
Generation of rapidly-exploring random trees by
using a new class of membrane systems

Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: {perezh,marper}@us.es

Abstract. Methods based on Rapidly-exploring Random Trees (RRTs)
have been in use in robotics to solve motion planning problems for nearly
two decades. On the other hand, models based on Enzymatic Numerical
P systems (ENPS) have been applied to robot controllers for more than
six years. These controllers in real robots handle the power of motors ac-
cording to motion commands usually generated by planning algorithms,
but today there is a lack of planning algorithms based on membrane sys-
tems for robotics. With this motivation, we provide in this paper a new
variant of ENPS called Random Enzymatic Numerical P systems with
Proteins and Shared Memory (RENPSM) oriented to RRTs for planning
in robotics and we illustrate it by presenting a model for generation of
RRTs with holonomic limitations. We are working on the ENPS frame-
work with the idea of moving towards a complete mobile robot system
based on membrane systems, i.e. including controllers and planning; and
we have incorporated new ingredients into the ENPS framework to meet
the requirements of the RRT generation algorithm.

1 Introduction

Robots are machines oriented to objectives equipped with actuators, sensors
and computation units acting under physical constraints. Regardless of their
morphology, they should accomplish tasks by acting in the real world. This is
one of the main reasons by which Robot Motion Planning [4] is an eminent
research area in Robotics. In general terms, the problem of motion planning can
be defined in the configuration space of a robot as follows: Given (1) a start
configuration state, (2) a goal configuration state, (3) a geometric description of
the robot, and (4) a geometric description of the environment: find a path that
moves the robot gradually from start to goal.

A configuration state is a specification of the positions of all robot points
relative to a fixed coordinate system. This is usually expressed as a vector of
positions and orientations, for example, a rigid-body robot in a 2D world can
be expressed as a vector (x, y, θ) representing the center (x, y) of the robot in
a fixed coordinate system and its yaw angle θ. Since the shape of the robot is
described, all of its points are then known.

Several constraints can be added to this problem, the most common is to
reach the goal while never touching any obstacle in the environment. Others can
also be added, for example, a social robot could restrict configuration states in
order to guarantee the human comfort.

The configuration space of a robot can also be constrained by the type of
movements the robot can perform. In this sense, non-holonomic robots are those
that cannot instantly modify its direction without employing rotation in-place.
On the other hand, holonomic robots can do it (assuming zero mass). For exam-
ple, a holonomic robot in a 2D world can move along the x axis and the y axis,
as well as modify its yaw angle if needed. But a non-holonomic robot can only
move forward/backward and/or modify its yaw angle. This is the typical case of
dual-wheeled mobile robots.

Classical path planning algorithms have been widely adapted and applied to
the problem of motion planning with constraints in robots, for example, in [16],
an application of the Dijkstra for robot path-planning was presented. In such
solutions, the general problem is usually divided into two smaller problems:
the global path planning problem, as described above; and the local path plan-
ning, where the robot tries to connect two consecutive states in real-time con-
sidering constraints not included in the global plan as, for example, obstacles in
movement. The accumulated error during the local planning conducts to period-
ically recompute the global plan. For this reason, the computational complexity
of global planners is a critical point regarding to real-time constraints. Many
efforts have been made to provide good global planners. For example: in [15],
a new search algorithm, called D∗, is presented for path planning in real-time
environments. In [7], a variant of the classical search algorithm A∗ is applied
to grids with blocked and unblocked cells. In [5], a new tool for path planning,
called Rapidly-Exploring Random Trees (RRT), was presented.

The class of RRT algorithms for path planning is based on the randomized
exploration of the constrained configuration space by building a tree where nodes
represent states that can be reached by the state of the corresponding parent in
a fixed amount of time, so each edge contains a valid motion command to reach
the state in child node. It is currently one popular method in Robot Motion
Planning due to its good properties. The created RRT can be used to explore the
constrained configuration space by applying search algorithms or, as presented
in [6], the RRT generation algorithm can be used by itself as path planning
algorithm, where two RRTs are built simultaneously, one beginning from the
start configuration and another one beginning from the goal configuration.

In order to execute the planned motions, each motor of the robot must be
able to maintain a certain speed command for a fixed period of time. This is
the function of a type of software called controller on-board of the robot. Thus,
Robot Control [1] is the branch of robotics dedicated to the study and practice
of controlling robots.

Robot controllers are usually based on common silicon microprocessors, but
in the recent years, some classes of membrane systems [8] have been in use for
modelling them [12] [10] [11] [18]. Membrane systems (or P systems) are models

535

of computation based on the structure and functions of the living cells. In a
Membrane system, there are objects being evolved inside compartments accord-
ing to rules in a non-deterministic way with a high-level of parallelism. They
were firstly used as a new technique to attack the P versus NP problem [13],
but several applications of membrane systems have been also presented: Stochas-
tic P systems for modelling biological phenomena [14], Probabilistic P systems
for modelling real ecosystems [2], Spiking Neural P systems incorporating fuzzy
reasoning, for fault diagnosis and learning [17], and others.

In relation to Robot Control, Numerical P Systems (NPS) were used for
modelling and simulating robot controllers [12], although the initial application
of NPS was related to models of Economical Processes [9]. Enzymatic Numer-
ical P systems (ENPS) [10] were introduced as an improvement and applied
to the distributed control of a swarm of mobile robots. Indeed, reactive and
proportional-integral-derivative (PID) dual-wheeled robot controllers have been
successfully designed and simulated by means of ENPS, as well as software sim-
ulator tools [18]. On the other hand, the robot must know its position in the
environment by using sensors, that is the Robot Localization problem [3], and it
has also been attacked by using ENPS [11].

The main contribution of this paper is to introduce a new variant of ENPS
called Random enzymatic numerical P systems with proteins and shared memory
(RENPSM), in order to simulate RRT algorithms. Since the current applications
of membrane systems to Robotics are focused on controllers, localization and
local planners, we propose an approximation from “the other side”: global path
planning with physical constraints. The idea is to provide a complementary
approach walking towards a mobile dual-wheeled robot system based completely
on membrane systems. We are using ENPS because it is the framework of the
state of the art in membrane computing and robotics. On the other hand, the
motivation of the new ingredients is related to meet the requirements for the
computation of the RRT algorithm:

– Random numbers: Since the RRT algorithm is a randomized method to
explore the physical space.

– Shared memory: Because the algorithm can be parallelized using processes
sharing common variables (for instance, at some instant each membrane
must read a specific value stored in a distinguished membrane: the shared
memory).

– Proteins: Since the algorithm performs steps that must be sequentially exe-
cuted, proteins for synchronization are used.

This paper is structured as follows. In the next section, the rapidly-exploring
random trees (RRTs) are described with some details. Section 3 is devoted to in-
troduce the Membrane Computing framework called random enzymatic numer-
ical P systems with proteins and shared memory (RENPSM, for short), where
the RRT generation algorithm will be simulated. In Section 4, the simulation of
the RRT algorithm by using RENPSM systems is presented. Finally, conclusions
and future work are drawn.

536

2 Rapidly-exploring Random Trees

A RRT [5] is a randomized tree structure for rapidly exploring a state space X
from an initial position/state xinit. It can be successfully used for nonholonomic
and kinodynamic path planning in robotics [6].

Nodes in a RRT represent possible reachable states in a 2D or 3D world,
for robots with nonholonimic constraints in a 2D environment this is given by
(x, y, θ) where (x, y) are the Cartesian coordinates of the robot position and θ
is the heading angle. If we consider a kinodynamic planning problem, a node
encodes both position and velocity of the robot. For robots with holonomic
constraints in a 2D world, the heading angle can be ignored.

It is assumed that a fixed obstacle region Xobs ⊂ X must be avoided, so the
nodes of the RRT are states in Xfree, the complement of Xobs in X.

Edges in a RRT represent transitions between reachable states, they are
labelled with the command u that the robot should execute for a fixed amount
of time ∆t in order to change the corresponding states. For a dual-wheeled robot
with nonholonomic constraints, it can be represented by the pair of linear and
angular velocity (v, ω) to be sent to the controller.

If we are working with holonomic constraints, all the points in the space can
be reached applying a linear velocity, so edges are labelled with instant linear
velocities and a new state xnew can be reached from another state x connected
by an edge labelled with u by applying xnew = x+ u ·∆t

Algorithm 1 GENERATE RRT(xinit,K, ρ,∆t,X,Xobs, dmin)

Vτ ← {xinit}
Eτ ← ∅
for k = 1 to K do
xrand ← RANDOM STATE(X);
xnear ← NEAREST NEIGHBOR(xrand, τ);
if DISTANCE(xrand, xnear) ≥ dmin then
u← SELECT INPUT(xrand, xnear);
if ¬ COLLISION(xnear, u,∆t,Xobs) then
xnew ← NEW STATE(xnear, u,∆t);
Vτ ← Vτ ∪ {xnew}
Eτ ← Eτ ∪ {(xnear, xnew)}

end if
end if

end for
return τ = (Vτ , Eτ)

This is an iterative algorithm to generate a RRT [5], where:

– xinit is the initial state.
– K is the number of iterations to build the RRT.
– ρ is a prefixed distance metric.

537

– ∆t is a fixed amount of time for transitions.
– X is the state space.
– Xobs is the obstacle state space.
– dmin is the minimum distance threshold according to ρ in order to include

a new node in the RRT.
– τ = (Vτ , Eτ) is the RRT generated.
– RANDOM STATE(X) is a function to get a random state from X
– NEAREST NEIGHBOR(xrand, τ) is a function to get the closest node to
xrand in τ according to ρ.

– DISTANCE(xrand, xnear) is a function to get the distance of xrand to xnear
according to ρ.

– SELECT INPUT(xrand, xnear) is a function to get the velocity input that
should be commanded to the robot in order to achieve state xrand from
xnear.

– COLLISION(xnear, u,∆t,Xobs) is a function returning true if a collision
could be produced moving the robot from state xnear by applying the input
u for ∆t time considering the obstacles in Xobs.

– NEW STATE(xnear, u,∆t) is a function to get a new state xnew by applying
the input u to the robot for ∆t time starting at state xnear.

In Figure 1 it is represented a RRT generated after 5000 iterations by using
Algorithm 1 with holonomic constraints and the Euclidean distance as distance
metric.

Fig. 1. RRT generated after 5000 iterations

In order to provide a first approximation based on Membrane Computing,
we use in this paper a simplified version of the standard RRT algorithm 2 for

538

holonomic robots where no obstacles have been considered and ρ is the euclidean
distance.

Algorithm 2 GENERATE RRT((x0, y0),K,∆t,X, dmin)

Vτ ← {(x0, y0)}
Eτ ← ∅
for k = 1 to K do

(xrand, yrand)← RANDOM STATE(X);
(xnear, ynear)← NEAREST NEIGHBOR((xrand, yrand), τ);
z ← ρ((xrand, yrand), (xnear, ynear))
if z ≥ dmin then
u1 ← (xrand − xnear)/z,
u2 ← (yrand − ynear)/z,
xnew ← xnear + u1 ·∆t
ynew ← ynear + u2 ·∆t
Vτ ← Vτ ∪ {(xnew, ynew)}
Eτ ← Eτ ∪ {(xnear, ynear), (xnew, ynew)}

end if
end for
return τ = (Vτ , Eτ)

3 Random enzymatic numerical P systems with proteins
and shared memory

In this section a variant of enzymatic numerical P systems incorporating new
features is presented in order to simulate the generation of RRTs.

Definition 1. A random enzymatic numerical P systems with proteins and shared
memory (RENPSM, for short) of degree (p, q), p, q ≥ 1, is a tuple

Π = (H,µ, P,Emem, Emem(0), {(Ph(0), V arh, V arh(0), P rh) | h ∈ H},R, h0)

where:

1. H = {1, . . . , p · q} ∪ {mem}, mem /∈ {1, . . . , p · q}, is the set of labels of the
system;

2. µ is a dynamical membrane structure (a rooted tree) initially consisting of
only one membrane with label h0 ∈ {1, . . . , p · q} in such manner that along
the computation new membranes will be created with labels in {1, . . . , p · q};

3. mem is the label of a distinguished component (the shared memory of the
system);

4. P is a finite set of objects, called catalyzator proteins, and Ph(0) is the protein
initially associated with region labeled by h;

539

5. Emem is a finite set of variables, called enzymes, disjoint with V armem, and
Emem(0) is the initial values of the enzymes;

6. V arh, h ∈ H, is a finite set of variables xj,h associated with region (a mem-
brane or the shared memory) labeled by h, its values must be natural numbers
(they can also be zero), the value of xj,i at time t ∈ N is denoted by xj,i(t);

7. V arh(0) is a vector that represents the initial values for variables in V arh;
8. P rh, h ∈ H, is a finite set of programs associated with region labeled by h,

having the following syntactical format:

F (x1,h, . . . , xkF ,h)
e(F);α(F)−−−−−−−→ c1|v1, . . . , cnF

|vnF

where:
• F (x1,h, . . . , xkF ,h) is a computable function (the production function),

being x1,h, . . . , xkF ,h variables in V arh;
• c1|v1, . . . , cnF

|vnF
is the repartition protocol associated with the program,

being c1, . . . , cnF
natural numbers specifying the proportion of the cur-

rent production distributed to variables v1, . . . , vnF
∈ V arh∪V arpar(h)∪

V arch(h)}, being par(h) the parent of h and ch(h) the set of child of h
in µ;
• e(F) ∈ Eh is an enzyme and α(F) ∈ P is a protein, both of them associ-

ated with program F , if no enzyme or protein is used in a program then
it will be omited;

9. R is a finite set of rules of the following form:
• Protein evolution rules: [α→ α′]h, where h ∈ H,α ∈ P and α′ ∈ P .
• Writing-only communication rules between the shared memory and the

membranes
(h , Xh /Yh,mem , mem)Wα

where Xh ∈ V arh, Yh,mem ∈ V armem, α ∈ P in such manner that there
is, at most, one rule for each membrane h ∈ {1, . . . p · q}. Variables
Yh,mem, Yh′,mem should be different for two membranes h, h′.
• Reading-only communication rules between the shared memory and the

membranes:
(h , Xh /Ymem , mem)Rα

where Xh ∈ V arh, Ymem ∈ V armem, α ∈ P . Variable Ymem is the same
for each h ∈ {1, . . . p · q}.

• Membrane creation rules:[[
X1,h , X2,h, , . . . , Xn,h

]
h

]
h′ ; α

where h, h′ ∈ {1, . . . p · q} are different, α ∈ P and X1,h , . . . , Xn,h ⊆
V arh.

The term region h (h ∈ H) is used to refer to membrane h in the case h ∈
{1, . . . , p · q}, as well as to refer to the shared memory in the case h = mem.

Next, we describe the semantics of RENPSHs. A configuration of a RENPSH
at any instant t is described by the current membrane structure, together with

540

proteins and all values of the variables and enzymes associated with all regions
(compartments of the current membrane structure and the shared memory). The
initial configuration is (µ,Emem(0), {Ph(0), V arh(0)|h ∈ H}), where µ = {h0}.

A program F (x1,h, . . . , xkF ,h)
e(F);α(F)−−−−−−−→ c1|v1, . . . , cnF

|vnF
associated with

a region is applicable to a configuration Ct, at moment t, if the value of e(F) at
that instant is greater than min{x1,h(t), . . . , xkF ,h(t)} and protein α(F) is inside
the region h of Ct. When applying such a program, variables associated with
configuration Ct are processed as follows: first, the value F (x1,h(t), . . . , xkF ,h(t))
is computed as well as the value

q(t) =
F (x1,h(t), . . . , xkF ,h(t))

c1 + · · ·+ cnF

This value represents the unary portion at instant t to be distributed among
variables v1, . . . , vnh

according to the repartition expression. Thus, q(t) · cs is
the contribution added to the current value of vs (1 ≤ s ≤ nh), at step t + 1.
So, vs(t+ 1) = vs(t) + q(t) · cs and vs(t) = 0, i.e, it is assumed that variable vs
is “consumed” (become zero) when the production function is used and other
variables retain their values. Each program in each membrane can only be used
once in every computation step, and all the programs are executed in parallel
manner.

A protein evolution rule [α → α′]h is applicable to a configuration Ct at
moment t if protein α is in membrane h of Ct. When applying such a rule the
protein α in h evolves to protein α′ in h. These rules are applied in a maximal
manner.

A writing-only communication rule between the shared memory and the
membranes, (h , Xh /Yh,mem , mem)Wα , is applicable to a configuration Ct at mo-
ment t if protein α is in membrane h of Ct. When applying such a rule the value
Xh(t) is assigned to the variable Yh,mem(t + 1) of the shared memory, that is
Yh,mem(t+ 1)← Xh(t) . These rules are applied in a maximal manner.

A reading-only communication rule between the shared memory and the
membranes, (h , Xh /Ymem , mem)Rα is applicable to a configuration Ct at mo-
ment t if protein α is in membrane h of Ct. When applying such a rule the
value Ymem(t) is assigned to the variable Xh(t + 1) of membrane h, that is
Xh(t+ 1)← Ymem(t). These rules are applied in a maximal manner.

A membrane creation rule
[[
X1,h , X2,h, , . . . , Xn,h

]
h

]
h′ ; α is applicable

to a configuration Ct at moment t if protein α is in membrane h′ of Ct. When
applying such a rule, a new membrane labelled by h is created in such manner
that h′ is the parent of h and the set of its variables is V arh = {X1,h , . . . , Xn,h}.

Given a random enzymatic numerical P system with proteins and shared
memory Π, we say that configuration Ct at time t yields configuration Ct+1 in
one transition step if we can pass from Ct to Ct+1 by applying in parallel each
program in each membrane only once, and by applying the rules in a maximal
parallel way following the previous remarks. A computation of Π is a (finite or
infinite) sequence of configurations such that: (a) the first term is the initial
configuration of the system; (b) for each n ≥ 2, the n-th configuration of the

541

sequence is obtained from the previous configuration in one transition step; and
(c) if the sequence is finite (called halting computation) then the last term is a
halting configuration (a configuration where no rule of the system is applicable to
it). All the computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the objects
present in the output region iout associated with the halting configuration. If
C = {Ct}t<r+1 of Π (r ∈ N) is a halting computation, then the length of C,
denoted by |C|, is r. For each i (1 ≤ i ≤ q), we denote by Ct(i) the finite multiset
of objects over Γ contained in all membranes labelled by i at configuration Ct.

4 Simulation of one iteration of the RRT algorithm

The input of an algorithm generating a Rapidly-Exploring Random Tree T =
(VT , ET) consists of the following parameters (xinit,K,∆t,X,Xobs, dmin), where:

– xinit is the initial state.
– K is the number of iterations to build the RRT.
– ∆t is a fixed amount of time for transitions.
– X is the state space.
– Xobs ⊆ X is the obstacle state space.
– dmin is the minimum distance threshold according to some distance metric
ρ in order to include a new node in the RRT.

For holonomic robots in a 2D environment the state space can be given by the
Cartesian coordinates (x, y) of the possible robot positions. For instance, by
means of a grid with p ≥ 1 columns and q ≥ 1 rows. In this case, any state
or position (i, j) ∈ {1, . . . p} × {1, . . . q} can be encoded by the natural number
(i− 1) · q+ j. In such a manner that, given a natural number n encoding a state
(i, j), the following holds: i = 1 + qt(n, q) and j = rm(n, q).

Initially, VT = {xinit} and ET = ∅ and for each iteration a new node and a
new arc can be added to T according the following scheme:

– A new state xrand is randomly selected by using a function RANDOM STATE(X).
– The node xnear in T closest to xrand is selected by means of the function

NEAREST NEIGHBOR(xrand, T , Threshold) in such manner that if the
minimum distance is lesser or equal to Threshold, then no node is selected
in this iteration.

– The unitary vector U from node xnear to node xrand is computed.
– The new nodeXnew is obtained by applying the unitary vector U to the robot

for ∆t time starting at state xnear, that is, Xnew = xnear+U ·∆t. This node
will be obtained by using the function SELECT NEW NODE(xnear, U,∆t).

– The node Xnew and the arc (Xnear, Xnew) is added to the tree T .

This algorithm will be simulated by a random enzymatic numerical P system
with proteins and shared memory of degree (p, q)

Π = (H,µ, P,Emem, Emem(0), {(Ph(0), V arh, V arh(0), P rh) | h ∈ H},R, h0)

defined as follows:

542

– H = {1, . . . , p · q} ∪ {mem}, mem /∈ {1, . . . , p · q}.
– µ = {h0} with h0 ∈ {1, . . . , p · q}.
– P = {αi | 1 ≤ i ≤ 12}, and Ph(0) = {α1}, for each h ∈ H.
– Emem = {Flagmem, p · q + 1} and Emem(0) = {p · q + 1}.
– The set of variables is:

• V arh = {X1,h, X2,h, Y1,h, Y2,h, Dh}, for each h, 1 ≤ h ≤ p · q.
• V armem = {X1,mem, X2,mem, Y1,mem, Y2,mem, Z1,mem, Z2,mem}∪

{U1,mem, U2,mem} ∪ {Dh,mem, Yh,mem | 1 ≤ h ≤ p · q}.
• Initially, all variables in V arh(h 6= h0) and all variables in V arh0 different

to Y1,h0 , Y2,h0 , are equal to zero. Besides, initially the values (Y1,h0 , Y2,h0)
provide the 2D-coordinates of the “initial state” h0.

– Next, the finite set of programs Prh and the set of rules R of the system are
defined according with the requirements to simulate the RRT algorithm.

– In order to synchronize the sequence of an iteration, the following protein
evolution rules for each h ∈ H are considered: [αi → αi+1]h, for 1 ≤ i ≤ 11,
and [α12 → α1]h

– Two random numbers i, j (1 ≤ i ≤ p, 1 ≤ j ≤ q) are generated in the shared
memory.Production function : F (X1,mem) = Random(i, 1 ≤ i ≤ p)

Repartition protocol : 1|X1,mem

Protein : α1Production function : F (X2,mem) = Random(i, 1 ≤ i ≤ q)
Repartition protocol : 1|X2,mem

Protein : α1

– Each membrane h ∈ {1, . . . , p · q} will read the random numbers previously
generated, sharing them with the variables X1,h, X2,h. (h , X1,h /X1,mem , mem)Rα2

(h , X2,h /X2,mem , mem)Rα2

– For each membrane h ∈ µ, the distance Dh between its position (Y1,h, Y2,h)
and the position given by the generated random natural numbers (X1,mem, X2,mem)
is computed. For the remaining membranes, Dh = p · q + 1.

Production function : F (X1,h, X2,h, Y1,h, Y2,h) =

{√∑2
j=1(Xj,h − Yj,h)2 if h ∈ µ

p · q + 1 if h /∈ µ
Repartition protocol : 1|Dh

Protein : α3

543

– Each membrane h writes its value Dh to the shared memory.
(h , Dh /Dh,mem , mem)Wα4

– The minimum of all distances Dh is computed in the shared memory.

• Production function: F (D1,mem, . . . , Dp·q,mem) = min{D1,mem, . . . , Dp·q,mem}
• Repartition protocol: 1|Dmin,mem

• Protein: α5

– Variable (enzyme) Flagmem is set to zero if Dmin,mem ≤ Threshold.

• Production function: F (D1,mem, . . . , Dp·q,mem) =

{
0 if Dmin,mem ≤ Threshold

p · q + 1 otherwise
• Repartition protocol: 1|Flagmem
• Protein: α6

– The label near, corresponding to the closer membrane to the randomly gen-
erated position, is obtained.

• Production function: F (D1,mem, . . . , Dp·q,mem) = arg-min{D1,mem, . . . , Dp·q,mem}
• Repartition protocol: 1|Ynear,mem
• Protein: α7

• Enzyme: Flagmem

– The position of membrane near is computed.
Production function : F (Ynear,mem) = 1 + qt(Ynear,mem, q)
Repartition protocol : 1|Y1,mem
Protein : α8

Enzyme : Flagmem
Production function : F (Ynear,mem) = rm(Ynear,mem, q)
Repartition protocol : 1|Y2,mem
Protein : α8

Enzyme : Flagmem

– The unitary vector is created in the shared memory.

Production function : F (X1,mem, X2,mem, Y1,mem, Y2,mem) =

X1,mem−Y1,mem√∑2
j=1(Xj,mem−Yj,mem)2

Repartition protocol : 1|U1,mem

Protein : α9

Enzyme : Flagmem
Production function : F (X1,mem, X2,mem, Y1,mem, Y2,mem) =

X2,mem−Y2,mem√∑2
j=1(Xj,mem−Yj,mem)2

Repartition protocol : 1|U2,mem

Protein : α9

Enzyme : Flagmem

544

– The position of the new membrane is computed in the shared memory.
Production function : F (Y1,mem, U1,mem) = Y1,mem + U1,mem ·∆t
Repartition protocol : 1|Z1,mem

Protein : α10

Enzyme : Flagmem
Production function : F (Y2,mem, U2,mem) = Y2,mem + U2,mem ·∆t
Repartition protocol : 1|Z2,mem

Protein : α10

Enzyme : Flagmem

– The membrane labelled by Ynear,mem will read the position (Z1, Z2) corre-
sponding to the new membrane from the shared memory. (Ynear,mem , Z1,Ynear,mem

/Z1,mem , mem)Rα11

(Ynear,mem , Z2,Ynear,mem /Z2,mem , mem)Rα11

– A child membrane with position (Z1, Z2) is created in Ynear, that is, a new
state is added to the tree.

X1,h X2,h

Y1,h Y2,h
Z1,h Z2,h

Dh

h

Ynear,mem

Being h = (Z1,Ynear,mem
− 1) · q + Z2,Ynear,mem

. This rule is mediated by
protein α12.

5 Conclusions

This paper deals with an algorithm widely used to solve the problem of motion
planning in robots, e.g., the rapidly-exploring random tree (RRT) generation
algorithm. It is based on the randomized exploration of the configuration space.
We have studied it within the framework of Membrane Computing.

In this work, a variant of Enzymatic Numerical P systems, called random
enzymatic numerical P systems with proteins and shared memory (RENPSM, for
short) is introduced. Besides, a simplified version of the standard RRT algorithm
is described by a RENPSM system capturing the semantics of the new variant,
where maximal parallelism is used.

Three challenges are planned as future work. First, to provide a formal verifi-
cation of such RENPSM systems, in the sense that they in fact simulate the RRT
generation algorithm. The second challenge is to design a software platform in
order to simulate RENPSM systems and check the efficiency of such simulation
in comparison with the usual implementations of the RRT algorithm. Finally,
to provide the simulation of a more real-life RRT algorithm for path planning
in robots, such as the case of the bidirectional RRT based planner [6] for non-
holonomic robots with kynodinamic and environment constraints.

545

References

1. K.J. Astrom, T. Hagglund. PID Controllers: Theory, Design, and Tuning, 1995
2. M.A. Colomer, A. Margalida, D. Sanuy, and M.J. Pérez-Jiménez. A bio-inspired

computing model as a new tool for modeling ecosystems: The avian scavengers as
a case study. Ecological Modelling 222 (1), 2011, pp. 3347.

3. S. Huang, G. Dissanayake. Robot Localization: An Introduction. 2016
4. J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA,

1991.
5. S.M. LaValle. Rapidly-Exploring Random Trees: A New Tool for Path Planning,

Computer Science Dept., Iowa State University, October 1998
6. S.M. LaValle, and J.J. Kuffner. Randomized kinodynamic planning. Proceedings

IEEE International Conference on Robotics and Automation, 1999, pages 473–479
7. A. Nash, K. Daniel, S. Koenig, and A. Felner. Theta*: Any-Angle Path Planning

on Grids. Journal of Artificial Intelligence Research, Vol. 39, 2010, pp. 533-579.
8. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,

61 (1), 2000, pp. 108–143.
9. Gh. Păun, R. Păun. Membrane Computing and Economics: Numerical P Systems.

Fundamenta Informaticae, 73 (1,2). 2006. pp. 213–227
10. A. Pavel, O. Arsene, C. Buiu. Enzymatic Numerical P Systems - A New Class of

Membrane Computing Systems Proceedings of IEEE fifth international conferenced
on bio-inspired computing: Theories and applications (BIC-TA), 2010, pp. 1331–
1336

11. A. Pavel, C. Vasile, I. Dumitrache. Robot localization implemented with enzymatic
numerical P systems Proceedings of the international conference on biomimetic and
biohybrid systems, 2012, pp. 204–215

12. A. Pavel, C. Buiu. Using enzymatic numerical P systems for modeling mobile robot
controllers. Natural Computing, 11 (3), 2012, pp. 387–393

13. M.J. Pérez-Jiménez. The P versus NP problem from Membrane Computing view.
European Review, Vol. 22 (1), 2014, pp. 18–33

14. F.J. Romero-Campero, M.J. Pérez-Jiménez. A Model of the Quorum Sensing Sys-
tem in Vibrio fischeri Using P Systems. Artificial Life, 14 (1), 2008. 95 – 109

15. A. Stentz. The Focussed D* Algorithm for Real-time Replanning. Proceedings of
the 14th International Joint Conference on Artificial Intelligence, Vol. 2, 1995, pp.
1652–1659

16. H. Wang, Y. Yu, and Q. Yuan. Application of Dijkstra algorithm in robot path-
planning, Proceedings of the 2nd International Conference on Mechanic Automation
and Control Engineering. 2011, pp. 1067–1069.

17. T. Wang, G. Zhang, J. Zhao, Z. He, J. Wang, and M.J. Pérez-Jiménez. Fault diag-
nosis of electric power systems based on fuzzy reasoning spiking neural P systems.
IEEE Transactions on Power Systems 30 (3), 2015. pp. 11821194.

18. G. Zhang, M.J. Perez-Jimenez, M. Gheorghe. Real-life Applications with Membrane
Computing. 2016

546

