
ARTICLE IN PRESS 

JID: EOR [m5G; July 26, 2021;4:30 ] 

European Journal of Operational Research xxx (xxxx) xxx 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Discrete Optimization 

Routing for unmanned aerial vehicles: Touring dimensional sets 

Justo Puerto 

1 , Carlos Valverde 

1 , ∗

Department of Statistics and Operations Research, University of Seville, Seville 41012, Spain 

a r t i c l e i n f o 

Article history: 

Received 18 January 2021 

Accepted 29 June 2021 

Available online xxx 

Keywords: 

Routing 

Networks 

Logistics 

Conic programming and interior point 

methods 

a b s t r a c t 

In this paper we deal with an extension of the crossing postman problem to design routes that have 

to visit different shapes of dimensional elements rather than edges. This problem models the design of 

routes of drones or other vehicles that must visit a number of geographical elements to deliver some 

good or service and then move directly to the next using straight line displacements. We present two 

families of mathematical programming formulations. The first one is time-dependent and captures a 

number of characteristics of real applications at the price of using three indexes variables. The second 

family of formulations is not time-dependent, instead it uses connectivity properties to ensure the proper 

definition of routes. We compare them on a testbed of instances with different shapes of elements: sec- 

ond order cone (SOC) representable and polyhedral neighborhoods and polygonal chains. The computa- 

tional results reported in this paper show that our models are useful and our formulations can solve 

to optimality medium size instances of sizes similar to other combinatorial problems including neigh- 

borhoods that have already been studied in the literature. To address larger instances we also present 

a heuristic algorithm that runs in two phases: clustering and Variable Neighborhood Search. This algo- 

rithm performs very well since it provides promising feasible solutions and, in addition, it can be used 

to initialize the solvers with feasible solutions. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Drones, or UAVs (unmanned aerial vehicles), provide new op- 

ortunities for improving logistics in a variety of settings. Specif- 

cally, we would like to emphasize, among other characteristics, 

heir capability for moving without an underlying network using 

traight line displacements. Recent technological improvements as 

attery life, better communication devices and reduction in manu- 

acturing costs have increased the use of drones in logistics. Thus, 

his technology has increased its use in many different fields as 

isaster management in remote regions (see Knight, 2016 ), par- 

el delivery as shown in Lavars (2015) , communication cover- 

ge, worked in Amorosi, Chiaraviglio, D’Andreagiovanni, & Blefari- 

elazzi (2018) , traffic monitoring, infrastructure inspection, coastal 

urveying and many other applications. The reader is referred to 

he review by Otto, Agatz, Campbell, Golden, & Pesch (2018) for 

urther references. 

The availability of this new technology has brought new busi- 

ess opportunities and, at the same time, has opened a lot of new 
∗ Corresponding author. 
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hallenges in the Operations Research field to propose solutions 

o new emerging problems in the areas of logistics and routing. 

s drones play a growing role in business operations, questions of 

lanning and optimization increase in practical and academic im- 

ortance. However, some of the characteristics of drone’s displace- 

ent are not fully exploited by most previous routing models in 

iterature. Unlike standard ground vehicles that must follow paths, 

rones can use direct connections by straight lines between desti- 

ations because they can fly across areas, but their limited battery 

utonomy range makes the problem of coordination with mother- 

hip vehicles a challenging problem. 

In 1962, Meigu Guan introduced the undirected Chinese Post- 

an Problem (CPP) whose aim is to determine a least-cost closed 

oute that traverses all edges of the graph. Orloff (1974) extended 

he CPP to travel through a subset of required edges that is known 

s the Rural Postman Problem (RPP). Based on this idea, Garfinkel 

 Webb (1999) introduced the Crossing Postman Problem (XPP) 

hich relaxes the RPP to the case in which it is permitted to 

eave the edges of the network and cross from one edge to an- 

ther at points other than the original vertices. These Arc Routing 

roblems (ARP) are studied in depth in Corberán & Laporte (2015) . 

n the other hand, some drone routing problems inherit some of 

he structure of the well-known Traveling Salesman Problem with 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. An example of convex sets and polygonal chains considered in the problem. 
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eigborhoods (TSPN) that was first introduced by Arkin & Hassin 

1994) and later was studied, among others, by Gentilini, Margot, 

 Shimada (2013) using convex sets and Yuan & Zhang (2017) pre- 

enting a hybrid framework in which metaheuristics and classical 

SP solvers are combined strategically to produce high quality so- 

utions for TSPN with arbitrary neighborhoods. Some other com- 

inatorial optimization problems analyzed with neighborhoods are 

hortest paths in Disser, Mihalák, Montanar, & Widmayer (2014) , 

inimum spanning trees in Yang, Lin, Xu, & Xie (2007) , Blanco, 

ernández, & Puerto (2017) , ordered p-median location, in Blanco 

2019) and hub location, Blanco & Puerto (2021) . 

The aim of this paper is motivated by the design of drones’ 

outes that must connect a number of dimensional targets with 

iven shapes, that we will call from now on elements , that are lo- 

ated on an area. The use of this terminology is not new and the 

nterested reader is referred to Schöbel (2015) , Díaz-Báñez, Mesa, 

 Schöbel (2004) and Mallozzi, Puerto, & Rodríguez-Madrena 

2019) for further details and references on the concept of dimen- 

ional facilities. In addition, in some cases it will be required some 

xtra service beyond the simple visit to an element. For instance, 

ne has to visit a percentage of its total length (assuming that its 

imension is one). In our approach we would like to exploit some 

ew features of Mixed Integer Non-Linear Programming (MINLP) to 

evelop formulations and solution algorithms. Obviously, we have 

o impose some limits to the shapes of the considered elements to 

chieve tractable models. As a first building block, we restrict our- 

elves to two main types of elements (see Fig. 1 ): convex bodies 

nd piecewise linear chains (including segments). For the case of 

he convex bodies, they can represent regions that the drone must 

each and where the customers are willing to pick up the orders 

they can be seen as uniform probability densities). On the other 

and, polygonal chains can be used to model different paths that 

he drone must follow to do some inspection or to avoid some bar- 

iers that can appear in a real-world scenario. The use of convex 

odies in the model can be extended to more general shapes as 

xplained in Section 2 . 

We assume a structure of costs trying to capture the main fea- 

ures of these situations. We assume that there are two types of 
2 
osts: 1) the travel cost of moving between elements, and 2) the 

ravel cost of crossing (moving on) an element. The travel costs 

f moving between elements may change over time: it may be 

heaper to go from A to B at time 1 than at time 2. On the

ther hand, the cost of crossing an element may be cheaper or 

ore expensive than moving between them: controlling the drone 

ver polygonal chains to do some inspection may be more expen- 

ive than flying directly between targets. However, one may obtain 

ome discount for flying over some large area (parks, lakes, nat- 

ral reserves...) because the drone can do a secondary job, as re- 

orting information in its way back to the base. This fact is repre- 

ented as a weighting factor in the objective function as explained 

n Section 2 . A survey of these coverage path planning problems 

an be found in Otto et al. (2018) . 

The goal of the model considered in this paper is to find a min- 

mum total cost route that visits all the elements and traverses 

ome proportions of those with dimension one. In the rest of the 

aper, we will refer to this problem as the Crossing Postman Prob- 

em with Neighborhoods (XPPN). 

The contribution of this paper is to introduce new mod- 

ls for the design of routes that combine several characteristics 

hat have not been previously analyzed simultaneously: design of 

outes without underlying graph structure, required targets (like 

n the RPP) defined on dimensional elements (as in the TSP with 

eighborhoods) that can be polygonal chains or other kind of 

ore general sets and free entry and exit points over the ele- 

ents. Combining these features altogether gives rise to a chal- 

enging new problem that is analyzed for the first time in this 

aper. 

The paper is structured in 8 sections. The first section is the 

ntroduction. In the second section we describe the problem and 

et the notation followed in the rest of the paper. Section 3 is 

evoted to present different valid formulations of the problem. 

n Section 4 we present a heuristic algorithm for solving XPPN. 

his heuristic has two phases: clustering and Variable Neighbor- 

ood Search (VNS). The results show that it provides good qual- 

ty solution in very limited computation time. Section 5 deals with 

ome strengthening of our formulations: pre-processing variables 
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nd deriving valid inequalities to be added to the formulations. 

ext, in Section 6 we present a decomposition algorithm ‘a la’ Ben- 

ers that can be also applied to solve the problem. We derive all 

he details of that decomposition and show preliminary computa- 

ional results. 

An extensive computational experience is reported in Section 7 . 

here, we compare the different formulations in terms of final gaps 

nd computing time. The paper ends with a section devoted to 

onclusions and extensions, where we list some interesting open 

ines of research connected with the problems addressed in this 

aper. 

. Description of the problem 

Let V be a set of points (vertices) embedded in R 

2 . (The reader

ay note that extensions to the three dimensional space are pos- 

ible at the price of increasing the models’ complexity.) Associated 

ith each vertex v ∈ V, we assign an element N v that can belong

o two different types: either a convex set or a polygonal chain. 

ater, we will show how to extend the elements to deal with union 

f convex sets. In the former case, let C v ⊂ R 

2 denote the convex 

et associated to v that must contain v in its interior. In the latter, 

et P v ⊂ R 

2 denote the polygonal chain assigned to v that we as- 

ume to be parameterized by its breakpoints A 

1 
v , . . . , A 

n v +1 
v , where 

 v is the number of line segments of the polygonal chain. We de- 

ote 

 C = { v ∈ V : v is associated with a convex set } , 

 P = { v ∈ V : v is associated with a polygonal chain } . 
Let us denote by x i v ∈ N v : i = 1 , 2 , v ∈ V the access ( x 1 v ) and exit

 x 2 v ) points to the elements N v associated with vertices v ∈ V . A

easible solution to the XPPN problem consists of a set of pairs of 

ccess and exit points, X = 

⋃ 

v ∈ V { x 1 v , x 
2 
v } , together with a tour T 

hat the drone must traverse on the graph G = (X, E) , with edge

et E = E out ∪ E in , where: 

 out = { (x 1 v , x 
2 
w 

) : v � = w ∈ V } , E in = { (x 1 v , x 
2 
v ) : v ∈ V } . 

Edges in the set E out are links between different elements 

hereas those in E in are those that define the part of the tour 

hat is traveled within the convex neighborhoods or the polygo- 

al chains while the drone is doing a secondary job. Observe that 

ll the links in E in are required and therefore they must be vis- 

ted by the route. Edge lengths of an outside link (x 1 v , x 
2 
w 

) is given

y the Euclidean distance, d v w 

(x 1 v , x 
2 
w 

) = ‖ x 1 v − x 2 w 

‖ 2 , between their

ndpoints. Edge length, d v (x 1 v , x 
2 
v ) , of an inner link (x 1 v , x 

2 
v ) is com-

uted as the distance measured over the corresponding element 

polygonal or convex set). Observe that in the case of a polygonal 

he distance is computed as the sum of the lengths of the corre- 

ponding edges or partial edges, since the drone is following the 

ath given by the polygonal chain. 

The cost of a feasible solution (X, T ) is then given by the overall

um of outside edges plus the weighted sum of the inner edges: 

(X, T ) = 

∑ 

e v w =(x 1 v ,x 
2 
w ) ∈T 

d v w 

(x 1 v , x 
2 
w 

) + 

∑ 

e v =(x 1 v ,x 
2 
v ) ∈T 

f v d v (x 1 v , x 
2 
v ) , 

here f v is a weighting factor for traveling within the neigh- 

orhoods. This factor depends on the worth given to a possible 

econdary job done by the drone. We point out that in case of 

verlapping of two or more neighborhoods the discount factor is 

ccounted for each one of them, as shown in the above formula. 

he reader may note that in all our discussions we are assuming 

hat the autonomy of the drone battery suffices to travel the whole 

oute. Therefore, the model does not allow a route longer than the 

ying autonomy. 

Throughout this paper we adopt the following notation: 
3 
• T G as the set of incidence vectors associated with tours on G, 

i.e., T G = { z ∈ R 

| E| 
+ : z is a tour on G } . 

• X = 

∏ 

v ∈ V ( N v × N v ) , the space where the access and exit 

points are selected. 

The goal of XPPN is to find a feasible solution (X, T ) of minimal

otal cost. Then, it can be expressed as: 

min 

∑ 

e v w =(x 1 v ,x 
2 
w ) ∈ E out 

d v w 

(e ) z e + 

∑ 

e v =(x 1 v ,x 
2 
v ) ∈ E in f e d v (e ) 

s.t z ∈ T G , x ∈ X 

(1) 

Here it is assumed that the drone route enters and exits from 

n element only once. Note that, since the distance between neigh- 

orhoods is minimized, there always exists an optimal solution in 

hich the drone visits each neighborhood only once. The reader 

ay observe that the above formulation is only formal, but it is 

learly not separable into the continuous and discrete counterparts 

ince the access and exit point to each one of the elements (con- 

inuous part) depend on the order of the visit to the elements (dis- 

rete part) and vice versa. We also point out that the discrete part, 

hat is a TSP, is an NP-hard problem whereas the continuous part, 

hat is a location problem, is easily solvable by using interior-point 

lgorithms. This structure is exploited to decompose the problem 

n a master problem (TSP) and a subproblem (Location Problem) in 

he Benders decomposition (see Section 6 ). Moreover, the problem 

nvolves Euclidean distances among variable points and sets, there- 

ore it is not linearly representable. In spite of that, it is suitable to 

odel this problem as a MINLP. 

In this paper, we focus on the case where the sets C v are second

rder cone (SOC) representable, that is, the sets can be expressed 

y using second-order cone constraints as follows: 

 

i 
v ∈ C v ⇐⇒ ‖ A 

j 
v x 

i 
v + b j v ‖ ≤ (c j v ) 

T x i v + d j v , j = 1 , . . . , n v , ( C − C )

here x i v , i = 1 , 2 is the decision variable, A 

j 
v , b 

j 
v , c 

j 
v and d 

j 
v are pa-

ameters of the constraint j and n v represents the number of con- 

traints that appear in the block associated to vertex v . 
Note that these inequalities can also model linear constraints 

for A 

j 
v , b 

j 
v ≡ 0 ), ellipsoids and hyperbolic constraints (see Lobo, 

andenberghe, Boyd, & Lebret, 1998 for more details). 

These type of elements could be extended further to unions of 

OC representable sets. This type of neighborhood is obtained in- 

roducing binary variables, whose meaning is similar to those in 

isjunctive programming. Thus, we can determine in which set of 

he union happens the access or the departure points of the differ- 

nt sets. 

Let {C 1 v , . . . , C m v 
v } be the second order cone representable sets 

hat define the neighborhood associated to the vertex v and let 

 v = 

m v ⋃ 

� =1 

C � v denote the union of these sets. Consider the binary 

ariable χ i� 
v that assumes the value of one if x i v is located in the 

et C � v and zero otherwise. Thus, for each v ∈ V, we can model that

 

i 
v ∈ U v by using the following inequalities for each i = 1 , 2 : 

 

i 
v ∈ U v ⇐⇒ 

{ ‖ A 

j � 
v x 

i 
v + b j � v ‖ ≤ (c j � v ) 

T x i v + d j � v + M 

j � 
v (1 − χ i� 

v ) , 
� = 1 , . . . , m v , j � = 1 , . . . , n � v , ∑ m v 
� =1 χ

i� 
v = 1 , 

( U − C ) 

here M 

j � 
v is a big-M constant on the maximal distance between 

wo points in the union of sets. The reader may observe that one 

an replace ( C-C) by ( U − C ) in all our formulations without com- 

romising their validity. Therefore, our model can deal easily with 

hese more general forms of neighborhoods. 

On the other hand, the second type of elements are the piece- 

ise linear constraints. Let n Sv be the number of line segments of 

he polygonal chain v . Since we need to refer to interior points 

f the segment, these continuum of points is parametrized by 

he two endpoints of the segment: x ∈ [ A 

j 
, A 

j+1 
] if and only if
v v 
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Fig. 2. An example with 9 elements: 7 convex sets and 2 polygonal chains. 
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 γ ∈ [0 , 1] such that x = γ A 

j 
v + (1 − γ ) A 

j+1 
v . In order to deal with

hem, we introduce the following variables for each vertex v ∈ V P 
nd i = 1 , 2 : 

• u v : Binary variable that determines the traveling direction in 

the polygonal chain v . 
• γ i j 

v : Continuous variable in [0,1] that represents the parameter 

value of the x i v variable in the line segment j of the polygonal 

chain v , j = 1 , . . . , n Sv . 
• μi j 

v : Binary variable that is one when x i v is located in the line 

segment j of the polygonal chain v , and zero otherwise, for j = 

1 , . . . , n Sv . 
• λi 

v : Continuous variable in [0 , n Sv ] that models the parametriza- 

tion of the entry or exit points along the polygonal chain asso- 

ciated with v . 

Using these variables, we can determine the placement of the 

ntry and exit points on the polygonal chain v introducing the fol- 

owing inequalities for each i = 1 , 2 : 

 

i 
v ∈ P v ⇐⇒ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

λi 
v − j ≥ γ i j 

v − (n Sv + 1)(1 − μi j 
v ) , j = 2 , . . . , n Sv + 1 

λi 
v − j ≤ γ i j 

v + (n Sv + 1)(1 − μi j 
v ) , j = 2 , . . . , n Sv + 1 

γ i 1 
v ≤ μi 1 

v 
γ i j 

v ≤ μi j−1 
v + μi j 

v j = 2 , . . . , n Sv 

γ in Sv 
v ≤ μin Sv 

v ∑ n Sv 
j=1 

μi j 
v = 1 ∑ n Sv +1 

j=1 
γ i j 

v = 1 

x i v = 

∑ n Sv +1 
j=1 

γ i j 
v A 

j 
v 

( P − C ) 

Observe that the first and second inequalities determine the up- 

er and lower limits for the parametrization of each segment of P v . 

f μi j 
v = 0 the inequalities are always fulfilled and there is no entry 

r exit point in the jth segment of the polygonal v . On the con-

rary, if μi j 
v = 1 then λi 

v ∈ [ j, j + 1] meaning that the correspond-

ng entry or exit point is in the jth segment of the polygonal P v .

he third, fourth and fifth inequalities link μi j 
v and γ i j 

v variables 

and thus implicitly λi 
v ):they state that the variable γ i j 

v that gives 

he representation of a point x i v on the line segment j is active 

non-null) only if this line segment is chosen (to enter of exit), i.e., 
i j 
v = 1 . The sixth equation sets that only one line segment is cho- 

en for entering or leaving each polygonal chain. Finally, the sev- 

nth equation and eighth inequality set the representation of x i v as 

 convex combination of the extreme points of the adequate line 

egment. 

In addition, we assume that the tour must traverse at least 

ome given percentage αv of each polygonal chain total length. De- 

oting by λmin 
v and λmax 

v the parameter values of λ representing 

he initial and final points of P v , respectively, we can model that 

ondition by the following absolute value constraint: 

 λ1 
v − λ2 

v | ≥ n S v αv ⇐⇒ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

λ1 
v − λ2 

v = λmax 
v − λmin 

v 
λmax 

v + λmin 
v ≥ αv n Sv 

λmax 
v ≤ n Sv (1 − u v ) 

λmin 
v ≤ n Sv u v . 

(α − C ) 

The above modelling assumptions are sufficient to address the 

ange of situations that we want to model. Obviously, they could 

e more general at the price of not being easy to implement with 

ff-the-shelf solvers. 

.1. Some interesting particular cases 

Three very interesting well-known models appear as particu- 

ar cases of the problems that can be modelled within our frame- 

ork. If the element associated with each vertex is a single point 

he problem reduces to the standard traveling salesman problem. 

f the element associated with each vertex v ∈ V is a segment 

 v = [ x 1 v , x 
2 
v ] and αv = 1 , then XPPN becomes the classical Rural

ostman Problem in which the edges (x 1 v , x 
2 
v ) are required, in the
4 
omplete graph induced by these vertices with edge lengths given 

y the Euclidean norm distance (see Orloff, 1974 ). In addition, if 

v � = 1 , ∀ v ∈ V then XPPN is an extension of the RPP where some

dges are only partially required. On the other hand, if the consid- 

red neighborhoods are big enough so that ∩ v ∈ V C v � = ∅ , then the

roblem reduces to finding a degenerate one-vertex tour and the 

olution to the XPPN is that vertex with cost 0. Finally, if all ele- 

ents N v , v ∈ V are neighborhoods we obtain the Traveling Sales- 

an problem with Neighborhoods (see Arkin & Hassin, 1994 ). 

Fig. 2 shows an example of the solution obtained for a case 

n which the elements are circles, triangles and we also have two 

olygonal chains to visit in our required route. 

The discussion above allows us to state the complexity of the 

PPN. 

heorem 1. The decision version of the problem XPPN, given a length 

 deciding whether the graph G has a XPPN tour of length at most L,

s NP-complete. 

The proof follows using a reduction from TSP that as shown 

bove is a particular case of this problem. 

. Mixed integer non linear programming formulations 

In this section we present alternative MINLP formulations for 

he XPPN that will be compared computationally in Section 7 . First, 

e start with a time dependent formulation that allows us to in- 

lude a number of specific characteristics in the modeling phase 

uch as time dependent travel distances, time windows or time de- 

endent discount factors. Then, we give another formulation that 

oes not make reference to stages in the routes and that simpli- 

es the model at the price of losing some of the above mentioned 

haracteristics. 

.1. A time dependent formulation 

One way to model the drone route in our problem is to make 

ariables dependent on the index of the stage when an element 

s visited in the sequence of visited elements. Thus, this formula- 

ion requires binary variables depending on the index order when 
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hey are chosen. Since variables depend on time parameters in the 

roblem, weighting factors for visiting the neighborhoods (b t v ) and 

istances d t (as proxy for travel times βt ), can also be dependent 

n the stage when they are used. 

To model the problem, we introduce a binary variable y t v to in- 

icate that the element associated with vertex v is visited by the 

rone at stage t . In addition, we define the following variables: 

• y t v : Binary variable whose value is one when v is visited at the 

tth position in the route sequence and zero otherwise. 
• z t v w 

: Binary variable that is one when v and w are visited con- 

secutively, assuming that v is visited at the stage t and zero 

otherwise. 
• z t v w 

= y t v y 
t+1 
w 

, v � = w . 
• d t v w 

: Continuous variable that represents the distance between 

pairs of chosen points v , w from different components at the 

stage t . 
• d t v : Continuous variable that represents the distance between 

two consecutive points within the same component associated 

with v ∈ V at the stage t . 
• λ1 

v , λ
2 
v : Continuous variables determining the position of x 1 v and 

x 2 v , respectively, in the polygonal chain P v . 

Using these variables, the first formulation follows: 

in 

| V | ∑ 

t=1 

∑ 

v � = w 

d t v w 

z t v w 

+ 

| V | ∑ 

t=1 

∑ 

v ∈ V 
f t v d 

t 
v (2a) 

.t. d t v w 

≥ βt 
v w 

‖ x 2 v − x 1 w 

‖ , ∀ v � = w (2b) 

d t v ≥ βt 
v ‖ x 1 v − x 2 v ‖ , ∀ v ∈ V (2c) 

∑ 

v ∈ V 
y t v = 1 , ∀ t (2d) 

| V | ∑ 

t=1 

y t v = 1 , ∀ v ∈ V (2e) 

y t v + y t+1 
w 

− 1 ≤ z t v w 

, ∀ v � = w, t = 1 , . . . , |C| − 1 (2f) 

(C − C ) , (P − C ) , (α − C ) (2g) 

The first addend of the objective function (2a) includes the 

rone traveling distance among different elements while the sec- 

nd one accounts for the distances between the entry and exit 

oints of each component taking into account the weighting fac- 

or for traveling within this component at the stage t . Constraints 

2d) and (2e) state, respectively, that in each stage the route visits 

ne element and each component is traversed once and only once. 

onstraint (2f) is obtained by linearizing z t v w 

and ensures that if 

e travel from v to w, assuming that we are in v at the instant t,

hen we visit v in t and w in t + 1 . Constraint (2g) refers to the do-

ain of the entry and exit points of each element in the problem, 

s well as the minimal required percentage of the polygonal chain 

ength that must be traversed by the drone. They were defined in 

ection 2 . 

Despite the versatility of this formulation for capturing actual 

haracteristics of drone routes, its drawback comes from the three 

ndex dimension of its variables which makes it difficult to handle 

edium size instances. In the next section, we shall simplify this 

ormulation making it independent of time at the price of losing 

ome of its time-dependent characteristics. 
5 
.2. Non-time dependent formulations 

The simplification mentioned above can be performed, based 

n the rationale of ensuring connectivity on the graph G, through 

ifferent sets of inequalities. In particular, we compare Miller- 

ucker -Zemlin (MTZ) inequalities and subtour elimination con- 

traints (SEC). All formulations use the following sets of decision 

ariables: 

• Binary variables z e ∈ { 0 , 1 } , e ∈ E out , to represent the edges of

the tours. 
• Continuous variables d e ≥ 0 , e = { v , w } ∈ E out ⊆ E, to represent

the distance d v w 

(x 1 v , x 
2 
w 

) between the pairs of selected points of 

different elements (neighborhoods) and d v ≥ 0 , v ∈ V, to repre- 

sent the distance d v (x 1 v , x 
2 
v ) between the pairs of points of the

same element. 

Let 

 e = { d ∈ R 

| E out | 
+ : d e ≥ d v w 

(x 1 v , x 
2 
w 

) , ∀ e = (v , w ) ∈ E out , x ∈ X } , 

 v = { d ∈ R 

| E in | + : d v ≥ d v = (x 1 v , x 
2 
v ) , ∀ v ∈ V, x ∈ X } , 

enote the domains for the feasibility of the d variables. The reader 

an see that these sets, namely D e and D v , can be alternatively 

escribed using the constraints 

‖ x 1 v − x 2 w 

‖ 2 ≤ d e , ∀ e = { v , w } ∈ E out , ( D 1 ) 

‖ x 1 v − x 2 v ‖ 2 ≤ d v , ∀ v ∈ V, ( D 2 ) 

x ∈ X , ( D 3 ) 

hich set the distance values and impose that x belongs to its suit- 

ble neighborhood. 

Then, a generic bilinear formulation for XPPN is 

min 

∑ 

e ∈ E out 

d e z e + 

∑ 

e ∈ E in 
f v d v ( Pdz ) 

s.t. z ∈ T G , 
( D 1) , ( D 2) 

(C − C ) , (P − C ) , (α − C ) 

The reader should observe that, as already mentioned, the 

bove formulation is bilinear since the first term of the objec- 

ive function contains products of variables of the form d e z e , for 

 ∈ E out . 

Next, we use McCormick’s envelopes ( McCormick, 1976 ) for the 

inearization of those bilinear terms of the objective function. We 

efine additional variables p e ≥ 0 , e ∈ E out that stand for that prod-

ct. 

Replacing the products by the new variables and introducing 

 new set of constraints enforcing the correct representation, we 

btain the following formulation: 

min P = 

∑ 

e ∈ E out 

p e + 

∑ 

v ∈ V 
f v d v ( RL-XPPN ) 

.t. p e ≥ d e − M e (1 − z e ) ∀ e ∈ E out ( LIN-Mc ) 

p e ≥ 0 , ∀ e ∈ E out 

z ∈ T G 
( D 1) , ( D 2) 

(C − C ) , (P − C ) , (α − C ) 

Here M e denotes an upper bound of the distance between the 

ets that are joined by e . 

Furthermore, this formulation can be reinforced by adding some 

alid inequalities: p e ≥ m e z e , ∀ e ∈ E out and d v ≤ M v , ∀ v ∈ V, where

 e and M v are bounds that are adjusted in Section 5 . The first

amily of valid inequalities sets lower bounds on the values for p e 
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hereas the second ones sets upper bounds on the distances trav- 

led by the drone within each neighborhood. 

The above discussion leads us to strengthen a generic formu- 

ation for XPPN. This formulation will be particularized once the 

onnectivity condition of the solutions is specifically introduced in 

he model. 

min P = 

∑ 

e ∈ E out 

p e + 

∑ 

v ∈ V 
f v d v 

s.t. p e ≥ d e − M e (1 − z e ) ∀ e ∈ E out ( LIN-Mc ) 

p e ≥ m e z e ∀ e ∈ E out ( VI-1 ) 

d v ≤ M v ∀ v ∈ V ( VI-2 ) 

z ∈ T G 
( D 1) , ( D 2) 

(C − C ) , (P − C ) , (α − C ) 

The two formulations that we present below differ from one 

nother in the family of constraints used to enforce connectivity. 

ne of them is by the family of subtour elimination constraints 

SEC), Edmonds (2003) . The other one relies on a compact formu- 

ation based on the well-known Miller-Tucker-Zemlin (MTZ) con- 

traints, Miller, Tucker, & Zemlin (1960) . 

.2.1. A valid formulation for XPPN based on SECs 

The family of SEC is well-known in combinatorial optimization. 

t enforces connectivity by imposing that the number of edges 

mong any subset of vertices can not exceed its cardinality mi- 

us one. Augmenting these constraints into the generic formula- 

ion presented above we obtain the following valid formulation for 

PPN: 

min P = 

∑ 

e ∈ E out 

p e + 

∑ 

v ∈ V 
f v d v ( SEC-XPPN ) 

( LIN-Mc ) , ( VI-1 ) , ( VI-2 ) ∑ 

w ∈ V \{ v } 
z v w 

= 1 , ∀ v ∈ V ( C 1 ) ∑ 

w ∈ V \{ v } 
z w v = 1 , ∀ v ∈ V ( C 2 ) ∑ 

e =(v ,w ): v ,w ∈ S 
z e ≤ | S| − 1 , ∀ S � V ( SEC ) 

( D 1) , ( D 2) 

(C − C ) , (P − C ) , (α − C ) 

Assignment Constraints ( C 1 ) and ( C 2 ) ensure that the drone en- 

ers and exits each component of the problem exactly once. Con- 

traint (SEC) prevents the existence of subtours. This constraint 

orces that in any subset S of nodes included in V there can not 

e more edges between nodes in S than its number of nodes mi- 

us one, thus avoiding the existence of cycles. 

Since there is an exponential number of SEC constraints, when 

e implement this formulation we need to perform a row gener- 

tion procedure including constraints, whenever they are required, 

y a separation oracle. To find SEC inequalities, as usual, we search 

or disconnected components in the current solution. Among them, 

e choose the shortest subtour found in the solution to be added 

s a lazy constraint to the model. 

If the considered distance between components is symmetric, 

e obtain the symmetric formulation based on SECs, denoted by 

sSEC-XPPN). In this formulation, we can halve the number of bi- 

ary variables and replace constraints ( C 1 ) and ( C 2 ) in ( SEC-XPPN ) 

y the following connectivity restrictions: 

∑ 

z w v = 2 , ∀ v ∈ V. 
w ∈ V \{ v } t

6 
.2.2. XPPN formulation based on the Miller-Tucker-Zemlin 

nequalities 

This section addresses an alternative formulation that results 

eplacing SEC inequalities by the so called Miller-Tucker-Zemlin 

onstraints (see Miller et al., 1960 ). In this formulation, we intro- 

uce the integer variable s v to generate an alternative formulation 

hat eliminates the subtours and the exponential number of in- 

qualities of ( SEC-XPPN ) . 

in P = 

∑ 

e ∈ E out 

p e + 

∑ 

v ∈ V 
f v d v ( MTZ-XPPN ) 

.t. ( LIN-Mc ) , ( VI-1 ) , ( VI-2 ) ∑ 

w ∈ V\{ v } 
z v w = 1 , ∀ v ∈ V ( C 1 ) ∑ 

w ∈ V\{ v } 
z w v = 1 , ∀ v ∈ V ( C 2 ) 

| V | z v w + s v − s w ≤ | V | − 1 , ∀ e = (v , w ) ∈ E out ( MTZ 1 ) 

s 1 = 1 ( MTZ 2 ) 

2 ≤ s v ≤ | V | , ∀ v ∈ V ( MTZ 3 ) 

s v − s w + | V | z w v ≤ | V | − 1 , ∀ e = (v , w ) ∈ E out , w > 1 ( MTZ 4 ) 

s v − s w + (| V | − 2) z w v ≤ | V | − 1 , ∀ e = (v , w ) ∈ E out , v > 1 ( MTZ 5 ) 

( D 1) , ( D 2) 

(C − C ) , (P − C ) , (α − C ) 

Again constraints ( C 1 ) and ( C 2 ) require that in each feasible so- 

ution only one edge departs from node v and only one edge en- 

ers at node v for any v ∈ V, respectively. It is well-known that con-

traints ( MTZ 1 ) - ( MTZ 3 ) (see Miller et al., 1960 ) model the elimina-

ion of subtours. The constraints ( MTZ 1 ) - ( MTZ 3 ) enforce connec- 

ivity, i.e., that there is only a single tour covering all vertices. The 

onstraints ( MTZ 4 ) and ( MTZ 5 ) define the intermediate conditions 

or the tour that may improve the performance of this formulation 

ver the formulation based on subtour elimination constraints (see 

awik (2016) for more details). 

Now we state a result related to the relationship between the 

EC and MTZ polytopes of our formulations of the XPPN, that is, 

he feasible regions of the respective LP relaxations of these mod- 

ls. 

heorem 2. The SEC polytope is contained in the MTZ polytope for 

he XPPN. 

roof. Observe that the only difference between these two poly- 

opes is the family of constraints that ensures the elimination of 

ubtours. Therefore, it is enough to see that the (SEC) constraints 

re stronger than those given in ( MTZ 1 ) - ( MTZ 3 ) which is proved

n Velednitsky (2017) . �

. A heuristic algorithm for XPPN 

In this section we present a heuristic algorithm for solving 

PPN. This algorithm has two different applications. On the one 

and, it provides good quality feasible solutions for XPPN that be- 

ome a promising alternative to exact methods whenever the size 

f the problems is large. On the other hand, it also helps in solving 

xactly XPPN by feeding the exact formulations with a good initial 

olution which in turns speeds up the branch and bound search. 

he considered algorithm is composed by two phases: the Cluster- 

ng Phase and the Variable Neighborhood Search (VNS) Phase. The 

o called clustering phase determines some points in each dimen- 

ional element (polygonal chain or neighborhood) and then the 

NS phase finds a heuristic tour on the complete graph spanned 

y the previously obtained points. 

The clustering phase 

The first phase of the heuristic algorithm is based on solving a 

elatively easy single facility location problem: the Weber or me- 

ian Problem. The solution of this problem looks for a prototype 

oint (a representative) x v , v ∈ V of the dimensional elements in 

he problem (neighborhoods and polygonal chains) and another 
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Fig. 3. Illustration of the first phase of the heuristic algorithm. 
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Fig. 4. Application of the VNS phase to the example of Fig. 3 . 

Algorithm 1: Heuristic for solving XPPN. 

Let {N v : v ∈ V } be the neighborhood set.Set at tempt s = 25 , 

neigh _ size = 5 , iter = 10 . 

1. Solve the Weber problem for N v to get x̄ . 

2. Consider the VNS approach with parameters at tempt s, 

neigh _ size and iter and points x̄ to obtain the order of visit 

to the neighborhoods z̄ . 

5

5

t
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t
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oint, Med, so that the sum of the Euclidean distances from x v to 

ed is minimized. 

min 

∑ 

v ∈ V 
‖ x v − Med ‖ ( Web er )

.t. (C − C ) , (P − C ) , (α − C ) 

The idea of this approach is to find some points that are likely 

o be close to the true chosen points in each element in the final

ptimal drone route. Fig. 3 shows an example that combines six 

eighborhoods and four polygonal chains. Red points represent the 

oints of each set and the green point is the proposed 1-median 

btained after solving the corresponding Weber problem described 

bove. 

he variable neighborhood search phase 

Once the points of each set have been chosen, the idea is to 

nd the minimal cost drone route that joins these points. To ob- 

ain this route, we have used the well-known and general Vari- 

ble Neighborhood Search metaheuristic developed in Mladenovi ́c 

 Hansen (1997) . The Python implementation code has been taken 

rom Pereira (2018) . In that implementation, the distance matrix 

s computed by taking the Euclidean distances between each pair 

f points. In our case, we had to modify it because our distance 

atrix requires also distances computed along the different con- 

idered polygonals. 

Using the example depicted in Fig. 3 , we generate a tour con- 

idering this VNS approach with a maximum number of 25 at- 

empts, a neighborhood of size 5 and 10 iterations. The final result 

s shown in Fig. 4 . 

Finally, in order to build a feasible solution for XPPN we take 

nto account the position of the points (represented by x 1 v and x 2 v ) 

nd the order in which they are visited in the tour obtained by the 

NS phase of our heuristic (represented by z v w 

). Once the solution 

s built, it can also be taken as an initial solution for any of the

xact formulations presented above. In the following, we present 

he pseudo-code of this heuristic: 
7 
. Strengthening the formulation of XPPN 

.1. Pre-processing 

In this section we explore the geometry of the neighborhoods 

hat appear in the problem to fix a priori some variables and to 

ncrease the efficiency of the model. 

First of all, we consider two special cases that relate the posi- 

ion of the entry and exit points of each neighborhood with the 

oefficient f v of the objective function. 

emark. If the problem verifies that f v = 0 for all v ∈ V C , then the

ntry and exit points x 1 v and x 2 v selected in each neighborhood are 

he same that the ones obtained by minimizing the distance be- 

ween the neighborhoods. 

emark. If f v ≥ 1 for some v ∈ V C , then, there exists an optimal

olution verifying x 1 v = x 2 v . 

roof. Let us consider an optimal route and let p be the path in 

hat route that visits C v . Assume without loss of generality that 

o visit C v , the route departs of the previous element C u from x 2 u ,

nters C v through x 1 v and exits from x 2 v where x 1 v � = x 2 v and f v ≥ 1 .

ssume again without loss of generality that after visiting C v the 

oute goes to C w 

entering by x 1 w 

. Let us consider the alternative 

ath p ′ formed by x 2 u , the midpoint x ′ v between x 1 v and x 2 v and

 

1 
w 

. The contribution of visiting C v in the objective function of the 

roblem will be 
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ength (p ′ ) = d(x 2 u , x 
′ 
v ) + d(x ′ v , x 1 w 

) 

≤ d(x 2 u , x 
1 
v ) + d(x 1 v , x 

′ 
v ) + d(x ′ v , x 2 v ) + d(x 2 v , x 

1 
w 

) 

= d(x 2 u , x 
1 
v ) + d(x 1 v , x 

2 
v ) + d(x 2 v , x 

1 
w 

) 

≤ d(x 2 u , x 
1 
v ) + f v d(x 1 v , x 

2 
v ) + d(x 2 v , x 

1 
w 

) 

= length (p) , 

ut p is an optimal path to visit those elements in this optimal so- 

ution which turns all the above inequalities into equalities. There- 

ore, the path p ′ is also an optimal path within that optimal solu- 

ion. However, by construction on C v , p ′ has the same entry and 

xit point which proves the claim. �

From now on, we assume in the rest of this section that f v ≥ 1

or all v ∈ V . The following outcome restricts the domain where the 

elected points can be located. 

roposition 1. There exists always an optimal solution of the XPPN 

hose selected points are placed in the boundary of the neighbor- 

oods. 

roof. If the number of elements of the problem is two, the prob- 

em consists of calculating the minimum distance between two 

onvex sets and it is known that the selected points are clearly 

ocated in the boundary of the sets if they do not overlap and can 

e chosen in the border in case of overlapping. If the number of 

eighborhoods is more than two, we can reduce the proof to ana- 

yze three consecutive elements. Let T be the triangle spanned by 

he point x u ∈ C u of the previously visited neighborhood, the point 

 v in the neighborhood C v and the point x w 

∈ C w 

of the next neigh-

orhood to be visited in an optimal sequence. We could have three 

ossible cases depending on the number of points allocated in the 

oundary. If x u , x v , x w 

are aligned, for each point that is not in the

oundary, namely C v , we can consider the closest point obtained 

y the intersection of the line generated by x u and x v with the 

oundary of C v , ∂C v . This point is also aligned with the others and

ts contribution to the objective function is the same as the one 

iven by x v . Therefore, let assume that these points are not aligned. 

e have three cases: 

• Case 1 : Suppose that only x v ∈ C v is not in the boundary. Let 

x u x w 

be the line segment that joins x u and x w 

. Let suppose, for 

the sake of contradiction, that there exists a neighborhood C v 
whose selected point in the optimal sequence is in the topo- 

logical interior of C v , i.e., x v ∈ int(C v ) . The idea of the proof is

to find another point in the boundary of C v closer to x u and 

x w 

. We consider the point x ′ v = r ⊥ ∩ ∂C v , where r ⊥ is the per-

pendicular line to the line segment x u x w 

and ∂C v is the bound- 

ary of C v . Observe that this intersection produces two points in 

∂C v : among them we take the closest one to x u x w 

. If we call T ′ 
the triangle generated by x u , x ′ v and x w 

, then the height of T ′ 
to x u x w 

is smaller than the one of T . Hence by the Pythagoras 
8 
Theorem, x u x ′ v < x u x v and x ′ v x w 

< x v x w 

, which is a contradiction. 
• Case 2 : Assume that x u ∈ C u and x v ∈ C v are not in the bound-

ary. We can take x ′ u = x u x v ∩ ∂C u . This point is closer to x v than

x u and it is in the boundary of C u . Therefore, we have two 

points in the boundary and we can apply the previous case to 

conclude that x v must be in ∂C v too. 
• Case 3 : Finally, suppose that no point is in the boundary of 

each neighborhood. Again, we can construct x ′ u = x u x v ∩ ∂C u 
that is closer to x v and x w 

. Then, we have a point in the bound-

ary and Case 2 can be applied to the rest of points. �
The special case in which all the neighborhoods are circles, al- 

ows us to limit even more the location of the points based on the 

onstruction given in the Proposition 1 . 

orollary 2.1. Any point selected in an optimal solution of the XPPN 

hen all the neighborhoods are circles is placed in some arc of one of 

he circumferences inside of the convex hull generated by the center 

f the circles. 

roof. If we have two neighborhoods, the selected points are lo- 

ated in the line segment that joins the center of the circles and 

he result follows. If the number of neighborhoods is more than 

wo, we can reduce the proof to analyze three consecutive ele- 

ents. Let T be the triangle spanned by the point x u ∈ C u of the

reviously visited neighborhood, the point x v in the neighborhood 

 v and the point x w 

∈ C w 

of the next neighborhood in an optimal

equence. Let assume that we have two points inside the convex 

ull and x v ∈ C v does not satisfy this property. Let also x u x w 

be the

ine segment that joins x u and x w 

. We distinguish two cases de- 

ending on the location of x v in the neighborhood: 

• If x u , x v , x w 

are aligned, it is straightforward to conclude that x v 
is in the convex hull of the centers. 

• If x u , x v , x w 

are not aligned, let assume that in N v its selected

point is not in the convex hull C v of the centers of the neigh-

borhoods. The idea of the proof is to find another point in the 

boundary of the convex hull C v whose distance to x u and x w 

is 

smaller than the distance from x v . We split the boundary of C v 
(circumference) in two arcs A R and A B . These arcs are built by 

taking the perpendicular line to the edge of the convex hull C: 
• If x v ∈ A R , we take x ′ v the projection to the convex hull and

it produces a triangle T ′ with lower height to x u x w 

. Then, we 

can use the Proposition 1 to construct a point in the bound- 

ary of C v that lies in the convex hull. (See Fig. 5.1). 
• If x v ∈ A B , we construct x ′ v the diametrically opposite point 

of x v in N v . This point also produces a smaller height that 

contradicts the assumption that x v gives the shortest tour. 

(See Fig. 5.2) 

If the number of points outside the convex hull is more than 

ne, we can apply this procedure iteratively to include these points 

n the convex hull generated by the center of the circles. �
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Fig. 6. Upper and lower bound when a set is a polygon and the other is an ellip- 

soid. 

Fig. 7. Upper and lower bound when both sets are polygons. 

Fig. 8. Upper bound on the maximal distance within a set. 

6

Finally, we conclude this section giving another result that al- 

ows one to eliminate some neighborhoods and thus simplify the 

roblem without modifying the objective value of the problem. 

roposition 2. Given two neighborhoods A and B, if B ⊃ A, then B 

an be removed in the problem. 

roof. Starting from the optimal solution of problem without B, 

e are going to build an optimal solution including B that is es- 

entially the same. Let z ∗ the optimal tour by deleting the neigh- 

orhood B in the problem. By connectivity, there exist two neigh- 

orhoods A −1 and A +1 that are connected with A, i.e., such that 

 

∗
A −1 A 

= z ∗
AA +1 

= 1 . In addition, let x ∗
A 

be the point chosen to visit

he neighborhood A . If we include B ⊃ A in the problem and 

e fix x B = x ∗
A 

and z AB = z BA +1 
= 1 . This solution is also a simple

ath whose objective value is the same because d(A, B ) = 0 and

(B, A +1 ) = d ∗(A, A +1 ) . �

.2. Valid inequalities 

The different models that we have proposed include in one way 

r another big-M constants. In order to strengthen the formula- 

ions we provide good upper bounds for those constants. In this 

ection we present some results that adjust them for each kind of 

et considered in our models. 

The first big-M constant we need to adjust is M e that denotes 

n upper bound of the distance between the sets joined by an edge 

 ∈ E out . We have three cases that depend on the shape of the sets

 and B : 

• If A and B are both ellipsoids, we cannot easily compute the 

maximum distance between A and B, but we can generate an 

upper bound of this distance by taking diametrically oppo- 

site points of minimum radius circles containing each ellipsoid. 

When both ellipsoids are circles, this bound coincides with the 

maximum distance. 
• If A is an ellipsoid and B is a polygon or a polygonal chain, we

can set this bound by the maximum of the distances of each 

vertex of B to the center of A plus the radius of the minimum

circle that contains the ellipsoid A . 
• If A and B are both polygons or polygonal chains, this bound can 

be computed exactly by taking the maximum of the distances 

between vertices of A and B . 

The second bound to be adjusted is m e . It denotes a lower 

ound of the distance of the sets joined by the edge e ∈ E out . In

his case, we can compute this distance exactly by solving a con- 

ex program that minimizes the distance between the sets A and 

 . 

In the Figs. 5 –7 we show the selected maximal (red) and mini- 

al (blue) bounds depending on the shape of the sets. 

In addition, the third bound represents the maximal distance 

etween two points within a given neighborhood. We can compute 

his upper bound according to the shape of this set (see Fig. 8 ): 

• If the set is an ellipsoid, we can take diametrically opposite 

points of the minimum radius circle that contains this ellipsoid. 
Fig. 5. Upper and lower bound when both sets are ellipsoids. 

p

t

v  

t

O

i

p

s

a

9 
• If the set is a polygon, we can compute the maximum of the 

distances between each pair of vertices. 
• If the set is a polygonal chain, this bound equals the length of 

the polygonal. 

. A decomposition algorithm 

In this section we present an alternative row generation ap- 

roach to solve the XPPN based on a Benders decomposition of 

he problem. The general method is based on the following obser- 

ation: If we fix z ∈ T G in the generic formulation of XPPN, we ob-

ain a continuous SOC problem, which is well-known to be convex. 

n the other hand, the objective function that we are considering 

s bilinear. Hence, we can use a Benders-like decomposition ap- 

roach (see Benders, 1962 ) to generate an iterative algorithm that 

olves this problem. 

For a given z̄ ∈ T G , the “optimal” vertices and distances of its 

ssociated XPPN can be computed by solving the following sub- 
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Fig. 9. Comparison of the times of the MTZ formulation varying the α parameter. 
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Algorithm 2: Decomposition Algorithm for solving XPPN. 

Initialization : Let z 0 ∈ T G be an initial solution and ε a given 

threshold value. 

Set LB = 0 , UB = + ∞ , z̄ = z 0 . 

while | UB − LB | > ε do 

1. Solve (Pd ̄z ) for z to get d( z ) . 

2. Add the cut P ≥ d( ̄z ) + 

∑ 

e : ̄z e =1 M e (z e − 1) + 

∑ 

e : ̄z e =0 m e z e 
to the current master problem. 

3. Obtain the optimal value P̄ to the current master problem, 

and its associated solution z̄ . 

4. Update LB = max { LB, P̄ } and 

UB = min { UB, 
∑ 

e ∈ E d e ( z ) z e + 

∑ 

v ∈ V f v d v } 
end 

l

s

o

t

w

o

t

b

7

7

c

b

l  

fi  
roblem: 

in d( ̄z ) = 

∑ 

e ∈ E out 

d e ̄z e + 

∑ 

v ∈ V 
f v d v ( Pd ̄z ) 

s.t. d e ∈ D e , d v ∈ D v . 

Note that the number of d variables in ( Pd ̄z ) is 2 | V | , because

nly distances with nonzero z̄ e variables need to be calculated. 

hus, Benders decomposition is a good approach for solving the 

PPN problem based on our formulations (see Blanco et al., 2017 ). 

he explicit form of the Benders cuts is the following: 

 ≥ d( ̄z ) + 

∑ 

e : ̄z e =1 

M e (z e − 1) + 

∑ 

e : ̄z e =0 

m e z e (4) 

here P = 

∑ 

e ∈ E out 
p e + 

∑ 

v ∈ V f v d v with p e ≥ 0 and M e and m e are

he upper and lower bounds estimated in the above section. 

Therefore, the relaxed master problem at the k th iteration of 

he row-generation algorithm can be stated as: 

 

∗ = min P 

P ≥ d( ̄z k ) + 

∑ 

e : ̄z k e =1 

M e (z k e − 1) + 

∑ 

e : ̄z k e =0 

m e z 
k 
e , k = 1 , . . . , K, (5) 

 = 

∑ 

e ∈ E out 

p e + 

∑ 

v ∈ V 
f v d v (6) 

 ∈ T G . 

Adding the above cuts sequentially gives rise to the solution 

cheme described in Algorithm 2 : 

Observe that in the while loop we set the stopping criterion as 

he maximum allowed gap between the upper and lower bound: 

his gap cannot exceed the fixed threshold value ε. 

Theorem 2.4 in Geoffrion (1972) states the finite convergence 

f the decomposition approach under the following assumptions: 

onvexity and finiteness of the feasible domains, closeness of the 

linking” constraints between the sets, and convexity of the objec- 

ive functions. In our case, the finiteness of the number of under- 

ying tours of T , the convexity of ( Pd ̄z ) for any z ∈ T , and the
G G 

10 
inear separability of the problem allows us to apply the above re- 

ult, which assures that Algorithm 2 terminates in a finite number 

f steps (for any given ε ≥ 0 ). 

To avoid the enumeration of all tours of T G , we have initialized 

he algorithm with a non-empty set of randomly generated cuts 

hich give a suitable initial representation of the lower envelope 

f P . 

Given that the master problem exhibits a combinatorial na- 

ure, we have embedded the cut generation mechanism within a 

ranch-and-cut scheme. 

. Computational experiments 

.1. Data generation 

In this section we have performed a series of experiments to 

ompare the formulations presented in Sections 3 and 6 . Since no 

enchmark instances are available in the literature for this prob- 

em, based on the work of Blanco et al. (2017) , we have generated

ve instances with a number | V | ∈ { 5 , 10 , 15 , 20 } of neighborhoods
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Table 1 

Computational comparison between MTZ formulation with and without initial solution. 

Size Radii Mode Final Gap (Init) Final Gap (NoInit) Opt. Time (Init) Opt. Time (NoInit) 

5 1 1 0.0 0.0 0.61 0.45 

5 1 2 0.0 0.0 0.12 0.08 

5 1 3 0.0 0.0 0.21 0.13 

5 1 4 0.0 0.0 0.25 0.27 

5 2 1 0.0 0.01 0.27 0.4 

5 2 2 0.0 0.0 0.13 0.11 

5 2 3 0.0 0.0 0.17 0.14 

5 2 4 0.0 0.0 0.17 0.19 

5 3 1 0.0 0.0 0.44 0.42 

5 3 2 0.0 0.01 0.16 0.12 

5 3 3 0.0 0.0 0.17 0.16 

5 3 4 0.0 0.0 0.3 0.35 

5 4 1 0.0 0.01 0.34 0.4 

5 4 2 0.0 0.0 0.14 0.34 

5 4 3 0.0 0.0 0.16 0.16 

5 4 4 0.0 0.0 0.28 0.3 

10 1 1 0.0 0.0 1.93 4.53 

10 1 2 0.0 0.0 0.75 0.84 

10 1 3 0.0 0.0 0.72 1.77 

10 1 4 0.0 0.0 1.52 2.95 

10 2 1 0.0 0.0 38.83 61.53 

10 2 2 0.0 0.0 14.14 44.93 

10 2 3 0.0 0.0 2.23 4.65 

10 2 4 0.0 0.0 2.52 7.5 

10 3 1 0.0 1.09 487.94 1049.86 

10 3 2 0.0 0.0 35.81 153.37 

10 3 3 0.0 0.0 13.28 29.43 

10 3 4 0.0 0.0 133.81 510.58 

10 4 1 19.28 10.0 3513.38 4134.31 

10 4 2 0.0 0.0 238.98 1253.21 

10 4 3 0.0 0.0 20.25 82.39 

10 4 4 0.0 11.75 1142.17 3490.88 

15 1 1 0.0 0.0 18.58 196.71 

15 1 2 0.0 0.0 3.38 23.37 

15 1 3 0.0 0.0 314.57 44.56 

15 1 4 0.0 0.0 10.94 90.1 

15 2 1 6.69 23.17 3135.29 7200.72 

15 2 2 0.0 14.06 2460.78 7200.49 

15 2 3 0.0 0.0 14.58 49.51 

15 2 4 0.0 5.88 1052.16 4660.88 

15 3 1 46.33 59.74 5760.56 7200.28 

15 3 2 20.79 31.2 5760.84 7200.8 

15 3 3 0.0 0.0 322.77 599.25 

15 3 4 14.07 19.17 5865.82 6896.78 

15 4 1 100.0 100.0 7200.47 7200.98 

15 4 2 20.2 36.9 4421.25 7200.51 

15 4 3 0.19 0.72 2195.2 3566.82 

15 4 4 21.6 27.71 7200.42 7200.5 

Table 2 

Computational comparison between MTZ formulation and Benders algorithm for problems with up to 10 neighborhoods. 

Size Radii Mode Final Gap (Benders) Time (Benders) #Cuts Final Gap (MTZ) Time (MTZ) 

10 1 1 0.0 15.72 19.0 0.0 1.93 

10 1 2 0.0 23.64 55.4 0.0 0.75 

10 1 3 0.0 13.22 25.8 0.0 0.72 

10 1 4 0.0 33.96 29.8 0.0 1.52 

10 2 1 76.1 6430.08 1209.0 0.0 38.83 

10 2 2 56.14 4777.58 1009.6 0.0 14.14 

10 2 3 0.0 1766.06 380.6 0.0 2.23 

10 2 4 10.57 5993.57 804.6 0.0 2.52 

10 3 1 96.21 7208.56 1481.2 0.0 487.94 

10 3 2 92.16 7203.99 1352.2 0.0 35.81 

10 3 3 9.29 5832.51 520.4 0.0 13.28 

10 3 4 84.41 7214.86 921.8 0.0 133.81 

10 4 1 98.79 7205.35 2283.0 19.28 3513.38 

10 4 2 95.53 7207.51 1343.4 0.0 238.98 

10 4 3 19.55 7220.14 499.0 0.0 20.25 

10 4 4 82.69 7211.46 789.8 0.0 1142.17 

11 
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Table 3 

Asymmetric SEC results with initial solution. 

Size Radii Mode Final Gap Exact Time Heur. Time % Improved Gap 

5 1 1 0.0 0.11 2.29 0.83 

5 1 2 0.0 0.06 2.2 0.57 

5 1 3 0.0 0.14 3.82 0.37 

5 1 4 0.0 0.12 2.8 0.92 

5 2 1 0.0 0.09 2.35 2.51 

5 2 2 0.0 0.06 2.37 2.25 

5 2 3 0.0 0.15 3.51 1.37 

5 2 4 0.0 0.09 2.68 2.53 

5 3 1 0.0 0.11 2.26 3.79 

5 3 2 0.0 0.08 2.34 3.85 

5 3 3 0.0 0.16 3.72 2.05 

5 3 4 0.0 0.15 2.82 2.29 

5 4 1 0.0 0.13 2.31 4.42 

5 4 2 0.0 0.26 2.18 5.18 

5 4 3 0.0 0.16 3.48 3.69 

5 4 4 0.0 0.14 2.89 8.05 

10 1 1 0.0 0.95 4.31 3.25 

10 1 2 0.0 0.47 4.37 2.56 

10 1 3 0.0 1.72 7.72 1.28 

10 1 4 0.0 4.81 5.6 1.53 

10 2 1 0.0 21.74 4.73 6.48 

10 2 2 0.0 8.45 4.36 6.37 

10 2 3 3.23 2949.61 9.25 2.21 

10 2 4 1.38 2188.88 6.14 3.22 

10 3 1 0.0 522.23 5.08 10.0 

10 3 2 0.0 84.64 4.9 9.26 

10 3 3 3.47 4324.06 10.54 1.69 

10 3 4 0.0 404.51 5.29 7.48 

10 4 1 5.32 2484.47 5.17 7.76 

10 4 2 0.0 539.03 4.85 9.21 

10 4 3 3.57 3656.07 10.11 5.47 

10 4 4 16.69 6548.93 6.18 7.86 

15 1 1 0.0 14.12 5.63 2.74 

15 1 2 0.0 4.63 5.58 4.59 

15 1 3 12.12 7200.55 12.9 0.6 

15 1 4 0.46 1597.94 7.44 4.2 

15 2 1 29.42 7200.43 5.7 11.07 

15 2 2 17.89 6178.28 5.6 8.74 

15 2 3 13.91 7200.95 12.55 0.1 

15 2 4 23.44 7200.6 7.25 3.11 

15 3 1 70.59 7200.52 5.77 12.59 

15 3 2 35.67 7200.65 5.78 12.85 

15 3 3 9.7 5828.43 12.44 2.16 

15 3 4 45.94 7200.79 9.95 0.49 

15 4 1 100.0 7200.38 99.95 81.0 

15 4 2 43.12 7200.7 5.67 7.02 

15 4 3 7.6 5789.95 12.67 3.58 

15 4 4 41.1 7200.6 8.48 6.57 

20 1 1 2.58 3189.58 6.9 2.72 

20 1 2 1.78 2894.34 6.47 4.59 

20 1 3 10.17 5797.93 13.57 1.78 

20 1 4 11.01 6434.25 11.34 1.47 

20 2 1 63.7 7200.95 6.41 10.96 

20 2 2 39.3 7201.34 6.77 10.83 

20 2 3 11.82 6050.34 14.24 4.17 

20 2 4 37.99 7200.84 10.26 2.74 

20 3 1 95.47 7200.71 6.7 15.29 

20 3 2 55.89 7201.07 6.62 16.12 

20 3 3 17.75 7201.0 14.43 2.0 

20 3 4 45.88 7200.79 11.44 11.6 

20 4 1 100.0 7200.55 5.11 11.71 

20 4 2 60.12 7201.0 6.43 1.85 

20 4 3 10.06 7201.0 14.34 4.05 

20 4 4 23.76 7200.58 7.05 4.16 

a

f

b

nd we report the average results. We have considered three dif- 

erent types of neighborhoods to be visited: 

• Circles of radii r. 
• Regular polygons of radii r with a random number of vertices 

in the interval [3 , 10] . 
12 
• Polygonal chains parameterized by its breakpoints that are at a 

distance of in r from one another and some random percentage 

α ∈ [0 , 1] of their length to be visited. 

In addition, the centers or breakpoints of these elements have 

een generated uniformly in the square [0, 100]. On the one hand, 
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Table 4 

Symmetric SEC results with initial solution. 

Size Radii Mode Final Gap Exact Time Heur. Time % Improved Gap 

5 1 1 0.0 0.08 2.38 0.0 

5 1 2 0.0 0.04 2.29 0.0 

5 1 3 0.0 0.08 3.74 0.51 

5 1 4 0.0 0.05 2.88 0.09 

5 2 1 0.0 0.06 2.35 0.01 

5 2 2 0.0 0.06 2.38 0.0 

5 2 3 0.0 0.08 3.59 1.5 

5 2 4 0.0 0.06 2.72 1.26 

5 3 1 0.0 0.05 2.28 0.01 

5 3 2 0.0 0.05 2.36 2.47 

5 3 3 0.0 0.09 3.67 0.81 

5 3 4 0.0 0.07 2.83 3.36 

5 4 1 0.0 0.06 2.32 0.01 

5 4 2 0.0 0.05 2.31 0.13 

5 4 3 0.0 0.07 3.62 5.95 

5 4 4 0.0 0.08 2.95 1.9 

10 1 1 0.0 0.29 4.52 0.01 

10 1 2 0.0 0.14 4.66 0.01 

10 1 3 0.0 0.2 7.8 0.0 

10 1 4 0.0 0.23 5.51 0.04 

10 2 1 0.0 3.72 5.41 0.05 

10 2 2 0.0 1.88 5.69 2.28 

10 2 3 0.0 1.34 9.34 0.0 

10 2 4 0.0 1.36 9.68 1.17 

10 3 1 0.0 45.54 5.27 0.15 

10 3 2 0.0 9.37 4.9 0.53 

10 3 3 0.0 490.19 10.53 0.67 

10 3 4 0.0 7.78 5.33 4.51 

10 4 1 0.0 520.74 5.22 0.26 

10 4 2 0.0 36.72 4.99 8.1 

10 4 3 0.54 1474.78 11.41 0.0 

10 4 4 0.0 1461.93 6.84 2.91 

15 1 1 0.0 2.1 6.83 0.0 

15 1 2 0.0 0.86 6.46 1.11 

15 1 3 3.14 2881.8 13.26 0.0 

15 1 4 0.0 1.17 7.92 0.0 

15 2 1 12.93 5840.0 7.19 0.0 

15 2 2 8.9 4560.43 7.0 0.75 

15 2 3 11.18 5761.15 15.14 0.11 

15 2 4 8.3 4642.84 8.36 0.0 

15 3 1 64.34 7200.42 7.39 0.0 

15 3 2 28.89 7200.44 7.45 0.0 

15 3 3 5.59 5765.79 16.7 0.42 

15 3 4 24.3 7200.44 10.87 2.94 

15 4 1 99.69 7200.18 99.96 92.84 

15 4 2 35.34 7200.52 7.41 3.21 

15 4 3 12.84 7200.49 248.17 0.96 

15 4 4 35.59 7200.53 10.82 0.8 

20 1 1 0.0 175.65 11.47 0.81 

20 1 2 0.95 1632.15 10.98 0.03 

20 1 3 0.0 466.74 18.07 1.28 

20 1 4 8.59 2887.48 16.38 1.36 

20 2 1 43.77 7200.49 11.95 0.0 

20 2 2 26.72 7200.65 11.51 0.0 

20 2 3 4.65 4354.1 27.26 0.0 

20 2 4 26.11 7200.5 16.42 0.37 

20 3 1 81.51 7200.5 12.52 0.0 

20 3 2 47.27 7200.95 12.13 0.0 

20 3 3 16.84 7200.81 37.43 0.26 

20 3 4 44.18 7200.59 19.15 0.0 

20 4 1 100.0 7200.61 4.72 12.06 

20 4 2 55.27 7200.73 12.43 0.0 

20 4 3 15.84 7200.84 3191.77 0.28 

20 4 4 40.08 7200.79 20.47 0.0 

w

d

n

e have studied four different scenarios to generate the radii to 

efine the elements: 

• Small size Neighborhoods (r = 1) : Radii randomly generated 

in [0 , 5] . 
• Small-Medium Neighborhoods (r = 2) : Radii randomly gener- 

ated in [5 , 10] . 
• Medium-Large size Neighborhoods (r = 3) : Radii randomly 

generated in [10 , 15] . 
13 
• Large size Neighborhoods (r = 4) : Radii randomly generated 

in [15 , 20] . 

Finally, we have also considered four modes depending on the 

ature of the neighborhoods: 

• Mode 1: All neighborhoods are circles. 
• Mode 2: All neighborhoods are regular polygons. 
• Mode 3: All neighborhoods are polygonal chains. 
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Table 5 

MTZ results with initial solution. 

Size Radii Mode Final Gap Exact Time Heur. Time % Improved Gap 

5 1 1 0.0 0.61 1.47 0.02 

5 1 2 0.0 0.12 1.3 0.0 

5 1 3 0.0 0.21 2.01 0.08 

5 1 4 0.0 0.25 1.64 0.06 

5 2 1 0.0 0.27 1.33 2.38 

5 2 2 0.0 0.13 1.25 0.01 

5 2 3 0.0 0.17 1.9 0.64 

5 2 4 0.0 0.17 1.49 2.22 

5 3 1 0.0 0.44 1.28 1.01 

5 3 2 0.0 0.16 1.28 4.02 

5 3 3 0.0 0.17 1.95 0.73 

5 3 4 0.0 0.3 1.68 0.44 

5 4 1 0.0 0.34 1.28 15.36 

5 4 2 0.0 0.14 1.26 8.52 

5 4 3 0.0 0.16 1.98 1.55 

5 4 4 0.0 0.28 1.7 4.39 

10 1 1 0.0 1.93 2.63 0.09 

10 1 2 0.0 0.75 2.3 0.01 

10 1 3 0.0 0.72 4.49 0.3 

10 1 4 0.0 1.52 5.11 0.05 

10 2 1 0.0 38.83 2.33 0.01 

10 2 2 0.0 14.14 2.11 2.29 

10 2 3 0.0 2.23 15.6 0.97 

10 2 4 0.0 2.52 3.28 0.77 

10 3 1 0.0 487.94 2.44 0.16 

10 3 2 0.0 35.81 2.22 1.8 

10 3 3 0.0 13.28 14.76 2.94 

10 3 4 0.0 133.81 3.1 1.16 

10 4 1 19.28 3513.38 2.39 0.47 

10 4 2 0.0 238.98 2.28 13.46 

10 4 3 0.0 20.25 21.99 5.45 

10 4 4 0.0 1142.17 3.57 5.52 

15 1 1 0.0 18.58 5.98 0.15 

15 1 2 0.0 3.38 2.98 0.35 

15 1 3 0.0 314.57 9.09 0.2 

15 1 4 0.0 10.94 8.58 2.26 

15 2 1 6.69 3135.29 3.7 0.67 

15 2 2 0.0 2460.78 3.8 4.81 

15 2 3 0.0 14.58 87.78 3.68 

15 2 4 0.0 1052.16 8.27 2.28 

15 3 1 46.33 5760.56 4.12 4.04 

15 3 2 20.79 5760.84 4.51 3.57 

15 3 3 0.0 322.77 420.37 4.26 

15 3 4 14.07 5865.82 7.74 2.37 

15 4 1 100.0 7200.47 5.23 3.13 

15 4 2 20.2 4421.25 4.35 9.72 

15 4 3 0.19 2195.2 237.9 6.28 

15 4 4 21.6 7200.42 6.55 11.68 

20 1 1 0.0 743.32 13.95 2.78 

20 1 2 0.0 110.91 62.75 9.0 

20 1 3 1.6 2896.62 17.67 0.13 

20 1 4 1.16 3112.33 20.05 1.19 

20 2 1 37.26 7200.45 90.1 9.42 

20 2 2 19.43 7200.68 5.23 4.37 

20 2 3 0.0 1051.22 254.06 5.93 

20 2 4 17.15 7200.48 19.33 2.06 

20 3 1 78.16 7200.35 6.05 4.07 

20 3 2 34.44 5763.72 5.63 6.17 

20 3 3 0.73 4530.27 299.19 5.04 

20 3 4 30.71 7200.52 22.32 7.34 

20 4 1 100.0 7200.63 8.71 6.0 

20 4 2 41.32 7200.67 35.68 25.64 

20 4 3 1.83 7200.52 307.92 7.45 

20 4 4 29.84 7200.52 33.81 9.7 

s

E

a

E

h

d

f

(

• Mode 4: Mixture of the three previously considered neighbor- 

hoods. 

The reader should observe that all our instances are symmetric 

ince they are embedded in R 

2 and distances are measured with 

uclidean norm. All the formulations were coded in Python 3.7, 
14 
nd solved using Gurobi Optimization (2019) in a Intel(R) Xeon(R) 

-2146G CPU @ 3.50 GHz and 64GB of RAM. A time limit of 2 

ours was set in all the experiments. The interested reader can 

ownload some examples of the XPPN formulations in.lp format 

or several instances in the GitHub link cited in Puerto & Valverde 

2021) . 
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Fig. 10. Comparison of the final gap between MTZ formulation with and without initial solution after 7200 seconds for instances with 15 neighborhoods. 

Fig. 11. Performance profile: Time vs #Solved. 
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.2. Comparing time and non-time dependent formulations 

We analyzed in a preliminary study the time dependent formu- 

ation in Section 3.1 . For this formulation we have solved a number 

f instances of the easiest configuration corresponding to neigh- 

orhoods given by circles of small radius (Mode 1 and r = 1 ). For a

ize of n = 10 neighborhoods, these instances are always solved to 

ptimality on average in 1800 seconds. However, already for a size 

f n = 12 neighborhoods we could not solve to optimality any of 

he considered instances within 7200 seconds. Moreover, for 20% 

f the instances the solver could not even find a feasible solu- 

ion, and for the rest the average gap was above 80%. For this rea-

on, in the rest of the section, we have restricted ourselves to the 

omparisons of the non-time dependent formulations presented in 

ection 3.2 where larger instances can be solved. 

.3. Assessing the difficulty of the problems depending on the α
arameter 

In order to assess the difficulty of the problem as a function 

f α we report in this section the following experiment. A batch 

f 5 instances involving only polygonal chains have been created 
15 
nd solved by fixing the location of the polygonal chains and vary- 

ng only the α parameter in { 0 , 0 . 1 , 0 . 2 , . . . , 0 . 9 , 1 } . To simplify the

nalysis, we have set the same α for all the polygonals in each 

nstance, although the model has the flexibility to assign a differ- 

nt α for each one. In Fig. 9 we report a boxplot of the execu- 

ion time that the solver needs to compute the optimal solution of 

he five instances for each α. As the reader can see, the difficulty 

f the problem is not monotone on α. It increases monotonically 

rom zero (the simplest) to some maximum difficulty around 0.7 

r 0.8 and then, it decreases until α = 1 which is, approximately, 

f the same difficulty as α = 0 . 5 . These results make sense accord-

ng to the complexity of choosing the entering and exiting points 

f the polygonals: for α = 0 these points reduce to only one, the 

losest point; whereas for α = 1 these points are also fixed since 

hey must be the initial and final points. These facts simplifies the 

roblem as explained above. 

.4. Initializing the solver with a heuristic solution 

Our next preliminary test was devoted to decide whether ini- 

ializing the proposed formulations with an initial solution helps 

n solving the problem or not. In this regard, we have performed 
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Fig. 12. Final gap after 7200 seconds. 
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 comparison between formulation MTZ with and without the ini- 

ial solution provided by the VNS heuristic. The results are sum- 

arized in Table 1 . This table reports average results for instances 

f sizes 5,10 and 15 neighborhoods with all combinations of radii 

nd modes. It compares the final gap and running times for the 

ormulation with and without initial solution ( Final Gap (Init), 

pt. Time (Init) ) (resp. Final Gap (NoInit), Opt. Time (NoInit) ). 

he results are also depicted in the boxplox diagrams in Fig. 10 . 

oth, table and figure, clearly show that loading an initial so- 

ution helps in reducing the gap and the cpu time: all the in- 

tances up to 10 neighborhoods are solved to optimality with and 

ithout initial solution but for 15 neighborhoods the final gap 

n the first case is always better than in the latter (blue boxes 

re always below orange ones). Based on this results, in the fol- 

owing, we have always solved the instances loading an initial 

olution. 

.5. Comparing benders cuts with the MTZ formulation 

Here, the decomposition algorithm described in Algorithm 2 is 

ompared with the MTZ formulation without initialization. The 
16 
omputational results obtained by our implementation are in- 

luded in Table 2 . This table compares the results of the Final 

ap, cpu time and number of cuts added applying the decomposi- 

ion algorithm versus those obtained with formulation MTZ. From 

hese results we conclude that the decomposition algorithm per- 

orms worse than formulation MTZ even for small size problems. 

he Benders optimality cuts involve big-Ms, which in turns im- 

lies that a lot of cuts are needed (if not all) to certify optimal- 

ty. The big-M constraints comes from the linearization of bilinear 

erms which do to allow to apply the Benders approach because 

he lack of convexity. Thus, this may be one of the reasons why its 

erformance is worse than MTZ. To reinforce our observation, we 

ave also included a performance profile of number of solved in- 

tances versus time for formulations sSEC, MTZ and the decompo- 

ition algorithm (see Fig. 11 ). The reader can observe that the num- 

er of solved instances within the time limit is approximately one 

alf comparing Benders decomposition with MTZ and sSEC. These 

esults lead us to not include this algorithm in the final compu- 

ational experience for larger problem sizes presented in the last 

ubsection. 
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Fig. 13. Performance profile: Time vs #Solved. 
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.6. Comparing MTZ, SEC and sSEC with initialization from a 

euristic solution 

The remaining information of our computational experiments 

an be found in Tables 3–5 . The first one reports our results for

ormulation SEC, the second one for sSEC (symmetric version of 

EC) and the third one for MTZ. Information in all the three ta- 

les is organized in the same way. Each row shows averages of 

ve instances for different combinations of factors ( Size , Radii 

nd Mode ) each one with four different levels. Our tables have 9 

olumns. The first three (Size, Radii and Mode) describe the pa- 

ameters of the problem. Then, we report the final gap ( % Final 

ap ), time required by the exact method ( Exact Time ), time re-

uired by the heuristic ( Heur. Time ) and the % improvement of the 

ap with respect to the initial solution ( % Improved Gap ). Overall, 

e have solved 320 instances. 

To have a clearer view of the results we also present some com- 

arative boxplots obtained from the tables above. First of all, we 

eport the final gap after two hours of running time. We have gath- 

red all the information in Fig. 12 . It is organized in four rows cor-

esponding with the different modes: row i shows results for Mode 

, i = 1 , . . . , 4 . Within each row, there are four columns one per ra-

ius size. Then, each graph within this 4 × 4 grid contains com- 

arative diagrams for the four different problem sizes considered, 

amely | V | = 5 , 10 , 15 , 20 neighborhoods. Finally, for each problem

ize we compare the results obtained for our three different formu- 

ations Miller-Tucker-Zemlin (MTZ), Subtour elimination (SEC) and 

he symmetric version of SEC (sSEC). For instance, looking at the 

econd row, third column (Mode 2, Radius 3) one can see that for 

 V | = 5 and 10, which correspond to the first two boxes the gap

f the three formulations is zero in all the instances (actually the 

oxes are collapsed to lines). However, for | V | = 15 and 20 MTZ

eems to outperforms SEC and sSEC, and moreover, sSEC is also 

etter than SEC since the green boxes lie below the orange ones. 

s a general comment, one can observe that for all combinations 
t

17 
f factors MTZ (the blue boxes) outperforms SEC (orange) and sSEC 

green) and also sSEC reports smaller gaps than SEC, with the only 

xception of Mode 3 where SEC seems to work better than sSEC. 

Finally, we have included in Fig. 13 a performance profile graph 

f number of instances solved versus time. This figure shows that 

EC formulation is the weakest since it solves less number of 

nstances in the same cpu time. The comparison between MTZ 

nd sSEC is not that clear although in the long run MTZ seems to 

utperforms sSEC since the former solves more instances than the 

atter. 

We also compare next, the behaviour of SEC and sSEC in num- 

er of cuts required by these two formulations to solve the corre- 

ponding problems. As before, we have organized the information 

n a 4 × 4 grid of boxplox graphs. The reader can easily observe 

hat sSEC always requires less number of cuts (blue boxes corre- 

ponding to SEC are always above orange ones corresponding to 

SEC) showing that this formulation is more accurate than SEC: it 

eports smaller gaps (see Fig. 14 ) and needs less number of cuts. 

. Concluding remarks 

This paper has analyzed a novel version of the crossing post- 

an problem with neighborhoods. We have shown that the prob- 

em can be cast within the framework of the family of mixed in- 

eger second order cone programming and several exact formu- 

ations are presented and computationally tested on an extensive 

estbed of instances. Additionally, we have presented a heuristic al- 

orithm providing good quality solutions. It can be considered for 

arge scale problems and also as a procedure to obtain initial so- 

utions to initialize exact solvers handling our formulations. Com- 

utational results show that the problem is very hard and already 

or problems with 20 neighborhoods exact approaches fail to find 

n optimal solution within two hours of cpu time. 

This research opens up several research lines and extensions of 

he basic problem that can be included in the model. Among them 
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Fig. 14. Number of SEC added in the execution time. 
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e mention finding better formulations or decomposition schemes 

hat help in solving exactly larger instance sizes; and alternative 

euristic algorithms that allow tackling large scale problems. Other 

xtensions of the proposed models considered in this paper are 

he consideration of barriers that represent some buildings that the 

rone tour can not cross, conditions that control the displacement 

n the border of nonlinear neighborhoods like circles or problems 

hat take into account the limited autonomy of drones requiring 

hat the drone comes back to a depot to be recharged before to 

omplete the route. Some of these topics will be the subject of a 

ollow up paper. 
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