
P Systems based Computing Polynomials:
Design and Formal Verification

Weitao Yuan1, Gexiang Zhang1⋆, Mario J. Pérez-Jiménez2, Tao Wang1, and
Zhiwei Huang1

1School of Electrical Engineering, Southwest Jiaotong University,
Chengdu, 610031, P.R. China

email: 657279959@qq.com, zhgxdylan@126.com
2Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
Universidad de Sevilla, Sevilla, 41012, Spain

email: marper@us.es

Abstract. Automatic design of P systems is an attractive research topic
in the community of membrane computing. Differing from the previ-
ous work that used evolutionary algorithms to fulfill the task, this pa-
per presents the design of a simple (deterministic transition) P system
(without input membrane) of degree 1, capturing the value of the k-
order (k ≥ 2) polynomial by using a reasoning method. Specifically, the
values of polynomial p(n) corresponding to a natural number t is equal
to the multiplicity of a distinguished object of the system (the output
object) in the configuration at instant t. We also discuss the descriptive
computational resources required by the designed k-order polynomial P
system.
Keywords: Membrane computing, P system, automatic design, polyno-
mial.

1 Introduction

Since the area of membrane computing was initiated in 1998 [1], the rapidly
theoretical development with respect to computing models and their computing
power and computational efficiency [2] and various real-world applications [3, 4]
have been reported. A P system for performing a specific task, especially for solv-
ing an NP-hard, NP-complete or PSPACE-complete problem or for controlling
robots, is carefully designed by experts and cannot be automatically gained by
using programs, which may limit the application of P systems. How to automat-
ically design a P system by using programs, namely, the programmability of a P
system, is an attractive research direction in the area of membrane computing
[5].

The automatic design of a P system is a very complicated and challenging
task. The related work in the literature focused on the use of evolutionary algo-
rithms to make a population of P systems evolve toward a successful one. This

⋆ Corresponding author.

2 W. Yuan, G. Zhang, M.J. Pérez-Jiménez

work started with the selection of an appropriate subset from a redundant set
of evolution rules to design a cell-like P system, where a membrane structure
and initial objects were pre-defined and fixed in the process of design [6–9, 4].
In [6], a genetic algorithm was used to design a P system to calculate 42. In
[7], a binary encoding technique was presented to denote an evolution rule set
of a P system and a quantum-inspired evolutionary algorithm (QIEA) was used
to make a population of P systems evolve toward successful ones. This method
successfully solved the design of P systems to compute 42 and n2 (for natural
numbers n ≥ 2). In [8], an evaluation approach considering non-determinism and
halting penalty factors and a genetic algorithm with the binary encoding tech-
nique in [7] were introduced to design P systems for 42, n2 and the generation of
language {a2nb3n |n > 1}. In these studies mentioned above, a specific redundant
evolution rule set was designed for a specific computational task. This was devel-
oped in [4, 9] by applying one pre-defined redundant evolution rule set to design
multiple different P systems, each of which executes a computation task. In [9],
an automatic design method of a cell-like P system framework for performing
five basic arithmetic operations (addition, subtraction, multiplication, division
and power) was presented. In [4], a common redundant set of evolution rules was
applied to design successful P systems for fulfilling eight computational tasks:
2(n− 1), 2n− 1, n2, 1

2 [(n− 1)2 + (n− 1)], (n− 1)2 + (n− 1), (n− 1)2 + 2n + 2,

a2
n

b3
n

and 1
2 (3

n − 1), (n > 1 or 2). A significant development in this topic is
the work in [10] in which a cell-like halting P system for 42 was designed by
tuning membrane structures, initial objects and evolution rules. In this work,
a genetic algorithm with a binary encoding technique was discussed to codify
the membrane structure, initial objects and evolution rules of a P system. Fol-
lowing this work, an automatic design method, Permutation Penalty Genetic
Algorithm (PPGA), for a deterministic and non-halting membrane system by
tuning membrane structures, initial objects and evolution rules was proposed in
[5]. The main ideas of PPGA are the introduction of the permutation encoding
technique for a membrane system, a penalty function evaluation approach for a
candidate membrane system and a genetic algorithm for making a population of
P systems evolve toward a successful one fulfilling a given computational task. A
cell-like membrane system for computing the square of n2 (for natural numbers
n ≥ 1) was successfully designed. In addition, the automatic design of the min-
imal membrane systems with respect to their membrane structures, alphabet,
initial objects and evolution rules to fulfill the given task were also discussed in
[5].

On the basis of the studies mentioned above, our aim is to design a P system
to compute a general polynomial. This paper proposes a reasoning method to
implement the design of a simple (deterministic transition) P system (without
input membrane) of degree 1, capturing the value of the k-order polynomial,
and it also presents the descriptive computational resources required by the
designed k-order polynomial P system. The reasoning method is the use of the
characteristics of P systems with a membrane structure, initial objects and rules,
and the semantics of the P systems to provide a way to design the required

P Systems based Computing Polynomials: Design and Formal Verification 3

membrane systems. The introduced technique is completely different from the
previous work that used evolutionary algorithms to design a P system.

The remainder of this paper is organized as follows: Section 2 describes the
polynomials we aim to design. In Sections 3, the two-, three- and k-order polyno-
mial P systems are designed. Section 4 discusses the descriptive computational
resources that the two-, three- and k-order polynomial P systems require. Section
5 concludes this work.

2 Polynomials computed by P systems

We start by defining what computing a k-order polynomial means in the frame-
work of deterministic transition P system without input membrane.

Definition 1. Let p(n) be a polynomial whose coeficients are natural numbers.
We say that p(n) is computed by a deterministic transition P system without
input membrane Πp(n) = (Γ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iout), if the following
holds:

– There exists a distinguished object (the output object), o, in the working
alphabet Γ .

– For each t ∈ N, in the configuration Ct of Πp(n) at instant t, the multiplicity
of object o in the output membrane labelled by iout is p(t).

From the previous definition, if a deterministic transition P system without
input membrane computes a polynomial, then the computation of that system
is a non-halting computation.

We try to find a minimum such P system computing a k-order polynomial.
Here the concept “minimum” refers to the following constraints associated with
P systems:

– The membrane structure has only one membrane.

– The evolution rules are non-cooperative.

– The number of objects and rules must be minimum.

3 Polynomial P systems design

3.1 Two-order polynomial P system design

In this section we present a (deterministic) transition P system (without input
membrane), Πp(n), of degree 1 that computes the arbitrary polynomial with
order 2, p(n) = a2 · n2 + a1 · n+ a0, where a0, a1, a2 are natural numbers, in the
sense of Definition 1.

It is worth pointing out that p(n+ 1) = p(n) + 2a2 · n+ a2 + a1.

4 W. Yuan, G. Zhang, M.J. Pérez-Jiménez

For each symbol x, the expression x0 denotes the empty multiset (or the empty
string).

Associated with the polynomial p(n) = a2 · n2 + a1 · n + a0, we consider
the (deterministic) transition P system (without input membrane) Πp(n) =
(Γ, µ,M1,R1, iout) of degree 1, defined as follows:

– Γ = {b1, b2,o} and the output object is o;

– µ = []1;

– M1 = {oa0 b1};

– R1 is the set of the following non-cooperative evolution rules:

– r1 ≡ [b1 −→ oa2+a1 b1 b2]1;

– r2 ≡ [b2 −→ o2a2 b2]1.

– iout = 1.

Let C = (C0, C1, C2, . . . , Ct, . . .) be the (unique) computation ofΠ. For each t ∈ N
and x ∈ Γ , we denote by Ct(1) the multiset over Γ associated with the membrane
1 in configuration Ct.

Theorem 1. For every t ∈ N we have Ct(1) = {op(t) , b1 , b2
t}.

Proof. Let us prove the result by induction on t.

For the base case, t = 0, we note that C0(1) = M1 = {oa0 b1} = {op(0) , b1 ,
b2

0}.

Let us assume the result holds for t ≥ 0, that is, let us suppose that Ct(1) =
{op(t) , b1 , b2

t}. In order to obtain Ct+1(1), we must apply the rules r1 and r2
to configuration Ct. Then

Ct+1(1) = {op(t) , oa2+a1 , b1 , b2 , o
2a2·t , b2

t }
= {op(t)+2a2·t+a2+a1 , b1 , b2

(t+1) }
= {op(t+1) , b1 , b2

(t+1) }

Hence, the result holds for t+ 1.

Corollary 1. For every t ∈ N, in configuration Ct of Πp(n) at instant t, the
multiplicity of object o in the membrane of the system is p(t).

3.2 Three-order polynomial P system design

In this section we present a (deterministic) transition P system (without input
membrane), Πp(n), of degree 1 that computes the arbitrary polynomial with
order 3,

p(n) = a3 · n3 + a2 · n2 + a1 · n+ a0,

where a0, a1, a2, a3 are natural numbers, in the sense of Definition 1.

P Systems based Computing Polynomials: Design and Formal Verification 5

It is worth pointing out that p(n+1) = p(n)+3a3n
2+(3a3+2a2)n+a3+a2+a1.

Associated with the polynomial p(n) = a3 ·n3+a2 ·n2+a1 ·n+a0, we consider
the (deterministic) transition P system (without input membrane), Πp(n) =
(Γ, µ,M1, R1), of degree 1 defined as follows:

– Γ = {b1, b2, b3,o} and the output object is o;

– µ = []1;

– M1 = {oa0 b1 };
– R1 is the set of the following non-cooperative evolution rules:

– r1 ≡ [b1 −→ oa3+a2+a1 b1 b2 b3]1;

– r2 ≡ [b2 −→ o3a3+2a2 b2 b3
2]1;

– r3 ≡ [b3 −→ o3a3 b3]1.

Let C = (C0, C1, C2, . . . , Ct, . . .) be the (unique) computation ofΠ. For each t ∈ N
and x ∈, Γ we denote by Ct(1) the multiset over Γ associated with membrane 1
in configuration Ct.

Theorem 2. For every t ∈ N we have Ct(1) = {op(t) , b1 , b2
t , b3

t2}.

Proof. Let us prove the result by induction on t. For the base case, t = 0, we

note that C0(1) = M1 = {oa0 b1} = {op(0) , b1 , b2
0 , b3

02}.

Let us assume the result holds for t ≥ 0, that is, let us suppose that Ct(1) =
{op(t) , b1 , b2

t , b3
t2}. In order to obtain Ct+1(1), we can apply the rules r1, r2

and r3 to configuration Ct. Then

Ct+1(1) = {op(t) , oa3+a2+a1 , b1 , b2 , b3 , o
(3a3+2a2)·t , b2

t , b3
2t , o3a3t

2

, b3
t2}

= {op(t)+3a3t
2+(3a3+2a2)t+a3+a2+a1 , b1 , b2

t+1 , b3
t2+2t+1}

= {op(t+1) , b1 , b2
t+1 , b3

(t+1)2}

Hence, the result holds for t+ 1.

Corollary 2. For every t ∈ N, in configuration Ct of Πp(n) at instant t, the
multiplicity of object o in the membrane of the system is p(t).

3.3 k-order polynomial P system design

In this section we present a (deterministic) transition P system (without input
membrane), Πpk(n), of degree k ≥ 1 that computes the arbitrary polynomial

with order k, pk(n) = ak · nk + ak−1 · nk−1 + · · · + a1 · n1 + a0 · n0, where
ak, ak−1, . . . , a1, a0 are natural numbers.

It is worth pointing out that the increment pk(n+1)−pk(n) of polynomial pk(n)
is:

6 W. Yuan, G. Zhang, M.J. Pérez-Jiménez

[(k
1

)
ak

]
· nk−1 +

[(k
2

)
ak +

(
k − 1
1

)
ak−1

]
· nk−2+[(k

3

)
ak +

(
k − 1
2

)
ak−1 +

(
k − 2
1

)
ak−2

]
· nk−3+

. .[(
k

k − 1

)
ak +

(
k − 1
k − 2

)
ak−1 + · · ·+

(
3
2

)
a3 +

(
2
1

)
a2
]
· n1+[(k

k

)
ak +

(
k − 1
k − 1

)
ak−1 + · · ·+

(
2
2

)
a2 +

(
1
1

)
a1
]
· n0

Let us denote:

– α
(0)
k =

(
k
k

)
ak +

(
k − 1
k − 1

)
ak−1 + · · ·+

(
2
2

)
a2 +

(
1
1

)
a1

– α
(1)
k =

(
k

k − 1

)
ak +

(
k − 1
k − 2

)
ak−1 + · · ·+

(
3
2

)
a3 +

(
2
1

)
a2

– α
(2)
k =

(
k

k − 2

)
ak +

(
k − 1
k − 3

)
ak−1 + · · ·+

(
4
2

)
a4 +

(
3
1

)
a3

– α
(3)
k =

(
k

k − 3

)
ak +

(
k − 1
k − 4

)
ak−1 + · · ·+

(
5
2

)
a5 +

(
4
1

)
a4

. .

– α
(k−1)
k =

(
k
1

)
ak

Then:

pk(n+ 1)− pk(n) = α
(0)
k · t0 + α

(1)
k · t+ α

(2)
k · t2 + · · ·+ α

(k−1)
k · tk−1

Associated with polynomial pk(n) = ak ·nk+ak−1 ·nk−1+ · · ·+a1 ·n1+a0 ·n0

of order k, we consider the (deterministic) transition P system (without input
membrane) Πpk(n) = (Γ, µ,M1,R1) of degree 1, defined as follows:

– Γ = {o, b1, b2, . . . , bk} and the output object is o;

– µ = []1;

– M1 = {oa0 b1};

– R1 is the set of the following non-cooperative evolution rules:

– r1 ≡ [b1 −→ oα
(0)
k b

(
0
0

)
1 b

(
1
0

)
2 b

(
2
0

)
3 b

(
3
0

)
4 . . . b

(
k − 1

0

)
k]1;

– r2 ≡ [b2 −→ oα
(1)
k b

(
1
1

)
2 b

(
2
1

)
3 b

(
3
1

)
4 . . . b

(
k − 1

1

)
k]1;

– r3 ≡ [b3 −→ oα
(2)
k b

(
2
2

)
3 b

(
3
2

)
4 . . . b

(
k − 1

2

)
k]1;

– r4 ≡ [b4 −→ oα
(3)
k b

(
3
3

)
4 . . . b

(
k − 1

3

)
k]1;

. .

P Systems based Computing Polynomials: Design and Formal Verification 7

– rk ≡ [bk −→ oα
(k−1)
k b

(
k − 1
k − 1

)
k]1;

Let C = (C0, C1, C2, . . . , Ct, . . .) the (unique) computation of Π. For each t ∈ N
and x ∈, Γ we denote by Ct(1) the multiset over Γ associated with the membrane
1 in configuration Ct.

Theorem 3. For every t ∈ N, we have Ct(1) = {opk(t) , b1 , b2
t , . . . , bk

tk−1

}.

Proof. Let us prove the result by induction on t.

For the base case, t = 0, let us notice that C0(1) = M1 = {oa0 b1} =
{opk(0) , b1, b

0
2, . . . , bk

0}.

Let us assume the result holds for t ≥ 0, that is, let us suppose that

Ct(1) = {opk(t) , b1 , b2
t , . . . , bk

tk−1

}

In order to obtain Ct+1(1), we must apply the rules r1, r2 and rk to configuration
Ct. Then

Ct+1(1) = {opk(t),oα
(0)
k +α

(1)
k ·t+α

(2)
k ·t2+···+α

(k−1)
k ·tk−1

, b1, b2

(
1
0

)
+
(

1
1

)
·t
,

b3

(
2
0

)
+
(

2
1

)
·t
(

2
2

)
·t2
, . . . , bk

(
k − 1

0

)
+
(

k − 1
1

)
·t+···+

(
k − 1
k − 1

)
·tk−1

}
= {opk(t)+α

(0)
k +α

(1)
k ·t+α

(2)
k ·t2+···+α

(k−1)
k ·tk−1

, b1, b2
(t+1), b3

(t+1)2 , . . . ,

bk
(t+1)k−1

}
= {opk(t+1), b1, b2

(t+1), b3
(t+1)2 , . . . , bk

(t+1)k−1

}

Hence, the result holds for t+ 1.

Corollary 3. For every t ∈ N, in configuration Ct of Πpk(n) at instant t, the
multiplicity of object o in the membrane of the system is pk(t).

4 Descriptive computational resources

This section discusses the descriptive computational resources required by the
designed two-, three- and k–order polynomial P systems. According to the de-
sign procedures of two- and three-order polynomial P systems, the amount of
resources to build the designed P systems (of degree 1) in both cases are 2 rules
and 3 objects, 3 rules and 4 objects, respectively. In what follows, we discuss the
descriptive computational resources required by the designed k–order polynomial
P system Πpk(n) of degree 1.

– The size of the working alphabet k + 1.
– The initial number of objects: a0 + 1.
– The number of rules: k.
– The sum of total length of rules:

8 W. Yuan, G. Zhang, M.J. Pérez-Jiménez

Table 1. Resources of different order polynomial P systems. SWA, INO, NoR and SLR
represent the size of the working alphabet, the initial number of objects, the number
of rules and the sum of total length of rules, respectively. The symbol ‘–’ means that
the result is not obtained.

Two-order Three-order ... k-order

SWA 3 4 ... k+1

INO a0+1 a0+1 ... a0+1

NoR 2 3 ... k

SLR 3a2 + a1 + 5 7a3 + 3a2 + a1 + 10 ... LR(k)

• Objects in the left-hand side: k.

• Objects o in the right-hand side: α
(0)
k + α

(1)
k + α

(2)
k + · · ·+ α

(k−1)
k . That

is, the total number of objects o in the rules is:

(2k − 1) · ak + (2k−1 − 1) · ak−1 + · · ·+ (22 − 1) · a2 + (21 − 1) · a1

• Objects bj (1 ≤ j ≤ k) in the right-hand side:(
j − 1
0

)
+

(
j − 1
1

)
+ · · ·+

(
j − 1
j − 1

)
Thus, the total number of such kind of objects in the right hand side of
the rules is:

j=k∑
j=1

[(j − 1
0

)
+

(
j − 1
1

)
+ · · ·+

(
j − 1
j − 1

)]
=

j=k∑
j=1

2j−1 = 2k − 1

Therefore, the sum of total length of rules is LR(k):

LR(k) = k+(2k−1)·ak+(2k−1−1)·ak−1+· · ·+(22−1)·a2+(21−1)·a1+2k−1

Hence, the total amount of descriptive computational resources is exponential
in the k–order polynomial.

We summarize the amount of resources to build the designed P systems (of
degree 1) as shown in Table 1, where SWA, INO, NoR and SLR represent the
size of the working alphabet, the initial number of objects, the number of rules
and the sum of total length of rules, respectively. In Table 1, the designed two-
order polynomial P system (Two-order, for short) is a2 · n2 + a1 · n + a0; the
designed three-order polynomial P system (Three-order, for short) is a3 · n3 +
a2 · n2 + a1 · n + a0; the k-order polynomial P system (k-order, for short) is
ak · nk + ...+ a1 · n+ a0.

5 Conclusion

By analyzing the syntax and semantics of cell-like P systems, this study pre-
sented a reasoning method to design a k-order (k ≥ 2) polynomial P system.

P Systems based Computing Polynomials: Design and Formal Verification 9

The significance of this study is to provide an alternative approach to automat-
ically design a P system that can perform a given task, which is different from
the previous work on this topic. In future works, we really hope to extend this
method to design more variants of P systems for more computational tasks. Our
ambitious aim is to find a way to design the minimal P system for a given task
including definite tasks such as the computation of polynomials and indefinite
tasks like practical applications such as membrane controllers for mobile robots.

Acknowledgment

The work of W. Yuan, G. Zhang, T. Wang and Z. Huang is supported by the
National Natural Science Foundation of China (61170016, 61373047). The work
of M.J. Pérez-Jiménez is supported by Project TIN2012-37434 of the Ministerio
de Economı́a y Competitividad of Spain.

References

1. Gh. Păun. Computing with membranes, Journal of Computer and System Sciences,
vol. 61, pp. 108–43 (2000) (first circulated at TUCS Research Report No 208,
November 1998, http://www.tucs.fi)).

2. Gh. Păun, G. Rozenberg, A. Salomaa, eds. The Oxford Handbook of Membrane
Computing, Oxford University Press, New York, 2010.

3. G. Zhang, J. Cheng, T. Wang, X. Wang, J. Zhu. Membrane Computing: Theory
and Applications, Science Press, Beijing, 2015.

4. G. Zhang, M. Gheorghe, L. Pan, M.J. Pérez-Jiménez. Evolutionary membrane
computing: a comprehensive survey and new results. Information Sciences, 279,
528–551 (2014).

5. G. Zhang, H. Rong, Z. Ou, M.J. Pérez-Jiménez, M. Gheorghe. Automatic De-
sign of Deterministic and Non-Halting Membrane Systems by Tuning Syntactical
Ingredients. IEEE Transactions on Nanobioscience, 13(3): 363–371 (2014).

6. G. Escuela, M.A. Gutiérrez-Naranjo. An application of genetic algorithms to mem-
brane computing, in M.A. Mart́ınez del Amor, Gh. Păun, I. Pérez Hurtado, A.
Riscos (eds.) Proceedings of the Eighth Brainstorming Week on Membrane Com-
puting, Seville, Spain, February 1-5, 2010, Report RGNC 01/2010, Fénix Editora,
2010, pp. 101-108.

7. X. Huang, G. Zhang, H. Rong, F. Ipate. Evolutionary design of a simple membrane
system. Lecture Notes in Computer Science (CMC2011), vol. 7184, 2012, pp. 203–
14.

8. C. Tudose, R. Lefticaru, F. Ipate. Using genetic algorithms and model checking for
P systems automatic design, Studies in Computational Intelligence (NICSO2011),
vol. 387, 2011, pp. 285–302.

9. Y. Chen, G. Zhang, T. Wang, X. Huang. Automatic design of a P system for basic
arithmetic operations, Chinese Journal of Electronics, 23(2): 302–304 (2014).

10. Z. Ou, G. Zhang, T. Wang, and X. Huang. Automatic design of cell-like P systems
through tuning membrane structures, initial objects and evolution rules, Interna-
tional Journal of Unconventional Computing, 9(5-6), 425–443 (2013).

