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Due to 2030 and 2050 targets of the latest international standards, energetically retrofitting the existing
building sector requires special attention. Prior to the proposal of retrofit strategies, it is necessary to
analyse the current energy performance of the stock. Although simulation tools provide accurate results
of energy performance at the building level, individual assessments of the large-scale stock lead to exten-
sive data collection and huge computational resources. This paper assesses the current performance of
one of the most representative building typologies in social housing stock in southern Spain, the H-
typology, predicting results on indoor thermal comfort at the stock level. The physical, constructive
and geometrical building characterisation and the selection of a calibrated and validated case study
through monitoring are used to generate parameterized energy simulation models, providing statistically
representative samples of the stock. Open-access energy simulation tools have been combined with sta-
tistical software. Conclusions reported show average annual discomfort hours of around 68%, with higher
percentage of annual undercooling discomfort hours, and identify the most influential parameters on
indoor thermal comfort as infiltration rate, people density and night-time natural ventilation rate.
Moreover, 10 Latin Hypercube Samples per parameterized variable derived in highly representative
results for thermally analysing the stock.
� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In 2020, as a result of global warming, the average surface tem-
perature increased by 1.02 �C compared to 1951–1980 [1]. Given
the urgent need to tackle the potential future effects of climate
change, several European regulations have recently been updated
to demand new energy consumption and efficiency targets [2],
with the building sector considered a major priority. European
building stock accounted for approximately 36% of carbon emis-
sions and 40% of the total energy consumption [3]. Given that
the current annual new-built construction rate is below 2% [4], ret-
rofit solutions for improving energy efficiency in existing buildings
must be promoted as a vital objective to meet the proposed energy
goals. In Europe, building renovation could reduce total energy
consumption and CO2 emissions by 6% and 5%, respectively [5].

The assessment of the current state of the existing building
stock and its thermal and energy performance is a key aspect prior
to any energy saving measure [6]. As much of the housing stock
was built under no energy performance obligation and is expected
to make up a large part of the future building stock, large-scale
procedures to enhance energy building efficiency must be priori-
tized in the coming years [7]. In this regard, building energy mod-
elling (BEM) through dynamic simulation is a useful tool for the
accurate estimation of the thermal performance of buildings [8],
along with the assessment of the effects of retrofit and technology
incentives. These provide interesting implications for decision-
making in the design and operation stages [9]. However, proposing
energy efficiency measurements which are not based on calibrated
and validated simulation models may lead to uncertain predictions
and results which are not adjusted to the real building perfor-
mance [10], noticeably increasing the performance gap [11].

Despite limitations such as model complexity, lack of extensive
data, high computation time and methodological uncertainties
[12], Building Stock Modelling (BSM) has commonly been used to
assess large-scale building energy performance. According to Swan
and Ugursal [13] building stock modelling approaches can be clas-
sified into two groups: top-down or bottom-up. Top-down meth-
ods assess cities at a macro scale, examining the technological
and economic effects. However, the use of historical aggregated
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data results in a significantly limited technique for accurate mod-
elling on an hourly basis, generally simulating macro-data on a
yearly or monthly resolution [14]. In contrast, bottom-up models
consider urban and building attributes at the micro-scale, relying
on extensive data and extrapolating the performance estimation
to a regional or national context [15]. While these approaches dis-
play greater accuracy, they require high computational burdens
[14]. There are two bottom-up methodology categories: data-
driven approaches, which use historical building stock information
to correlate relationships between input–output data through sta-
tistical techniques [16], and engineering or simulation methods,
which use archetypes that represent various building types of the
stock [17]. An archetype or ‘‘statistical composite of the features
found within a category of buildings in the stock” [18] can be char-
acterised by a set of properties statistically detected in a building
category [19]. Thus, a stock model can be created from a large
empirical database using a bottom-up method by defining arche-
types [20].

Using top-down methodologies for stock performance assess-
ment, Farzana et al. [21] estimated future energy consumption
for urban areas of Chongqing, using the Matlab environment to
compare artificial neural networks with other regression and poly-
nomial models. Relevant socio-economic and primary data of Chi-
nese buildings are collected using questionnaires and incorporated
into the model. Likewise, Mikkola et al. [22] obtained spatial and
input data from statistics databases to apply a top-down method
and generate spatio-temporal energy load profiles for two cities
(Helsinki and Shanghai).

In contrast, Krarti et al. [23] predicted energy consumption of the
residential building stock in Saudi Arabia to propose retrofit pro-
grams through a bottom-up simulation approach, using DOE-2.2
freeware building energy software. 54 prototypes were constructed
with building characteristics obtained from surveys and databases
(construction materials, lighting loads, HVAC systems, window glaz-
ing properties. . .). Mastrucci et al. [16] estimated energy consump-
tion of the residential stock in Rotterdam through a bottom-up
statistical and validated model implementing multiple linear regres-
sion. These authors coupled Geographic Information System (GIS)
software with the R statistical tool, incorporating dwelling informa-
tion (type, floor surface, number of occupants, envelope proper-
ties. . .) in order to assess the energy saving potential of several
retrofit solutions. Österbring et al. [24] used a bottom-up GIS model
linked with Simulink/Matlab software to obtain energy consumption
for the city of Gothenburg, incorporating urban information from
public databases and historical building regulations (such as HVAC
systems, number of stories, construction year, U-values. . .). Mata
et al. [6] used a bottom-up engineering model applied to a national
scale. Also through Simulink/Matlab environments, these authors
estimated the final energy performance of buildings in four countries,
defining archetype buildings based on physical and thermal aspects
(inertia, HVAC systems, climate conditions. . .) obtained from scien-
tific literature. Ascione et al. [25] analysed around 500 buildings in
the city of Benevento using a GIS tool to obtain energy consumption
results. To do so, geometry, thermo-physical properties of envelopes
and average HVAC data for buildings were obtained from audits,
other studies and normative or cartographic documents. Issermann
et al. [26] analysed energy demand and potential energy saving of
the residential building stock of Wuppertal (Germany) in a future
scenario, incorporating building properties from the TABULA project
[27]. Nägeli et al. [28] and Oberegger et al. [29] have also recently
proposed bottom-up stock modelling to predict energy demand
and energy-saving for several retrofits, presenting a useful tool for
cost-effective policy evaluation applied to residential building stock.

A smaller number of authors propose hybrid methods, using
data from local building archetypes as input in dynamic building
energy models. Brøgger et al. [30] applied a multiple linear regres-
2

sion hybrid model, validated through statistical measures, to deter-
mine the energy-saving potential of the Danish residential building
stock. The model incorporated information on building elements,
orientation, size, ventilation/infiltration rates, etc. obtained from
Energy Performance Certificates and Building Register databases.
Swan et al. [13] followed an engineering approach combined with
a neural network method to predict energy consumption of the
Canadian housing stock, incorporating the outputs of the statistical
model into the stock building-physics based simulation model.
Fonseca et al. [31] generated a hybrid method coupling Python
energy simulation software and ArcGIS tool to assess the energy
demand, carbon and financial benefits of different retrofit strate-
gies applied to a neighbourhood in Switzerland through multi-
criteria decision analysis. To do so, these authors included urban
and building properties (including window-to-wall ratio, height,
shading systems, envelope and HVAC systems) contained in public
databases.

Nonetheless, according to Brøgger et al. [30], indoor environ-
mental conditions must be known in order to propose realisable
energy-saving potential measures in the existing stock, in addition
to the building physical properties. This is particularly important in
southern Spain, given the generalized lack of Heating, Ventilation
and Air Conditioning (HVAC) systems in the social housing stock,
due to occupants’ low socio-economic resources [32]. Therefore,
the major challenge is not the reduction of energy demand in the
social dwellings of southern Spain, but rather the improvement
of indoor comfort conditions, as energy waste is lower than
expected in many of these buildings [33].

As stated above, most of the publications analysing the existing
residential building stock focus on energy demand and consump-
tion assessment, so more extensive research on the performance
of the existing building stock towards indoor comfort conditions
is still required. Dino et al. [34] coupled EnergyPlus and Matlab
to obtain results on the energy use, CO2 emissions and occupant
comfort (according to ASHRAE 55:2004 [35] and EN 15251:2007
[36]) of the residential building stock in four Turkish cities. Their
ultimate objective was the assessment of energy-saving retrofit
solutions towards 2060 climate change. However, to do so, these
authors calculate building envelope and element properties based
on Turkish standards, which they later included as input into the
building stock models, instead of using statistical information from
building stock databases. Palma et al. [37] used a GIS environment
to build a bottom-up methodology to compute the theoretical final
energy consumption of the Portuguese building stock, combined
with a top-down approach to estimate real final energy consump-
tion, based on meeting comfort conditions, even though no com-
fort analysis was reported. These authors admitted that the
model did not ‘‘perfectly encompass the true diversity” of the
building stock, since the building characteristics considered (en-
velope, glazing and window type, geometrical and physical proper-
ties) have been set at fixed average values.

The ultimate aim of this paper is to address the literature gap
identified on the assessment of the current performance of the
existing social housing stock towards indoor comfort conditions.
Moreover, comfort results predicted by the simulation tool are
assessed according to the recently published adaptive comfort
model included in EN 16798–1:2019 [38] (which replaces EN
15251:2007 [36], analysed in similar studies conducted so far). A
hybrid bottom-up methodology is proposed to assess the current
performance of social housing stock in southern Spain (Mediter-
ranean climate), combining data-driven techniques and simulation
methods, which allow the development of energy models or arche-
types statistically representative of the existing building stock.
Although previous analysis on the performance of the building
stock of the Mediterranean area has been carried out, it has been
focused on the linear building typology [32], which only represents
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35% of the social housing dwellings in southern Spain, where there
is a higher percentage of H-typology housing buildings (45%).

Compared to other studies mentioned above, this paper selects
a case study among the analysed H-typology building stock and
constructs an energy simulation model, which is calibrated and
validated through on-site monitoring hourly data. In order to con-
struct stock energy models, the case study energy model is later
parameterized, incorporating the statistical analysis results of a
large building database, which include physical, constructive, typo-
logical and geometrical information of the building housing stock.
Open access energy simulation and statistical tools are used
throughout the whole process.

This paper is divided into several sections: the methodology,
described in Section 2, includes the theoretical and normative fun-
daments, and a description of the tasks followed; the analysis and
results discussion is presented in Section 3; while the strengths
and limitations of this work are included in Section 4, along with
future research possibilities. Finally, the conclusions of this paper
are reported in Section 5.
2. Methods

This paper presents an analysis on the current state of social
housing building stock in southern Spain (Mediterranean climate),
assessing its current performance on indoor thermal comfort. To
do so, on-site monitoring techniques are combined with building
modelling through energy simulation tools and statistical methods
for data processing, treatment and analysis.

The methodology followed has been divided into several stages
(Fig. 1), described in the following subsections: 1. Building stock
characterisation. Representative samples; 2. Case study selection.
On-site monitoring; 3. BEM Parameterization; 4. BEM Sensitivity
analysis; 5. BEM Calibration and validation; 6. BSM Parameteriza-
tion; 7. BSM Thermal comfort assessment; and 8. BSM Sensitivity
analysis.
2.1. Building stock characterisation. Representative samples

The first step in the performance assessment of buildings at
stock level is the detailed building characterisation, from a typo-
logical, morphological, constructive and energy points of view. In
this case, information contained in a public database, originally
developed by the Andalusian Agency for Housing and Retrofitting
(AVRA) [39], has been used. This database includes several aspects
from 39,486 social public dwellings in southern Spain, among
which 77.5% are classified as multi-family housing buildings. The
content of this database has been improved and expanded with
additional information obtained from the Spanish cadastre online
platform [40] and the Spanish Building Technical Code [41]. The
current database includes general information (cadastral reference,
address); building data (orientation, climatic zone, building height,
average floor area, total built area, number of storeys, number of
dwellings, year of construction, building urban and architectural
typology - i.e. linear block, H, tower. . . grouped as collective closed
blocks, terraced, isolated. . .); retrofit information (year and type of
intervention); and energy-related data, such as building systems;
constructive description of the envelope or annual energy cooling
and heating demand. This database has been analysed statistically
[42] in order to characterise the existing building stock. After iden-
tifying the predominant building typologies of the social housing
stock in southern Spain based on the analytical results obtained
one of the predominant building typologies, the H-typology, was
selected, which represents around 13,890 social dwellings, in con-
trast to approximately 10,715 linear-typology buildings. The most
representative parametric ranges of this stock have been statisti-
3

cally defined (included in section 2.6) using the statistical tools
of Microsoft Excel� [43], R v.3.5.3 [44] (free software for statistical
computing and graphics) and the QGIS v.2.18 [45] planimetric tool
(an open-access public platformwhich allows the visualisation and
regionalisation of spatial data).
2.2. Case study selection. On-site monitoring

Based on the data included in the AVRA public housing database
on social dwellings in southern Spain, a case study has been
selected from the H-typology buildings based on the statistical
analysis conducted. The case study selected corresponds to a 4-
storey high block, built in 1973 with four dwellings per floor
(Fig. 2).

The building is located in Córdoba, in southern Spain, a Mediter-
ranean area located in the ‘‘B4” climatic zone according to the
Spanish Building Technical Code [41]. This code defines the Cli-
matic Severity in Winter (SCI) with a letter (‘‘A” corresponds to
milder winters, while ‘‘D” refers to colder winters) and the Climatic
Severity in Summer (SCV) with a number (‘‘1” represents areas
with milder summers while ‘‘4” refers to warmer summers)
(Table 1). In the B4 climatic zone, the H-typology represents
61.4% of the social dwellings, while the linear and tower typologies
account for 34.3% and 4.3%, respectively.

In addition to compiling planimetric information and physical,
constructive and morphological data on the case study (summa-
rized in section 2.6), on-site monitoring was carried out on several
ambient variables in the building for a prolonged period of time
[46]. One of the dwellings on the third floor was monitored during
a 10-month period (from 1 June to 31 March), recording hourly
measurements for air temperature, both indoor (in the living room
and main bedroom) and outdoor. Thus, on-site measurements
were carried out during different seasonal periods (summer, win-
ter and mid-season) in the occupied house (couple with two chil-
dren). Due to limitations imposed by users, it was not allowed to
collect specific thermal comfort data or surveys during the 10-
month monitoring process. It should also be noted that this dwell-
ing has no mechanical ventilation systems, only cross natural ven-
tilation through windows.
2.3. BEM parameterization

In this stage, a BEM of the case study was constructed based on
its physical, constructive and geometrical characteristics (section
2.6), using energy simulation tool and engine EnergyPlus v.9.0.1
[47], an open-source for building energy modelling. In addition,
outdoor air temperatures recorded during the monitoring period
were imported into the weather file (.epw) of the energy simula-
tion tool.

The energy and ambient performance of simulation models of
existing buildings often differs significantly from reality due to dif-
ferent factors (software limitations, input inaccuracy, users’ build-
ing operation, etc.), leading to an inevitable performance gap [48].
Therefore, any energy simulation model analysing the performance
of existing buildings must be subjected to a calibration and valida-
tion process, comparing simulated data with on-site measure-
ments until acceptable differences are reached [49]. To ease this
task, a parameterization was conducted on several variables
included in the BEM, coupling EnergyPlus with jEPlus v.1.7.2
[50]. This step has allowed the automatisation of the subsequent
tasks, optimizing computational time and the efficient use of avail-
able resources for data processing and analysis.



Fig. 1. Methodology followed: work stages.
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2.4. BEM sensitivity analysis

Once the BEM of the case study is modelled and parameterized,
this phase includes a first sensitivity analysis to identify the most
influential parameters on simulation results due to modifications
in the input settings. This task focuses calibration efforts of the
case study BEM on the most important parameters, as calibrating
every single parameter of the model would be considered a poor
use of time and resources [51]. Thus, sensitivity analysis reduces
the number of calibration parameters, and in turn, of computa-
tional burdens.

Given the ultimate objective of this research and the fact that
users only allowed data on indoor and outdoor air temperatures
to be collected, the most influential variables of the case study
BEM on indoor air temperatures have been established. The top-
four most influential variables are those subjected to the calibra-
tion process until the adjustment between simulated outputs and
on-site air temperature measurements is validated following inter-
national standards (section 2.5). It should be highlighted that, even
though no comfort data assessment was conducted during the
monitoring period on the case study, calibrating the BEM with
respect to indoor air temperatures provides an adequate approach
for the subsequent thermal comfort prediction, given that adaptive
comfort models are considered (section 2.7), which take into
account both indoor and outdoor thermal criteria.

In this study, the parameter screening technique used is the
Morris method [52], later extended by Campolongo et al. [53],
and extensively applied in BEM [54,55]. This technique allows
4

the value to be changed, one parameter at a time, maintaining
the remaining variables as fixed values, in order to assess its influ-
ence on output results, making it a one-step-at-a-time approach.
Finally, analysed variables are classified according to relative effect
on the reported output, taking into account two parameters: the
standard deviation (r), which measures the parameter’s interac-
tion with the remaining variables; and the modified mean (l*),
which quantifies the impact of the parameter on the simulation
output. An extensive description of this screening method can be
found in [56]. The Morris method has been implemented through
the statistical software R v.3.5.3 [44].
2.5. BEM calibration and validation

This stage includes all the tasks for the calibration of the BEM of
the case study. The energy simulation model variables calibrated
are the top-four most influential parameters on indoor air temper-
atures, obtained from the sensitivity analysis developed in the pre-
vious phase. Selecting a higher number of calibration parameters
would lead to higher computation time and a loss of posterior pre-
cision [57], ultimately resulting in a poor-quality simulation
model.

Bayesian calibration techniques [58] have been implemented,
as this approach allows the consideration of parameter uncertain-
ties, based on the definition of prior distributions for input param-
eters. In other words, these distributions include the most likely
range of the possible values of the calibration parameters. This
technique provides advantages such as the easy incorporation of



Table 1
Climatic zones established in the Spanish Building Technical Code [41]. Climatic zones of southern Spain are represented in bold.

Climatic severity Parameter Range Climatic zones

SCI = a�Ri + b�Gi + c�Ri�Gi + d�Ri
2 + e�Gi

2 + f A SCI � 0.3 A3, A4, B3, B4, C1, C2, C3, C4, D1, D2, D3, E1
B 0.3 < SCI � 0.6
C 0.6 < SCI � 0.95
D 0.95 < SCI � 1.3
E SCI > 1.3

SCV = a�Rv + b�Gv + c�Rv�Gv + d�Rv
2 + e�Gv

2 + f 1 SCV � 0.6
2 0.6 < SCV � 0.9
3 0.9 < SCV � 1.25
4 SCV > 1.25

Ri: cumulative average global solar radiation in January, February and December [kWh/m2]
Gi: average of the degree-day in winter in base 20 for January, February and December. Determined on an hourly basis for each month and divided by 24.
Rv: cumulative average global solar radiation in June, July, August and September [kWh/m2]
Gv: average of the degree-day in summer in base 20 for June, July, August and September. Determined on an hourly basis for each month and divided by 24.
a to f: specific coefficients for SCI and SCV, included in the Code’s appendix.

Fig. 2. Case study: (a) General views (�Google Street View); (b) Floor plans.
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prior information, capability to compute probabilistic results as
reasonable expectations; and the possibility to include different
sources of uncertainties (model inputs, discrepancies due to limita-
tions of building modelling software, errors in field observa-
tions. . .). In view of this, in recent decades Bayesian techniques
have become one of the most favourable calibration methods
[59], increasingly applied to BEM [60,61].

This task has also been carried out using R v.3.5.3 [44] software.
A more detailed description of the methodological process fol-
lowed during the Bayesian calibration can be found in [56].

Once the BEM of the case study is calibrated, it is validated by
comparing the simulated outputs with monitored data on indoor
5

air temperatures. The most common uncertainty indices used to
assess the accuracy of a calibrated model are defined in ASHRAE
Guideline 14:2002 [62]: the Normalized Mean Bias Error (NMBE),
the Coefficient of Variation of the Root Mean Square Error
(CVRMSE) and the Coefficient of Determination (R2) (Equations
(1) to (3)).

NMBE ¼ 1
m

Â �
Pn

i¼1 mi � sið Þ
n� q

Â � 100ð%Þ ð1Þ

CVðRMSEÞ ¼ 1
m

Â �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 mi � sið Þ2
n� q

s
Â � 100ð%Þ ð2Þ
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R2 ¼ nÂ �Pn
i¼1miÂ � si�

Pn
i¼1miÂ �Pn

i¼1siÂ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nÂ �Pn

i¼1m
2
i �

Pn
i¼1mi

� �2� �
Â � nÂ �Pn

i¼1s
2
i �

Pn
i¼1si

� �2� �r
0
BB@

1
CCA

2

ð3Þ
Where:
mi: measured values
si: simulated data
n: number of measured data points
q: number of adjustable model parameters
m : mean of measured values
According to the aforementioned Guideline, differences

between simulated and monitored data are reasonably small if
the three metrics are below the thresholds shown in Table 2.
2.6. BSM parameterization

This phase focuses on the parametric representation of the
existing social housing stock of southern Spain in order to later
estimate its thermal performance in current conditions. Once the
case study BEM has been calibrated and validated, it has been used
as the baseline to develop parameterized energy simulation stock
models which are representative of the existing housing stock,
BSM, applying a hybrid bottom-up approach. To do so, building
archetypes have been created, with physical, constructive and geo-
metrical properties defined based on the variation ranges obtained
in the building characterisation of the selected stock (section 2.1).

Table 3 shows the variation ranges defined in the building char-
acterisation of the stock for different physical, constructive, geo-
metrical and operational variables, that is, the results of the
statistical analysis conducted on the social public housing database
of AVRA for the H-typology in Spanish Climatic Zone B4 (BSM) in
its current state. This table also includes the specific values of these
variables for the selected case study (BEM).

The parameterization of the energy simulation model was
included into the EnergyPlus code (.idf and .imf files), through
the EP-macro option. The geometry of the building was parameter-
ized in three dimensions (X, Y and Z), so each construction element
(wall, roof, window. . .) has several parameterized vertices which
correspond to the spatial position of each corner of the specific ele-
ment. When building floor area is modified from one model to the
next one during simulations, the variables parameterized are chan-
ged proportionally, compared to the original’s model geometry.
Window-to wall ratio is also changed proportionally to the build-
ing’s original geometry.

Latin Hypercube Sampling (LHS) has been implemented to build
the simulated set corresponding to the BSM and to analyse its cur-
rent thermal performance. Input distribution is divided into N
intervals, combining individual modelling parameters with at ran-
dom [63] to create samples in the multi-dimensional space with an
equal probability [64]. According to Pang et al. [65], LHS provides
more stable results than those obtained with simple random sam-
pling and is easier to implement than the stratified sampling
method. In terms of application in buildings, several studies imple-
ment LHS for calibration and simulation processes at both building
Table 2
Uncertainty ranges according to ASHRAE Guideline 14:2002 [62].

Calibration Frequency Index ASHRAE

Monthly NMBE ±5%
CV(RMSE) 15%

Hourly NMBE ±10%
CV(RMSE) 30%

Suggested R2 >0.75

6

[66,67] and stock [68,69] levels, for sampling modelling parame-
ters (orientation, envelope properties, occupancy, ventilation and
infiltration rates, HVAC characteristics, etc.).

Scientific reasoning [70] suggests that it would be enough to
consider a minimum of 10 LHS samples per parameterized vari-
able. Thus, the minimum number of simulations to efficiently
assess the social housing stock selected would be 250, since there
are 25 parameterized variables (P1 to P25). Nevertheless, to ensure
the representativeness of the cases and following the recommen-
dations mentioned by Escandón et al. [71] regarding the validation
of the parameterized model, a comparative analysis has been car-
ried out for the results obtained for different numbers of simulated
cases: 250, 500, 750 and 1000 simulations (10, 20, 30 and 40 LHS,
respectively). The aim of this to determine whether considering a
sample of 10 LHS per parameterized variable would be enough to
adequately assess the residential stock mentioned.

2.7. BSM thermal comfort assessment

In order to carry out the indoor thermal comfort analysis, the
statistical adaptive model included in the EN 16798–1:2019 [38]
international standard has been considered. This model is applied
to buildings under free-running conditions, with low metabolic
rate, where occupants can freely operate windows. This model
takes into account specific metabolic rates between 1.0 and 1.3
met and thermal resistance values of 0.5 clo in summer and 1.0
clo in winter.

The adaptive comfort temperature (Tco) is derived from the run-
ning mean dry bulb outdoor temperature (Text,ref), as defined in
Equations (4) and (5). Based on this method three acceptability
ranges can be defined depending on the building category: cate-
gory I (PPD < 6 %) considers a temperature interval of + 2 �C - –
3 �C; category II (PPD < 10%) establishes a temperature interval
of + 3 �C - –4 �C; and, finally, category III (PPD < 15%) sets a tem-
perature interval of + 4 �C - –5 �C. In this paper, building category
II has been considered with a PPD lower than 10%.

Tco ¼ 0:33� Text;ref þ 18:8 ð4Þ

Text;ref ¼ Text;ref 1 þ 0:8 Text;ref 2 þ 0:6 Text;ref 3 þ 0:5 Text;ref 4
�

þ 0:4 Text;ref 5 þ 0:3 Text;ref 6 þ 0:2 Text;ref 7
�
=3:8

ð5Þ

where:
Text,ref: running mean dry bulb outdoor temperature for today
Text,ref1 to Text,ref7: daily mean dry bulb outdoor temperature for

previous 1 to 7 days
For the application of this adaptive model, average outdoor run-

ning temperatures must be between 10 �C (lower limit) and 30 �C
(upper limit). In this stage, annual indoor air temperatures in the
social housing stock are predicted in an hourly-resolution through
the energy simulation tool, considering the archetypes developed
through the BSM (8,760 data points per number of simulations).
Then, both hourly indoor and outdoor air predictions during a
whole typical year are adequately imported to the Equations (4)
and (5) of the adaptive thermal comfort model. Finally, the per-
centage of discomfort hours is obtained, determining the percent-
age of hours in the year that do not meet comfort conditions.

2.8. BSM sensitivity analysis.

In this last stage, a sensitivity analysis of the BSM has been con-
ducted to determine the variables of the parameterized archec-
types with the greatest influence on indoor thermal comfort at
building stock level. In this second sensitivity analysis, the param-
eterized variables assessed are P1 to P25 (in Table 3 of section 2.6),
since they define the building characterisation of the stock. Among



Table 3
Characterisation of case study and social housing H-building stock.

Variable Description BEM
(case study)

BSM
(AVRA database)

Distribution

General – Construction year 1973 1970–2005 –
– Building typology H H –
– Spanish climatic zone B4 B4 –
– Number of dwellings 26 5,935 –

Geometry P1 Orientation (�) 53 0, ±30, ±60, 90 Uniform
P2 Floor area (m2) 78 60–122.50 Uniform
P3 Floor height (m) 2.70 2.50–3.00 Uniform
P4 Window-to-wall ratio (%) 14.5 10–30 Uniform
P5 Number of stories 4 4–5 Uniform

Envelope P6 Roof solar absorptance 0.55 0.1–0.9 Normal
– Roof U-value (W/m2K) 2.29 1.2–2.4 –
P7 Roof thickness (m) 0.30 0.25–0.40 Normal
P8 Roof thermal conductivity (W/mK) 0.56 0.3–0.6 Normal
P9 Roof density (kg/m3) 1220 1000–1800 Normal
P10 Roof specific heat (J/kgK) 1000 500–1500 Normal
– Floor U-value (W/m2K) 3.60 3.0–7.00 –
P11 Floor thickness (m) 0.25 0.15–0.30 Normal
P12 Floor thermal conductivity (W/mK) 0.73 0.7–1.8 Normal
P13 Floor density (kg/m3) 1220 1200–1800 Normal
P14 Floor specific heat (J/kgK) 1000 500–1500 Normal
P15 Facade solar absorptance 0.70 0.1–0.9 Normal
– Facade U-value (W/m2K) 1.52 1.2–2.5 –
P16 Facade thickness (m) 0.25 0.10–0.35 Normal
P17 Facade conductivity (W/mK) 0.20 0.2–0.4 Normal
P18 Facade density (kg/m3) 2170 1000–3000 Normal
P19 Facade specific heat (J/kgK) 1000 500–1500 Normal
P20 Partition thickness (m) 0.08 0.07–0.12 Normal
P21 Type of window glass Single Single Uniform
P22 Type of window frame Aluminium Aluminium, Steel Uniform
– Window U-value (W/m2K) 5.70 5.50–5.70 –

Operation P23 People density (people/m2) 0.05 0.01–0.15 Normal
P24 Infiltration rate (ACH) 0.53 0.30–1.00 Normal
P25 Night-time natural ventilation rate (ACH) 0.3 0–4 Uniform
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them, several variables which were not parameterized at the build-
ing level have been included (such as orientation, floor area, floor
height, window-to-wall ratio and number of storeys) as they were
considered fixed values during the calibration and validation pro-
cesses of the BEM (first sensitivity analysis in subsection 2.4). Vari-
ables P1 to P25 have been considered in the ranges shown in
Table 3 (current state of the stock). The methodology followed
has already been explained in section 2.4.

The ultimate objective of including a sensitivity analysis at the
social stock level is to be able to propose retrofit strategies in a
future work line, focusing on the variables that report the most
influential changes on thermal comfort assessment.
3. Results and discussion

3.1. BEM sensitivity analysis

Fig. 3 shows the classification of the studied variables based on
the sensitivity analysis of the case study BEM, ranked according to
the modified mean (l*) and standard deviation (r). A total of 22
variables of the simulation model have been analysed and are
described in the graph caption (1 to 22) . These variables include
envelope parameters and physical properties of the building
(thickness, thermal conductivity, density and specific heat of roof,
façade and floor; solar absorptance of roof and façade; type of win-
dow glass and frame), as well as operational aspects (people den-
sity, infiltration rate, night-time natural ventilation rate). It
should be pointed out that certain variables (orientation, floor area,
floor height, window-to-wall ratio, number of stories) have not
been parameterized in this model, given that their value is known
with great precision and they have been considered as fixed values
in the case study BEM for its calibration and validation. Likewise,
7

the case study has no HVAC systems, so they have not been
included in the BEM and, thus, no aspects relating HVAC systems
have been assessed in this sensitivity analysis, evaluating the
building’s performance under free-running conditions.

Fig. 3 shows the variables with the greatest influence on the
simulated indoor air temperatures in the top right-hand corner
of the graph, representing the highest values of the standard devi-
ation (r) and modified mean (l*).

The top-4 (in decreasing order of influence) is composed of
INFIL (infiltrations [ACH]), NV (natural ventilation [ACH]), PEOPLE
(people density [people/m2]) and FAÇADEt (façade thickness
[m]). These four variables have been calibrated in the subsequent
task. The opposite site of the graph ranks the following variables
in ascending order of influence: FRAME (solar and visible absorp-
tance of the window frame), FACADEd (density of the façade [kg/
m3]), GLAZc (conductivity of the glazing surface [W/m�K]) and
ROOFc (conductivity of the roof [W/m�K]).
3.2. BEM Bayesian calibration

Fig. 4 shows the plausible posterior distributions (red his-
tograms) of the calibration parameters of the BEM, which corre-
sponds to the top-4 most influential variables in the simulation
model described in subsection 3.1. Prior uncertainty distributions
fixed as inputs during the calibration process are represented by
the green lines (normal distributions). Blue lines indicate the most
likely values reported in the Bayesian calibration (also normal dis-
tributions) when measurements observed (monitored data) were
taken into account during the calibration process. If comparing
prior and posterior distributions, it can be seen that all four param-
eters had to be finetuned in the model to make the proper adjust-
ments, especially in the cases of NV (natural ventilation [ACH]) and



Fig. 3. Sensitivity analysis (Morris method) conducted on the BEM: identification of the most influential parameters on indoor air temperatures of the case study.

Fig. 4. Bayesian calibration of the BEM of the case study: posterior distributions (red histograms) determined from normal distributions (blue lines), for the top-4 most
influential parameters (calibration parameters); green lines indicate prior distributions considered in the simulation model. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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FACADEt (facade thickness [m]) parameters, which reported the
most significant differences.

3.3. BEM validation

This section assesses the accuracy of the calibrated BEM of the
case study. Thus, predicted hourly indoor air temperatures
reported by the simulation model of the case study have been com-
pared with on-site measurements. To do so, the 10-month moni-
tored data have been classified in summer (June to September)
and winter season (October to March), obtaining the statistical per-
formance indices according to the ASHRAE Guideline 14:2002 [62].
No monitored data is available on April to May, so these months
8

have not been included. Given the high-resolution of the data to
be compared (hourly data), only a typical summer (4 to 10 of June)
and winter (22 to 28 of December) weeks have been graphically
represented in this paper.

The comparison between simulated and monitored data for the
summer period is represented in Fig. 5a, while results from the
winter period can be seen in Fig. 5b: blue lines represent on-site
measurements; green lines refer to the simulation results of the
uncalibrated model (previous to Bayesian calibration); and red
lines indicate the simulated temperatures of the calibrated model
(after Bayesian calibration). The uncertainty range (95% confi-
dence) of the posterior distributions has been also included in
the figure (grey).



Fig. 5. Comparison of on-site measurements and simulation results of the BEM of the case study during: (a) summer; (b) winter. The green and red lines represent the
prediction of the un-calibrated and calibrated models, respectively. Blue lines refer to monitored data. The uncertainty range (95% confidence intervals) relating to the
posterior distributions of the calibrated model is shown in grey. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 5 shows a clear improvement in the quality of the simula-
tion model after the calibration process, obtaining hourly-
simulated results closer to the monitored data. On-site measure-
ments are within the 95% confidence uncertainty ranges of the cal-
ibrated model (grey) in both summer and winter, determined from
the variations within posterior distribution ranges. ASHRAE statis-
tical indices have been calculated for both periods (Table 4).

When comparing these indices prior to and after calibration, it
can be observed that all of them are below the thresholds estab-
lished in the international standard, significantly improving the
Table 4
Uncertainty indices obtained for summer and winter periods (hourly calibration frequenc

Period Model NMBE (±10

Summer Un-calibrated 7.90
Calibrated 0.66

Winter Un-calibrated 13.00
Calibrated 1.87
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model (by around 81–90% in summer and 73–85% in winter). Bear-
ing in mind these results, the case study BEM is considered to be
adequately calibrated and validated.

Table 5 shows the calculation of annual adaptive thermal com-
fort, for the case study (taking into consideration on-site hourly air
temperature measurements) and the calibrated BEM model (ob-
tained from the hourly air temperature simulated outputs). Adap-
tive thermal comfort has been determined according to the
procedure included in the EN 16798–1:2019 [38].
y).

%) CVRMSE (<30%) R2 (>0.75)

8.50 0.36
1.61 0.82

14.10 0.58
3.74 0.75



Table 5
Comparison of thermal comfort calculated from on-site measurements and simulated
outputs.

Model Discomfort hours
in winter (%)

Discomfort hours in
summer (%)

Annual
discomfort hours
(%)

Case study 81.7 23.5 57.3
Calibrated

BEM
80.1 31.7 64.0
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It can be seen that the calibrated model predicts a percentage of
discomfort hours in winter quite close to the one obtained in the
case study. Nevertheless, during the summer season, the calibrated
BEM model over predicts discomfort hours, reporting values not
within the adaptive comfort band during 8.2% more hours. This
leads to a difference in the percentage of annual discomfort hours
reported in the case study (57.3% discomfort hours) and the cali-
brated BEM (64.0% discomfort hours) of 6.7%, with the BEM over-
predicting indoor temperatures. The highest temperature differ-
ence registered between the case study and the calibrated BEM is
1.96 �C during the summer season.

3.4. Thermal comfort assessment of the current social housing building
stock

Fig. 6 shows the percentage of annual discomfort hours (%) on
the Y-axis, obtained from the analysis of the current thermal per-
formance of the H-typology social housing stock in southern Spain,
assessed through the parameterized BSM archetypes (described in
subsection 2.6).

Comparison results are represented for different numbers of
simulated cases (X-axis: 250, 500, 750 and 1000 simulations). To
do so, box-and-whisker plots have been used to represent the dis-
persion of the samples: the lower and upper whiskers indicate the
minimum and maximum values of the sample, respectively; the
horizontal edges of the rectangle are the interquartile range (third
quartile – first quartile), so that 25% of the data are represented up
to the lower horizontal edge (first quartile), while 75% of the sam-
ple is included up to the upper horizontal edge (third quartile); the
horizontal line inside the rectangle represents the second quartile
(50% of the data, also the median). The black dashed line joins the
average percentage of the annual discomfort hours of each anal-
ysed sample (represented with a black cross and indicated in red
at the top of each box).

In terms of thermal comfort, it can be observed that annual dis-
comfort hours for the building stock analysed (H-typology in
southern Spain, in its current state) are generally between 54.5%
Fig. 6. Thermal comfort assessment of H-typology social housing stock in southern
Spain: comparison of the percentage of annual discomfort hours when different
simulation runs are considered.
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and 76.5% (with punctual outlier values in each sample set). How-
ever, values are occasionally recorded outside the interquartile
range, reaching 52.0% annual discomfort hours. The annual average
values of discomfort hours which are generated for each simula-
tion sample are quite close together (68.3 % and 68.4%), and similar
to the percentage obtained for the case study (71.5%), which is
within the maximum values.

Another aspect to be highlighted is that the values of annual
discomfort hours obtained in the four simulation cases (250, 500,
750 and 1000 simulations) are significantly close and follow a sim-
ilar trend. Thus, results obtained with the parameterized models
are quite representative with a reduced number of simulations
(250 against 1000 simulations). Considering these results, analys-
ing a minimum number of 10 LHS per parameterized variables
(in this case, 250 simulations) would report significant results for
the building stock analysed. This has the advantage of noticeably
reducing computational costs: the analysis of 250 annual simula-
tions of whole buildings required a 3-hour computational period,
whereas when the simulation number was increased to 1000
building models, computational time was around 14 h (considering
a computer with i7-8700 CPU 3.20 GHz of 12 cores and 16 GB
RAM).

Fig. 7 shows the average percentages of comfort and discomfort
hours obtained for both summer (May to September, 3,672 h anal-
ysed) and winter (October to April 5088 h analysed), as well as the
average annual values (8,760 h analysed). Discomfort results have
been classified in undercooling hours (indoor temperatures below
the lower comfort limit) and overheating hours (indoor tempera-
tures above the upper comfort limit).

In average, 45.4% of 3,672 summer hours are in discomfort con-
ditions, while 91.7% of the 5,088 winter hours are in discomfort,
which lead to an average annual discomfort value of 68.3%. The
percentage of annual undercooling hours is significantly higher
than that of overheating hours, 57.7% in contrast to 10.6%. Over-
heating in winter only occurs 0.1% of the discomfort hours, while
undercooling takes place 18.2% of the discomfort hours in summer.
When analysing the case study, it suffers from annual undercooling
during 68.3% of the total discomfort hours, with only 3% of over-
heating discomfort hours.

3.5. BSM sensitivity analysis

Fig. 8 represents the results from the sensitivity analysis carried
out to determine the most influential variables of the BSM of the H-
typology social housing stock in southern Spain on indoor annual
thermal comfort, considering the ranges obtained from its building
characterisation in its current state (variables P1 to P25, with the
Fig. 7. Average percentages of comfort and discomfort (undercooling and over-
heating) hours obtained per each seasonal period and per year. Results were
obtained from 250 simulations.
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sampling distribution shown in Table 3 of section 2.6). As with the
BEM in section 3.1, the parameterized variables P1 to P25 of the
BSM have been ranked according to the modified mean (l*) and
standard deviation (r), so that the most influential parameters
are located on the top-right corner (highest l*and r) of the figure.
The top-ten most influential variables are shown in red, while
those with the lowest repercussion on indoor thermal comfort
are represented in blue.

This figure shows the top-3 of the variables with the highest
influence on indoor thermal comfort of the BSM: P24. Infiltration
rate (ACH), P23. People density (people/m2) and P25. Night-time
natural ventilation rate (ACH). Other variables also with great
interest on comfort are, in decreasing importance order: P1. Orien-
tation (�), P4. Window-to-wall ratio (%), P16.Facade thickness (m),
P11. Floor thickness (m), P6. Roof solar absorptance, P17. Façade
conductivity (W/m�K) and P12. Floor thermal conductivity (W/
m�K). Among the 25 variables analysed, those with the lowest sig-
nificance on indoor thermal comfort are P15. Façade solar absorp-
tance and P9. Roof density (kg/m3).

Several studies have reported conclusions regarding the most
influential variables in BEM. However, this is normally done at sin-
gle building level for energy aspects: Yang et al. [54] analyse 13
parameters related to envelope properties, internal loads and
HVAC systems for a single building case study located in Shanghai,
reporting that the chiller COP, lighting/equipment power density
and occupant density are the most influential variables on average
energy consumption; the study by Chong et al. [60] of an office
building in Singapore identifies the parameters with the greatest
influence as lighting and equipment power density, fan pressure
and efficiency and cooling set point, from a total of 28 parameters
of envelope properties, internal loads and HVAC system character-
istics. Abokersh et al. [61] consider 31 parameters (input climate
data, building envelope, HVAC system and operational aspects)
for a two-storey dwelling in the Netherlands and report that the
variables with the highest impact on energy thermal consumption
and hours when operating temperatures are not within the ther-
mal comfort static band of 20–24 � are infiltration, thermal mass
fraction, window opening angle and windows G-value. Yuan
et al. [72] assess 10 parameters relating to the envelope, internal
loads, ventilation and cooling systems of an office building in Sin-
Fig. 8. Sensitivity analysis (Morris method) conducted on the BSM: determination of the
stock.
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gapore, concluding that the COP of the cooling plant, window and
wall U-values, ventilation rate and equipment / lighting power
density are the most influential variables on the building energy
performance. When considering free-running conditions and ther-
mal comfort assessment, Escandón et al. [71] report similar results
to those obtained in this research, but for linear-type social hous-
ing in southern Spain. After analysing 29 variables (geometry,
operation and envelope parameters), the authors report natural
ventilation, people density, infiltration, orientation and building
area as the top-5 most influential parameters on annual thermal
comfort.

4. Strengths and limitations. Future research

It should be borne in mind that this research only presents
results for indoor thermal comfort of the H-typology social housing
stock in southern Spain in its current state, using statistical data
from the building characterisation from a public housing database.
Nevertheless, the assessment of this building stock through param-
eterized energy simulation models allows this analysis to be
spread to other interesting variables, such as energy demand or
consumption.

This paper also shows specific results for the B4 Spanish climate
zone, as described in the methodology section, which directly
influences the determination of the variation ranges of the param-
eters relating to building stock characterisation. Nonetheless, the
application of the same methodological approaches to the analysis
could be extended to other different climate zones in southern
Spain, generating energy models representative of other climate
areas, based on their building characterisation (data also contained
in the public social housing database used).

Similarly, building environments could also be parameterized
by applying the hybrid bottom-up approach proposed in this study
at urban level, with lower computational costs than district level
analysis, in order to assess the influence of environment elements
on the indoor spaces of the buildings (i.e. shading effects of close
buildings).

Another drawback is the limited weather data that were
included into the weather file (.epw) linked to the energy model
simulation file for the calibration process. Only information
most influential parameters on annual thermal comfort of H-typology social housing
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regarding hourly outdoor temperatures was available. Thus, essen-
tial information related to solar radiation levels, outdoor illumi-
nance or sky cover were missing. Even though calibration results
obtained were within the validation regulation thresholds, future
works should assess the incorporation of more information on
local weather data through on-site monitoring for the calibration
process.

The use of parameterized energy models to assess thermal and
energy performance in the building sector in view of future climate
change scenarios and the proposal of optimized energy retrofit
measures at stock level are also other possible scopes of research.
These may report useful results for decision-making in the public
administration and will be the focus of future publications. Thus,
combining parameterized energy models with screening tech-
niques, as has been done in this paper, is of great importance, as
this approach can focus calibration efforts of energy models or
future retrofit strategies on the parameters reporting the highest
impact on the simulated outputs.

Even though, calibration and validation processes were con-
ducted comparing indoor air temperatures, monitored during a
high-resolution and long-term period, with predicted indoor tem-
peratures, no calibration and validation on thermal comfort predic-
tions were conducted, as no comfort data were available during the
monitoring stage. Future works ought to consider the possibility of
calibrating and validating BSM based on thermal comfort surveys
and information.
5. Conclusions

This paper assesses the current performance in terms of indoor
thermal comfort of the social housing building stock in southern
Spain (Mediterranean climate), considering one of the most repre-
sentative building typologies of this sector, the H-typology. This is
done by combining on-site monitoring methods with energy mod-
elling and statistical techniques for data analysis. The hybrid
bottom-up approach implemented considers the building charac-
terisation of the housing stock analysed, from which a case study
is selected, monitored and modelled. This case study is then cali-
brated following the Bayesian technique and validated according
to international standards to generate parameterized energy mod-
els representative of the social housing buildings, allowing energy
simulation and assessment at stock level. This is achieved through
a physical, constructive, morphological and geometrical character-
isation of the building stock, using statistical methods for analysis
and incorporating the results obtained into the parameterized
building energy models.

One of the main conclusions reached in this research is the
average percentage of annual discomfort hours of the stock anal-
ysed in its current state, approximately 68%, of which close to
58% are caused by undercooling hours. This is due to the fact that
winter period is 16% longer than the summer season, so the per-
centage of discomfort hours is higher.

Moreover, the variables of the stock models with the greatest
impact on these results, obtained through sensitivity analysis, are
(in order of decreasing importance): the infiltration rate (ACH),
people density (people/m2) and night-time natural ventilation rate
(ACH). In contrast, the variables of the model at the BSM level with
the lowest influence on indoor thermal comfort are façade solar
absorptance and roof density (kg/m3), among a total of 25
parameters.

It must also be stressed that this study has also allowed the sig-
nificance of the predicted results obtained to be tested using a min-
imum number of simulations equal to 10 LHS per parameterized
variable, in order to adequately assess the social housing stock.
For a sample of 250 simulation cases (3-hour computational time)
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the percentage of annual discomfort hours obtained is 68.4%, close
to those reported after 14 h of calculation for 1000 simulation
cases, 68.3%, and for the single building case study (71.5%). This
fact has the advantage of significantly reducing computational bur-
dens, while maintaining the representativeness of the predicted
results.
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