Figure 2.9: Example of calculation of one delta feature (yellow) from adjacent frames.
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MFCCs & deltas

Figure 2.10: An example of the MFCC values of a lesser kestrel call window. The MFCCs are in black
and the deltas in gray. Inside, an inset with the vocalization with the processed window marked.

Classification

This section is organized as the previous one. The foundation of the selected machine learning method, a
shallow neural network, is presented, followed by its specific implementation.

Neural networks: theory
Architecture

Artificial neural networks are computing systems inspired by biological neural networks that constitute
animal brains. They are applied to a wide variety of problems, for example, pattern classification.

They are composed of interconnected artificial neurons (Fig. 2.11). The neuron output is calculated
as:

a=f(Wp+b) (2.8)

Inputs p are multiplied by the scalar weight matrix, W, and the bias b is added. The output goes
into a transfer or activation function f, which produces the output a. Transfer functions can be linear or
non-linear functions. Typical transfer functions are presented in Fig. 2.12.

Inputs Multiple-Input Neuron

a=f(Wp+tb)

Figure 2.11: Neuron with R inputs [Dem+14].
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Name Input/Output Relation Icon
a=0 n<0
Hard Limit .
a = n=0
a=-1 n<0
Symmetrical Hard Limit .
y a=+1 nx0
Linear a=n
a=0 n<0
Saturating Linear =n 0<n<l1
=1 n>1
Symmetric Saturatin =t n<dd
urati
! Linear ¢ =n —lsesld
=1 n>1
1
Log-Sigmoid a=— /]
g-o18 I+e”
Hyperbolic Tangent gl
Sigmoid e
a=0 n<0
Positive Linear .
a=n 0<n
eVl
Softmax a = > o

Figure 2.12: Table with several transfer functions [Dem+14].

Furthermore, neurons often associate in layers to operate in parallel. Each input is connected to each
of the neurons.

Inputs  Layer of S Neurons

a=f(Wp+b)

Figure 2.13: Layer of S neurons [Dem+14].

In this case, W is a matrix in which the row index indicates the destination neuron associated with



32 Cyber-physical systems for remote animal monitoring

that weight, while the column index indicates the source of the input for that weight:

Wi Wi 0 WIR
w1 W22 -0 W2R

W= | . . (2.9
wWs1 Ws2 -+ WSR

)

To build a network, several layers L are interconnected, each with their own W’ matrix and bias vector
b’

Inputs First Layer Second Layer Third Layer
NN N N

n' aly w2y n a2y Wi n @

—/

al=f1(Wip+bt) a2=f2(Waal+b2) a3 = £ 3(W3a2+b3)
a3 =13 (W3f2(W2f 1 (Wip+b!)+b2)+b3)

Figure 2.14: Three-layer network [Dem+14].

Training

Training the network means to adjust weights and bias vectors in order to reach the desired output from an
input vector. This adjustment is mediated by a learning rule. There are many types of learning rules. In
general, in supervised learning, where example input-output pairs are available, the learning rule can be
expressed by:

Woow = Wi + otep” (2.10)

brew = boia + ote (2.11)

where e is the error between target outputs t and the outputs given by the network. Error performance
can be computed in several ways. One of them is the mean square error, which is employed in the
Backpropagation algorithm, an approximate steepest descent algorithm. The algorithm should adjust the
network parameters in order to minimize the mean square error F(X):

F(x)=E[e'e] = E[(t—a)" (t—a)] (2.12)
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The mean square error can be approximated by:
F = [t(k) —a(k)]" [t(k) — a(k)] = e (k)e(k) (2.13)

where the expectation of the squared error has been replaced by the squared error at iteration k [Dem+14].
The steepest descent algorithm for the approximated mean square error is:

, F
wii(k+1) = w; (k) — O‘awm. (2.14)
l?.]
oF
bi'(k+1) = b (k) — oty (2.15)
To find the derivatives, the chain rule is employed:

OF OF _ on?
= L 2.16
8w§f’j on’" x aw?fj ( )

dF OF don’
= 2.17
b o I 2.17)

where n" = ):_fi]l w;-f’ja;*’_l + b}". The first derivative can be defined as sensitivity 57" = 597@ and:
onm+I\" 9F - +1\T gn+1
= (G ) e =W @19)
where:
o™ (nl")
an'lnl 0 .. 0
0 artm) .
Fom)=| o _ (2.19)
0 0 . 9f'"("§")

on

Finally, the updates of the weights and the biases presented in Eqgs. 2.14 and 2.15 can be expressed as:

W (k+1) = W"(k) — as™(a™ )T (2.20)

b (k+1) =b" (k) — as™ 2.21)

The Backpropagation algorithm derives its name from the sensitivities being propagated backwards
through the network from the last layer to the first layer, as can be observed in the last equations.
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It is important to remark that this is not the only training algorithm. There are modifications of it, each
one with their advantages and disadvantages [Dem+14].

Network design

The neural network design has been made in MATLAB based on its own auto-generated code. That part
of the code is explained in Appendix B.

Structure

The problem is outlined as a binary classification problem. The input layer consists of 24 neurons with a
hyperbolic tangent activation function, whose inputs are the 12 MFCCs with their corresponding delta
coefficients. A vector of length 24 altogether. Training was accomplished also with 26 coefficients (with
13 MFCCs and their deltas), including the zeroth coefficient. However, the former gave better results
(Appendix C). There is only a hidden layer, composed of 2 neurons with hyperbolic tangent activation
functions too. The addition of more neurons in the hidden layer did not improve the accuracy.

At the end of the network, there are two outputs activated by a softmax function, which represent the
two classes: F. naumanni (F) and not - F. naumanni (NF). These outputs will be consistent estimates of
the probabilities belonging to the classes.

The aforementioned activation functions were presented in Fig. 2.12.

To compare the two types of Mel filter bank shapes (see Figs. 2.6 and 2.7), the training has been
repeated with and without area normalization, showing the former a better performance (Appendix C).

Finally, the structure of the network can be visualized in Fig. 2.15.

Hidden Output

MTM.

Figure 2.15: Neural network employed.

Training
The training data were divided into three sets: training, validation and testing, in a proportion 65-15-20.
The validation data are used to avoid overfitting.

No preprocessing was applied. With the same inputs, normalization and no normalization of these
inputs showed that the latter exhibits better performance (see Appendix C).

In relation to training algorithms, it is very difficult to know which one will be the fastest for a given
problem. It depends on many factors (the complexity of the problem, the number of data points in the
training set, the number of weights and biases in the network, the error goal, the use of the network...). In a
previous work [DBD], the authors compared various training algorithms and they came to the conclusion
that Resilient Backpropagation and Scaled Conjugate Gradient Backpropagation were the best for pattern
recognition.

Multilayer networks typically use sigmoid transfer functions in the hidden layers. These function are
characterized by the fact that their slopes must approach zero as the input becomes large. This causes
a problem because it can cause small changes in the weights and biases, even though they are far from
their optimal values. Resilient Backpropagation eliminates these effects because only the sign of the
derivative can determine the direction of the weight update. The size of the weight change is determined
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by a separate update value, whose magnitude increases if the weight continues to change in the same
direction for several iterations. The Resilient Backpropagation training algorithm is the fastest on pattern
recognition problems. Its performance also degrades as the error goal is reduced [DBD].

Scaled Conjugate Gradient Backpropagation seems to perform well over a wide variety of problems,
specifically for networks with a large number of weights. It is almost as fast as Resilient Backpropagation
on pattern recognition problems. Its performance does not degrade as quickly as Resilient Backpropagation
performance does when the error is reduced. This algorithm calculates the derivatives as backpropagation
does, but also computes the maximum feasible step ¢ in that direction, so it converges with less iterations
[Roo+19].

Since learning time is not a restriction and the configured network has only one hidden layer, Scaled
Conjugate Gradient Backpropagation was chosen as training algorithm.

To calculate the network performance, the cross-entropy loss function was employed:

CE = —tplog(yr) — (1 —tr)log(l —yF) (2.22)

where fr and yg are the groundtruth and the score for class F, respectively. It returns a result that heavily
penalizes outputs that are extremely inaccurate, with very little penalty for fairly correct classifications?.

The training occurs according to default parameters of the Scaled Conjugate Gradient Backpropagation
implementation. Training will stop when:

* The maximum number of ‘epochs’ to train (1000) is reached.

* The performance is minimized to the ‘goal’ (0).

* The performance gradient falls below ‘minimum performance gradient’ (10~°).

* The validation performance has consecutively increased after ‘maximum validation failures’ (6) to

avoid overfitting training data.

Validation

The training was accomplished until epoch 115, when the validation performance started to decreased
while training performance continued increasing.

Best Validation Performance is 0.023202 at epoch 115

Train
Validation
Test

Best

Cross-Entropy
3

20 40 60 80 100 120
Epoch

Figure 2.16: Training Learning Curve monitoring the network performance while training.

2When the groundtruth is 1, the first term is activated, whereas when it is 0, the activated term is the second one. Depending
on the accuracy of the output of the network, CE will be almost zero or not.
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The results in terms of the network’s classification are depicted in Fig. 2.18, which shows the
confusion matrix. In the confusion matrix, recall, precision, specificity, negative predictive value and
accuracy can be observed (visually defined in Fig. 2.17). F. naumanni (class F or 1) was classified with a
mean accuracy of 98.3%.

Target class
F NF
Precision
r True positive False positive
" P FP TP
3 TP + FP
o
H
] Negative
o ) . predictive
NE False negative True negative value
FN TN
TN
TN + FN
Recall Specificity Accuracy
TP TN TP+TN
TP + FN TN + FP TP+FN+FP+TN

Figure 2.17: Confusion matrix with the meanings of the boxes.

In Fig. 2.19, the receiver operating characteristic (ROC) curve is included, that illustrates the ability

of the binary classifier as its discrimination threshold is varied. The choice of which threshold to use will
be discussed in the next subsection.
The Area Under the Curve (AUC) is a tool to evaluate the performance of a classifier. The larger the
AUC, the better the model can distinguish between classes. For a perfect classifier, AUC is 1, while for
a classifier that randomly allocates observations to classes, AUC is 0.5. In this case, the value given by
MATLAB is 0.9995, close to 1.

Call score

At this point, from 32 ms of recording, a classification result between F and NF is obtained. However,
only one positive would not be enough to quantify calls. It should be followed by more positives because
a call lasts more.

In Figs. 2.20 and 2.21, some results are shown. It can be observed a continuous highly probability at
the output of the neural network when a call of F. naumanni occurs.

According to this, a temporal study should be carried out. A typical trisyllabic call lasts about half a
second (see Fig. 1.3). Thus, when a high probability of F class is detected, the probability of F is summed
across adjacent frames. That value is compared with a threshold to distinguish an entire call.

In short, probabilities of 16 windows are added and compared with a threshold ¢4. This process has
been tested for different values of that threshold:

* th=16-0.6
* th=16-0.7
* th=16-0.75
* th=16-0.8

th=16-0.9
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Figure 2.18: Confusion matrices for each dataset: training, validation, and test.

If the addition exceeds the threshold, a call would have been identified.

Some recordings, different from those chosen for training, have been selected to follow this approach.
These recordings belong to all species used in training. Their duration can be examined in Table 2.2, as
well as their Xeno-canto reference in Appendix A. This validation step is shown in Figs. 2.22 and 2.23.

Once the count has been done, the results, that is, false and true positives and negatives, are shown in
Table 2.3.

With these data, precision, negative predictive value (NPV), recall, specificity and accuracy can be
calculated and presented in Table 2.4.

According to Table 2.4, specificity and NPV are pretty good. So, in order to choose a threshold, it is
necessary to take attention to recall and precision. When the threshold is risen, precision does too, making
positives more reliable. It is important to note that many FNs are originated in vocalizations below -20 dB
(a limit that was established when selecting datasets, see Sec. 2.1.2). On the contrary, recall decreases,
S0 missing positives increase. Nevertheless, the majority of FPs come from three specific recordings
(XC308077, XC282760 and XC299528, see Appendix A). They coincide with sounds of F. naumanni not
included in training or with recordings from other birds that emit different vocalizations apart from those
employed in training. So, the situation could improve if more types of birdsounds (of the same species)
and more species are included in the training.

A balanced situation can be 69.25% in precision and 65.75% in recall, so the selected threshold would
be 16-0.4. In any case, most of FPs come from F. naumanni and FNs are below -20 dB, as said before.
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Species Total duration Background Bird vocalizations
Falco naumanni 21:46 15:48 05:58
Streptopelia decaocto 00:48 00:14 00:34
Sturnus unicolor 01:13 00:43 00:30
Falco tinnunculus 00:57 00:16 00:41
Coloeus monedula 05:24 03:48 01:36
Apus Apus 00:33 00:08 00:25
Emberiza calandra 02:39 01:38 01:01
Upupa epops 01:46 01:25 00:21
Columba livia 00:20 00:10 00:10
Passer Domesticus 00:19 00:01 00:18

Table 2.2: Duration (mm:ss) of the recordings used in validation, breaking down bird vocalizations and
background.

TP | FN | FP | TN

th=16-03 | 359 | 76 | 215 | 26551
th=16-0.4 | 286 | 149 | 127 | 26639
th=16-0.5| 215 | 220 | 84 | 26682
th=16-0.6 | 146 | 280 | 44 | 26722
th=16-0.7 |99 |336 |20 | 26746

Table 2.3: True positives, false negatives, false positives and true negatives of the validation of syllable
detection.

Precision | NPV Recall | Specificity | Accuracy
th=16-03 | 0.62543 | 0.99715 | 0.82528 | 0.99197 0.98930
th=16-0.4 | 0.69249 | 0.99444 | 0.65747 | 0.99526 0.98985
th=16-0.5| 0.71906 | 0.99182 | 0.49425 | 0.99686 0.98882
th=16-0.6 | 0.76842 | 0.98930 | 0.33563 | 0.99836 0.98776
th=16-0.7 | 0.83193 | 0.98759 | 0.22759 | 0.99925 0.98691

Table 2.4: Precision, negative predictive value, recall, specificity and accuracy of the validation of syllable
detection.
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Figure 2.19: ROC curves for test, validation and training.
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Figure 2.20: Output of the neural network, amplitude and spectrogram of a piece of recording of F.

naumanni.
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Figure 2.22: Search for F. naumanni calls. The penultimate and last plots are the amplitude and spec-
trogram of a F. naumanni recording. The first five plots point out the calls that would be detected using
each proposed threshold. These five plots are the representation of vectors whose value is one in groups
of 16 points if their added probabilities of being FN class exceed the thresholds. These detections were

manually written down as TP, TN, FP and FN to perform the validation.
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Figure 2.23: Search for F. naumanni calls in a recording of Apus apus. The penultimate and last plots are
the amplitude and spectrogram of a Apus apus recording. No call is detected in this shot.
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Chapter 3

System embedding

As previously mentioned, the designed processing was implemented on a low-cost acoustic detector,
called AudioMoth. This facilitates acoustic detection and deployment in remote locations. At the same
time, its low-power operation allows for long-term monitoring. In this chapter, AudioMoth is described
and the implementation is presented.

Hardware description: AudioMoth

This credit-card sized device mainly consists of a micro-controller, a micro-electro-mechanical system
(MEMS) microphone, and a printed circuit board (PCB). The latter includes a sidemounted switch, an
USB port, red and green LEDs, and a microSD card port. Components are placed between the board and
the battery holder! on the top layer of the two-layer PCB (see Fig. 3.1).

5
I SHemm |

&

Figure 3.1: View of the PCB components and the mounted device [Hil+19].

AudioMoth is built around an ARM Cortex M4 micro-controller with a floating-point unit (FPU). The
micro-controller links to an external static random access memory (SRAM) chip using an external bus
interface (EBI). Direct memory access (DMA) allows the device to sleep in low energy modes while data
are sampled and routed between the analog interface and the external SRAM chip. The latter consists of
2Mbit SRAM organized as 256K words by 8 bits.

Sound passes through a drill hole and it is captured by the MEMS microphone. It can be configured to
record at many sample rates, up to 384 kHz. The audio circuitry begins at the microphone input, which is
routed to the micro-controller analog peripherals. The microphone signal is amplified by op-amp circuitry,

Ut is designed for 3 AA batteries.
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whose gain can be controlled by software. Then, it is converted to digital samples by a 12-bit ADC and
sent to the external SRAM using DMA, as commented before.

Data can be saved to the microSD card via the serial peripheral interface (SPI) bus. Only secure digital
high-capacity (SDHC) microSD cards?, formatted to FAT32, are compatible with AudioMoth.

o~

AudioMoth1.1.0
ARM Cortex M4 Core
Analog Interfaces Serial Interfaces
T
Mic ! Og-Amp Hﬁ | USARTD. _
: : I B | Swich ||_|55
]
DA | :
: A
External RAM
I User
[ Swideh State Jlﬂﬂnt?:;u:lnn

Figure 3.2: Hardware overview and typical operation flow [Hil+19].

The device can be powered from any 3.6 V — 20 V DC supply. The power supply connects to a
regulator that converts the DC supply to a stable 3.3 V, or alternately the device can be supplied by 5 V
USB power. The power circuitry also has digital noise isolation that uses a series resistor and ferrite bead
to isolate the analog audio circuitry from the digital transmission lines.

Firmware description

The processing developed in Chapter 2 is needed to be implemented in AudioMoth. With this aim, the C
project example created by Open Acoustic Devices has been modified to include appropriate functionality.

Basic firmware details

The basic firmware can be download from https://github.com/OpenAcousticDevices/AudioMoth-
Firmware-Basic. The modification of only a part of the code allows for changing the configuration from
Configuration App, to set recording periods, sample rate, gain, sleep duration or configure date (Fig. 3.3).

In this code, the SRAM chip is divided into an eight-element circular buffer. This buffer structure
allows acoustic data to be filled in contiguous elements. When a whole element has been filled with
a sufficient number of acoustic samples, the micro-controller wakes up to store those samples on the
microSD card. Simultaneously, the next element is being filled, thus it allows a continuous stream of
audio to be recorded to storage.

Once initialized, AudioMoth is waiting until required conditions (high power battery and time of next
recording) are met (Fig. 3.4). In that case, the function that controls the recording, makeRecording(),
is activated. Peripherals are initialized and recording parameters are calculated (Fig. 3.5). A callback

ZFor sample rates up to 48 kHz, a microSD card of at least speed class of 10 must be used. In addition, microSD cards must
have a memory up to 32 GB.
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Figure 3.3: Configuration example in AudioMoth Configuration App. Two recording periods are selected,

as well as sample rate, gain, recording and sleep duration. At the end, the app informs about the number
of files produced, their size and daily energy consumption.

function is defined to be invoked when the DMA transfer finishes. The callback function triggers an
interruption and reactivates the DMA (Fig. 3.6). During that interruption, the eight-element buffer is
being filtered and written (Figs. 3.7 and 3.8). Then, a Waveform audio file (WAV) is opened, and if an
element of the buffer is filled, it will be saved to the microSD card (Fig. 3.5).

main

Initialise device

<

Y

if
appropiate

makeRecording

I

Figure 3.4: Flowchart of main().
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makeRecording
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-DMA N;
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Open a file

readBuffer
#
writeBuffer

Write read
Buffer to file

I
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buffer

written
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>
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Figure 3.5: Flowchart of makeRecording(). This function initialises the recording and saves the content
of the full elements of the circular buffer to the microSD card.
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transferComplete

AudioMoth_handleDirectMemoryAccessinterrupt

Reactivate the DMA

I

Feed the watch dog
timer

Figure 3.6: Flowchart of trans ferComplete().
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MemoryAccessinterrupt

Change DMA buffer
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Write
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buffer index

Full write
buffer

Increment write
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Figure 3.7: Flowchart of AudioMoth_handleDirectMemoryAccessInterrupt(). The content of DMA
buffer is passed to the circular buffer. Actually, this is done by a function inside this function, filter().
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filter
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Figure 3.8: Flowchart of filter(). The signal is accumulated to avoid high frequency noise and filtered by
a DC blocker implementation’.

Firmware modification

In order to add the birdsong identification system, the function makeRecording() has been edited.

The eight element buffer has been transformed into a 128 element buffer to fill the SRAM chip
of elements of 1024 samples (Fig. 3.9). Thus, the MFCC algorithm can be applied to every buffer.
Nevertheless, when writing to the microSD, the number of samples to save in memory has been maintained,
that is, the microcontroller waits until 16 elements (a subbuffer, so to say) have been analysed by the
neural network to write them in memory. In this way, time spent on writing in memory is reduced. In
addition, this subbuffer is useful to perform the procedure explained in Subsec. 2.3.3. With a specific
sampling frequency (32 kHz), the subbuffer will contain half second, the time necessary to accumulate
the probabilities, and it will mark the time at which a call happens.

Acoustic data are stored in int32_t format. In order to process these data with the design system, it is
necessary to normalize it and convert it to float32_t. To carry the MFCC method out, a list of constants
has been defined:

* Coefficients of the Hamming window.

* Constants of the DCT: sq%\/’ -

* Filter banks in a vector and a matrix. The vector only contains the non-zero values of all the filters

following each other. The 41x2 matrix includes in every row the index of the vector corresponding
to the beginning of the specific filter and how many positions takes up (Fig. 3.10).

To calculate deltas, a small buffer of 5 elements is dynamically allocated in memory to accumulate
MFCC:s, so past and futures ones are available (Fig. 3.11). Since future information is required, the
element of the buffer that is being written to the circular buffer is not the one that is being checked by the
network.

To take advantage of the hardware resources, the FFT of the MFCC extraction procedure and the matrix
operation of the neural network have been developed with the aid of Cortex Microcontroller Software

3Recursive filter specified by y(n) = x(n) —x(n—1)+R-y(n—1).
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External SRAM chip: 128K samples (256 KB)

SubBuffer: 16K samples
<>

[\

Accumulate
probability
>
threshold

Figure 3.9: New division of the circular buffer. The content of the subbufer is accumulated to compare
with the threshold #A. In case of surpassing it, a call is reported.

hbanks = {y;1,¥12,¥13. Y12 Y11 Y411, » Y41k > Y411 }

X1 X;— X1
infobanks = :
1A
X41 Xg1 — Xa1

Figure 3.10: Organization of the vector and matrix that describe the filter banks. The vector hbanks
contains the non-zero values of the filters. Each row of the matrix infobanks indicates at what position
the non-zero values start and for how long.

Interface Standard (CMSIS) library, which uses FPU and digital signal processing (DSP) resources. DCT
has not been programmed this way because the required length is a power of two, and padding the signal
could slightly change the results of the network.

The probability given by the output of the neural network is summed, and when the whole subbuffer
has been analysed, the result is checked. If it exceeds the threshold, a text file is opened and the time and
date are written on it after accessing to the backup real time clock (BURTC). Furthermore, the green LED
is activated until the verification of next subbuffer.

Therefore, what we find in the microSD card is the configured recording and a text file with annotations
of what time the calls of lesser kestrel were detected.

3.2.3 Further modifications

Some of the parameters that have been used in the system were edited after programming AudioMoth to
implement the system in a simpler way. They are itemized here:

* Dividing the signal in steps of 1024 samples. Previously, the signal was divided into fragments of

20 ms duration. This was changed to match with binary system and be able to use floating point
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From DMA

AN

\ To neural network

Figure 3.11: Buffer of 5 elements intended to contain the five groups of MFCCs (up) and their correspond-
ing deltas (down).

operations.

* Setting the highest frequency in filter banks at 15 kHz. Datasets were MPEG-1 Audio Layer III
(MP3) recordings (whereas AudioMoth generates WAV files), so the compression of these files
precludes results from being exactly the same. In this way, higher frequency information does not
disrupt the output of the network.

* Setting sampling frequency to 32 kHz. In this way, the signal accumulated in a subbuffer is
equivalent to a call length, making easier to compare the threshold and then save the fragment to
memory. In order to carry it out, it was necessary to resample the dataset to 32 kHz.

These changes forced the network to be retrained and validated.

3.2.4 Recording with AudioMoth

After flashing AudioMoth*, several recordings were played on the computer, in order to mimic birdsongs.
AudioMoth was placed next to the computer, as Fig. 3.12 shows>. It was checked that the green LED was
activated when a F. naumanni emitted a call, as opposed to background noise or other birds singing.

Furthermore, the output of the neural network in AudioMoth was stored in the microSD card (apart
from the recording) to be compared with the output of the neural network in MATLAB when the
AudioMoth recording was selected as input of the system. That comparison® is shown in Fig. 3.13 and
3.14. This is a verification step to check that the processing done by AudioMoth is the same as MATLAB
processing. In a recording of 21 seconds, the root mean square error (RMSE) between the two neural
network outputs was 0.0924.

As commented in Subsec. 3.2.2, AudioMoth writes the date and time of occurrences to a text file.
This can be visualised in Fig. 3.15.

Finally, an aspect that should be taken in account for a future deployment is energy consumption. The
durability of the battery is principally determined by the recording periods. A continuous monitoring
would demand approximately 300 mAh daily, according with AudioMoth Configuration App (Fig. 3.16).
Nevertheless, shorter periods would reduce the required charge (see Fig. 3.3). This would be adjusted
based on the activity of the colonies over the day.

4Configuration parameters are stored in FLASH initially and copied to the back-up RAM when the AudioMoth detects that it
has experienced a power-up reset. So, when editing the default settings, it is needed to switch off and on.

A video with the demonstration can be visualized in https://drive.google.com/file/d/
1VnWrPhLRWbhcV6yBqf85AcC253UAd32s/view?usp=sharing

6Take into account that AudioMoth data are a rough approximation since the data had to be taken as ins format because not
all capabilities from the printf{)-style functions were available and decimals could not be written to the text file.
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Figure 3.12: System operating test. AudioMoth is recording and it has detected a vocalization of F.
naumanni. Consequently, the green LED (bottom left corner) has been activated.
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Figure 3.13: Output of neural networks when a F. naumanni is singing. In the first plot, the output of the
neural network from AudioMoth processing (blue) is presented together with the output of the neural
network from MATLAB whose system input is the recording from AudioMoth (green). Second and third
plots are amplitude and spectrogram of the recording.
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Figure 3.14: Outputs of neural networks and amplitude and spectrogram of a recording of a Coloeus
monedula singing.
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pase/11/14 12:58:15
Jern/11/148 148:58:41
2828/11/14 12:58:53
2M28/11/14 15:88:87
2824/11/14 15:88:87
222e/11/14 15:88:18

Linea 1, colur 100%  Windows (CRLF) UTF-8

Figure 3.15: A text file with annotations of what time and date some calls of lesser kestrel were registered.



System embedding 53

B audiediorh Configunten Spp - x|

12:04:52 14/11/2020 UTC

Davica 0 AFNSOSSCLSCEFF
Fre=was verzen T30
Baniary 6V
| — e — | ——
e e I 1® w00
Start (ecerdiog Bo.00 08 0 - 2200 (UTC)

End recarding 4N

[} % n 42 = L v 48 3B
Sample rade M| ¥
Low Ve gk
Gaie .
Basagl duraion i) £
Focondieg thawhisn iy 04
Eruble LED L
Engbie low-Saary cutol L

Erabiie Sattary brewd ez ahon

Ench day thin vl produce 24 fles sach up te 220 MB wotalimg 5556 UB
Oally sagrgy comsuenplion will Lo approsimatedy B mah

Figure 3.16: Configuration of a recording period of 24 hours. The energy consumption is shown above
’Configure AudioMoth’ button.
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Chapter 4

Conclusions

In this work, a method to distinguish vocalizations of F. naumanni in real time was presented, tested and
implemented, with the aim to carry out field population studies.

After a bibliographical research, it was decided to employ Mel-scale Frequency Cepstral Coefficients
(MFCCs) to do feature extraction of signal windows and a neural network to classify them in F. naumanni
segments or segments resulting from background noise or other species. The probability of belonging to
the F. naumanni class is summed for the time that a call lasts, and compared to a threshold. Different pa-
rameters have been tested to set those that achieve better results. Triangular filters with area normalization
and excluding zeroth coefficient turned out to cause less error after training. In addition, incrementing the
size of the neural network does not involve a better performance. On the other hand, the threshold has
been chosen comparing the differences in accuracy in each case. This has been validated through a 35 min
45 seg dataset, built from Xeno-Canto recordings of 10 cohabiting birds.

The performance of the method achieves an accuracy of 98,99%, slightly above or similar to systems
reported in the literature.

In terms of hardware implementation, specifically in AudioMoth, the firmware developed by the
company has been modified to include the recognition system, adding the aforementioned capability.

Finally, it is worth noting that, because of the amount of species and the diverse range of vocalizations,
a larger dataset is needed to obtain more definitive results, collecting data from the locations where
AudioMoth will be deployed.

Future work

In spite of changes done in the system after programming AudioMoth, there are another issues that would
improve the implementation. Some proposals are working with integer values during all the processing
instead of normalized float values (between -1 and 1), or padding the signal before applying DCT to be
able to use CMSIS library.

As commented before, more species and different vocalization should be included in the dataset,
specially those whose bandwidth or other features are similar. A first step to carry out at the field could
be continuously recording for recognizing all species that cohabit there and use these data to train the
network. Moreover, it is often more successful if the training data are based on the same type of recorder
as will be used in practice. The reason for this is partly because the dataset could contain recordings of
directional microphones (used for manual recording), whereas automated recorders use omni-directional
microphones.

Related to the MFCC technique, it would be interesting to extend the duration of the window to make
it of the same length of a F. naumanni call. This way, the procedure of call score would be direct.
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Regarding the high probability of windy or rainy weather, it is important to study how these phenomena
affect the recognition and suggest a noise reduction algorithm, for example, by wavelet transform.

Finally, AudioMoth must be installed near a local colony of F. naumanni to try to relate the number of
occurrences to the number of breeding pairs or their reproductive success.
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Appendix A

Xeno-canto references

In this appendix, the identification code' of all recordings are shown, indicating when they were used
during the realization of this thesis.

'They can be searched in https://wuw.xeno-canto.org.
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Species Training, validation & test (NN) Syllable detection performance
XC141117
XC149085
XC237758
Falco nawmanni XC240179 XC308077
XC308080 XC308089
XC308081
XC308083
XC308084
. XC337620 XC308063
Streptopelia decaocto XC270454 XC269719
XC165045
. XC286796 XC179785
Sturnus unicolor XC431986 XC192088
XC343499
XC288407 XC282760
X(C353863
Falco tinnunculus X(C290332 XC264073
XC360599
XC290331 XC463430
X(C295532
XC269706
Coloeus monedula X(C270245 XC289360
X (286393
Apus Apus XC466668 XC418869
XC466677 XC466671
XC179875
. XC269396 XC263307
Emberiza calandra XC278143 XC299528
XC301725
XC361586
XC263714
XC278153
XC279736 XC278154
Upupa epops X(C291953 XC202569
XC291955 XC181659
XC316704
XC279735
Columba livia https://www.youtube.com/watch?v=ncOoh8ktcuY XC246586
XC178488
XC271733
Passer Domesticus X(C293932 XC381732
XC381732

X(C295541



Appendix B

Code

In this appendix, MATLAB and AudioMoth codes are presented. They are not shown here owing to their
extension, but they are available at https://github. com/ponseta/AutomatedBirdsongRecognition.
They are organised in two directories: matlab and AudioMoth.

B.1 MATLAB code

The files are organized in the following way:
* Data preparation
— create_inputs_NN.m: This script opens every MP3 file and calls data_extract.m to organize
each species in a cell with the required information.
* data_extract.m: This script saves the sampling frequency and the MFCC coefficients in
the corresponding cell. It uses the function described in m fccs.m which calculates the
MEFCCs with the filters calculated in mel filterbanks.m.
* Training
— trainNNmat.m: This script is a modification of the auto-generated code that MATLAB creates
when using the Deep Learning Toolbox. It loads the cell created by create_inputs_NN.m and
organizes the MFCCs as inputs in a random way (always with the same proportion of Os and
1s in training, validation and test). Then, the script fixes the parameters of the neural network
and performs its training. Subsequently, it saves the function with the structure of the network
in finalNeuralNetworkFunction15khz.m
* Performance
— main.m: It loads MP3 files, applies mfccs.m, then finalNeuralNetworkFunctionl15khz.m
and accumulates to generate figures in order to manually count FPs, FNs, TPs and TNs.

B.2 AudioMoth code

The code that can be found in the link above is only a modification and an extension of main.c of the
project developed by Open Acoustic Devices. To see or download the rest of it, please visit https:
//github.com/0OpenAcousticDevices/AudioMoth-Firmware-Basic/releases/tag/1.3.0.

The C file available on GitHub contains:

* The definition of necessary constants for the added functionality.

* A modification of makeRecording function (included in main.c). It calls the added functions:

— MFCC function, which calculates the MFCCs. In turn, it uses:
x DCTII function, which calculates the DCT, as part of the steps needed for the feature
extraction (see Subsec. 2.2.1).
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— deltas function, which calculates the deltas of the MFCCs.
— neuralNetwork function, which processes the MFCCs and deltas by the neural network.
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C.2

Appendix C

Improving performance

Feature variations

In order to obtain the best feature characteristic, the network was trained three times with the same initial
weights and the same order of the inputs. No normalization of the inputs was applied. The modifications
were:

* Shape of the Mel filter banks.

* Incorporation of the first MFCC.

Shape of the Mel filter banks

As stated in subsection 2.2.1, there is not a defined Mel filter bank for a specific problem. In this work, a
triangular shape is used. However, normalization respect to the area of the triangle has been tested (refer
to Figs. 2.6 and 2.7). This validation has been done without including zeroth MFCC.

The confusion matrices for both cases are presented in Figs. C.1 and C.2.

Test performance measured with cross-entropy results to be 0.0509 and 0.0249, for linear scale and
for area normalization, respectively.

Incorporation of the first MFCC

In addition, as commented in subsection 2.2.1, the zeroth coefficient is often excluded. To decide if doing
so, training has been performed with both options. This validation has been done with a triangular-shaped
Mel filter bank with normalization.

The confusion matrices for both cases are presented in figures C.3 and C.2.

Test performance measured with cross-entropy results to be 0.0280 and 0.0249, for 13 and 12
coefficients (with and without the first one), respectively.

Preprocessing before training

A typical option is to normalize inputs between -1 and 1 before feeding a neural network. Both imple-
mentations have been performed in order to choose the best one. This validation has been done with a
triangular-shaped Mel filter bank with normalization and not including the zeroth coefficient.

Test performance measured with cross-entropy results to be 0.0249 and 0.0250, for no normalization
and normalization, respectively.
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Figure C.1: Confusion matrix after training with triangular Mel filter bank (linear scale).
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Figure C.2: Confusion matrix after training with triangular Mel filter bank (area normalized).
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Figure C.3: Confusion matrix after training with inputs including the zeroed MFCC.



Improving performance
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Figure C.4: Confusion matrix after training with input normalization.









