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ABSTRACT: Ultrahigh-temperature ceramics (UHTCs) are a
group of materials with high technological interest because of their
applications in extreme environments. However, their character-
ization at high temperatures represents the main obstacle for their
fast development. Obstacles are found from an experimental point
of view, where only few laboratories around the world have the
resources to test these materials under extreme conditions, and also
from a theoretical point of view, where actual methods are
expensive and difficult to apply to large sets of materials. Here, a
new theoretical high-throughput framework for the prediction of
the thermoelastic properties of materials is introduced. This
approach can be systematically applied to any kind of crystalline
material, drastically reducing the computational cost of previous methodologies up to 80% approximately. This new approach
combines Taylor expansion and density functional theory calculations to predict the vibrational free energy of any arbitrary strained
configuration, which represents the bottleneck in other methods. Using this framework, elastic constants for UHTCs have been
calculated in a wide range of temperatures with excellent agreement with experimental values, when available. Using the elastic
constants as the starting point, other mechanical properties such a bulk modulus, shear modulus, or Poisson ratio have been also
explored, including upper and lower limits for polycrystalline materials. Finally, this work goes beyond the isotropic mechanical
properties and represents one of the most comprehensive and exhaustive studies of some of the most important UHTCs, charting
their anisotropy and thermal and thermodynamical properties.
KEYWORDS: ultrahigh-temperature ceramics, UHTCs, thermoelasticity, high-throughput calculations, mechanical properties,
extreme environments

1. INTRODUCTION

Ultrahigh temperature ceramics (UHTCs) are usually defined
as compounds whose melting point surpasses 3000 °C.1

While UHTCs are not new materials for the scientific
community and have been reported since late 1800s, their
technological interest started to grow in the late 1960s. In the
most recent decade, UHTCs have clearly emerged because of
their potential use in extreme environments.1 Aerospace
applications such as scramjet propulsion, hypersonic aero-
space vehicles, and advanced rocket motors are the main
reason why research on UHTCs has grown in recent years.2

For instance, thermal control, mechanical resistance, and
corrosion are the main variables to consider when designing
hypersonic vehicles, whose materials experience temperatures
higher than 2000 °C and are exposed to highly reactive,
dissociated gas species.3 UTHCs combine high hardness,
stiffness, and melting temperature with very low reactivity
because of their strong covalent bonds between carbon,
nitrogen, or boron with transition metals such as Hf, Zr, Nb,
Ti, or Ta.1

UHTC-based materials have been rapidly developed during
the last 25 years, but there are still many challenges to be
tackled in order to spur the rational design, synthesis, and
deployment of these materials. The main issue that hampers
the swift development of these materials is their experimental
characterization and testing at extreme environments. Most
well-known properties of these materials are obtained under
ambient conditions, and there are few laboratories around the
world with the resources to test these materials under
extreme conditions.4 Thus far, computational approaches
have not presented solutions to these experimental barriers.
Most of the theoretical works related to UHTCs are focused
on 0 K properties,5 and there are few reports in which

Received: May 12, 2021
Accepted: June 4, 2021
Published: June 16, 2021

Research Articlewww.acsami.org

© 2021 American Chemical Society
29843

https://doi.org/10.1021/acsami.1c08832
ACS Appl. Mater. Interfaces 2021, 13, 29843−29857

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 D

E
 S

E
V

IL
L

A
 o

n 
N

ov
em

be
r 

30
, 2

02
1 

at
 1

4:
13

:1
2 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pinku+Nath"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jose+J.+Plata"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Julia+Santana-Andreo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ernesto+J.+Blancas"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Antonio+M.+Ma%CC%81rquez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Javier+Ferna%CC%81ndez+Sanz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Javier+Ferna%CC%81ndez+Sanz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsami.1c08832&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c08832?ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c08832?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c08832?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c08832?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c08832?fig=abs1&ref=pdf
https://pubs.acs.org/toc/aamick/13/25?ref=pdf
https://pubs.acs.org/toc/aamick/13/25?ref=pdf
https://pubs.acs.org/toc/aamick/13/25?ref=pdf
https://pubs.acs.org/toc/aamick/13/25?ref=pdf
www.acsami.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsami.1c08832?rel=cite-as&ref=PDF&jav=VoR
https://www.acsami.org?ref=pdf
https://www.acsami.org?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


temperature-dependent mechanical properties of UHTCs are
explored.6,7 This has been due to (i) the scarcity of
commercial algorithms to predict these temperature-depend-
ent properties and (ii) the high computational cost of these
calculations.
During the last decade, the development of high-

throughput frameworks for the prediction of mechanical
properties has changed the pace at which materials are
discovered and characterized. For instance, the Automatic
GIBBS Library has been able to predict mechanical and
thermodynamic properties such as bulk modulus of thousands
of materials at a very low computational cost.8 While this
method quantitatively describes the mechanical properties of
isotropic materials with few components accurately, their
results are mainly useful from a qualitative point of view.
There are methods, such as the quasi-harmonic approx-
imation (QHA),9,10 that provide a relatively affordable
computational approach to obtain temperature-dependent
mechanical properties, obtaining good quantitative agreement
with experimental results. However, QHA is most frequently
used with isotropic volume deformations of the crystal, so the
properties obtained through this method can be considered
as average mechanical features of the system. This is the
reason why elastic constants need to be computed in order to
fairly capture the anisotropy of the material and obtain a
more complete description of the temperature-dependent
mechanical response of the system.11 Thus, elastic constants
represent the starting point that gives access to other
mechanical properties. There are also high-throughput
frameworks that predict elastic constants at 0 K such as
ElaStic11 or AEL,12 however, including temperature effects
increases the complexity of the theoretical framework and
also the computational cost. Different approaches have been
proposed to compute temperature-dependent elastic con-
stants using QHA as a formal framework.13−16 VLab
represents a good example of a robust framework that can
include temperature effects on the prediction of elastic
constants.17,18 Nevertheless, their computational costs prevent
them from being used systematically or routinely. Other
methods have been developed in order to reduce the cost of
using the QHA to compute temperature-dependent elastic
constants.19−21 For instance, the quasi-static approximation
(QSA) reduces the number of calculations, assuming that the
temperature dependence of the elastic constant is primarily
due to thermal expansion.19,20 Still, QSA tends to under-
estimate thermal effects and increase anisotropy, which is
detrimental to its use, especially at high temperatures.22

Similarly, PS-QHA represents another inexpensive method-
ology to predict the elastic constants through a self-consistent
minimization of the total pressure.21 Nevertheless, this
approach, based on SC-QHA,20 overestimates the thermody-
namic properties, particularly at high temperatures.23

Developing a high-throughput framework that predicts
temperature-dependent elastic constants and combines
accuracy and robustness while also reducing computational
costs remains a challenge.
In this work, we have extended the three-phonon approach,

QHA3P method,23 to calculate temperature-dependent elastic
constants combining Taylor expansion with QHA. Following
this strategy, Taylor expansion reduces the computational
cost, while mechanical and thermodynamical properties at a
particular temperature are determined by minimizing free
energy. The elastic constants of UHTCs at finite temper-

atures are predicted to chart their mechanical properties,
paying special attention to the high temperature range, in
order to simulate their behavior under extreme conditions,
which determines their potential application in industry. To
do so, a new high-throughput framework has been designed
that not only automatizes the process but also includes a new
approach that reduces the computational cost compared with
previous methodologies up to 80%, without losing accuracy.

2. METHODOLOGY
2.1. Elastic Constants. Traditionally, elastic properties

can be described within the Lagrangian theory of elasticity in
which a solid is considered as a homogeneous and
anisotropic elastic medium. Within a linear regime and
using the Voigt notation, the stress, σ = (σ1, σ3, σ3, σ4, σ5,
σ6), and strain, ϵ = (ϵ1, ϵ2, ϵ2, ϵ2, ϵ2, ϵ6), relation can be
expressed as22,24

∑σ = ϵ
=

ci
j

ij j
1

6

(1)

where cij are elastic stiffness constants of a crystal represented
in a 6 × 6 matrix where cij = cji. Considering this constraint,
the total number of independent elastic components is 21
instead of 36. Alternatively, it is possible to define the total
energy of a crystal in terms of a power series of the strain11

as

∑ ∑ϵ σ= + ϵ +
!

ϵ ϵ +E E V
V

c( )
2

...
i

i i
i j

ij i j0 0
(0) 0

, (2)

where E0 and V0 are the density functional theory energy and
volume of the reference structure, respectively. If the
optimized (ground state) structure is chosen as the reference,
σi
(0) = 0 because the equilibrium structure is stress-free.
Two alternative expressions can be derived for the elastic

constants according to eqs 1 and 2

σ
=

∂
∂ϵ

ϵ=

cij
i

j 0 (3)

and

= ∂
∂ϵ ∂ϵ

ϵ=

c
V

E1
ij

i j0

2

0 (4)

Methods based on eq 3 to calculate cij are defined as
“stress approach”, while methods based on eq 4 are classified
as “energy approach”. Although both are based on the
creation of strained structures, there are important differences
between them. The stress−strain approach is the most used
method and a lower number of strained structures are
needed. However, time-consuming calculations are required
to obtain the same accuracy as with the results obtained with
the energy-strain method using a less demanding setup. That
is why the energy-strain method is preferred to reduce the
sensitivity of the results with respect to the calculation setup.
To compute temperature-dependent elastic constants, a

similar approach as shown in eq 4 can be used. Still, it
requires the calculation of the free energy and the
temperature-dependent equilibrium volume. The QHA is
one of the methods that gives access to compute free energy
and equilibrium properties.
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2.2. Combining QHA and Elastic Constants. In QHA,
total free energy of a system, Ftot, is described as a sum of
three terms (eq 5): (i) vibration-less total energy at 0 K, E0,
(ii) the vibrational free energy, Fvib, and (iii) free energy due
to thermal electronic excitation, Felec. Strain-dependent Ftot
can be described as22,25

ϵ ϵ ϵ ϵδ δ δ δ= + +F T E F T F T( ( ), ) ( ( )) ( ( ), ) ( ( ), )tot 0 vib elec
(5)

where Ftot, Fvib, and Felec are functions of the applied strain,
ϵ(δ), and temperature, T. The applied strain contains
structural information and it is a function of the amplitude
of distortion, δ. Examples of strain tensors for a cubic system
are shown in Figure 1. The first term of the equation can be
computed with different ab initio packages. The second term
is obtained integrating over the phonon density of states
(DOS). The last term of the equation is calculated
integrating over the electronic DOS.

The calculation of Fvib at a given ϵ is performed using the
harmonic approximation, where Fvib includes anharmonic
effects in the form of strain-dependent phonon frequen-
cies10,23,25
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j

q
vib

q ,
B

B (6)

where ℏ and kB are the reduced Planck and Boltzmann
constants, respectively, and ωj(q) is the strain-dependent
phonon frequency for the wave vector, q, and phonon branch
index j. Nq is the total number of wave vectors.
For metals and narrow band gap systems, the contribution

of Felec(ϵ(δ),T) to Ftot could be important and includes
temperature-dependent contribution of the electrons to the
internal energy, Uelec(ϵ(δ),T), and the electronic entropy,
Selec(ϵ(δ),T)

23,25

ϵ ϵ ϵδ δ δ= −F T U T TS T( ( ), ) ( ( ), ) ( ( ), )elec elec elec (7)

Both terms can be calculated as

∫ ∫ϵ δ ε ε ε ε ε ε ε= −
∞

U T n f n( ( ), ) ( ) ( ) d ( ) d
E

elec
0

elec
0

elec
F

(8)

and

∫ϵ δ ε ε ε

ε ε ε

= − [

+ − − ]

∞
S T k n f f

f f

( ( ), ) ( ) ( ) ln( ( ))

(1 ( )) ln(1 ( )) d

elec B
0

elec

(9)

where nelec(ε) is the density of states at energy ε, f(ε) is the
Fermi−Dirac distribution, and EF is the Fermi energy.
The temperature-dependent isothermal elastic constants,

cij
T(T), can be obtained by minimizing temperature-dependent
free energy, F(ϵ(δ), T), with respect to strain using a similar
methodology, as shown in eq 4.

2.3. Accelerated QHA (QHA3P) and Strain. The
computation of Fvib is the most time-consuming step when
using QHA. Very recently, QHA3P has been developed as an
inexpensive alternative to QHA.23 It has been already
demonstrated that using QHA3P, isotropic thermodynamic
properties are calculated, reducing the cost to one-third of
the computational resources needed by QHA. In this
approach, the free energy is expressed as a function of
isotropic distortions such as volume, as well as temperature.
Since the distortions are small enough, phonon frequencies
around the relaxed configuration can be described using a
Taylor series. Taylor expansion involves the computation of
Taylor coefficients using three full phonon calculations, which
are computed for two different distorted structures and one
at the minimum of the potential energy surface (relaxed
structure). Once these coefficients are computed for all wave
vectors at the Brillouin zone, these are further used to
estimate phonon frequencies for any arbitrary distortions.
Therefore, QHA3P does not require computation of phonons
for more than two distortions unlike QHA.
In this work, a similar approach has been used to reduce

the computational cost of calculating strain-dependent Fvib
(second term in eq 5). Here, Fvib is a function of structure-
dependent parameter ϵ instead of isotropic distortions, and ϵ
is a function of δ. For small values of δ (small distortions),
Taylor expansion can be used around ϵ(0). Similarly to
isotropic distortions, Taylor coefficients are calculated for all
wave vectors at the Brillouin zone at each ϵ using only three
phonon calculations (eq 10). Two of the phonon calculations
are computed at positive and negative δ values and the third
phonon calculation is computed at the unstrained structure
(relaxed structure) with ϵ(0). These Taylor coefficients are
again further used to compute phonon frequencies for
arbitrary δ values, thus reducing the computational cost.
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2

(10)

If m represents the number of different strain tensors ϵi
and n is the number of distorted structures for a specific
strain tensor, the number of phonon calculations using QHA
will be m × (n − 1) + 1. However, for QHA3P, this number
will be (2 × m + 1). For a cubic crystal, m = 3, so the
number of phonon calculations is 37 and 7 for QHA and
QHA3P, respectively (considering n = 13). This is an
important reduction in computational time in comparison
with QHA which is even larger for space groups with lower
symmetry.

2.4. Workflow. A high-throughput framework has been
developed to automate the calculation of the temperature-

Figure 1. Strain tensors for a cubic system and their effect on the
lattice vector of the crystal. Distorted cells represented by dashed
green lines are obtained when δ > 0, and distorted cells represented
by dashed blue lines are obtained when δ < 0.
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dependent mechanical properties of UHTCs (Figure 2). This
new approach combines the energy-strain method that is
used in many high-throughput frameworks that computes 0 K
elastic constants, with the QHA3P method that includes the
vibrational energy contributions at any temperature but
drastically reducing the computational cost. First, the
primitive cell is fully optimized to characterize the minimum
of the potential surface energy at 0 K. The energy-strain
method is used to calculate the elastic constants of each
material. Space groups for each material are calculated using
the spglib library, determining the distortion matrices or
strain tensors that will be applied to create the distorted cells.
The set of distortion matrices has been chosen following the
Zhang and Zhang approach.24 For instance, the distortions
for a cubic system are depicted in Figure 1, where each strain
tensor is a function of δ, which is a scalar that represents the
magnitude of the strain. n strained cells are generated for
each strain tensor, (n − 1)/2 of them with a δ < 0 and (n −
1)/2 of them with δ > 0. Once the distorted structures are
created, E0, Fvib, and Felec energies need to be calculated for
all distorted structures. The calculation of the frequencies
used in eq 6 is the bottleneck of the process. The QHA3P
method was applied in order to reduce the number of
phonon calculations required to finally compute Ftot(ϵ).
Thus, only three phonon calculations, including two
distortions and the fully optimized geometry (δ = 0), are
required for a given ϵi. QHA3P uses the phonon spectra and
frequencies obtained from these three structures to estimate
other frequencies for any arbitrary δ values for that particular
ϵi using a Taylor expansion. This approach reduces the
computational cost between 80 and 83% with respect to
traditional approaches, depending on the crystal symmetry.
Finally, Ftot(ϵ, T) is fitted with a cubic polynomial to extract
elastic constants.22 In order to facilitate the comparison and
use of the results obtained in this work, all the properties
calculated with this framework will be available on New-
MaterialsLab website (https://www.newmaterialslab.com).

2.5. Isothermal and Adiabatic Elastic Constants. As
mentioned previously, isothermal elastic stiffness constants,
cij
T(T), can be calculated at finite temperatures by substituting
internal energy, E, by free energy, F, in eq 4. However, from
an experimental point of view, elastic constants are generally
obtained in adiabatic rather than isothermal conditions, using
techniques such as ultrasonic measurements or Brillouin
scattering experiments. Adiabatic elastic constants, cij

S(T), are
always equal to or larger than cij

T(T). In order to compare
with experiments, cij

T(T) are converted into cij
S(T) following

the relation reported by Davies13

λ λ= +c c
TV
Cij ij

V
i j

S T

(11)

where

∑λ α= ci
k

k ik
T

(12)

with αi being the linear thermal expansion coefficient in
direction i, CV being the specific heat, and ρ being the
density. For cubic systems22

λ λ α= = +c c( )1 2 11
T

12
T

(13)

and λ4 = 0, so c44
S = c44

T . For hexagonal systems

λ λ α α= = + +c c c( )a c1 2 11
T

12
T

13
T

(14)

and

λ α α= +c c2 a c3 13
T

33
T

(15)

where αa and αc are the linear thermal expansion coefficients
in directions a and c.

2.6. Computational Details. 2.6.1. Geometry Optimi-
zation. All 0 K ground-state structures were fully relaxed
(atoms and lattice) using VASP package.26 Energies were
obtained combining the projector-augmented wave poten-
tials27 with the exchange−correlation functional proposed by
Perdew−Burke−Ernzerhof.28 All calculations use a high-

Figure 2. Workflow for calculating temperature-dependent elastic constants. (I) Identification of crystal symmetry and strain tensors. (II)
Generations of distorted geometries and calculation of E0 and Felec. (III) Creation of supercells for phonon calculations. (IV) Frequency
calculation for selected distorted structures. (V) QHA3P. (VI) Calculation of Fvib and Ftotal in order to extract elastic constants.
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energy cutoff, 700 eV for borides and 550 eV for carbides
and nitrides. Reciprocal space was explored using a dense k-
point mesh of 12,000 k-points per reciprocal atom,
approximately. The wave function was converged self-
consistently until the energy difference between two
consecutive electronic steps was smaller than 10−9 eV. Partial
occupancies for each orbital were determined using the
Methfessel−Paxton method of order one. Geometry opti-
mizations were performed using three-atom primitive cells for
borides and eight-atom conventional cells for carbides and
nitrides. Structures were considered fully relaxed when forces
over all atoms were smaller than 10−8 eV/Å. An additional
support grid for the evaluation of the augmentation charges
was included to reduce the noise in the forces. In order to
promote reproducibility, these structures will be available in
2021 in the ioChem-BD platform.
2.6.2. Distorted Cells. Elastic constant prediction requires

three and five distortion modes for cubic and hexagonal
systems, respectively. These distortion modes are generated
using the procedure shown elsewhere.24 The values assigned
to δ go from −2 to +2% of each lattice vector, obtaining the
13 strained cells for each ϵi. These generated structures are
relaxed without changing the cell volume. After the relaxation,

single-point calculations were performed for each strained cell
in order to calculate their DOS.

2.6.3. Phonon Calculations. Different packages can be
used to predict the vibrational spectra of solids, such as APL-
AAPL29 or Phonopy.30 In this case, phonon calculations were
performed combining Phonopy and VASP to obtain second-
order interatomic force constants via the finite displacement
approach. For each ϵi, two phonon calculations are performed
at ±2% distortions including one at the equilibrium structure.
Forces were extracted from 4 × 4 × 4 supercells for borides
(192 atoms) and 3 × 3 × 3 supercells for nitrides and
carbides (216 atoms). The magnitude of the displacement to
obtain the force constants was 0.01 Å. The same SCF
convergence criteria followed in the optimizations were used
for these calculations. Frequencies and other related phonon
properties such as Fvib were calculated using a 31 × 31 × 31
q-point mesh that ensures their convergence.

3. RESULTS AND DISCUSSION

3.1. Phonon Dispersion Curves. Phonon dispersion
curves are an essential part to compute the vibrational
contribution to the free energy and, simultaneously, give
information about the stability of these materials. The
absence of imaginary frequencies confirms the dynamic

Figure 3. Isothermal (solid lines) and isentropic (dashed lines) elastic constants for UHTCs. Open points represent experimental measurements
while filled points represent calculated values. Colors: c11 = blue; c12 = orange; c13 = yellow; c33 = purple; and c44 = green.
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stability of UHTCs at 0 K (Figure S1). Moreover, our results
are in good agreement with previous theoretical predictions
and, most importantly, experimental data (Figure S1). Only
small deviations were found for the borides, which can be
attributed to the measurement of the phonon dispersion
curve at finite temperatures and specific surfaces.31

3.2. Elastic Constants. In this section, calculated
isothermal and isentropic elastic constants are compared
with previous experimental values and simulations that are
available (Figure 3). To the best of our knowledge, TiB2 and
ZrB2 are the only two UHTCs whose elastic constants have
been experimentally well-characterized in a wide range of
temperatures.32,33 The values obtained with the new high-
throughput framework are in excellent agreement with the
experiments and other calculated values obtained with more
computationally demanding approaches.7,34,35 Experimental
results, but in a shorter range of temperatures, were also
found for TiC and ZrC,36 with relative errors always below
5%. Only room-temperature values have been reported for
ZrN and HfN,37 so it is difficult to analyze any trends. That
is why, we have also included calculated 0 K elastic constants
for these two systems.38 In both materials, calculated and
experimental available results are aligned with our results and
only c11 at 300 K presents a small deviation. Only calculated
values have been found for TiN39 and HfC.40 Molecular
dynamics performed by Steneteg et al. seem to predict similar
trends and values than the HT framework for TiN. For HfC,
Zhang and McMahon obtained very similar values for c12 and
c44 while c11 seems to decrease faster than in our results.
However, they also obtained a very soft behavior of c11 for
ZrC,40 while our methodology seems to follow the
experimental measurements better. The fast reduction of c11
with temperature is more noticeable for nitrides. This trend is
related to the changes in the volume when longitudinal
strains are applied, which is strongly connected to temper-
ature. Other elastic constants such as c12 and c44 are related to
deformation resistance to strain modes that are not
connected to big changes in the volume, so they are less
affected by temperature. In addition to the comparison with
previous reported values, elastic constants have also been
calculated using the traditional QHA approach for HfC
(Figure S2). There are not significant differences between the
results obtained with QHA3P and traditional QHA in the
whole range of temperature, but the new approach is
approximately 80% less expensive. This is one of the
characteristics that makes this framework so powerful.
While other methods such as QSA also reduce the
computational cost to compute the elastic constants, they
lose accuracy, particularly at high temperatures.40

3.3. Mechanical Stability. Elastic constants describe the
response of the crystal to external forces, so they play an
important role determining their mechanical stability.
Mechanical stability has been extensively explored by
different theoretical and computational works. Here, Born
stability criteria41 will be adopted to elucidate the mechanical
stability of these materials in a wide range of temperatures.
For a cubic crystal, the mechanical stability criteria under
isotropic pressure are

> − > + >c c c c c0, 0, and 2 044 11 12 11 12 (16)

For hexagonal systems, the stability criteria are

> − > + − >c c c c c c c0, 0, and ( ) 2 044 11 12 11 12 33 13
2

(17)

All the materials explored in this work fulfill the Born
stability criteria in the studied range of temperatures (Figure
S3).

3.4. Isotropic Mechanical Properties. Elastic constants
are also the essential ingredient to compute some key
isotropic mechanical properties such as bulk modulus, B,
shear modulus, G, Young’s modulus Y, Poisson ratio σ, and
hardness HV.

3.4.1. Bulk and Shear Modulus. Different definitions have
been proposed to calculate the bulk modulus of an aggregate
of crystals. Voigt’s definition is based on the averaging of the
relation expressing the stress in a single crystal over all
possible orientations

= + + + + +B c c c c c c9 ( ) 2( )X X X X X X X
V 11 22 33 12 23 31 (18)

where X = (S, T) in order to differentiate between adiabatic
and isothermal values, respectively. While Voigt’s definition
assumes that the strain is uniform through the aggregate, the
Reuss approach considers that the stress is uniform

= + + + + +
B

s s s s s s
1

( ) 2( )X
X X X X X X

R
11 22 33 12 23 31

(19)

where sX = (cX)−1 is the compliance tensor, it has been
proven that Voigt moduli are always larger that Reuss moduli
with true values lying between them. That is why, the Voigt−
Reuss−Hill bulk modulus, BVRH

X , is defined as

= +B B B
1
2

( )X X X
VRH V R (20)

Similarly, shear modulus can be defined as

= + + − + +

+ + +

G c c c c c c

c c c

1
15

( ) ( )

3( )

X X X X X X X

X X X

V 11 22 33 12 23 31

44 55 66 (21)

or

= + + − + +

+ + +

G s s s s s s

s s s

15/ 4( ) 4( )

3( )

X X X X X X X

X X X
R 11 22 33 12 23 31

44 55 66 (22)

Again, GR
X < GV

X and real values should lie in between.
Thus, the Voigt−Reuss−Hill shear modulus is defined as

= +G G G
1
2

( )X X X
VRH V R (23)

Taking into account the small difference between
isentropic and isothermal elastic constants and in order to
simplify the analysis of the results, BT and GT will be used to
compute the other properties presented in this work.
The comparison of simulations with experimental values

for B and G is not a simple task (see Figure 4). Most of the
time, experimental measurements are obtained from poly-
crystalline samples in which porosity plays an important role,
modifying their mechanical properties. There are different
models that correlate the mechanical properties of the fully
dense material and the porosity with the mechanical
properties of actual samples.42 Here, the Gibson and Ashby
equation42 was adopted to compare the experimental B, G,
and Young’s modulus (vide inf ra), Y, with the theoretical
results, if the porosity of the sample was reported. For
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instance, predicted values are in excellent agreement with
experimental measurements43,44 for the B and G of borides,
once porosity is considered. A similar trend is also found for
TiC where experimental values are also available.36,45 Larger
deviations with respect to experimental values are found for
HfN where G is underestimated around 15% at 298 K.
Comparing with other previous theoretical results also helps
to demonstrate how this new approach can be not only
accurate but also how it can substantially reduce the
computational effort. For instance, the values obtained for
B and G match well with the results reported by methods
based on the QHA in which phonon calculations are
performed for all distorted structures for ZrC and HfC,40

TiN,46,47 and ZrN.48

3.4.2. Young’s Modulus and Poisson Ratio. Young’s
modulus, Y, is a directional property; however, it can be
initially assumed isotropic in order to extract a single
approximate value for each compound

σ= +Y G2 (1 ) (24)

where σ is the isotropic Poisson ratio

σ = −
+

B G
B G

(3 2 )
(6 2 ) (25)

Similarly to B and G, our calculations are in good
agreement with experimental values, when available for Y
(Figure 4). Calculated values for borides43,44 present a
maximum relative error around 7% at high temperatures,
which is very small considering: (i) the values that are
obtained using a very simple model to take into account the
porosity of the sample49 and (ii) high-order force constants,
which are not calculated here, can play an important role at
high temperatures. Similar trends are observed for TiC36,45

and ZrC,50,51 where predicted Y values are slightly under-
estimated, but follow the same trend as experimental
measurements. If experimental reports were not available,
previous theoretical works were used to evaluate the results
obtained with this new high-throughput approach. No
significant discrepancies were found when Y values were
compared with the results obtained with methods based on
the QHA (see ZrC and HfC40). Larger differences were
found for TiN where Steneteg et al. used molecular dynamics
to study the mechanical properties of TiN.39 Nevertheless, Y

Figure 4. Bulk modulus, B (blue), shear modulus, G (orange), and Young’s modulus, Y (green), for UHTCs. Voigt and Reuss values are
depicted with dashed lines, and Voigt−Reuss−Hill values are depicted with a solid line. The area ranged between Voigt and Reuss values has
also been filled with the same color than the property. Open points represent experimental measurements while filled points represent calculated
values.
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experimental values for TiN single crystals at room
temperature are between 445 and 449 GPa,52 which are
close to the values calculated in this work.
To the best of our knowledge, there are not many

experimental studies of the temperature dependence of the
Poisson ratio. For instance, Wiley et al. explored the Poisson
ratio of the borides of the group IV up to 1300 K.43 Our
results are not only in agreement at room temperature but
also reproduce the very small variation that this property
presents in a large temperature range (Table 1). When
compared with borides, the temperature dependence is
slightly higher for carbides but is even larger in TiN and
HfN. This trend is also observed in the wider range of
experimental values previously reported (Table 1).
3.4.3. Hardness. Hardness is probably one of the most

difficult mechanical properties to predict and compare with
experimental data. It presents not only a dependency with the
porosity or grain size but also with other variables related to
the measurement, such as indentation type (nano or micro),
load, and time. During the last two decades, different models
have been proposed to predict the hardness of materials.
Most of them assume isotropic conditions which could
overestimate the hardness of some materials, depending on
the crystal plane exposed on the surface.55 Moreover, porosity
and indentation load tend to reduce the values obtained for
hardness. Here, hardness is calculated using the approach
proposed by Tian et al.56

=H k G0.92V
1.137 0.708

(26)

where k is the Pugh’s modulus, which is defined as the ratio
between the shear, G, and the bulk modulus, B. In eq 26, the
constants are adjusted to obtain HV in GPa units. At room
temperature, borides seem to be the most overestimated
values obtaining 47, 41, and 42 GPa for TiB2, ZrB2, and HfB2
when experimental values range between 34−22,49 39−
20,57,58 and 33−31.4 GPa,59 respectively (Figure 5). TiC
stands as a good example of the different values that can be
obtained for hardness, depending on the plane and
orientation of the crystal.54,60 For instance, the TiC(100)
plane on the [110] direction presents a micro-Vickers
hardness of 34.9 GPa while the values for the (110) plane
at the [100] direction is 23.24 GPa.60 Using the approach
proposed by Tian, the calculated value (24.1 GPa) is in the
range experimentally reported at room temperature. Similarly,
calculated hardness for ZrC (23.2 GPa) and HfC (25.2 GPa)
is in good agreement with the experimental measure-
ments.61−63 To the best of our knowledge, there are not
many experimental works which study the hardness of
nitrides; however, we have found that calculated values are
slightly lower than the homologue carbides and are close to
the reported values for TiN,64 ZrN,65 and HfN.37

If predicting hardness is a difficult task because of the wide
range of experimental variables, capturing the temperature
dependence of this property is even more of a challenge.

Hardness changes with temperature. Especially at high
temperatures, hardness is controlled by creep due to
dislocation diffusion phenomena. The activation energy for
creep can be calculated from

= −−H A Q RT texp( / )m
V (27)

where Q, R, T, and t are the activation energy for creep, the
gas constant, the temperature, and the loading time,
respectively, and m and A are constants.66 When Arrhenius
plots are used to study hardness in a temperature range,
different regions are identified for many UHTCs.60,61 These
regions are linked to a brittle−ductile transition and the
different mechanisms that govern the deformation during the
indentation at different temperatures.61 Activation energies
for creep for borides and carbides have been reported to be
around 80 kcal/mol and most of the experimental studies
obtain values for m between 4 and 5.60,61 These values can be
combined with our predictions at room temperature to
calculate the pre-exponential constant and obtain good trends
for hardness below 1000 K.

3.5. Anisotropy. Dislocation dynamics or phase trans-
formations are some examples in which anisotropy plays a
relevant role. Quantification of crystal anisotropy has been a
subject of debate since Zener introduced the first anisotropy
index.67 Here, the universal elastic anisotropy index68
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V
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and the log-Euclidean anisotropy index69

Table 1. Comparison of the Calculated Poisson Ratio for UHTCs in This Work in a 0−2000 K Temperature Range and
Experimental Reported Values (Exp.)

B C N

this work exp.43 this work exp.53,54 this work exp.53,54

Ti 0.11−0.12 0.10−0.11 0.18−0.21 0.17−0.19; 0.19 0.22−0.36 0.30; 0.22
Zr 0.12−0.13 0.11−0.12 0.18−0.21 0.19−0.26; 0.20 0.23−0.25 0.19−0.25; 0.26
Hf 0.13−0.14 0.12−0.13 0.18−0.21 0.16−0.18; 0.16 0.24−0.32 0.26−0.35; 0.17

Figure 5. Comparison between calculated, HV
calc, and experimental,

HV
exp, hardness. Green area represents the ±10% relative error with

respect to experimental values. Blue error bars represent the
dispersion of reported values for HV

exp.
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are used to calculate the temperature-dependent anisotropy
of UHTCs (Table 2).
Borides, carbides, and nitrides, in general, present relatively

low anisotropy indexes if they are compared with other
materials.69 While the reported AU and AL for some cubic
systems can be as low as 10−3, some triclinic and monoclinic
materials present AU values higher than 102.69 Both indexes
point to the nitrides as the most anisotropic materials,
followed by the borides and finally the carbides (Table 2).
These indexes are usually obtained from 0 K calculated
mechanical properties; however, their behavior at high
temperatures can be calculated using our approach. For
instance, anisotropic indexes slightly increase with temper-
ature for carbides, while they are reduced for borides and
nitrides. Boride experiments change very little in their
anisotropic indexes in the 0−2000 K range; however, both
AU and AL are drastically reduced for nitrides.
Anisotropy indexes give relevant information about the

general behavior of the material; however, some properties
such as Y, G, and σ can be directly calculated as a function of
the crystallographic direction. This information is extremely
valuable in order to predict the behavior of single-crystal
materials in a specific direction or the limits of these
properties in polycrystalline samples. There are already
different packages that calculate and represent the anisotropic
nature of some mechanical properties.70 In this work, ELATE
package71 has been combined with our framework to explore
the temperature-dependent anisotropic nature of some
mechanical properties. As an example, the directional and
temperature dependence of Y is plotted for TiB2 in Figure 6,
where Y is a 33% lower in c with respect to a and b.
The same approach has been followed for the rest of

UHTC materials studied in this work, not only for Y but also
for G and σ (Figure 7). The colored area for each property at
each temperature is delimited by the maximum and minimum

values (dashed lines) predicted for Y (green), G (orange),
and σ (blue). Results in Figure 7 are in good agreement with
the trends extracted from anisotropy indexes. Carbides are
the group of materials with a lower variability in their
properties, which correspond to lower anisotropy indexes
than borides and nitrides. Moreover, the difference between
the maximum and minimum values in carbides slightly
increases with temperature, following the same trend as the
anisotropic indexes. Similarly to values in Table 2, the
amplitude between the maximum and minimum for each
property in borides remains almost constant with temper-
ature, while a fast reduction of the amplitude can be observed
for nitrides. Some singular points can be observed for
nitrides, where the maximum and minimum values are the
same at a given temperature. These points represent an
inversion in the direction where the maximum and minimum
values of a specific property can be observed. For instance, Y
maximum values are observed in the [100] direction up to
1500 K approximately. For temperatures higher than 1500 K,
this trend is different and the minimum value for Y is
obtained in the [100] direction. The same phenomenon is
observed in TiN and HfN around 2000 and 1800 K,
respectively. Figure 7 shows a good approach to visualize the
potential scattering in experimental measurements depending
on the crystallinity, direction, and temperature in which the
property has been measured. Experimental data already
plotted in Figure 4 are always in between the maximum
and minimum limits established for each property at each
temperature. Only one experimental point is slightly out of
the delimited area for ZrC. This very small deviation could
be due to the well-known underestimation of bond strength
by GGA functionals.

3.6. Thermodynamic and Thermal Properties.
3.6.1. Heat Capacity. Thermodynamic properties such as
specific heat at constant volume, CV, are calculated including
phonon, CV

ph, and electronic, CV
el, contributions

= +C C CV V V
ph el

(30)

Phonon contribution is calculated as

Table 2. Anisotropy Indexes AU and AL for UHTCs in the 0−2000 K Temperature Range

B C N

AU AL AU AL AU AL

Ti 0.13−0.11 0.05−0.04 0.03−0.09 0.01−0.04 0.19−0.00 0.08−0.00
Zr 0.15−0.14 0.06 0.03−0.07 0.01−0.03 0.44−0.07 0.19−0.03
Hf 0.14−0.13 0.06 0.05−0.11 0.02−0.05 0.76−0.02 0.32−0.01

Figure 6. Anisotropic behavior of Y for TiB2 at different temperatures. Left and right panels correspond to xy, xz, and yz planes, respectively.
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Following the free electron gas approximation, the
electronic contribution to heat capacity is a linear function
with respect to the temperature

π=C N E k T
1
3

( )V
el 2

F B
2

(33)

where N(EF) is the DOS at the Fermi level. Moreover, the
specific heat at constant pressure, Cp, which is more
experimentally accessible, is calculated as

α= +C C V TBp V eq V
2

(34)

where Veq is the equilibrium volume for a given temperature
and αV is the volumetric lattice thermal expansion. In most
cases, specific heats match experimental values well72−81

(Figure 8). Only small deviations, below 10% error, are found

for TiB2 and HfB2. It has been pointed out that the origin of
this difference is the importance of higher-order lattice
anharmonic vibrations at higher temperatures, which are not
included under the frame of the QHA.34 Anharmonicity can
play an important role at very high temperatures through
different phenomena such as phonon−phonon or electron−
phonon scattering. Including the effect of phonon lifetimes
represents the most important limitation of this methodology
and stands as the next challenge in order to obtain a more
accurate picture of the mechanical response of materials at
temperatures close to their melting point. For instance,
Mellan et al. have studied the effects of phonon−phonon and
electron−phonon scattering in the calculation of the thermal
conductivity of ZrC.82 However, due to the extremely
expensive computational costs, very few studies include
anharmonicity effects in the prediction of mechanical
properties.83

3.6.2. Grüneisen Parameter. Grüneisen parameter, γ, is a
good measurement of the compressibility of the phonons and
it is often used to estimate the anharmonicity of the
vibrations in the crystal (Figure S4). As other properties
already discussed, γ is a tensorial magnitude which depends
on the direction of the tension−compression. Here, the

Figure 7. Anisotropic Poisson ratio, σ (blue), shear modulus, G (orange), and Young’s modulus, Y (green), for UHTCs. Solid lines represent
isotropic values calculated in the previous section. Dashed lines represent the upper and lower limit for each property. The area ranged between
upper and lower limits has also been filled with the same color than the property. Open points represent experimental measurements.
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average Grüneisen parameter was calculated based on an
isotropic expansion−compression of the solid

γ
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Dq is the dynamical matrix for a wave vector, q, ωq,j is the
vibrational frequency, and eq,j is the eigenvector for phonon
branch, j. The detailed procedure can be found in refs 10 and
23. It seems that the calculated values for borides follow the
same trend as experimental results reported by Wiley et al.,43

with γ̅ being constant over 500 K. Quantitatively, calculated
values seem to slightly overestimate Wiley et al. results.
However, values reported by Ajami and MacCrone84 and
Dodd et al.45 at 300 K are in good agreement with the
predictions, indicating that the error of the calculation is
lower than the deviation of the experimental measurements.
In addition to the comparison with the experimental results,
different conclusions can be extracted from Figure S4. No

large changes are observed with the temperature for borides,
carbides, or nitrides. For instance, γ̅ for TiN seems to the one
with the strongest dependence with respect to the temper-
ature. If families are compared to each other, nitrides present
the higher values for γ̅ and then carbides and finally borides.

3.6.3. Thermal Expansion. Some of the previous
thermodynamic properties can be accurately obtained with
low computationally demanding methods such as Gibbs.8

However, the accurate prediction of thermal expansion
coefficient requires the calculation of the free-energy surface
which is computationally demanding. Alternatives to the
standard QHA9,10 such as QHA3P23 can reduce the
computational cost, but QHA3P has been only used for
calculating volumetric thermal expansion and cannot capture
the anisotropic nature of the material, when isotropic
deformations are applied. The framework developed in this
work fills this gap, capturing the anisotropy of the system
through the calculation of linear thermal expansion
coefficients and reducing the computational cost to the
same level than QHA3P.
Linear and volumetric thermal expansion coefficients, αi,

are calculated using the free-energy curves obtained for the
temperature-dependent elastic constants

Figure 8. Heat capacity at constant volume, CV (blue), and at constant pressure, Cp (green) for UHTCs. Solid lines represent calculated values
while open points represent experimental measurements.
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where Cϵ is the heat capacity at constant strain ϵ, γj is the
Grüneisen parameter along different j directions, and sij are
the elastic compliance constants.
When calculated values are compared with experiments

(Figure 9), good agreement was obtained for most
carbides85,86 and nitrides,87−90 while larger deviations were
found for some of the borides.49,90,91 As it is defined in eq
37, α depends on Cϵ, sij, and γ. It has been proven in the
previous sections that accurate values were obtained for Cϵ

and sij (cij). However, higher deviations were found for γ.
Thus, the main source of error stems from the description of
the anharmonicity of the material which is not completely
well-described by the QHA.

4. CONCLUSIONS

In this work, mechanical, thermal, and thermodynamic
properties of UHTCs at high temperatures have been
exhaustively explored using a new theoretical framework.
The main advantage of this new approach relies on the
drastic reduction of the computational cost without losing

accuracy. This strategy gives a computational inexpensive
solution to the difficulty of experimentally obtaining their
mechanical properties at temperatures close to their melting
point, which was hampering the fast technological develop-
ment of this family of materials. Very good agreement
between experiments and calculations was found not only for
the elastic constants but also for other mechanical properties
such as B, G, Y, or σ, when data are available. Although
hardness is a property that also depends on plastic
deformation, good trends were also predicted. While
approximations or frameworks with similar computational
cost only predict isotropic or averaged properties, this new
approach also predicts anisotropic properties describing
directional mechanical properties such as Y or establishing
upper and lower limits for polycrystalline materials, which are
extremely valuable data in industry to determine their
applicability. Thermodynamical and thermal properties were
also explored, obtaining, in most cases, good agreement with
available experimental data. To the best of our knowledge,
this study represents one of the most comprehensive
characterizations of this family of compounds with direct
implications in different technologies. In addition to quantity
and quality of data for the characterization of UHTCs, this
new theoretical framework facilitates the access to temper-

Figure 9. Volumetric thermal expansion coefficient, αV (green), and linear thermal expansion coefficients, αa (blue) and αc (orange), for
UHTCs. Solid lines represent calculated values while open points represent experimental measurements.
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ature-dependent mechanical properties, extremely expensive
to obtain with current computational approaches. This new
framework opens the door to characterize, design, or discover
new materials whose application or importance rely on their
mechanical properties at different temperatures, from coating
or material behavior during their processing to mineral’s
response to seismic waves.
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