
Available online at www.sciencedirect.com
ScienceDirect

Journal of Differential Equations 305 (2021) 319–346
www.elsevier.com/locate/jde

Integral characterization for Poincaré half-maps in 

planar linear systems

Victoriano Carmona a, Fernando Fernández-Sánchez b,∗

a Dpto. Matemática Aplicada II & IMUS, Universidad de Sevilla, Escuela Politécnica Superior, Calle Virgen de África, 
7, 41011 Sevilla, Spain

b Dpto. Matemática Aplicada II & IMUS, Universidad de Sevilla, Escuela Técnica Superior de Ingeniería, Camino de 
los Descubrimientos s/n, 41092 Sevilla, Spain

Received 22 January 2020; revised 27 May 2021; accepted 7 October 2021
Available online 22 October 2021

Abstract

The intrinsic nature of a problem usually suggests a first suitable method to deal with it. Unfortunately, the 
apparent ease of application of these initial approaches may make their possible flaws seem to be inherent 
to the problem and often no alternative ways to solve it are searched for. For instance, since linear systems 
of differential equations are easy to integrate, Poincaré half-maps for piecewise linear systems are always 
studied by using the direct integration of the system in each zone of linearity. However, this approach is 
accompanied by two important defects: due to the different spectra of the involved matrices, many cases and 
strategies must be considered and, since the flight time appears as a new variable, nonlinear complicated 
equations arise.

This manuscript is devoted to present a novel theory to characterize Poincaré half-maps in planar linear 
systems, that avoids the computation of their solutions and the problems it causes. This new perspective 
rests on the use of line integrals of a specific conservative vector field which is orthogonal to the flow of 
the linear system. Besides the obvious mathematical interest, this approach is attractive because it allows to 
simplify the study of piecewise-linear systems and deal with open problems in this field.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Linearization, Lyapunov stability, normal forms, and index theory are some fundamental tools 
for the analysis of dynamical systems. Another one, the construction of Poincaré maps, is spe-
cially suitable for the study of existence, uniqueness, and stability of periodic orbits, homoclinic 
connections, and heteroclinic cycles.

In the case of piecewise systems, the analysis of orbits that cross the separation manifolds 
between different regions leads naturally to the use of Poincaré maps that are therefore defined 
as composition of transition maps, sometimes called the Poincaré half-maps, between the sep-
aration boundaries. Usually, the explicit calculation of these maps is a difficult task because it 
depends obviously on the equations of the involved systems. However, in the case of piecewise 
linear systems, direct integration of the equations may be used in each region to obtain feasible 
expressions.

Unfortunately, this advantage of linear systems, that is, the possibility of performing direct 
integration of the equations, has also two important weaknesses for the construction of Poincaré 
half-maps. The first one is that the computation of the solutions of the linear systems, together 
with its subsequent study, is strongly conditioned by the spectrum of the matrix of the system 
and the final expression of Poincaré half-maps is written in terms of the eigenvalues. This fact 
forces the appearance of many different cases to study. The second weak point is the inevitable 
(non-linear) dependence of the Poincaré half-maps on the flight time, namely, the time spent by 
the orbit between two consecutive intersection points with the separation manifolds.

These two deficiencies are even further important if we take into account that almost every 
work about Poincaré maps for piecewise linear systems uses direct integration of the systems, 
what is accompanied by large case-by-case studies. The valuable works [1,12,25,26,24], sorted 
by year of publication, are a few examples of these case-by-case studies from the early years to 
nowadays. Moreover, each one of these different cases requires individual techniques. This fact 
hinders and slows the research on the dynamic behavior of piecewise linear systems.

The main motivation of this work is how to override the flaws in the analysis of the transition 
maps due to performing the integration of planar linear systems. The obvious procedure is to 
avoid the computation of these integrals. In order to do it, we develop a new technique to charac-
terize Poincaré half-maps of linear systems in a common, unique, and more suitable expression, 
without annoying exhaustive divisions into cases and without the unnecessary dependence on the 
flight time. This new approach is the main goal of this manuscript.
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Beyond the importance on its own of the new characterization of Poincaré half-maps, the rel-
evance of this approach is also made evident by the simplification of the study of many important 
issues related to planar piecewise linear systems; for instance, the analyticity of Poincaré half-
maps at tangency points (that is given in this work) or the open problem about providing optimal 
upper bounds on the number of limit cycles (see [6,7]).

Loosely speaking, the characterization of the Poincaré half-map related to the Poincaré section 
� ≡ {x = 0} for a generic planar linear system in Lienard form

{
ẋ = T x − y,

ẏ = Dx − a

where a, T , D are real numbers, says that the following assertions are equivalent:

a) y1 is the image of y0 by means of a Poincaré half-map,
b) y0, y1 ∈R satisfy y0 y1 � 0 and

PV

y0∫
y1

−y

Dy2 − aTy + a2 dy = cT ,

for three concrete values of constant c ∈ R. Here, PV stands for the Cauchy Principal Value 
defined at (13).

Notice that the Cauchy Principal Value is only necessary for the case a = 0, where the integral is 
improper and divergent due to a singularity at the origin. In the interest of rigor, conditions for the 
existence of the Poincaré half-map and the integral must be added to the domains of variables y0, 
y1, and to the values of the parameters. Moreover, the three values of c depend on the parameters 
and the relative location of the Poincaré section and the equilibrium of the system, if it exists.

The formal statement of the main result needs the definition of concepts, development of ideas, 
and establishment of preliminary results that are sequentially presented in this manuscript for the 
sake of better understanding. Its proof is a direct consequence of the reciprocal results given in 
Theorem 8 and Theorem 19. Furthermore, in this second theorem, an integral expression for the 
flight time is also given.

The basic idea behind our approach to characterize the Poincaré half-maps is very easy and 
it can be sketched as follows (the details are given in the next sections). Divide the linear vector 
field that defines the system by a suitable function (namely, an inverse integrating factor) to 
get an orthogonal conservative vector field. Choose any y0, y1 ∈ R such that (0, y0) and (0, y1)

are connected by a piece of an orbit of the system, y0y1 � 0, and the closed curve formed by 
this piece of orbit and the segment joining (0, y0) and (0, y1) is a Jordan curve. The integral 
of the orthogonal vector field along this Jordan curve may take just three values that do not 
depend on y0 and y1. They just depend on the relative position between the Jordan curve and the 
equilibrium point of the system. Following these simple steps, a nice and manageable integral 
implicit equation for the Poincaré half-map has been obtained.

Naturally, this idea can be also extended to non-linear systems. As we have said in the previous 
paragraph, the only requirement is the existence of a suitable inverse integrating factor that allows 
the obtention of a reasonable integral implicit equation.
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Therefore, this work is divided into several parts which are devoted to present the new con-
cepts and ideas needed to prove the reciprocal results given in Theorem 8 (in Section 3) and 
Theorem 19 (in Section 5). The first logical step for our analysis is to give an accurate definition 
and a detailed description of Poincaré half-maps associated to a straight line for planar linear 
systems. The location of the equilibrium of the linear system, if it exists, relative to the straight 
line allows to classify all the possible Poincaré half-maps into just three scenarios. This is done 
in Section 2.

Now, the target of Section 3 is the construction of an alternative way to write the existing 
relationship between a point y0 and its image y1 by the Poincaré half-map. More specifically, the 
beginning of this section is a brief summary of definitions and results about inverse integrating 
factors, a basic tool to obtain the suitable vector field that is integrated on appropriate closed 
curves to reach the desired alternative expression. This integral expression brings together all 
possible geometric configurations into a unique common function, in variables y0 and y1, one of 
whose level curves is the graph of the Poincaré half-map. Moreover, in this section, it is put into 
evidence a natural relationship between this common function and the index of a closed curve. 
This suggests for the function the name of the index-like function.

Section 4 corresponds to the study of the main properties of the index-like function and its set 
of level curves. The primary results of this section concern, on the one hand, the analyticity and 
bijectivity of the implicit functions defined by the level curves and, on the other hand, the exis-
tence of a third-order differential system whose orbits are the graphs of these implicit functions. 
All the properties obtained in Section 4 are used in Section 5 to prove Theorem 19 and thus to 
close the characterization of the Poincaré half-maps (and to get the flight time) in terms of the 
index-like function. Finally, some conclusions and future works are given in Section 6.

2. Poincare half-maps for planar linear systems

Let us consider, for x = (x1, x2)
T , the autonomous linear system

ẋ = M x + b (1)

where M = (mij )i,j=1,2 is a real matrix and b = (b1, b2)
T ∈ R2. Let us chose the Poincaré 

section � ≡ {x1 = 0}.
Although the further analysis can be performed directly to system (1), it is a good idea to 

reduce previously the number of parameters. Note that if coefficient m12 vanishes, system (1) is 
uncoupled in such a way that a Poincaré half-map on section � can not be defined (no return 
is possible). Therefore, from now on, let us assume that m12 �= 0, what is usually called the 
observability condition [8]. Under this assumption, the linear change of variable x = x1, y =
m22x1 − m12x2 − b1, allows to write system (1) into the generalized Lienard form,(

ẋ

ẏ

)
=
(

T −1
D 0

)(
x

y

)
−
(

0
a

)
, (2)

where a = m12b2 − m22b1 and T and D stand for the trace and the determinant of matrix M
respectively. Let us call A the matrix of system (2) and

L(x, y) = (T x − y,Dx − a) (3)
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the corresponding vector field. In the new coordinates, since x1 = x, the Poincaré section �
remains the same.

The first equation of system (2) evaluated on section � = {x = 0} is reduced to ẋ|� = −y. 
Therefore, the flow of the system crosses � from the half-plane {x > 0} to {x < 0} when y > 0, 
from the half-plane {x < 0} to {x > 0} when y < 0 and it is tangent to � at the origin.

The goal of this section is to define, in the usual way, the Poincaré half-maps of system (1)
corresponding to the section � and to show that, in spite of the distinct cases that may appear in 
terms of the spectrum of A, there are only three different geometric types of Poincaré half-maps.

Without loss of generality, since system (2) is invariant under the change (x, y, a) ←→
(−x, −y, −a), it is only necessary to define the left Poincaré half-map. That is, let us consider 
(0, y0) ∈ � with y0 � 0 and let be

�(t;y0) = (�1(t;y0),�2(t;y0)) (4)

the orbit of system (2) that satisfies �(0; y0) = (0, y0). If there exists a value τ(y0) > 0 such that 
�1(τ (y0); y0) = 0 and �1(t; y0) < 0 for every t ∈ (0, τ(y0)), we say that y1 = �2(τ (y0); y0) � 0
is the image of y0 by the left Poincaré half-map, denoted by y1 = P(y0), and the value τ(y0) is 
the corresponding left flight time. See Fig. 1(a).

Remark 1. In the case that P(0) can not be defined in this previous way but for every ε > 0
there exist y0 ∈ (0, ε) and y1 ∈ (−ε, 0) such that P(y0) = y1, the left Poincaré half-map can 
be extended with P(0) = 0. This case corresponds to an equilibrium at the origin or a scenario 
known as an invisible tangency [21] for half-plane {x < 0}. See Fig. 1(b).

Notice that in this case the left flight time can be also extended to the origin. For an invisible 
tangency, since τ(y0) tends to 0 as y0 tends to 0, the left flight time τ(0) should vanish. However, 
when the origin is an equilibrium, since the existence of the left Poincaré half-map implies that 
4D − T 2 > 0 (i.e., the equilibrium point is a center or a focus) and it is known that τ(y0) =

2π√
4D−T 2

for any y0 > 0 (see [12]) then the natural choice is τ(0) = 2π√
4D−T 2

.

From now until the end of this section, we assume that the following hypothesis holds:

(H) There exist y0 � 0 and τ(y0) > 0 such that �1(τ (y0); y0) = 0 and �1(t; y0) < 0 for every 
t ∈ (0, τ(y0)).

Let us consider the value y1 = P(y0), the segment �1 = {(0, y) ∈ R2 : y ∈ (y1, y0)}, the piece of 
orbit �2 = {�(t; y0) : t ∈ [0, τ(y0)]} and the Jordan curve

� = �1 ∪ �2. (5)

Note that the set �1 may be the empty set (when y1 = y0 = 0). Under assumption (H), linear sys-
tem (2) has, at most, one equilibrium point. Note that if the system had infinitely many equilibria 
(that is, the equality D2 + a2 = 0 holds) the straight line y = T x would be foliated by these 
equilibrium points. This fact contradicts the theorem of existence and uniqueness of solutions 
since the straight line y = T x would intersect the piece of orbit �2.

Depending on the relative position of � and the equilibrium point of system (2), if any, the 
following three mutually exclusive scenarios appear.
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Fig. 1. (a) Schematic drawing of the construction of the left Poincaré half-map. (b) Left Poincaré half-map for an invisible 
tangency or an equilibrium point at the origin.

Definition 2. Let us name the different scenarios as:

(S2) The equilibrium point exists and it belongs to the interior of Jordan curve �, Int(�).
(S1) The equilibrium point is the origin or, equivalently, the equilibrium exists and it belongs to 

segment �1.
(S0) All other cases, i.e., the set � ∪ Int(�) contains no equilibrium points of system (2).

The reason for the numbering of the different scenarios comes from the values k that will be 
given in Theorem 8.

Let us briefly describe the three scenarios. In scenario (S2), the equilibrium of system (2) is 
located at the half-plane {x < 0} and the only possible configurations for the phase portrait are a 
center, a stable focus, and an unstable focus (that is, 4D − T 2 > 0 and a < 0). In the center case 
the domain of definition D of the left Poincaré half-map is the interval [0, +∞) and its range R
is the interval (−∞, 0]. In the stable focus case, there exist a value ŷ0 > 0 such that P(ŷ0) = 0, 
the domain is D = [ŷ0, +∞) and the range is R = (−∞, 0]. For the unstable focus case, there is 
a value ŷ1 < 0 such that P(0) = ŷ1, the domain is D = [0, +∞) and the range is R = (−∞, ŷ1]. 
See Fig. 2.

For scenario (S1), the equilibrium of system (2) is located at the origin and the only possible 
configurations for the phase portrait are a center, a stable focus, and an unstable focus (that is, 
4D − T 2 > 0 and a = 0). In all these cases, the left Poincaré half-map can be extended to the 
origin by means of the definition P(0) = 0 (see Remark 1). Therefore the domain is [0, +∞)

and the range is (−∞, 0]. See Fig. 3.
Finally, the scenario (S0) includes many different cases (saddles, nodes, degenerate nodes, 

foci, centers, and degenerated situations without equilibria). On the one hand, for all of them there 
exists an invisible tangency at the origin and, thus, the left Poincaré half-map can be extended to 
P(0) = 0 (see Remark 1). On the other hand, the domain and range of the left Poincaré half-map 
for foci and centers are respectively D = [0, +∞) and R = (−∞, 0] but, for the other cases 
in scenario (S0), the existence of invariant straight manifolds (at most two) restricts these sets. 
In fact, it is direct to see that invariant straight manifolds of system (2) cannot be parallel to 
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Fig. 2. Scenario (S2): (a) center, (b) stable focus, (c) unstable focus.

Fig. 3. Scenario (S1): (a) center, (b) stable focus, (c) unstable focus.

section � and cannot contain the origin. Therefore, the intersections between all these invariant 
manifolds with section � divide � in at most three open intervals and one of them contains the 
origin. Thus, denoting by J this interval, the domain and range of the left Poincaré half-map for 
cases with invariant straight manifolds are respectively D = [0, +∞) ∩J and R = (−∞, 0] ∩J . 
See Fig. 4.

3. Integral expression for Poincaré half-maps: index-like function

The goal of this section is to give an integral expression for the left Poincaré half-map of sys-
tem (2) corresponding to section � = {x = 0}. In order to achieve this aim, we use line integrals 
of a specific conservative vector field that is orthogonal to the flow of the system. The vector field 
is obtained in a convenient manner by means of a suitable inverse integrating factor.

Since inverse integrating factors are a key tool for the study of classic problems of planar 
smooth systems and, as far as we know, they have not been often used for piecewise systems, 
it is appropriate to devote a few paragraphs to present, without going into many details, some 
of the principal features of inverse integrating factors, particularly the basic properties and those 
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Fig. 4. Scenario (S0): (a) center, (b) focus, (c) degenerate node, (d) node, (e) saddle, (f) degenerated case without equi-
libria.

ideas that are going to be applied to transition maps of planar linear systems. More and deeper 
information can be found in [15].

Let us consider the vector field F(x, y) = (f (x, y), g(x, y)) and the planar autonomous dif-
ferential system ⎧⎪⎨⎪⎩

dx

dt
= f (x, y),

dy

dt
= g(x, y),

(6)

where f, g : U −→R are smooth functions and U is a neighborhood in R2.
A smooth function V : U −→ R is an inverse integrating factor of system (6) if its zero set 

V −1({0}) = {(x, y) ∈ U : V (x, y) = 0} does not contain any non-empty open set and it satisfies 
the condition

∇V (x, y) · F(x, y) = V (x, y) divF(x, y), (7)

where ∇V (x, y) =
(

∂V
∂x

(x, y), ∂V
∂y

(x, y)
)

is the gradient of V , divF(x, y) = ∂f
∂x

(x, y) + ∂g
∂y

(x, y)

is the divergence of the vector field F and the dot (·) stands for the inner product.
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Note that the reason why a function V that satisfies the condition (7) is called an inverse 
integrating factor of system (6) is that for every (x, y) ∈ U \ V −1({0}) the function 1/V is an 
integrating factor for the equation of the orbits g(x, y)dx − f (x, y)dy = 0. Equivalently, the 
system ⎧⎪⎪⎨⎪⎪⎩

dx

ds
= f (x, y)

V (x, y)
,

dy

ds
= g(x, y)

V (x, y)
,

obtained from system (6) by performing a change of the temporal variable that satisfies ds =
V (x, y) dt , is Hamiltonian in every simply connected component of U \ V −1({0}).

Other important results about inverse integrating factors are related to their zero sets. Let us 
denote by 	(t; p), the orbit of system (6) that satisfies 	(0; p) = p. If V is an inverse integrating 
factor of (6) then it is easy to see that the relationship

V (	(t;p)) = V (p) exp

⎛⎝ t∫
0

divF(	(s;p)) ds

⎞⎠ (8)

holds. Thus, if V (p) = 0, then V vanishes at the complete orbit and so the zero set of V is 
composed of trajectories of system (6).

In [18], it is proved that all the limit cycles of system (6) included in the domain of definition 
of V are contained in the zero set of V . Moreover, under mild conditions, the separatrices of 
hyperbolic saddle points are also included in this set [2]. Once more, let us recommend the 
reading of the survey [15] to deepen the knowledge of inverse integrating factors.

For the analysis in this work, a suitable inverse integrating factor must be chosen. In this case, 
where L is the vector field given by system (3), condition (7) is written as

∇V · L = T V, (9)

since divL = T .
It is well-known that homogeneous linear systems have quadratic inverse integrating factors 

(see for instance [9]). If the linear system is not homogeneous but has an equilibrium, a simple 
translation converts it into a homogeneous system so it also has a quadratic inverse integrating 
factor. All the quadratic inverse integrating factors of system (2) are collected in the following 
proposition.

Proposition 3. The set V of polynomial inverse integrating factors V (x, y) of degree less or 
equal than two for system (2) is a finite-dimensional vector space whose dimension depends on 
the parameters a, T and D. Concretely, the following bases Bi may be selected:

• If a2 + D2 �= 0 and
◦ T �= 0, then B1 = {D2x2 − DT xy + Dy2 + a(T 2 − 2D)x − aTy + a2}.
◦ T = 0, then B2 = {1, Dx2 + y2 − 2ax}.

• If a2 + D2 = 0 and
◦ T �= 0, then B3 = {y2 − T xy, y − T x}.
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◦ T = 0, then B4 = {1, y, y2}.

Proof. The proof is straightforward by imposing that the generic real quadratic polynomial in 
two variables

V (x, y) =
∑

0≤i+j≤2

αij x
iyj

satisfies condition (9). �
Except in the case a2 +D2 �= 0, T �= 0, the dimension of vector space V is greater than one, so 

there exist linearly independent inverse integrating factors. Since the division of two integrating 
factors is constant on orbits, the division of two linearly independent inverse integrating factors 
is a first integral of the system. In that case, all the orbits of the system can be obtained as the 
level curves of these quotients.

For T = 0, system (2) is reversible (invariant under the change y ↔ −y, t ↔ −t). It is also 
Hamiltonian. In fact, constant polynomials are integrating factors (see the constant polynomial 1
in the bases B2 and B4). From this and the previous paragraph, any inverse integrating factor is 
constant along the orbits of system (2).

In addition to these two comments, let us mention that the linear combination a2 · 1 + D ·(
Dx2 + y2 − 2ax

)
of elements of the basis B2 could also be obtained from the unique element 

of the basis B1 if T were allowed to vanish. As a conclusion, we choose

V (x, y) = D2x2 − DT xy + Dy2 + a(T 2 − 2D)x − aTy + a2 (10)

as the expression of the inverse integrating factor for system (2) under condition

a2 + D2 �= 0. (11)

Remark 4. Trivially, the level curves of the inverse integrating factor V are conics. In particular, 
when 4D − T 2 > 0, they are ellipses whose center is the equilibrium point of system (2) and the 
change of variables ⎧⎪⎨⎪⎩

x = X + a

D
,

y = αX + βY + aT

D

(12)

for α = T/2, β = √
4D − T 2/2 transforms the inverse integrating factor into Ṽ (X, Y) =

β2(α2 + β2) 
(
X2 + Y 2

)= 4D2−T 2D
4

(
X2 + Y 2

)
. Moreover, in this case, when T < 0 the inverse 

integrating factor V is a Lyapunov function for system (2), see equation (9).

Note that, from now on, the study will be restricted to case (11) since for a2 +D2 = 0 Poincaré 
half-maps to section � = {x = 0} of system (2) cannot exist. This is an immediate conclusion 
from the fact that the component y of every solution of system (2) is constant and, therefore, 
reinjection into � is not possible. Moreover, as it was said in the previous section, for a2 +D2 = 0
the straight line y = T x is foliated by equilibrium points.
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Now that a suitable inverse integrating factor has been chosen, as it has been said in the intro-
duction, it is important to determine the zero set V −1({0}). The following proposition describes 
it.

Proposition 5. Depending on the parameters of system (2) and under condition (11), the zero 
set V −1({0}) of function V given in (10) is the empty set, a single point (the equilibrium point 
of system (2)), a single straight line (invariant for system (2)) or a pair of crossing straight lines 
(the invariant manifolds of the equilibrium point of system (2)). Concretely:

• For D = 0 (no equilibrium case) and
◦ T = 0, then V −1({0}) = ∅.
◦ T �= 0, then V −1({0}) = {(x, y) ∈ R2 : T 2x − Ty + a = 0}.

• For D �= 0 (equilibrium at (x, y) = (a/D, aT /D)) and
◦ T 2 − 4D > 0, then

V −1({0}) = {(x, y) ∈ R2 : 2D
(
x − a

D

)= (T ± √
T 2 − 4D

)(
y − aT

D

)}.
◦ T 2 − 4D = 0, then

V −1({0}) = {(x, y) ∈ R2 : 2D
(
x − a

D

)= T
(
y − aT

D

)}.
◦ T 2 − 4D < 0, then V −1({0}) = {(a/D, aT /D)}.

Proof. For D = 0, condition (11) implies that a �= 0 and the inverse integrating factor is 
V (x, y) = a

(
T 2x − Ty + a

)
. Thus the conclusion is obvious.

For D �= 0, the inverse integrating factor V (x, y) can be written as

V (x, y) = −D det

(
A

(
x − a

D

y − aT
D

)∣∣∣∣∣
(

x − a
D

y − aT
D

))
.

Therefore, V vanishes if, and only if, the vector (x − a
D

, y − aT
D

)T belongs to a real eigenspace 
of matrix A. From this, the proof is direct. �

Since the expression given in this work for the left Poincaré half-map in terms of the inverse 
integrating factor involves divergent integrals at zero (concretely, when the equilibrium of system 
(2) is located at the origin), it is necessary to use the concept of Cauchy principal value that, 
particularized to divergences at zero, is defined as follows. Let be h a continuous function in 
[ξ1, ξ2] \ {0}, where ξ1 < 0 < ξ2. The Cauchy Principal Value (PV) of integral 

∫ ξ2
ξ1

h(ξ)dξ is the 
following limit (if it exists):

PV

ξ2∫
ξ1

h(ξ)dξ := lim
ε↘0

⎛⎜⎝ −ε∫
ξ1

h(ξ)dξ +
ξ2∫

ε

h(ξ)dξ

⎞⎟⎠ . (13)

Obviously, if h is also continuous at ξ = 0 then the Cauchy principal value coincides with the 
value of the integral. By convention, it is said that PV

∫ ξ1
ξ2

h(ξ)dξ = − PV
∫ ξ2
ξ1

h(ξ)dξ . In [16,17], 
the Cauchy principal value is applied to the analysis of monodromy and the study of the center
problem for some types of planar systems.
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The first main theorem of the manuscript is based on the integration of vector field

G(x,y) =
(

−Dx − a

V (x, y)
,
T x − y

V (x, y)

)
(14)

along a suitable Jordan curve for the different scenarios given in Definition 2. Notice that vec-
tor field G is orthogonal to the flow of system (2) and conservative in every simply connected 
component of R2 \ V −1({0}).

Remark 6. In order to choose an orientation, from now on we denote (x, y)⊥ = (−y, x). Thus, 
when V does not vanish, it holds that G = L⊥

V
where L is the vector field defined in (3). Since 

condition (9) can be equivalently written as L⊥ · ∇V ⊥ = T V , the equality

G · ∇V ⊥ = T (15)

is satisfied.

Remark 7. Let be  any piecewise-smooth planar curve that does not intersect the zero set 
V −1({0}) (i.e., it does not intersect the invariant manifolds or the equilibrium of system (2), if 
exist).

Let us consider the case 4D − T 2 > 0 and let be ̃, in coordinates (X, Y), the image of the 
curve  by the change of variables given in (12). Let be (Xa, Ya) and (Xb, Yb) the first and last 
points of the curve ̃. Then, it is trivial that

∫


G · dr = −1

D

∫
̃

X dX + YdY

X2 + Y 2 + T

D
√

4D − T 2

⎛⎜⎝∫
̃

X dY − Y dX

X2 + Y 2

⎞⎟⎠
= −1

D
log
(
X2 + Y 2

)∣∣∣(Xb,Yb)

(Xa,Ya)
+ T

D
√

4D − T 2

⎛⎜⎝∫
̃

X dY − Y dX

X2 + Y 2

⎞⎟⎠ .

Notice that when V | is constant or  is a closed curve, the first summand vanishes and

∫


G · dr = T

D
√

4D − T 2

⎛⎜⎝∫
̃

X dY − Y dX

X2 + Y 2

⎞⎟⎠ .

Therefore, when  is a closed curve then

∮


G · dr = 2πT

D
√

4D − T 2

⎛⎜⎝ 1

2π

∮
̃

X dY − Y dX

X2 + Y 2

⎞⎟⎠ ,

that is, 2πT
(
D

√
4D − T 2

)−1
times the index (or winding number) of the curve ̃ around 

(X, Y) = (0, 0) or, equivalently, times the index of the curve  around the equilibrium point.
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For the case 4D − T 2 � 0, when  is a closed curve, due to the conservativeness of vector 
field G, it is clear that ∮



G · dr = 0.

This can also be understood as the index of the curve  around the equilibrium, if it exists, or 
any other point not surrounded by .

Now, we are in a position to present and prove a theorem that states a new way to write, in 
terms of an integral expression, the existing relationship between a value and its image by means 
of the left Poincaré half-map.

Theorem 8. Let assume that condition (11) and hypothesis (H) hold. Let be y1 = P(y0) the 
image of y0 by the left Poincaré half-map, V the inverse integrating factor given in expression 
(10), � the Jordan curve given in Eq. (5) and (Sk), k ∈ {0, 1, 2}, the corresponding scenario given 
in Definition 2. Then

PV

y0∫
y1

−y

V (0, y)
dy = dk, (16)

where

dk =

⎧⎪⎨⎪⎩
0 if k = 0,

kπT

D
√

4D − T 2
if k = 1,2.

Proof. The proof of this theorem is direct from the computation of the line integral of vector 
field (14) along the Jordan curve � given in Eq. (5) and positively oriented. This computation 
depends on the relative position of � and the equilibrium of system (2), if any. Therefore, the 
proof is divided into three parts.

Before that, since the vector field G is orthogonal to the flow of system (2) at R2 \ V −1({0})
then ∫

�2

G · dr = 0 (17)

due to �2 is a piece of an orbit of the system.
Let us begin with the easiest case, that is, scenario (S0) (see Fig. 5(a)). From Proposition 5, it 

is obvious that V does not vanish in Int(�) ∩ �. Thus, since the vector field G is conservative, 
the integral ∮

G · dr =
∫

G · dr +
∫

G · dr
� �1 �2
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Fig. 5. Curves used in the proof of Theorem 8. Labels (a), (b), (c) stand respectively for scenarios (S0), (S2) and (S1).

vanishes. Besides that, identity (17) implies that

0 =
∮
�

G · dr =
∫
�1

G · dr =
y0∫

y1

−y

V (0, y)
dy.

The proof for scenario (S0) is finished.
Regarding scenario (S2) (see Fig. 5(b)), the unique equilibrium point belongs to the interior 

of the Jordan curve � and it is the only point at which the inverse integrating factor V vanishes. 
Therefore, by using identity (17) and Remark 7 it is trivial to see that

y0∫
y1

−y

V (0, y)
dy =

∫
�1

G · dr =
∮
�

G · dr = 2πT

D
√

4D − T 2
.

The last part of the proof, corresponding to scenario (S1), where a = 0 and D �= 0, is a little 
bit more complicated. In fact, it is the reason that motivates us to use the Cauchy principal value 
as defined in Eq. (13) because the improper integral

y0∫
y1

−y

V (0, y)
dy =

y0∫
y1

−1

Dy
dy

is divergent.
Since the unique equilibrium of the system (the origin) is located at the Jordan curve �, it is 

not possible to proceed as in previous scenarios. Under these circumstances, it is usual to choose 
a Jordan curve ̃� = �11 ∪�2 ∪�12 ∪�3 as shown in Fig. 5(c). Note that �3 intersects the Poincaré 
section {x = 0} at the symmetric points (0, −ε) and (0, ε), with ε > 0. Once more, by identity 
(17) and Remark 7, it follows that
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−ε∫
y1

−1

Dy
dy +

y0∫
ε

−1

Dy
dy = −

∫
�3

G · dr = πT

D
√

4D − T 2
.

Now, to finish the proof, it is enough to take limits as ε ↘ 0. �
Remark 9. Analogously, if y0 is the image of y1 by the right Poincaré half-map, the same ex-
pression given in equation (16) is obtained but now dk must be changed by −dk .

Note that, at this point, the flight time has been removed from the expression for the Poincaré 
half-maps and the analysis of the many cases that appear due to the configuration of the spectra 
of matrix A have been reduced to the study of the level curves of the single function,

F(y1, y0) = PV

y0∫
y1

−y

V (0, y)
dy, (18)

where V is the inverse integrating factor given in expression (10).
Let be 2 a piece of an orbit of system (2) that starts at (0, y0) and ends at (0, y1), 1 the 

segment bounded by y0 and y1 in section �, and  = 1 ∪ 2 the corresponding positively 
oriented closed curve. Reasoning as in the proof of Theorem (8), it is trivial that

F(y1, y0) =
∮


G · dr

holds. A suitable name for function F comes from Remark 7.

Definition 10. Function F given in equation (18) is called the index-like function.

Remark 11. A logical consequence of the direct procedure (that is, not depending on the spectra 
of matrix A) of construction of an alternative way of writing the left Poincaré half-map is that 
the index-like function is common for all cases and it only depends (through the expression of 
V (0, y)) on the parameters of the linear system (2) and not on the eigenvalues of matrix A. 
Since the qualitative information of such a linear system is given by its characteristic polynomial 
PA and the location of the equilibrium, if it exists, it seems to be clear that there must exist a 
relationship between V (0, y) and the characteristic polynomial. In fact, it is trivial to prove the 
equality

y2PA

(
a

y

)
= V (0, y)

for y �= 0. Thus, the index-like function given in Definition 10 (and, consequently, the Poincaré 
half-maps) can be written in terms of the characteristic polynomial PA.

The next step of this work will consist on the study of the index-like function F , with a focus 
on the properties that can be extrapolated to Poincaré half-maps.
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4. Analysis of the index-like function

The first important task in the analysis of the index-like function F given in (18) is to delimit 
its domain of definition to avoid nontrivial zeros of the function V (0, y). Although the integral 
in the definition of the function F could have been extended, via the Cauchy principal value, to 
be valid for intervals containing those zeros, in the context of this work is not necessary to do it 
because the Poincaré half-maps of system (2) cannot be defined in them.

In order to delimit the domain of function F , let us consider the open interval

I =
{
y ∈R : (0, y) ∈ int (C ∪ {(0,0)})

}
, (19)

where int(·) stands for the topological concept of the interior of a set and the set C is the unique 
maximal connected component of R2 \ V −1({0}) that contains two points (0, ξ1) and (0, ξ2)

with ξ1 · ξ2 < 0. On the one hand, note that for a �= 0 interval I could have been equivalently 
defined as I = {y ∈ R : (0, y) ∈ C} because (0, 0) /∈ V −1({0}). On the other hand, when a = 0, 
that is, when the origin (0, 0) ∈ V −1({0}) or equivalently the only equilibrium point is the origin 
(remember that, from (11), it is a2 +D2 �= 0), the set C and so the interval I are C = R2 \ {(0, 0)}
and I = R when the equilibrium is a focus or a center but they are empty when the equilibrium 
it is a saddle or a node. At this moment, it should have to be obvious that the intricate definition 
of the interval I is suitable with the intention of removing the cases where the existence of a 
Poincaré half-map is not allowed.

Moreover, it is clear that the inverse integrating factor V is strictly positive on the set C when 
C �= ∅. Therefore, the inequality V (0, y) > 0 holds for all y ∈ I when a �= 0 and for all y ∈ I \{0}
when a = 0.

Finally, when I is not empty, it can be written as I = (μ1, μ2) where −∞ � μ1 < 0 < μ2 �
+∞. Besides that, if −∞ < μ1 (resp. μ2 < +∞) then V (0, μ1) = 0 (resp. V (0, μ2) = 0).

Let us consider now the integrating function from the definition of the function F given in 
(18),

h(y) = −y

V (0, y)
= −y

Dy2 − aTy + a2 , (20)

defined for every y ∈ I when a �= 0 and for every y ∈ I \ {0} when a = 0. This function h is 
strictly positive for y < 0 and strictly negative for y > 0.

Since for i = 1, 2 the endpoints μi of interval I are infinity or satisfy V (0, μi) = 0, any 
integral of h involving any of these points is an improper integral and it is simple to see that it is, 
moreover, divergent. In fact, for every a �= 0 and z ∈ I , the following equalities hold

μ2∫
z

h(y)dy = −∞ and

z∫
μ1

h(y)dy = +∞. (21)

Also, for a = 0, it is h(y) = −1
Dy

and since D cannot vanish any integral involving y = 0 is also a 
divergent improper integral.

In this first step, the sign of V has allowed to obtain an open interval I outside of which a 
Poincaré half-map could not be defined. Therefore, from now on, the study of function F will 
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be restricted to the open square (y1, y0) ∈ I2 = I × I . The next result describes the region of 
analyticity of function F in this square.

Lemma 12. Let us assume that interval I given in (19) is not empty. Function F given in (18) is 
analytic in:

1. the open square I2 for a �= 0;
2. the open set I2 \ {(y1, y0) ∈R2 : y1 · y0 = 0

}
for a = 0.

Proof. For a �= 0, function h(y) given in (20) is analytic in I . Therefore, statement 1 is direct.
Trivially, for a = 0,

F(y1, y0) = PV

y0∫
y1

−1

Dy
dy = 1

D
log

∣∣∣∣y1

y0

∣∣∣∣ (22)

and the proof is finished. �
Remark 13. It is obvious that for a = 0, function F is not defined at set 

{
(y1, y0) ∈ R2 :

y1 · y0 = 0
}
. Nevertheless, although

lim
y1→0
y0 �=0

F(y1, y0) = − sign(D) · ∞ and lim
y0→0
y1 �=0

F(y1, y0) = + sign(D) · ∞,

the directional limit along the straight line y1 = cy0, for c �= 0, is

lim
y0→0

F(cy0, y0) = log |c|
D

so, roughly speaking, we could say that the expression F(0, 0) takes any value at this point.

Remember that the Poincaré half-maps correspond to specific level curves of function F . 
Hence, the next result is devoted to describing the whole set of level curves F(y1, y0) = q ∈ R
restricted to I2. In fact, we will see that these curves can be seen as graphs of real analytic 
functions defined in I that, moreover, are solutions of the same differential equation.

Theorem 14. Let us consider the index-like function F given in equation (18) and the in-
verse integrating factor V given in (10). Let us assume that condition (11) holds and that 
the open interval I = (μ1, μ2) defined in (19) is not empty. For every value q ∈ R there 
exist two different real analytic functions φq, ϕq : I −→ I such that the level curve Cq ={
(y1, y0) ∈ I2 : F(y1, y0) = q

}
is the union of the graphs of functions φq and ϕq . Moreover, 

both functions are solutions of the differential equation

y1V (0, y0) dy1 − y0V (0, y1) dy0 = 0 (23)

in I . To be more precise:
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1. For a = 0 then Cq = {
(y1, y0) ∈ I2 : (y1 − φq(y0))(y1 − ϕq(y0)) = 0

}
, where φq(z) =

eDq z and ϕq(z) = −eDq z for every z ∈ I .
2. For a �= 0 and q = 0 then

C0 =
{
(y1, y0) ∈ I2 : (y1 − φ0(y0))(y1 − ϕ0(y0)) = 0

}
where φ0 = id, ϕ0 is an involution in I and ϕ0(0) = 0.

3. For a �= 0 and q �= 0 then

Cq =
{
(y1, y0) ∈ I2 : (y1 − φq(y0))(y1 − ϕq(y0)) = 0

}
for q > 0

and

Cq =
{
(y1, y0) ∈ I2 : (y0 − φq(y1))(y0 − ϕq(y1)) = 0

}
for q < 0,

where every function ϕq is unimodal in I , function sgn(q)ϕq has a strictly negative maximum 
at the origin and the equivalence φq ≡ ϕ−q holds. Furthermore, the restricted functions

ϕq : [0,μ2) −→ (μ1, ϕq(0)], for q > 0,

ϕq : (μ1,0] −→ [ϕq(0),μ2), for q < 0,
(24)

are bijective.

Proof. For a = 0 the proof of statement 1 is direct from expression (22) and Remark 13. More-
over, since D �= 0, differential equation (23) is just y1y0(y0 dy1 − y1 dy0) = 0, which is trivially 
satisfied by straight lines that pass through the origin.

In the rest of the proof, we assume a �= 0 and, as it has been said before, the principal value 
can be removed from the definition of the function F . Therefore, the partial derivatives of the 
function F are

∂F
∂y1

(y1, y0) = y1

V (0, y1)
and

∂F
∂y0

(y1, y0) = −y0

V (0, y0)
(25)

and so, for every q ∈ R, any function implicitly defined in I by the equation F(y0, y1) = q , if it 
exists, satisfies

0 = dF = y1

V (0, y1)
dy1 − y0

V (0, y0)
dy0,

what is equivalent to differential equation (23) since V (0, z) > 0 for every z ∈ I = (μ1, μ2).
Let us prove now the existence of functions φq and ϕq mentioned in the statement of the the-

orem. From the values of the partial derivatives of F it is clear that for every y0 ∈ I , the function 
F( · , y0) is strictly decreasing at interval (μ1, 0) and strictly increasing at interval (0, μ2). From 
the equalities given in (21) it is clear that for every y0 ∈ I ,

lim F(y1, y0) = lim F(y1, y0) = +∞.

y1↘μ1 y1↗μ2
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Moreover, the inequality F(0, y0) < 0 holds for every y0 �= 0 and F(0, 0) = 0.
Let us consider now q = 0. For every y0 ∈ I \ {0} there exist two unique and different val-

ues φ0(y0), ϕ0(y0) ∈ I such that F(φ0(y0), y0) = F(ϕ0(y0), y0) = 0. Moreover, the inequality 
φ0(y0) · ϕ0(y0) < 0 is true (without loss of generality, we can assume y0 · φ0(y0) > 0). Notice 
that if φ0 and ϕ0 could be extended to y0 = 0, both functions should satisfy φ0(0) = ϕ0(0) = 0
because the only solution to F(y1, 0) = 0 is y1 = 0.

On the one hand, in view of the trivial equality F(y0, y0) = 0 for every y0 ∈ I , function

φ0 : y0 ∈ I −→ φ0(y0) ∈ I

must be the identity function and there exist a function F∗ defined in I2 such that F(y1, y0) =
(y1 − y0)F∗(y1, y0) and F∗(ϕ0(y0), y0) = 0 for every y0 ∈ I \ {0}.

The function φ0 is clearly analytic because it is the identity function. From (25), it is imme-
diate that ∂F/∂y1(ϕ0(y0), y0) �= 0 for every y0 �= 0 and so the function ϕ0 is analytic for every 
y0 �= 0 as a direct consequence of the implicit function theorem for real analytic functions (see 
Lemma 12).

Now it will be proved that ϕ0 can be analytically extended to y0 = 0. From the expressions 
of the derivatives given in (25), it is clear that ∂F/∂y1(0, 0) = ∂F/∂y0(0, 0) = 0, all the mixed 
partial derivatives of F vanish and the equality

∂nF
∂yn

1
(y1, y0) = −∂nF

∂yn
0

(y0, y1)

is satisfied for every positive integer n. Thus, the function F∗ is analytic in a neighborhood of 
the origin, F∗(0, 0) = 0, ∂F∗/∂y1(0, 0) = ∂F∗/∂y0(0, 0) = a−2 �= 0. As a direct consequence of 
the implicit function theorem applied to F∗ at the origin, it is obtained that ϕ0 can be analytically 
extended to y0 = 0 and ϕ0(0) = 0.

On the other hand, taking into account that

F(y1, y0) = −F(y0, y1) (26)

then the function

ϕ0 : y0 ∈ I −→ ϕ0(y0) ∈ I

is an involution.
In the proof of statements 1 and 2, variable y1 has been obtained as a function of y0 in the 

complete interval I for the level curves of function F . Note that, analogously, variable y0 could 
have been obtained as a function of y1 in the complete interval.

The proof of statement 3 (where a · q �= 0) is similar to the proof of statement 2 (in fact, it 
is even easier because the level curves do not contain the origin and the singular case does not 
appear).

Let us consider q > 0. For every y0 ∈ I there exist two unique and different values 
φq(y0), ϕq(y0) ∈ I such that F(φq(y0), y0) = F(ϕq(y0), y0) = q . Moreover, the inequality 
φq(y0) · ϕq(y0) < 0 is true (without loss of generality, we can assume that function ϕq is strictly 
negative). By means of the implicit function theorem for real analytical functions, functions φq

and ϕq are analytic in the complete interval I (see Lemma 12) and satisfy the inequalities
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Fig. 6. Level curves of the index-like function F in I2 for several values q ∈R when: (a) a = 0; (b) a �= 0 and 4D−T 2 >

0; (c) a �= 0 and D < 0. Case (a) illustrates item 1 of Theorem 14. Case (b) corresponds to items 2 (q = 0) and 3 (q �= 0) 
for values of the parameters such that system (2) has a focus or a center. Case (c) corresponds to items 2 (q = 0) and 
3(q �= 0) for values of the parameters such that system (2) has a saddle equilibrium and, therefore, the set I2 is bounded.

y0
dφq

dy0
(y0) = y2

0V (0, φq(y0))

φq(y0)V (0, y0)
> 0, y0

dϕq

dy0
(y0) = y2

0V (0, ϕq(y0))

ϕq(y0)V (0, y0)
< 0

for y0 ∈ I \ {0}. Therefore, both functions are unimodal and their critical point (minimum for φq

and maximum for ϕq ) are located at y0 = 0.
For q < 0, an analogous reasoning with a simple interchange of variables y1, y0 and assuming 

that ϕq is strictly positive, leads to the corresponding result. Besides that, since (26) holds then 
φq ≡ ϕ−q for every q ∈R \ {0}.

Finally, again from the divergence of the integrals shown in (21), it is now obvious to see that 
the restricted functions given in (24) are bijective. �
Remark 15. The graphs of the restricted functions given in (24) are contained into the fourth 
quadrant since this is the natural quadrant for the left Poincaré half-map. The restrictions to this 
fourth quadrant of the functions ϕq given in items 1 and 2 of Theorem 14 are also bijective. 
Obviously, the functions φq and ϕq can be also restricted to the other quadrants to get bijective 
functions.

In Fig. 6, several level maps of F(y1, y0) are shown.

Remark 16. An immediate conclusion of the last Theorem is that every level curve given by 
F(y1, y0) = q , q ∈ R, in I2 is an orbit of the following third degree polynomial planar system 
of differential equations {

ẋ = y V (0, x),

ẏ = x V (0, y).
(27)

Reciprocally, for a �= 0 every orbit of system (27) in I2 is a level curve of the function F . For 
a = 0, this is also true except for the coordinate axes, which are foliated by equilibria of system 
(27). Furthermore, for a �= 0, the origin is the unique equilibrium point in I2 and it is a saddle 
point (see Fig. 6).
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A differential equation analogous to (23) appeared in [14] as an equation for local Poincaré 
maps, close to an orbit, between two transversal sections to this orbit. As it can be deduced from 
the rest of this work, equation (23) characterizes the global left (and right) Poincaré half-map of 
system (2) associated to the section �. Obviously, to identify the solution corresponding to these 
maps, a suitable initial condition must be added to the differential equation in both cases.

Anyway, as evidenced in [5–7], the application to many problems of the integral equation (16), 
the differential equation (23), or the system (27), does not need explicit integration. Therefore, 
the properties of the Poincaré half-maps can be directly obtained from them by avoiding the 
appearance of unnecessary cases.

Remark 17. For a �= 0 the origin is a saddle point of the surface z = F(y1, y0). From this point of 
view and roughly speaking, the set of level curves of the index-like function F can be understood 
locally as the universal unfolding of y2

1 − y2
0 (see simple bifurcations at [19]).

The analysis of the level curves of the index-like function F led us to the bijective functions 
ϕq restricted to the fourth quadrant that have been mentioned in Remark 15. For some concrete 
values of q , these functions (if q � 0) or their inverse ones (if q < 0) will give the left Poincaré 
half-map of system (2). The following section is devoted to the proof of this assertion, what 
closes the integral characterization of the Poincaré half-maps.

5. Recovery of half-Poincaré maps and flight time

This section is devoted to the formulation and proof of Theorem 19, a reciprocal to Theorem 8. 
That is, not only a Poincaré half-map defines an integral relationship between the initial point and 
its image (see equation (16)) but this integral relationship defines, for the correct values of the 
parameters, the Poincaré half-map. In order to do so, it is convenient to state and prove the 
following Lemma.

Lemma 18. Let us consider the inverse integrating factor V given in (10) and the index-like 
function F given in (18). Let us assume that condition (11) holds and that the open interval I
defined in (19) is not empty. Let be c ∈ R and y0, y1 ∈ I such that the equality F(y1, y0) = cT

holds. Then, the equality

log

(
V (0, y1)

V (0, y0)

)
= T

⎛⎝2Dc +
y0∫

y1

a

V (0, y)
dy

⎞⎠ (28)

is true. In fact, for D �= 0, both equalities are equivalent.

Proof. For D = 0, since condition (11) holds, then a �= 0 and it is direct to see that (28) is true 
for every value y0 and y1 (even if F(y1, y0) �= cT ).

For the generic case D · a �= 0, it is trivial that the Cauchy principal value can be obviated 
from the definition of F . Since

y0∫ −y

V (0, y)
dy = − 1

2D

y0∫
2Dy − aT

Dy2 − aTy + a2 dy + 1

2D

y0∫ −aT

Dy2 − aTy + a2 dy,
y1 y1 y1
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the proof is direct.
For the case a = 0, it is a

V (0,y)
≡ 0 and therefore the second term of the right-hand side of 

equation (28) is zero. Moreover, from condition (11), the parameter D does not vanish. Besides 
that, from equality (22) it is known that

2DcT = 2D PV

y0∫
y1

−y

V (0, y)
dy = 2 log

∣∣∣∣y1

y0

∣∣∣∣= log

(
V (0, y1)

V (0, y0)

)
.

This concludes the proof. �
Equation (28) together with equality (8) suggests an expression for the left flight time. In fact, 

this expression (shown in (30)) will be a crucial element for the proof of the next Theorem, where 
we take the last step to definitively show the equivalence between Poincaré half-maps and some 
suitable level curves of the index-like function F given in (18).

Theorem 19. Let us consider the inverse integrating factor V given in (10) and the index-like 
function F given in (18). Let us assume that condition (11) holds and that the open interval I
defined in (19) is not empty. Let be c ∈R and y0, y1 ∈ I , y0 � 0, y1 � 0 such that

F(y1, y0) = cT . (29)

Assume that one of the following conditions holds:

(i) c = 0 and a > 0,

(ii) c = π

D
√

4D − T 2
∈ R and a = 0,

(iii) c = 2π

D
√

4D − T 2
∈ R and a < 0.

Then y1 is the image of y0 by the left Poincaré half-map of system (2) related to the Poincaré 
section � = {x = 0}. Moreover, the corresponding left flight time is

τ(y0) = 2Dc +
y0∫

y1

a

V (0, y)
dy. (30)

Proof. The proof is immediate for the limit cases of the left Poincaré half-map when y0 = y1 = 0
and point (y0, y1) = (0, 0) is an invisible tangency or the equilibrium of system (2) (see Re-
mark 1), that is, when y0 = y1 = 0 and a � 0. From now till the end of the proof, we assume that 
this situation does not occur.

Let us suppose that there exist y0, y1 ∈ I , y0 � 0, y1 � 0 satisfying equality (29). Let us 
assume that one of the items (i), (ii), or (iii) holds. Let us define τ̃ as the right-hand side of 
the equality given in (30) and let be �(t; y0) = (�1(t; y0), �2(t; y0)) the orbit of system (2)
defined in (4). Under these assumptions, the theorem will be proved if the following conditions 
are verified:
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(C1) τ̃ > 0.
(C2) �1(t; y0) < 0 for every t ∈ (0, τ̃ ).
(C3) �(τ̃ ; y0) = (0, y1).

Condition (C1) is trivial for items (i) and (ii). The proof of condition (C1) for item (iii), where 
a is negative and c = 2π

D
√

4D−T 2
∈ R, is a direct conclusion from the inequalities

0 �
y0∫

y1

−a

V (0, y)
dy �

+∞∫
−∞

−a

V (0, y)
dy = 2π√

4D − T 2
= Dc.

For the proof of conditions (C2) and (C3) we will assume that the trace T does not vanish. 
Notice that if the proof of the theorem is obtained for T �= 0, the results are immediately extended 
to the case T = 0 by using the continuity of solutions of differential equations and integrals with 
respect to parameters. After the proof of this theorem, an alternative proof for the case T = 0 is 
given in Remark 20, where some interesting observations are also added.

The following reasoning proves that �1(τ̃ ; y0) � 0 and �1(t; y0) < 0 for every t ∈ (0, τ̃ ).
Let us assume that there exists a value τ ∗ ∈ (0, τ̃ ] such that �1(τ

∗; y0) = 0 and �1(t; y0) < 0
for every t ∈ (0, τ ∗). This fact implies that y∗

1 := �2(τ
∗; y0) � 0. From the definition of the left 

Poincaré half-map it is y∗
1 = P(y0) and from Theorem 8 it is clear that PV

∫ y0
y∗

1

−y
V (0,y)

dy = cT for 
the corresponding item (i), (ii) or (iii). The bijectivity of functions ϕq when y0 � 0 and y1 � 0
given in Theorem 14 implies that y∗

1 = y1.
Property (8), applied to system (2), implies V (0, y∗

1 ) = exp (T τ ∗) V (0, y0), because divL =
T for vector field L defined in (3). From relationship (28) it is V (0, y1) = exp (T τ̃ ) V (0, y0). 
Since y∗

1 = y1 and T �= 0, the equality τ̃ = τ ∗ is true.
Therefore, �1(τ̃ ; y0) � 0 and �1(t; y0) < 0 for every t ∈ (0, τ̃ ). This means that condition 

(C2) holds.
Finally, in order to prove condition (C3), we are going to integrate the orthogonal vector field 

G defined in (14) on a suitable closed curve ̃� = �̃1 ∪ �̃2 ∪ �̃3, constructed by joining a segment 
�̃1 contained at the separation line �, a piece of an orbit ̃�2 of the system and a piece of a level 
curve ̃�3 of the inverse integrating factor V (see Fig. 7). Concretely, the first two curves are the 
segment ̃�1 = {(0, y) ∈ R2 : y ∈ (y1, y0)} and the piece of orbit ̃�2 = {�(t; y0) : t ∈ [0, τ̃ )}.

To define the last portion of ̃�, let us consider point (x̃, ỹ) = �(τ̃ ; y0), that satisfies the equal-
ity V (x̃, ỹ) = exp (T τ̃ ) V (0, y0) = V (0, y1) as long as property (8) and relationship (28) hold. 
Therefore, since y0, y1 ∈ I , points (x̃, ỹ) and (0, y1) are connected by a piece of a level curve of 
the inverse integrating factor V where, moreover, V is strictly positive. Notice that the portion 
of the level curve of function V that connects these points is unique except for 4D − T 2 > 0, 
where the level curves are ellipses (see Remark 4), and hence there are two choices of simple 
curves. Anyway, it is always possible to select this piece of level curve �̃3 so that the complete 
closed curve ̃� encircles no equilibria for case (i) or the equilibrium of system (2) for case (iii). 
Trivially, in case (ii) the equilibrium is located at segment ̃�1.

By reasoning as in the proof of Theorem 8, the integration of the orthogonal vector field G
along the closed curve ̃� together with equality (29) leads to∫

˜
G · dr = 0. (31)
�3
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Fig. 7. Schematic drawing of curve ̃� = �̃1 ∪ �̃2 ∪ �̃3 defined in the proof of Theorem 19. Curve ̃�3 is drawn as a dotted 
line because points (x̃, ̃y) and (0, y1) are proved to coincide.

On the other hand, since V |�̃3
is constant, the parameterization of �̃3 ≡ r(s) = (x(s), y(s)), 

s ∈ [s0, s1], may be chosen in such a way that its tangent vector is ∇V (x(s), y(s))⊥, where the 
orthogonal vector is taken as defined in Remark 6. From equalities (31) and (15), it holds

0 =
∫
�̃3

G · dr =
s1∫

s0

G(x(s), y(s)) · ∇V (x(s), y(s))⊥ds =
s1∫

s0

T ds = T (s1 − s0).

Since T �= 0 then s1 = s0. That is, (x̃, ỹ) = (0, y1) and the proof concludes. �
Remark 20. In the proof of Theorem 19, the singular features of case T = 0 have forced us to 
analyze it separately. Specifically, since for T = 0, the inverse integrating factor V is constant 
along each orbit of system (2), all the properties based on the variation of V along the orbits are 
useless. For instance, the expression

τ = 1

T
log

(
V (0, y1)

V (0, y0)

)
,

derived from equality (8) and used to obtain the left flight time τ between two points of the 
Poincaré map, can only be used for T �= 0.

Besides the presented proof for case T = 0 (based on arguments of continuity with respect of 
parameters), there are two alternative proofs based on ideas we would like to highlight. Notice 
that the reversibility of system (2) for T = 0 implies that y1 = −y0.

The first proof (the classical way for linear systems) requires the integration of system (2) for 
T = 0 (trivial integration but with several distinguished cases), the obtention of the left flight 
time by means of the imposition of the left Poincaré half-map conditions and the verification of 
the equality between the computed left flight time and the one given in (30).

For the second alternative proof for T = 0 (based on the computation of the left flight time 
from the Hamiltonian character of the system), we use the conservation of V (x, y) = (Dx −
a)2 +Dy2 along the orbits of system (2), that is, at any point (x, y) of the orbit that passes through 
point (0, y0) it holds ẏ2 +Dy2 = (Dx − a)2 +Dy2 = a2 +Dy2. For case (i) of Theorem 19 and 
0
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the piece of orbit contained in {x < 0} that connect points (0, ±y0), it is true that ẏ < 0 and so 

ẏ = −
√

a2 + Dy2
0 − Dy2. Therefore, the left flight time is

τ(y0) =
−y0∫
y0

−dy√
a2 + Dy2

0 − Dy2
. (32)

It is direct to check that the change of variable

w =
√

V (0, y0)

V (0, y)
y,

transforms the integral of expression (30) into (32).
In cases (ii) and (iii), the condition T = 0 implies that system (2) corresponds to a linear center 

and all the orbits are periodic with period 4π√
4D−T 2

. Thus, for case (ii) the proof is immediate (the 

orbit is half of a complete periodic orbit) and for case (iii) expression (30) must be understood as 
the complete period minus the right flight time.

The immediate and more relevant conclusion of Theorems 8 and 19 is the following Corollary.

Corollary 21. Let us assume that condition (11) holds and that the open interval I = (μ1, μ2)

defined in (19) is not empty. Let be functions ϕq , q ∈ R as given in Theorem 14. Assume that 
c ∈R satisfies one of the conditions (i), (ii), (iii) of Theorem 19.

If the trace verifies T � 0 then the left Poincaré half-map of system (2) related to the Poincaré 
section � is ϕcT : [0, μ2) −→ (μ1, ϕcT (0)].

If the trace verifies T < 0 then the left Poincaré half-map of system (2) related to the Poincaré 
section � is ϕ−1

cT : [ϕcT (0), μ2) −→ (μ1, 0].

Remark 22. For T = 0, the functions ϕ0 and ϕ−1
0 coincide (see Theorem 14). Therefore, the case 

T = 0 could have been also joined to the case T < 0 in the statement of Corollary 21.

Remark 23. Let us briefly explain the role of the value ϕcT (0) that acts as a limit point of the 
range or domain of the left Poincaré half-map ϕcT or ϕ−1

cT respectively. For cT = 0, it is ϕ0(0) = 0
(see Theorem 14) and it obviously corresponds to the tangency point for scenarios (S0), (S1) and 
the center case of (S2) (see Figs. 4, 3 and 2(a)). When cT �= 0 and T > 0, then ϕcT (0) = ŷ1 < 0
(see Theorem 14 and Fig. 2(c) corresponding to scenario (S2)), in other words, it is the image of 
y0 = 0 by means of the left Poincaré half-map. When cT �= 0 and T < 0, then ϕcT (0) = ŷ0 > 0
(see Theorem 14 and Fig. 2(b) corresponding to scenario (S2)), in other words, it is the pre-image 
of y0 = 0 by means of the left Poincaré half-map.

Regarding the functions given in Corollary 21, another important and direct consequence of 
Theorems 8, 14, and 19, characterizes the analyticity of the left Poincaré half-map.

As it is well-known, for a point y0 � 0 with P(y0) < 0, the analyticity of P at y0 is ensured by 
the transversality between the flow and the separation line (see, for instance, [10]). The tangency 
of the flow of system (2) at the origin complicates the study (see some partial results at [11]). 
However, from Theorem 14, the conclusion is immediate.
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Corollary 24. Let be P the left Poincaré half-map of system (2). The following statements are 
true:

1. If P(0) = 0 then P is an involution and, moreover, it is analytical in its domain of definition.
2. If P(0) < 0 then P is analytical in its domain of definition and P −1 is analytical in the 

interior of its domain of definition.
3. If P −1(0) > 0 then P is analytical in the interior of its domain of definition and P −1 is 

analytical in its domain of definition.

Remark 25. Finally, Theorem 19 and Corollaries 21 and 24, can be easily extended to the right 
Poincaré half-map.

6. Conclusions

As was said in the introduction, in order to avoid the flaws due to the computation of the solu-
tions of linear systems in the analysis of Poincaré half-maps a novel theory has been developed 
in this manuscript. The key point was the introduction and study of the index-like function F
given in (18) that was obtained from the line integration, on a suitable curve, of an orthogonal 
vector field written in terms of a good choice of inverse integrating factor. In fact, this index-like 
function gives a common way to express the Poincaré half-maps.

This new approach could be extended to the study of Poincaré half-maps for non-linear planar 
systems as far as a nice inverse integrating factor may be found. Another interesting extension 
of the theory could be an analogous analysis for higher dimensions, where the important role 
of inverse integrating factor should be assumed by inverse Jacobi multipliers (see [3]). We are 
convinced that these two ideas will open fruitful lines of study in the short or medium term.

However, the true importance of the technique developed in this work is currently revealed 
in its application to the analysis of the dynamical behavior of planar piecewise linear systems, 
in particular, the obtention of optimal upper bounds on the number of limit cycles. On the one 
hand, for continuous planar piecewise linear systems with two zones of linearity, it is known that 
this upper bound is one. This result was originally proved in [12] with exhaustive and long case-
by-case analysis. By using the index-like function, we have got a direct and short proof (without 
cases) of this same result (see [6]). On the other hand, with the same technique, it is possible to 
obtain the same bound for sewing discontinuous planar piecewise linear systems with two zones 
of linearity (see [7]). Previous works (see [13,26,22]) give partial results for such systems by 
using the case-by-case analysis.

It is also interesting to study the optimal upper bound for generic discontinuous planar piece-
wise linear systems with two zones of linearity. The first basic open problem is the existence 
of such a uniform bound for all these systems, that is, independent of the value of parameters. 
Since the use of our new approach allows us to write this problem in terms of the existence of 
a uniform bound for the number of solutions of a common system of polynomial equations of 
fixed degrees, the conclusion is obvious. Moreover, the optimal bound, which is known to be 
greater or equal than three [20,23,4], could be directly established (without a case-by-case study) 
from this system of polynomial equations. Nowadays, this study is one of our priority lines of 
research.

Regarding other interesting achieved results in this manuscript, we would like to mention the 
analyticity of the Poincaré half-map or its inverse function at the tangency points.
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