
B U L L E T I N
of the

International

Membrane Computing
Society

I M C S

Number 3 June 2017

Bulletin Webpage:

http://membranecomputing.net/IMCSBulletin

Webmaster: Andrei Florea, andrei91ro@gmail.com





Foreword

...And, we have the third issue of our Bulletin...
Comparable in the number of pages with the first issue, shorter than the second

– maybe this will become a “tradition”: the winter volumes to be longer than the
summer ones...

Two sections are missing: descriptions of MC research groups and PhD Theses
presentations, other sections are rather consistent. It is worth mentioning that we
have three areas surveys, which is rather good for the IMCS plans to start editing
a journal, to also edit in the near future some collective volumes.

By the way, we also have to applaud the two new books in our area – see the
section Books Announcements – both of them dealing with applications.

As usual, I would like to stress the fact that the IMCS Bulletin is conceived
as a working material for the MC community, as a medium for communicating in
a fast and efficient way any idea, news, problem, result. As it is already known,
each issue gradually grows and remains available at http://membranecomputing.
net/IMCSBulletin), also being printed. (If somebody wants to have a printed
copy, s/he has to contact the IMCS secretary – see information about the structure
of IMCS, including email addresses, in the subsequent pages.)

The “instructions to contributors” are minimal. Any material which any MC
researcher considers of interest for the community, helping in achieving the goals
of IMCS, is very much welcome and can be submitted at any time to the bulletin
editor (myself for a while) or to any member of the Bulletin Committee. In what
concerns the style and format, the previous issues of the Bulletin are available as a
model. (If an author needs more precise instructions, please contact me. Standard
Latex files are sufficient, LNCS style is the best.)

The copyright of all materials remains with their authors.
I am hereby inviting all people interested in membrane computing to consult

the Bulletin and, also, to contribute – “views from outside” are always of interest
and useful.

*



4 Foreword

The realization of the Bulletin of IMCS owns very much (i) to all contributors,
(ii) to the webmaster, Andrei Florea, andrei91ro@gmail.com, and to the MC
research group in Politechnica University in Bucharest, led by prof. Cătălin Buiu,
where the bulletin is hosted, and (iii) to prof. Gexiang Zhang, the President of
IMCS, to his group, and to the Xihua University in Chengdu, China, where the
bulletin is printed.

Gheorghe Păun
June 2017



Contents

Letter from The President . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

IMCS Matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Structure of IMCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Constitution of IMCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

IMCS 2016 Prizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

IMCS Journal: Journal of Membrane Computing (JMEC) . . . . . . . . . . . 23

Tutorials, Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Marian Gheorghe: A Survey of Kernel P Systems . . . . . . . . . . . . . . . . . . . 25

Alberto Leporati, Luca Manzoni, Giancarlo Mauri,
Antonio E. Porreca, Claudio Zandron:
Space Complexity of P Systems with Active Membranes:
A Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Miguel A. Mart́ınez-del-Amor, Agust́ın Riscos-Núñez,
Mario J. Pérez-Jiménez:
A Survey of Parallel Simulation of P Systems with GPUs . . . . . . . . . . . . 55

Bibliographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Gexiang Zhang, Qiang Yang, Linqiang Pan: A Bibliography
of Technological Applications of Spiking Neural P Systems . . . . . . . . . . 69

Book Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Andrei George Florea, Cătălin Buiu: Membrane Computing
for Distributed Control of Robotic Swarms. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Gexiang Zhang, Mario J. Pérez-Jiménez, Marian Gheorghe:
Real-Life Applications with Membrane Computing . . . . . . . . . . . . . . . . . . . 77



6 Contents

Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Zhiqiang Zhang: Some Open Problems on Numerical P Systems
with Production Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bosheng Song: Open Problems on Symport/Antiport (Tissue)
P Systems with Channel States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Calls for Participation to MC and Related
Conferences/Meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

18th International Conference on Membrane Computing (CMC18),
Bradford, UK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

The 6th Asian Conference on Membrane Computing (ACMC2017)
21-25 September, 2017 Chengdu (P.R. China) . . . . . . . . . . . . . . . . . . . . . . . 93

15th International Conference on Automata and Formal Languages,
Debrecen, Hungary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Reports on MC Conferences/Meetings . . . . . . . . . . . . . . . . . . . . . . 103

Report about 15th BWMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Gexiang Zhang, Qiang Yang, Linqiang Pan: A Summary of the Second
China Workshop on Membrane Computing (CWMC 2017) . . . . . . . . . 107

Miscellanea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Gheorghe Păun: About the Limits of (Bio)Informatics with Some
Illustrations from DNA and Membrane Computing . . . . . . . . . . . . . . . . . 113

Contents of Previous Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



Letter from The President

Dear IMCS members,

The first issue of IMCS Bulletin this year is meeting with us. I could not wait to
share a piece of good news, namely that IMCS has initiated the first international
journal of our research area, Journal of Membrane Computing (JMEC), through
a long time of discussion, negotiation and collaboration. More details are also
provided in this issue of the Bulletin, in a separate page. All of us are solicited to
contribute to and advance this journal.

Eighteen months have passed since our society came into existence. It is per-
fectly obvious that IMCS has strengthened the collaborations among IMCS mem-
bers, of which this Bulletin and JMEC are two significant examples. But I would
still like to emphasize again the significance and necessity of our collaborations
within our society, which is our original intention to create IMCS.

Our society is only a baby who needs to continuously feed for a long time.
Your contributions and close collaborations are the required good food and nu-
trition. Obviously, without a close collaboration, our society could not grow well.
Conversely, each of us would be the beneficiary from a good society.

In what follows, let me share with you a delicate point, a topic of debates during
recent meetings – it is meant, as the proverb says, “to throw away a brick in order
to get a gem”. During The Second China Workshop on Membrane Computing
this year, a special session was organized to discuss how to write a professional
English paper, especially insisting on the issue of how to arrange and cite the
related references. In my experience of reviewing conference or journal papers in
membrane computing, I observed that some submissions with good novelty and
contributions had very few references, even I received some complaints from our P
friends that some published journal papers completely neglected others’ work to
cheat reviewers and readers. The citation was also a discussion during The First
China Workshop on Membrane Computing. Except for our collaborated work to
advance our society, I hope this is also a point deserving to further discuss and



8 Letter from The President

improve through our cooperation. On the eve of running our society journal, such
kind of collaborations are particularly important.

Finally, I would like to thank our Bulletin Chair, prof. Gheorghe Păun, and
his committee members, and all the contributors for their excellent work and
contributions.

Gexiang Zhang
Chengu, China
June 20, 2017



IMCS Matters

Structure of IMCS



10 Structure of IMCS

The Board of IMCS
The Executive Board:

President: Gexiang Zhang, China, gexiangzhang@gmail.com
Vice President: Alberto Leporati, Italy, alberto.leporati@unimib.it
Treasurer: Tao Wang, China, wangtao2005@163.com
Secretary: Tao Song, China, taosong@hust.edu.cn, songtao0608@hotmail.com

Bulletin Committee Chair: Gheorghe Păun, Romania, gpaun@us.es
Website Committee Chair: Xiangxiang Zeng, China, xzeng@xmu.edu.cn
PR Committee Chair: Marian Gheorghe, U.K. m.gheorghe@bradford.ac.uk
Publication Committee Chair: Linqiang Pan, China, lqpanhust@gmail.com
Conferences Committee Chair: Claudio Zandron, Italy, zandron@disco.unimib.it
Awards Committee Chair: Mario Pérez-Jiménez, Spain, marper@us.es

The Advisory Board:

Erszébet Csuhaj-Varjú, Hungary – Chair, csuhaj@inf.elte.hu
Yu (Kevin) Cao, U.S.A.
Svetlana Cojocaru, Rep. Moldova
Marian Gheorghe, U.K.
Xiyu Liu, China
Vincenzo Manca, Italy
Giancarlo Mauri, Italy
Radu Nicolescu, New Zealand
Taishin T. Nishida, Japan
Mario Pérez-Jiménez, Spain
K.G. Subramanian, India
Jun Wang, China
Xingyi Zhang, China

Honorary President:
Gheorghe Păun, Romania

Honorary Members:
Arto Salomaa, Finland
Grzegorz Rozenberg, The Netherlands
Kamala Krithivasan, India
Oscar H. Ibarra, U.S.A.
Takashi Yokomori, Japan
Tom Head, U.S.A.
Jürgen Dassow, Germany
Lila Kari, Canada
Cristian S. Calude, New Zealand



Structure of IMCS 11

Bulletin Committee
Gheorghe Păun, Romania – Chair, gpaun@us.es
Henry N. Adorna, Philippines, hnadorna@dcs.upd.edu.ph
Catalin Buiu, Romania, catalin.buiu@acse.pub.ro, cbuiu27@gmail.com

Matteo Cavaliere, U., mcavali2@staffmail.ed.ac.uk
Gabriel Ciobanu, Romania, gabriel@iit.tuiasi.ro
Michael J. Dinneen, New Zealand, mjd@cs.auckland.ac.nz
Svetlana Cojocaru, Rep. Moldova, svetlana.cojocaru@math.md
Rudi Freund, Austria, rudi@emcc.at
Marian Gheorghe, U.K., m.gheorghe@bradford.ac.uk
Ping Guo, China, guoping@cqu.edu.cn, guoping cqu@163.com

Thomas Hinze, Germany, thomas.hinze@b-tu.de
Florentin Ipate, Romania, florentin.ipate@gmail.com
Tseren-Onolt Ishdorj, Mongolia, itseren@gmail.com
Alberto Leporati, Italy, alberto.leporati@unimib.it
Vincenzo Manca, Italy, vincenzo.manca@univr.it
Taishin T. Nishida, Japan, nishida@pu-toyama.ac.jp
Agust́ın Riscos-Núñez, Spain, ariscosn@us.es
José Maria Sempere, Spain, jsempere@dsic.upv.es
Petr Sośık, Czech Rep., petr.sosik@fpf.slu.cz
K.G. Subramanian, India, kgsmani1948@gmail.com
György Vaszil, Hungary, vaszil.gyorgy@inf.unideb.hu
Sergey Verlan, France, verlan@u-pec.fr, verlan@univ-paris12.fr

Claudio Zandron, Italy, zandron@disco.unimib.it
Xingyi Zhang, China, xyzhanghust@gmail.com
Zhiqiang Zhang, China, zhiqiangzhang@hust.edu.cn

Website Committee

Xiangxiang Zeng, Xiamen, China – Chair, xzeng@xmu.edu.cn
Cătălin Buiu, Bucharest, Romania, cbuiu27@gmail.com
Luis Valencia Cabrera, Seville, Spain, lvalencia@us.es
Hong Peng, Xihua, China, ph.xhu@hotmail.com
Xingyi Zhang, Anhui, China, xyzhanghust@gmail.com
Gaoshan Deng, Xiamen, China
Andrei Florea, Bucharest, Romania, andrei91ro@gmail.com
Luis Felipe Maćıas-Ramos, Seville, Spain, lfmaciasr@us.es
David Orellana-Mart́ın, Seville, Spain, dorelmar@gmail.com



12 Structure of IMCS

PR Committee

Marian Gheorghe, Bradford, U.K. – Chair, M.Gheorghe@bradford.ac.uk
Petros Kefalas, Sheffield, U.K. (International Faculty, Greece),

kefalas@city.academic.gr

Savas Konur, Bradford, U.K., S.Konur@bradford.ac.uk
Maciej Koutny, Newcastle, U.K., maciej.koutny@newcastle.ac.uk
Jianhua Xiao, Nankai, China, jhxiao@nankai.edu.cn

Publication Committee

Linqiang Pan, Wuhan, China – Chair, lqpanhust@gmail.com
Marian Gheorghe, Bradford, U.K., m.gheorghe@bradford.ac.uk
Alberto Leporati, Milan, Italy, alberto.leporati@unimib.it
Gheorghe Păun, Bucharest, Romania, gpaun@us.es
Mario Pérez-Jiménez, Seville, Spain, marper@us.es
Gexiang Zhang, Chengdu, China, zhgxdylan@126.com

The main tasks of the Publication Committee are (1) to explore the possibility
to initiate a series of MC monographs/collective volumes, (2) to establish a MC
international journal, (3) to advise the organizers of CMC, ACMC, BWMC, MC
workshops in what concerns the special issues of journals, (4) to help translating
MC books in Chinese.

The Publication Committee can become the Editorial Board of the MC series
of books, but, of course, the journal should have a much larger Editorial Board.

Conferences Committee

Claudio Zandron, Milan, Italy – Chair, zandron@disco.unimib.it
Henry Adorna, Quezon City, Philippines
Artiom Alhazov, Chişinău, Rep. of Moldova
Bogdan Aman, Iaşi, Romania
Matteo Cavaliere, Edinburgh, Scotland
Erzsébet Csuhaj-Varjú, Budapest, Hungary
Rudolf Freund, Wien, Austria
Marian Gheorghe, Bradford, U.K. – Honorary Member
Thomas Hinze, Cottbus, Germany
Florentin Ipate, Bucharest, Romania
Shankara N. Krishna, Bombay, India
Alberto Leporati, Milan, Italy
Taishin Y. Nishida, Toyama, Japan



Structure of IMCS 13

Linqiang Pan, Wuhan, China – responsible of ACMC
Gheorghe Păun, Bucharest, Romania – Honorary Member
Mario J. Pérez-Jiménez, Sevilla, Spain
Agust́ın Riscos-Núñez, Sevilla, Spain
Petr Sośık, Opava, Czech Republic
K.G. Subramanian, Chennai, India
György Vaszil, Debrecen, Hungary
Sergey Verlan, Paris, France
Gexiang Zhang, Chengdu, China

Awards Committee:

Mario Pérez-Jiménez, Seville, Spain – Chair, marper@us.es
Marian Gheorghe, Bradford, U.K., m.gheorghe@bradford.ac.uk
Giancarlo Mauri, Milan, Italy, mauri@disco.unimib.it
Gheorghe Păun, Bucharest, Romania, gpaun@us.es
Linqiang Pan, Wuhan, China, lqpanhust@gmail.com

Rules of functioning:

1. Prizes to be awarded annually: (1) The PhD Thesis of the Year, (2) The
Theoretical Result of the Year, (3) The Application of the Year.

2. Each prize consists of diplomas for each co-author, one copy of the Hamangia
thinker1 and one voucher for a discount in the registration fee for the first of
BWMC, CMC or ACMC to take place after the prize was voted; the discount
will be fixed by the organizing committee of the meeting; in case of several
authors, they will choose the one of them to benefit of the voucher.

3. Any registered member of IMCS can be nominated and can receive any of
the three prizes. In cases (2) and (3), the prizes are awarded to the authors
of a paper or of an application, with at least one of authors being a member
of IMCS. The members of the Awards Committee cannot receive any prize,
neither they can be coauthors of papers or applications which receive one of
prizes (2) and (3).

4. If the Awards Committee considers necessary, each year at most one of the
prizes can be awarded ex aequo, to two winners.

5. Any registered member of IMCS can propose a candidate for any prize, by
sending to any member of the Awards Committee the relevant information
(and any additional information requested by the Awards Committee). Im-
plicitly, the Awards Committee can itself make nominations.

1 A Neolithic age clay sculpture, about 4000 years BC, found in Romania – see the
image at the next page.



14 Structure of IMCS

6. The nominations for the year Y should reach the Awards Chair before 20 of
January of the year Y+1. The Awards Committee members decide the winners
by the middle of February, and the prizes are awarded at the first edition of
BWMC, CMC or ACMC where the winners participate in.

7. The members of the Awards Committee and the rules of functioning can be
changed every year, after March 1, at the proposal of the Chair person or of
any member of the IMCS Board, subject to a vote in the IMCS Board.

The IMCS prizes are mainly meant to reward the excellency in MC research,
equally focusing on theory and applications, and to encourage young researchers.

The prizes are not subject to competitions, they do not identify the best PhD
thesis or paper or application, they just point that a certain work/result is of a
high value. This does not imply that other works/results are not so. We cannot
rank scientific results like in sport, in a mathematical sense.

We only want to call attention to certain works – thus also calling attention to
MC and to IMCS.

The prestige of a prize will be given by the prestige of the winners, also on
their evolution in time, during their careers.

To reach these goals, we have to be conservative, exigent, transparent in our
nominations and, especially, in selection.

Nominations for the prizes for 2017 are waited for until January 20, 2018, and
can be sent at any time, electronically, to any member of the Awards Committee
(preferably with a CC to all members).



Constitution of the International Membrane
Computing Society – IMCS

Article 1: Name

(1.1.) The name of the Society shall be International Membrane Computing
Society, abbreviated IMCS.

(1.2.) The logo of IMCS is the one in the figure below. It should appear in all
relevant places, such as IMCS web page, posters, calls, on the cover of the
Bulletin of IMCS, etc.

Article 2: Objects

(2.1.) The society shall be a nonprofit academic organization, having as its goal
to promote the development of membrane computing (MC), internationally,
at all levels (theory, applications, software, implementations, connection with
related areas, etc.).



16 Constitution of IMCS

(2.2.) A special attention will be paid to the communication/cooperation inside
MC community, to connections with other professional scientific organizations
with similar aims, and to promoting MC to young researchers.

(2.3.) IMCS will publish proceedings, journals or other materials, printed or
electronically, as it sees fit.

(2.4.) IMCS will organize yearly MC meetings, such as the Conference on Mem-
brane Computing (CMC), the Asian Conference on Membrane Com-
puting (ACMC), the Brainstorming Week on Membrane Computing
(BWMC), as well as further workshops/meetings, as it sees fit.

Article 3: Membership

(3.1.) There are four categories of members: Honorary Members, Regular
Members, Student Members, and Institution Members.

(3.2.)The Honorary Members are elected by the IMCS Board (email voting, major-
ity rule). Regular membership is open to all persons interested, on completing
a membership form.

(3.3.) Student Members can be undergraduate, master, and PhD students, and
they are eligible for various facilities IMCS is planning for students.

(3.4.) Institutions which want to join IMCS and support it can become Institution
Members. Any support/sponsorship from an institution will be acknowledged
in an appropriate way in IMCS publications.

(3.5.) Any member, of any kind, is supposed to know and accept the Constitution
of IMCS.

Article 4: Structure

(4.1.) The structure of IMCS and its governance are as specified in the next figure.
The figure also specifies the ten Honorary Members with whom the Society
starts (February 2016).

(4.2.) Gheorghe Păun, the founder of MC, is appointed Honorary President of
IMCS.

(4.3.) The work of IMCS is organized and conducted by the Board of IMCS,
consisting of the Executive Board and the Advisory Board. The Advisory
Board should have between 10 and 20 members, hence in total the IMCS Board
should contain between 20 and 30 members,

(4.4.) The Executive Board consists of four individual positions: President,
Vice President, Treasurer, and Secretary, and six Committees: Bul-
letin, Website, PR, Publication, Conferences, and Awards Commit-
tee. Each of these six Committees has a chair person. The Advisory Board
also has a chair person.

(4.5.) The four individual positions from the Executive Board, the six chair persons
of the Committees, the members of the Advisory Board, and the chair of the
Advisory Board are elected by the IMCS Board (email voting, majority rule).
Each chair of a Committee appoints a number of Committee members as he/she
sees fit.



Constitution of IMCS 17

(4.6.) All the elected positions are elected for one year. After one year, a change of
an elected person can be proposed by the President or the Vice President of the
IMCS Board, by the person itself (resignation), or by two thirds of members
of the IMCS Board, and it is voted in the IMCS Board (email voting, majority
rule). If there is no change proposal, then the person who occupies any position
in the IMCS Board continues in the same position, for one further year.

Article 5: Duties and competencies

(5.1.) The IMCS Board President represents the Society in relation with any
external entity, organizes/coordinates the activity of the IMCS Board, initiates
voting in the IMCS Board, chairs any panel/meeting of the Society.

(5.2.) The Vice President helps the President in all his/her activity, represents
the President when he/she is not available (e.g., in chairing panels/meetings).
Every year, the President and the Vice President present a common report
about IMCS activity, first circulating it by email in the IMCS Board and, after
possible corrections, posting it in the IMCS web page.



18 Constitution of IMCS

(5.3.) The Treasurer takes care of the income and expenses of IMCS, and each
year presents a report in this respect to IMCS Board. This report is analyzed
and voted in the IMCS Board (email voting, majority rule).

(5.4.) The Secretary is responsible to keep a track record of the IMCS: member-
ships, reports, voting results, etc.

(5.5.) The Bulletin Committee takes care of editing the Bulletin of IMCS, first
accumulating information/materials in an electronic format and then printed,
if needed/requested, with a periodicity to be decided by the IMCS Board.

(5.6.) The Website Committee takes care of the IMCS web page, whose structure
should be decided by the IMCS Board.

(5.7.) The PR Committee is responsible with developing relationships with other
similar organizations and promoting IMCS on various scientific forums, adver-
tising its activity on specialised networks and at international events.

(5.8.) The Publication Committee supervises the publication of proceedings, spe-
cial issues of journals, collective volumes edited under the auspices of IMCS.
Two particular goals of this Committee are to initiate a specialized journal,
International Membrane Computing Journal, and a specialized series of mono-
graphs.

(5.9.) The Conference Committee works as a steering committee for the two
MC yearly conferences, CMC and ACMC, looking for venues, suggesting (in
cooperation with the organizing committees) program committees and invited
speakers, possible sponsors and publications.

(5.10.) The Awards Committee collects nominations and decides the winners of
three yearly IMCS Prizes: (1) The PhD Thesis of the Year, (2) The
Theoretical Result of the Year, (3) The Application of the Year. The
Awards Committee has its Rules of functioning, which are voted by the IMCS
Board (email voting, majority rule).

Article 6: Voting

(6.1.) Each member of the IMCS Board (between 20 and 30 members) has one
vote.

(6.2.) A voting, on any subject, can be initiated by the President, the Vice
President, or by two thirds of the IMCS Board members.

(6.3.) The message proposing a vote should specify the issue to be decided in such
a way that the alternatives YES and NO are clear. The message should be
sent to all members of the IMCS Board, the voting messages of the members
should also be sent to all members (full transparency). The voting should last
30 days. If a member is not replying in the first 15 days, the initiator of the
vote should contact him/her once again. If a member is not replying even to
the second message, then his/her vote is considered abstaining.

(6.4.) ”Majority rule” means that at least half of the IMCS Board have voted
(YES, NO, or abstaining) and the decision is made according to the number of
YES and NO votes which is higher. In case of a draw, the vote of the President
is decisive – unless if the President does not decide to repeat the vote, maybe
changing the object of the vote.



Constitution of IMCS 19

(6.5.) All ambiguities and uncovered cases should be clarified by discussions in the
IMCS Board and, if decided so, proposed as amendments to the Constitution.

Article 7: Panels

(7.1.) On the occasions of IMCS annual meetings, like BWMC, CMC, and ACMC,
panels should be organized, chaired by the President, the Vice President or,
in their absence, by another member of the IMCS Board designated by the
President, to discuss current issues of the Society.

Article 8: Finance

(8.1.) Income: possible membership fees, as decided by IMCS Board, donations,
sponsorhips, conference registration fees, participation to research projects.

(8.2.) Expenses: IMCS prizes, students support, Bulletin of IMCS hardcopy, main-
taining web pages, sponsoring MC conferences – all these and anything else,
under the control of the IMCS Board.

Article 9: Amendments

(9.1.) Amendments to IMCS Constitution can be proposed by any member of the
IMCS Board, at any time. Any amendment should be discussed and voted in
the IMCS Board (email voting, majority rule) and then, if accepted, published
in the IMCS web page, thus being available to all members of IMCS.

Article 10: Dissolution

(10.1.) The dissolution of IMCS should be done in two steps: first, a vote in the
IMCS Board is organized (email voting, two thirds majority), and, if the disso-
lution proposal passes, a general vote is organized, where all regular members
participate (email voting, two thirds majority; in order the vote to be valid, at
least half of the members should vote).

(10.2.) If the Society decides to get dissolved, all remaining assets shall be donated
to a similar organization, at the choice of the IMCS Board.

Article 11. Provisory statement
The present Constitution will get provisionally valid by being voted (by email,

majority rule), in March 2016, in the IMCS Board, as this Board was constituted
by consensus during BWMC 2016 and soon after that. Then, it will be published
in the IMCS web page and, as soon as possible, in 2016, it will be voted by all
individual members of IMCS (email voting, majority rule). The vote will last one
month and to voting will participate all individual members of IMCS, students or
regular, registered until the last day of the previous month.





IMCS 2016 Prizes

1 Nominations

The IMCS Awards Committee members have selected the following final list of
candidates:

The PhD Thesis of the Year 2016

(a) Author: Suresh Kumar
Title: Two Dimensional P Systems: Arrays, Graphs and Applications
Supervisor: R. Rama
Thesis defense: September 16, 2016

(b) Author: Tao Wang
Title: Spiking Neural P Systems and Their Applications in Fault Diagnosis of
Electric Power Systems
Supervisor: Gexiang Zhang
Thesis defense: November 8, 2016
Graduation certificate: December 2016

The Theoretical Result of the Year

(a) Title: On the Computational Power of Spiking Neural P Systems with Self-
Organization
Authors: Xun Wang, Tao Song, Faming Gong, Pan Zheng
Journal: Scientific Reports

(b) Title: Generalized P Colonies with Passive Environment
Authors: L. Ciencialová, L. Cienciala, P. Sośık
Journal: Theoretical Computer Science and Proceedings of the Fourteenth
Brainstorming Week on Membrane Computing



22 IMCS 2016 Prizes

(c) Title: On the Classes of Languages Characterized by Generalized P Colony
Automata
Authors: K. Kántor, G. Vaszil
Journal: Theoretical Computer Science and Proceedings of the Fourteenth
Brainstorming Week on Membrane Computing

The Application of the Year

(a) Title: Complex Network Clustering by a Multi-objective Evolutionary Algo-
rithm Based on Decomposition and Membrane Structure
Authors: Y. Ju, S. Zhang, N. Ding, X. Zeng, X. Zhang
Journal: Scientific Reports

(b) Title: Building a Basic Membrane Computer
Authors: A. Millán, J. Viejo, J. Quiros, M.J. Bellido, D. Guerrero, E. Ostua
Journal: Proceedings of the Fourteenth Brainstorming Week on Membrane
Computing

(c) Title: Improving simulations of Spiking Neural P Systems in NVIDIA CUDA
GPUs: CuSNP
Authors: J.P. Carandang, J. Matthew, B. Villa Ores, F.G.C. Cabarle, H.N.
Adorna, M.A. Mart́ınez-del-Amor
Journal: Proceedings of the Fourteenth Brainstorming Week on Membrane
Computing

2 Winners

The IMCS Awards Committee has decided the following:

• No prize for the best PhD thesis is awarded for 2016.
• For the theoretical result of the year, the prize goes ex aequo, to (b) and (c),

that is to the papers by

1. L. Ciencialová, L. Cienciala, P. Sośık: Generalized P Colonies with Passive
Environment

2. K. Kántor, G. Vaszil: On the Classes of Languages Characterized by Gen-
eralized P Colony Automata.

• For the application of the year, the prize also goes ex aequo to (a) and (c), that
is to the papers by
1. Y. Ju, S. Zhang, N. Ding, X. Zeng, X. Zhang: Complex Network Clustering

by a Multi-objective Evolutionary Algorithm Based on Decomposition and
Membrane Structure

2. J.P. Carandang, J. Matthew, B. Villa Ores, F.G.C. Cabarle, H.N. Adorna,
M.A. Mart́ınez-del-Amor: Improving Simulations of Spiking Neural P Sys-
tems in NVIDIA CUDA GPUs: CuSNP.

Nominations for the prizes for 2017 are waited for until January 20, 2018.



IMCS Journal:
Journal of Membrane Computing
(JMEC)

International Membrane Computing Soceity (IMCS) witnesses the processes of
gestation and the birth of the new international journal, Journal of Membrane
Computing (JMEC). The Editor-in-Chief of JMEC, Professor Linqiang Pan, signed
the publishing agreement with Springer Nature Singapore Pte Ltd. on March 20,
2017, in Wuhan, China.

JMEC is an international journal with four issues per volume (per year). The
Journal Homepage http://www.springer.com/journal/41965 is setting up and will
be publicized soon. The first accepted papers are planned to be online in 2018 and
thereafter will be published in the Spring of 2019.

JMEC aims to foster the dissemination of new discoveries and novel technolo-
gies in the area of membrane computing and the related areas like bio-inspired
computing and natural computing. The focus of this journal is to provide a pub-
lication and communication platform for researchers, professionals and industrial
practitioners, covering the theoretical fundamentals and technological advances
to various applications. JMEC solicits original, high-quality and previously un-
published research papers, survey and review articles, short communications, and
tutorial papers.





Tutorials, Surveys

A Survey of Kernel P Systems

Marian Gheorghe

School of Electrical Engineering and Computer Science, University of Bradford
Bradford BD7 1DP, UK
m.gheorghe@bradford.ac.uk

1 Introduction

The membrane systems concept has been introduced through the seminal paper
[23] and has then intensively studied and enriched with various new features and
research topics. Soon after its launch, the area has started growing very fast, a
research monograph being published [24] and then later on a handbook present-
ing the key developments in this area [25]. The research problems envisaged to
be investigated have been outlined, a few years ago, in a paper looking at the
frontiers of this field [13]. The membrane computing area includes now a wealth
of computational models studied for their computational power and efficiency, but
also investigated for their usage in various applications [25].

One such membrane systems model is the kernel P systems device. This has
been introduced in [6] and its definition revised in [7]. The kernel P systems re-
search covers a broad spectrum of topics, from theory to verification, applications
and simulations. Here we present a summary of the research results in this area.

In the sequel we introduce the key concepts, present some relationships between
P systems with active membranes and electrical charges, and kernel P systems,
introduce verification and testing capabilities of these models, and finish off the
presentation with a brief overview of the applications of the kernel P systems.

2 kP Systems - Main Concepts and Definitions

The kernel P systems (kP systems, for short) will be defined below. For standard
P systems concepts and results we refer to [24, 25].

The kP systems concepts and definitions used in this paper are from [6, 7]. We
start with some preliminary concepts.



26 M. Gheorghe

2.1 Preliminaries

For a finite alphabet A = {a1, ..., am}, A∗ denotes the set of all strings (sequences)
over A. The empty string is denoted by λ and A+ = A\{λ} denotes the set of non-
empty strings. For a string u ∈ A∗, |u|a denotes the number of occurrences of a in
u, where a ∈ A. For a subset S ⊆ A, |u|S denotes the number of occurrences of the
symbols from S in u. The length of a string u is given by

∑
ai∈A |u|ai . The length

of the empty string is 0, i.e. |λ| = 0. A multiset over A is a mapping f : A → N.
Considering only the elements from the support of f (where f(aij ) > 0, for some

j, 1 ≤ j ≤ p), the multiset is represented as a string a
f(ai1 )
i1

. . . a
f(aip )

ip
, where the

order is not important. In the sequel multisets will be represented by such strings.

2.2 kP Systems Basic Definitions

We start by introducing the concept of a compartment type utilised later in defining
the compartments of a kP system.

Definition 1. T is a finite set of compartment types, T = {t1, . . . , ts}, where
ti = (Ri, σi), 1 ≤ i ≤ s, consists of a set of rules, Ri, over an alphabet A, and an
execution strategy, σi, defined over Lab(Ri), the labels of the rules of Ri.

Now we formally define a kP system and the compartments that appear in this
definition are constructed using compartment types introduced by Definition 1.
Each such compartment, C, will be defined by a tuple (t, w), where t ∈ T is the
type of the compartment and w ∈ A∗ the initial multiset of it. The other concepts
that appear in this definition, the types of rules and the execution strategies, will
be introduced later.

Definition 2. A kP system of degree n is a tuple

kΠ = (A,µ,C1, . . . , Cn, i0),

where A is a finite set (an alphabet) of elements called objects; µ defines the
initial membrane structure, which is a graph, (V,E), where V is a finite set of
vertices indicating compartments of kΠ, and E a finite set of edges; Ci = (ti, wi),
1 ≤ i ≤ n, is a compartment of the kP system; i0 is the label of the output
compartment, where the result is obtained.

2.3 kP Systems Rules

Each rule of a kP system has the form r {g}, where r stands for the rule itself and
g is its guard. The guards are constructed using multisets over A, as operands,
and relational and/or Boolean operators. We denote by Rel the set of relational
operators, {<,≤,=, ̸=,≥, >}, and let γ ∈ Rel, a relational operator, and for a ∈ A,
an a multiset. We first introduce an abstract relational expression.



A Survey of Kernel P Systems 27

Definition 3. Let g be the abstract relational expression denoted γan and w a
multiset; then the guard g applied to w denotes the relational expression |w|aγn.

The abstract relational expression g is true for the multiset w, if |w|aγn is true.
For the Boolean operators ¬ (negation), ∧ (conjunction) and ∨ (disjunction),

we consider an abstract Boolean expression as being defined by one of the following
conditions

• any abstract relational expression is an abstract Boolean expression;
• if g and h are abstract Boolean expressions then ¬g, g∧h and g∨h are abstract

Boolean expressions.

Definition 4. Let g be an abstract Boolean expression containing gi, 1 ≤ i ≤ q,
abstract relational expressions and w a multiset; then g applied to w means the
Boolean expression obtained from g by applying gi, 1 ≤ i ≤ q, to w.

As in the case of an abstract relational expression, the guard g is true with
respect to the multiset w, if the abstract Boolean expression g applied to w is true.

Example 1. If g is the guard defined by the abstract Boolean expression ≥ a5∧ < b3

and w a multiset, then g applied to w is true if w has at least 5 a′s and no more
than 2 b′s.

We now introduce the types of rules allowed in a kP system.

Definition 5. A rule from a compartment Cli = (tli , wli) can have one of the
following types:

• (a) rewriting and communication rule: x → y {g}, where x ∈ A+ and y has
the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A, and tj, 1 ≤ j ≤ h, indicates the
type of a compartment linked to the current one; tj might also indicate the type
of the current compartment, Cli ; if a link between Cli and a compartment of
type tj does not exists (i.e., there is no corresponding edge in E) then the rule
is not applied; if the type tj appears in more than one compartment connected
to Cli , then one of them will be non-deterministically chosen;

• (b) structure changing rules; the following types of rules are considered:
– (b1) membrane division rule: [x]tli → [y1]ti1 . . . [yp]tip {g}, where x ∈

A+ and yj ∈ A∗, 1 ≤ j ≤ p; the compartment Cli will be replaced by p
compartments; the j-th compartment, 1 ≤ j ≤ p, of type tij contains the
same objects as Cli , but x, which will be replaced by yj; all the links of Cli

are inherited by each of the newly created compartments;
– (b2) membrane dissolution rule: [ ]tli → λ {g}; the compartment Cli

will be destroyed together with its links;
– (b3) link creation rule: [x]tli ; [ ]tlj → [y]tli − [ ]tlj {g}, where x ∈ A+ and

y ∈ A∗; the current compartment is linked to a compartment of type tlj and
x is transformed into y; if more than one compartment of type tlj exist and
they are not linked with Ctli

, then one of them will be non-deterministically
picked up; g is a guard that refers to the compartment of type tli ;



28 M. Gheorghe

– (b4) link destruction rule: [x]tli − [ ]tlj → [y]tli ; [ ]tlj {g}, where x ∈ A+

and y ∈ A∗; is the opposite of link creation and means that the compart-
ments are disconnected.

When in a rewriting and communication rule one of the right hand side elements
(aj , tj), 1 ≤ j ≤ h, is such that tj = tli , then this is simply written as aj .

2.4 kP Systems Execution Strategies

Each compartment of a kP system has its own execution strategy, in accordance
with each compartment type t from T – see Definition 1. As in Definition 1, Lab(R)
is the set of labels of the rules R.

Definition 6. For a compartment type t = (R, σ) from T and r ∈ Lab(R),
r1, . . . , rs ∈ Lab(R), the execution strategy, σ, is defined by the following

• σ = λ, means no rule from the current compartment will be executed;
• σ = {r} – the rule r is executed;
• σ = {r1, . . . , rs} – one of the rules labelled r1, . . . , rs will be non-deterministi-

cally chosen and executed; if none is applicable then nothing is executed; this
is called alternative or choice;

• σ = {r1, . . . , rs}∗ – the rules are applied an arbitrary number of times (arbi-
trary parallelism);

• σ = {r1, . . . , rs}⊤ – the rules are executed according to the maximal parallelism
strategy;

• σ = σ1& . . .&σs, means executing sequentially σ1, . . . , σs, where σi, 1 ≤ i ≤ s,
describes any of the above cases; if one of σi fails to be executed then the rest
is no longer executed;

• for any of the above σ strategy only one single structure changing rule is al-
lowed.

A configuration of a kP system with n compartments, C1, . . . , Cn, is a tuple
c = (u1, . . . , un), where ui is a multiset belonging to compartment Ci, 1 ≤ i ≤
n. Structure changing rules might be applied and the number of compartments
will change. A configuration c′ = (v1, . . . , vm) is obtained in one step from c =
(u1, . . . , un), written as c =⇒ c′, if in each compartment Ci the execution strategy
σi is applied to ui, 1 ≤ i ≤ n. A computation, as usual in membrane computing,
is defined as a finite sequence of steps starting from the initial configuration,
(w1, . . . , wn), and applying in each step and each compartment the rules of the
corresponding execution strategy.

Remark 1. The result of a computation will be the number of objects collected in
the output compartment. For a kP system, kΠ, the set of all these numbers will
be denoted by M(kΠ).



A Survey of Kernel P Systems 29

Example 2. We generate square numbers starting with 1 by using the kP system,
kΠsq, having T = {t1, t2}, where tj = (Rj , σj) (Rj and σj are defined below),
1 ≤ j ≤ 2

kΠsq = (A,µ,C1, C2, 2),

with

• the alphabet A = {a, s, b, t};
• µ is the graph with nodes C1, C2 and the edge linking them;
• Cj = (tj , wj), 1 ≤ j ≤ 2, where w1 = a and w2 = λ;
• C2 is the output compartment.

The set of rules R1 contains
r1 : a → λ {= t},
r2 : s → (s, 2) {= t},
r3 : a → ab2s {< t},
r4 : a → ast {< t},
r5 : b → bs {< t};
and R2 = ∅. The execution strategy is σ1 = R⊤

1 for t1; σ2 may be any execution
strategy.

In n, n ≥ 1, steps one can obtain (a, λ) =⇒ . . . =⇒ (ab2(n−1)tsn
2

, λ) by using
(n−1) times the rules r3 and r5 and once the rule r4. In the next step one can get

(b2(n−1)t, sn
2

), by using r1, r2. In each step the rules mentioned above are applied
in the maximal parallel manner. In (n + 1) steps in C2 is obtained the square of

n, i.e., sn
2

.

3 kP Systems and P Systems with Active Membranes

The kP systems introduced above represent a class of computational models in-
cluding various features of existing P systems as well as new ones. It is expected
that the computational power equals that of a Turing machine. We are more inter-
ested to show how the behaviour of other P systems can be simulated by specific
kP systems. Showing this, we not only prove the computational completeness of
this new model, but also demonstrate its effectiveness in simulating the behaviour
of other classes of P systems. In [18] has been shown how a generalised commu-
nicating P systems problem is mapped into its kP systems based specification. In
[7, 8, 4] it has been shown how P systems with active membranes using electrical
charges and neural-like P systems can be simulated by kP systems. In the sequel
we present the connection between P systems with active membranes having elec-
trical charges and kP systems, with the proof given in [4]. Beforehand we introduce
P systems with active membranes and electrical charges.

Definition 7. A P system with active membranes of initial degree n is a tuple (see
[25], Chapter 11) Π = (O,H, µ,w1,0, . . . , wn,0, R, i0) where:



30 M. Gheorghe

• O is an alphabet of objects, w1,0, . . . , wn,0 are the initial strings in the n initial
compartments and i0 is the output compartment;

• H is the set of labels for compartments;
• µ defines the tree structure associated with the system;
• R consists of rules of the following types:

– (a) rewriting rules: [u → v]eh, for h ∈ H, e ∈ {+,−, 0} (set of electrical
charges), u ∈ O+, v ∈ O∗;

– (b) send-in communication rules: u[ ]e1h → [v]e2h , for h ∈ H, e1, e2 ∈
{+,−, 0}, u ∈ O+, v ∈ O∗;

– (c) send-out communication rules: [u]e1h → [ ]e2h v, for h ∈ H, e1, e2 ∈
{+,−, 0}, u ∈ O+, v ∈ O∗;

– (d) dissolution rules: [u]eh → v, for h ∈ H\{s}, s denotes the skin membrane
(the outmost one), e ∈ {+,−, 0}, u ∈ O+, v ∈ O∗;

– (e) division rules for elementary membranes: [u]e1h → [v]e2h [w]e3h , for h ∈ H,
e1, e2, e3 ∈ {+,−, 0}, u ∈ O+, v, w ∈ O∗.

The rules are executed in accordance with the maximal parallelism, but in each
compartment only one of the rules (b)-(e) is executed. In the sequel we assume
that the output compartment is neither dissolved nor divided. The result of a
computation, obtained in i0, is denoted by M(Π).

We consider a particular case of a P system with active membranes, namely a
P system with active membranes starting with n1 compartments and having an
upper bound limit for the number of active compartments. We will show that for
every multiset w obtained in the output compartment of a P system with active
membranes satisfying the above conditions, Π, there is a kP system, kΠ, such
that there is e ∈ {+,−, 0} and we is obtained in the output compartment of kΠ.

Theorem 1. If Π is a P system with active membranes having n1 initial com-
partments and an upper bound for the number of active compartments in any com-
putation, then there exists a kP system, kΠ, of degree 2 and using only rewriting
and communication rules, such that x+ 1 ∈ M(kΠ), iff x ∈ M(Π).

Proof. Let Π = (O,H, µ,w1,0, . . . , wn1,0, R, i0) be a P system with active mem-
branes of initial degree n1, and the polarisations of the n1 compartments are all
0, i.e., e1 = · · · = en1 = 0.

We will build a kP system with two compartments, C1, where the behaviour
of Π will be simulated, and C2, associated with i0.

The dynamic structure of the P systemΠ will be handled be using the following
mechanisms. Each membrane will be identified by a pair (i, h), where i ∈ I is an
index associated with the membrane and h ∈ H is its label. We work under the
assumption that I is finite. Its cardinal is equal to the maximum number of active
membranes that may appear in any computation. We let i0 ∈ I and i0 ∈ H. We
will denote by (I × H)c the currently used pairs (i, h). We assume that for any
(i, h) ∈ (I×H)c and (j, h′) ∈ (I×H)c, we have i ̸= j, hence the cardinal of (I×H)c
is always at most the cardinal of I. Whenever a membrane dissolution takes place,



A Survey of Kernel P Systems 31

its index and label are removed from (I ×H)c. When a membrane division rule is
applied, the index and label of the divided compartment are removed from (I×H)c
and two new values of indices with the same label are selected and added to the
set (I ×H)c. The tuple (i0, i0) is always in (I ×H)c.

A compartment of Π of label h, electrical charge e and containing the multiset
w will be denoted by [w]eh. We will codify a compartment [w]eh by two tuples
< e, i, h > and < w, i, h >, with (i, h) ∈ (I ×H)c. For a multiset w = a1 . . . am,
< w, i, h > denotes < a1, i, h > · · · < am, i, h >. For a compartment [w]eh, when
h ̸= i0, the tuples < e, i, h > and < w, i, h > are added to C1; when h = i0 then
in addition to the tuples present in C1, we add e and w to C2.

For (i, h) ∈ I ×H we denote by p(i, h) the parent of the membrane with label
h and of index i. If p(i, h) = (i′, h′) then the membrane with label h′ and index
i′ is the parent of the membrane with label h and index i. By < x, p(i, h) > and
< e, p(i, h) > we denote the tuples < x, i′, h′ > and < e, i′, h′ >, respectively.

Two new symbols, δ1 and δ2, will be used for the membrane dissolution and
division. The following guard will be used

= δall :=
∧

(i,h)∈I×H

(¬ =< δ1, i, h >) ∧ (¬ =< δ2, i, h >),

which is true for a multiset w when none of < δj , i, h >, 1 ≤ j ≤ 2, i ∈ I, and
h ∈ H, appears in w. We also introduce a guard checking that the symbols γ1 and
γ2 do not appear in the current multiset:

= γall := (¬ = γ1) ∧ (¬ = γ2).

We construct the kP system, kΠ, using T = {t1, t2}, where tj = (R′
j , σj) (with

R′
j and σj being defined later), 1 ≤ j ≤ 2, as follows:

kΠ = (A,µ′, C1, C2, 2),

with the elements of the system given below

• µ′ is the graph with nodes C1, C2 and the edge linking them;
• the alphabet is

A = O ∪ {+,+′,−,−′, 0, 0′, γ1, γ2} ∪ {< b, i, h >| b ∈ {δ1, δ2,+,−, 0}, i ∈ I,
h ∈ H};

• Cj = (tj , w
′
j,0w

′′
j,0), 1 ≤ j ≤ 2, and C2 is the output compartment;

– the initial multiset, w′
1,0w

′′
1,0, is given by

w′
1,0 =< w1,0, 1, h1 > · · · < wn1,0, n1, hn1 >,

w′′
1,0 =< e1, 1, h1 > · · · < en1 , n1, hn1 >,

where e1 = · · · = en1 = 0, for all the initial multisets and initial membranes
of Π. The initial multiset w′

2,0w
′′
2,0, is given by

w′
2,0 = wi0,0, w

′′
2,0 = ei0 .



32 M. Gheorghe

Initially, the indices (I × H)1 = {(1, h1) . . . (n1, hn1)} \ {(i0, i0)} are used
in association with compartment C1 and (i0, i0) for C2. The currently used
indices are (I ×H)c = (I ×H)1 ∪ {(i0, i0)}.

– R′
1 and R′

2 contain the rules below.
(a.1) For each (i, h) ∈ I × H \ {(i0, i0)} and each rule [u → v]eh ∈ R,

e ∈ {+,−, 0}, we add to R′
1 the rule < u, i, h >→< v, i, h > {=<

e, i, h > ∧ = δall ∧ = γall}; these rules are applied only when the
polarisation e appears in the compartment with index i and label h and
none of the < δk, j, h

′ >, 1 ≤ k ≤ 2, j ∈ I, h′ ∈ H, or γ1, γ2 appears,
i.e., no dissolution or division has started and no communication with
the output compartment, i0, takes place – see below.

(a.2) For (i, h) = (i0, i0), we add to R′
1 the rule < u, i0, i0 >→< v, i0, i0 >

{=< e, i0, i0 > ∧ = δall ∧ = γall} and the rule u → v {= e ∧ = γall}
to R′

2.
(b.1) For each (i, h) ∈ I × H \ {(i0, i0)} and p(i, h) ̸= (i0, i0), and each

rule u[ ]e1h → [v]e2h ∈ R, e1, e2 ∈ {+,−, 0}, we add to R′
1 the rule <

u, p(i, h) >< e1, i, h >→< v, i, h >< e2, i, h > {= δall ∧ = γall}; these
rules will transform < u, p(i, h) > corresponding to u from the parent
compartment to < v, i, h > corresponding to v from the compartment
with label h and index i; the polarisation is changed; as there is only
one object < e1, i, h >, it follows that only one single rule corresponding
to the compartment can be applied at any moment of the computation.

(b.2)When (i, h) = (i0, i0), then the rules added to R′
1 are < u, p(i0, i0) ><

e1, i0, i0 >→< v, i0, i0 >< e2, i0, i0 > (ve′2γ1, 2)γ1 {= δall ∧ = γall} and
γ1 → λ; and the rules added to R′

2 are e′2 → e2 {= γ1} and γ1e → λ,
e ∈ {+,−, 0}. The first rule apart from simulating the communication
rule, also introduces γ1 in both compartments. In C2 it helps changing
the polarisation of it and in C1 it helps with the synchronisation of the
computation. Then the symbol disappears.

(b.3) When p(i, h) = (i0, i0), then we add to R′
1 the rules < u, i0, i0 ><

e1, i, h >→< v, i, h >< e2, i, h > (γ2, 2)γ2 {= δall ∧ = γall} and γ2 → λ.
The rule uγ2 → λ is added to R′

2. Similar to (b.2), γ2 is introduced in
both compartments and in C2 it helps removing u.

(c.1) For each (i, h) ∈ I ×H \ {(i0, i0)} and p(i, h) ̸= (i0, i0), and each rule
[u]e1h → [ ]e2h v ∈ R, e1, e2 ∈ {+,−, 0}, we add the rule < u, i, h ><
e1, i, h >→< v, p(i, h) >< e2, i, h > {= δall ∧ = γall}.

(c.2) When (i, h) = (i0, i0), then we add to R′
1 the rule < u, i0, i0 ><

e1, i0, i0 >→< v, p(i0, i0) >< e2, i0, i0 > (e′2γ1, 2)γ1 {= δall ∧ = γall}.
As in (b.2), we use γ1 → λ in R′

1 and e′2 → e2 {= γ1} in R′
2. We need to

add to R′
2 the rule uγ1e → λ. The rules make sure that in C1 we simulate

the communication rule and in C2 u disappears and the polarization is
changed to e2.



A Survey of Kernel P Systems 33

(c.3) When p(i, h) = (i0, i0), then the rule added to R′
1 is < u, i, h ><

e1, i, h >→< v, i0, i0 >< e2, i, h > (v, 2) {= δall ∧ = γall}. This rule
simulates the communication rule and introduces v into C2.

(d.1) For each (i, h) ∈ I × H \ {(i0, i0)} and p(i, h) ̸= (i0, i0), and each
rule [u]eh → v ∈ R, e ∈ {+,−, 0}, we add to R′

1 the rule < u, i, h ><
e, i, h >→< v, p(i, h) >< δ1, i, h > {= δall ∧ = γall}; all the objects
corresponding to those from the compartment of index i and label h
must be moved to the parent compartment - this will happen in the
presence of < δ1, i, h > when no other transformation will take place;
this is obtained by using in R′

1 rules < a, i, h >→< a, p(i, h) > {=<
δ1, i, h >}, a ∈ O and < δ1, i, h >→ λ; the set (I ×H)c will change now
by removing the pair (i, h) from it.

(d.2)When p(i, h) = (i0, i0), then the rules above will become < u, i, h ><
e, i, h >→ < v, i0, i0 >< δ1, i, h > (v, 2) {= δall ∧ = γall} and <
a, i, h >→< a, i0, i0 > (a, 2) {=< δ1, i, h >}, a ∈ O.

(e) For each (i, h) ∈ I×H \{(i0, i0)} and each rule [u]e1h → [v]e2h [w]e3h ∈ R,
e1, e2, e3 ∈ {+,−, 0}; we add to R′

1 the rule < u, i, h >< e1, i, h >→<
v, j1, h >< e2, j1, h >< w, j2, h >< e3, j2, h >< δ2, i, h > {= δall ∧
= γall} – the pair (i, h) is removed from (I × H)c and two new pairs
(j1, h) and (j2, h), existing in I×H, with j1 ̸= j2, are added to (I×H)c
and one < u, i, h > is transformed into < v, j1, h > and < w, j2, h >
and their associated electrical charges; then the content corresponding
to compartment of index i and label h will be moved to those of index
j1 and j2 and the same label h, hence rules < a, i, h >→< a, j1, h ><
a, j2, h > {=< δ2, i, h >}, a ∈ O are added to R′

1; finally, < δ2, i, h >→
λ is also included in the set of rules of C1; it is clear that only one
division rule for the same compartment is applied in any step of the
computation.

We note that in C2 there are no rules for dissolution and division as the output
compartment is not affected by these rules.

For each rule in a compartment of label h in Π there is a corresponding rule
in kΠ as defined by R′

1. If the rule is in i0 then there are rules in both R′
1 and

R′
2. Every rewriting rule that is not in i0 has a corresponding rule defined in ac-

cordance with (a.1) in R′
1; every rule in i0 has a corresponding rule in R′

1 and one
in R′

2, according to (a.2). Similarly, for communication rules in Π are defined cor-
responding rules in R′

1 and R′
2 – rules (b.1) to (b.3) and (c.1) to (c.3). Dissolution

rules in Π have their corresponding rules in kΠ defined by (d.1) and (d.2), whereas
each membrane division rule of Π has its corresponding rule in kΠ defined by (e).

The execution strategy in both compartments, C1 and C2, is maximal paral-
lelism.

For a sequence of rules applied in Π, we have a corresponding sequence of rules
in kΠ. Obviously, for every multiset w obtained in the output compartment of Π,
i0, there is e ∈ {+,−, 0} and we is obtained in the output compartment of kΠ,
C2.



34 M. Gheorghe

4 Verifying kP Systems

In Section 3, we have seen the computational power of the kP systems and their
ability to simulate membrane systems with active membranes. Later on in Sec-
tion 6, we will illustrate how kP systems allow to model various systems that
were originally specified by using different P system variants or other computa-
tional models. In addition to the study of the modelling capabilities of the kP
systems, there have been investigations looking into the behaviour and proper-
ties of the models. In this respect, there have been developed methods and tools
for simulating, verifying and testing the systems specified with such models. The
simulation and verification aspects have been integrated into a software platform,
called kPWorkbench, supporting the modelling and analysis of kP systems. The
models are specified in a kP systems language, called kP-Lingua.

One important feature of kPWorkbench is formal verification. The frame-
work supports both Linear Temporal Logic (LTL) and Computation Tree Logic
(CTL) properties by making use of the NuSMV [2] model checker. In order to
facilitate the formal specification, kPWorkbench features a property language,
called kP-Queries, comprising a list of natural language statements representing
formal property patterns, from which the formal syntax of the NuSMV formulas
are automatically generated. The details can be found in [12].

We illustrate the use of the model checking for a broadcasting problem intro-
duced in [12, 4].

The broadcasting problem requires that given a tree with n nodes and height
equal to m, a signal s is sent to all the nodes of the tree starting from the root.
The signal will be returned back, like an acknowledgement, arriving at the root
node as f , after all the nodes of the tree have been visited. The restrictive case of
the broadcasting process is considered here, i.e., the signal from a node is sent to
only one of its descendants, non-deterministically chosen.

In order to model the broadcasting problem we construct a kP system, kΠ, with
n compartments. The compartments, labelled Ci,j , are associated to the nodes of
the tree as follows: C1,1 corresponds to the root and Ci,j corresponds to the node
j from level i, 1 ≤ i ≤ m, 1 ≤ j ≤ pi, where pi is the number of nodes of level i.
Formally, the kP system is defined as follows

kΠ = (A,µ,C1,1, . . . , Cm,pm
, C1,1),

where A = {s, f, d, v} is the set of objects (s the signal; f the final object arriving
in the compartment C1,1; d the object assigned initially to the compartments
corresponding to internal nodes of the tree, its multiplicity equals the number of
descendants of the node; and v the object appearing in the compartments that have
been visited); µ contains a link between two compartments when the corresponding
nodes of the tree are such that one is the child of the other one; Ci,j = (ti, wi,j,0)
are the compartments, where ti defines a type and wi,j,0 is the initial multiset of
Ci,j ; C1,1 is the output compartment.

All the compartments corresponding to the nodes from the same level i have
the type ti, 1 ≤ i ≤ m. Each ti has the form, ti = (Ri, σi). The initial multisets



A Survey of Kernel P Systems 35

are w1,1,0 = sdp2 , where p2 denotes the number of descendants of the root (i.e.,
the number of nodes of level 2); wi,j,0 = λ if Ci,j corresponds to a leaf node and
wi,j,0 = dpi,j if Ci,j is a compartment corresponding to a node, different from the
root, having pi,j descendants.

In the sequel for a compartment C corresponding to a node, we call descendant
compartments, the compartments corresponding to the nodes that are descendants
of it. Similarly, we will call C parent compartment with respect to its descendant
compartments. For a compartment Ci,j , 1 < i ≤ m, 1 ≤ j ≤ pi, which corresponds
to a node which is not a root, the set of rules, Ri, consists of
r1,i : sd → (s, i+ 1) { ≥ d ∧ < v}, – unvisited, with descendants;
r2,i : s → v(s, i− 1) { < d ∧ < v}, – unvisited, with no unvisited descendants;
r3,i : s → (sd, i− 1) { < d ∧ = v}, – visited, with no descendants. The execution
strategy is σi = {r1,i, r2,i, r3,i} – alternative or choice.

For the component C1,1 corresponding to the root the set of rules R1 contains
r1,1 derived from Ri for i = 1 and r2,1 : s → vf { < d∧ < v}. The execution
strategy is also alternative or choice: σ1 = {r1,1, r2,1}.

The signal s, starting from the root, goes down anytime there are unvisited
descendant compartments; it will return back, level by level, after arriving to a
compartment corresponding to a leaf or a node with all descendants being vis-
ited. The signal s is sent from a compartment to one of its descendants (when at
least a d exists) by using r1,1 (this will consume a d and will send s to the de-
scendant compartment). Anytime s is in a compartment corresponding to a node
having descendants and with some of them unvisited, then s will be sent to one
of the descendants (rule r1,i) consuming a d. If the compartment has been vis-
ited and receives an s then both the signal s and a d are returned back to the
parent compartment (rule r3,i); otherwise, if it receives s, but is unvisited and
with no unvisited descendants then it marks it visited and returns s to the parent
compartment (rule r2,i). Finally, s returns to C1,1 and is becomes f .

We consider the following kP system, kΠbcast, with 6 compartments: C1,1 -
root, with descendants C2,1 and C2,2; C2,2 has descendants C3,1 and C3,2; and
C3,2 has the descendant C4,1.

We now illustrate how verification works by using query patterns specified as
kP-Queries. For each property we also provide the LTL specification or the CTL
specification.

The fact that the process will halt with the root node having f = 1, is expressed
by the kP-Query pattern

eventually (C1,1.f > 0)

and the CTL formula

EF C11.f > 0

will return true, if there exists an execution trace where C11.f > 0 eventually
holds. We know that if all children nodes are visited (v = 1) then parent has
no children left to visit (d = 0). This is specified by a Steady-state kP-Query
pattern,



36 M. Gheorghe

((C3,1.v = 1 and C3,2.v = 1) implies C2,2.d = 0)

which is translated to the LTL formula

F (G ((C31.v = 1 & C32.v = 1) -> C22.d = 0)).

More properties are mentioned in [4].

5 Testing kP Systems

In this section we show how a kP system can be tested using automata based
testing methods. We refer to the broadcasting problem discussed in Section 4. The
approach is based on the method developed in [14] and [5] for cell-like P systems
and applied to a kP system model of a sorting algorithm [3]. Here we follow [4].

Naturally, in order to apply an automata based testing method to a kP model,
a finite automaton needs to be obtained first. In general, the computation of a
kP system cannot be fully modelled by a finite automaton and so an approximate
automaton will be sought. The problem will be addressed in two steps.

• Firstly, the computation tree of a P system will be represented as a determin-
istic finite automaton. In order to guarantee the finiteness of this process, an
upper bound k on the length of any computation will be set and only compu-
tations of maximum k steps will be considered at a time.

• Secondly, a minimal model, that preserves the required behaviour, will be de-
fined on the basis of the aforementioned computation tree.

In [4] a value of 3 has been considered for k. A finite automaton representa-
tion of the computation tree for this valus is constructed. A minimal finite cover
automaton of the language defined by the previous automaton is then constructed.

In conformance testing one constructs a finite set of input sequences, called test
suite, such that the implementation passes all tests in the test suite if and only
if it behaves identically to the specification on any input sequence. In our case
the set of input sequences is obtained from the minimal finite cover automaton.
Naturally, the implementation under test can also be modelled by an unknown
deterministic finite automaton. We are only interested in the behaviour of the
system for sequences of length up to an upper bound k. Then, the test suite
will only contain sequences of up to length k and its successful application to
the implementation under test will establish that the implementation will behave
identically to the specification for any sequence of length less than or equal to k.
The construction of a test suite for the above system is provided in [4].

6 Applications

Many variants of P systems have been used to solved NP-complete problems in
polynomial time [25]. We are expecting that as long as kP systems make use of rules



A Survey of Kernel P Systems 37

generating an exponential number of compartments in polynomial time (membrane
division rules), they are also able to solve in a similar way such problems. Indeed,
it has been shown that kP systems using membrane divison rules can solve NP-
complete problems (3-colouring [10], subset sum and partition [9]) in polynomial
time. It is also expected that these solutions are more succinct, with respect to
the number of rules, than for other variants of P systems used in this respect [10].

Various other problems have been solved using kP systems, but in addition to
the formal solution, a verification mechanism, based on model-checking, has been
employed. Sorting problems have been considered and solutions working in linear
time [7, 3] or in constant time [3], based on kP systems, have been provided. Their
formal verification has been also investigated. The sorting problem, as well as a
system engineering problem of modelling an e-bike system, have been considered
together with a formal verification procedure, supplemented by an automata based
testing approach – [4] and [19], respectively.

Applications of kP systems in systems and synthetic biology have been de-
veloped. Models of AND and OR Boolean gates [11], XOR gate [16] and quorum
sensing and pulse generator [17] have been investigated together with a qualitative
analysis, based on formal verification.

These kP models have been mapped into stream X-machine models [22] and
high-performance simulations provided for them [1, 20, 21]. Partial implementa-
tions on a parallel hardware platform have been made [15].

7 Conclusions

Kernel P systems introduced initially as a model combining features of some ex-
isting P systems and a few other new features [6], has then become a modelling
framework with computational, verification and testing capabilities [4], supported
by a software platform with simulation and verification tools [12].

Future developments will include models of more complex problems, research
into identifying more efficient analysis tools complementing the current modelling
framework and software platform.

References

1. M. E. Bakir, S. Konur, M. Gheorghe, I. M. Niculescu, F. Ipate, High Performance
Simulations of Kernel P Systems, Proc. IEEE International Conference on High
Performance Computing and Communications, 22 – 24 August, Paris (S. Khaddaj
et al., eds.), 409 – 412, 2014.

2. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, A. Tacchella, NuSMV Version 2: An Open Source Tool for Symbolic
Model Checking, Proc. International Conference on Computer-Aided Verification
(CAV 2002) (W.A. Hunt et al., eds.), Lecture Notes in Computer Science, 2404,
359 – 364, 2002.



38 M. Gheorghe

3. M. Gheorghe, R. Ceterchi, F. Ipate, S. Konur, Kernel P Systems Modelling, Testing
and Verification – Sorting Case Study, Proc. 17th International Conference on
Membrane Computing, Milan, 25 – 29 July, 2016 (A. Leporati, C. Zandron, eds.),
161 – 174, 2016.

4. M. Gheorghe, R. Ceterchi, F. Ipate, S. Konur, Kernel P Systems: From Modelling
to Verification and Testing, Theoretical Computer Science (accepted).

5. M. Gheorghe, F. Ipate, On Testing P Systems, Proc. 9th Workshop on Membrane
Computing (D.W. Corne et al., eds.), Lecture Notes in Computer Science, 5391,
204 – 216, 2009.

6. M. Gheorghe, F. Ipate, C. Dragomir, Kernel P Systems, Proc. 10th Brainstorming
Week on Membrane Computing (M. A. Mart́ınez-del-Amor et al., eds.), Fénix
Editora, Universidad de Sevilla, 153 – 170, 2012.

7. M. Gheorghe, F. Ipate, C. Dragomir, L. Mierlă, L. Valencia-Cabrera, M. Garćıa-
Quismondo, M.J. Pérez-Jiménez, Kernel P Systems – Version 1, Proc. 11th Brain-
storming Week on Membrane Computing (L. Valencia-Cabrera et al., eds.), Fénix
Editora, Universidad de Sevilla, 97 – 124, 2013.

8. M. Gheorghe, F. Ipate, S. Konur, Kernel P Systems and Relationships with other
Classes of P Systems, in Multidisciplinary creativity – Homage to Gheorghe Păun
on His 65th Birthday (M. Gheorghe et al., eds.), Spandugino Publishing House,
64 – 76, 2015.

9. M. Gheorghe, F. Ipate, S. Konur, Solutions to the Subset Sum and Partition
Problems Using Kernel P Systems, Annals of Bucharest University, Computer
Science, LXII(2), 37 – 46, 2015.

10. M. Gheorghe, F. Ipate, R. Lefticaru, M.J. Pérez-Jiménez, A. Ţurcanu, L. Valencia-
Cabrera, M. Garćıa-Quismondo, L. Mierlă, 3-COL Problem Modelling Using Sim-
ple kernel P Systems, International Journal of Computer Mathematics, 90(4), 816
– 830, 2013.

11. M. Gheorghe, S. Konur, F. Ipate, Kernel P Systems and Stochastic P Systems for
Modelling and Formal Verification of Genetic Logic Gates, in Advances in Uncon-
ventional Computing (A. Adamatzky, ed.), Emergence, Complexity and Compu-
tation Series, Volume 1: Theory, Springer, 661 – 676, 2015.

12. M. Gheorghe, S. Konur, F. Ipate, L. Mierlă, M. E. Bakir, M. Stannett, An In-
tegrated Model Checking Toolset for Kernel P Systems, Proc. 16th Conference
on Membrane Computing (G. Rozenberg et al., eds.), Lecture Notes in Computer
Science, 9504, 153 – 170, 2015.

13. M. Gheorghe, Gh. Păun, M. J. Pérez-Jiménez, G. Rozenberg, Research Frontiers of
Membrane Computing: Open Problems and Research Topics, International Jour-
nal of Foundations of Computer Science, 24, 547 – 624, 2013.

14. F. Ipate, M. Gheorghe. Finite State Based Testing of P Systems, Natural Comput-
ing, 8(4), 833 – 846, 2009.

15. F. Ipate, R. Lefticaru, L. Mierlă, L. Valencia-Cabrera, H. Han, G. Zhang, C.
Dragomir, M. Gheorghe, Kernel P Systems: Applications and Implementations,
Proc. 8th International Conference on Bio-Inspired Computing: Theories and Ap-
plications, BIC-TA, 12 – 14 July, Huang Shan (Z. Yin et al., eds.), 1081 – 1089,
2013.

16. S. Konur, M. Gheorghe, C. Dragomir, L. Mierlă, F. Ipate, N. Krasnogor, Conven-
tional Verification for Unconventional Computing: a Genetic XOR Gate Example,
Fundamenta Informaticae, 134(1-2), 97 – 110, 2014.



A Survey of Kernel P Systems 39

17. S. Konur, M. Gheorghe, C. Dragomir, L. Mierlă, F. Ipate, N. Krasnogor, Qualita-
tive and Quantitative Analysis of Systems and Synthetic Biology Constructs using
P Systems, ACS Synthetic Biology, 4(1), 83 – 92, 2015.

18. S. N. Krishna, M. Gheorghe, C. Dragomir, Some Classes of Generalised Communi-
cating P Systems and Simple Kernel P Systems, Proc. 9th International Conference
on Computability in Europe, 1 – 5 July, Milan (P. Bonizzoni et al., eds.), 284 –
293, 2013.

19. R. Lefticaru, M. E. Bakir, S. Konur, M. Stannett, F. Ipate, Modelling and Validat-
ing an Engineering Application in Kernel P Systems, 18th International Conference
on Membrane Computing, Bradford, 24 – 28 July, 2017 (submitted).

20. R. Lefticaru, L. F. Maćıas-Ramos, I. M. Niculescu, L. Mierlă, Towards Agent-
Based Simulation of Kernel P Systems using FLAME and FLAME GPU, Proc.
Workshop on Membrane Computing, Manchester, 11 – 15 July, 2016 (M. Ghe-
orghe, S. Konur, eds.), Technical Report of the University of Bradford, 58 – 61,
2016.

21. R. Lefticaru, L. F. Maćıas-Ramos, I. M. Niculescu, L. Mierlă, Agent-Based Sim-
ulation of Kernel P Systems with Division Rules using FLAME, Proc. 17th In-
ternational Conference on Membrane Computing, Milan, 25 – 29 July, 2016 (A.
Leporati, C. Zandron, eds.), 195 – 216, 2016.

22. I. M. Niculescu, M. Gheorghe, F. Ipate, A. Şefănescu, From kernel P Systems to
X-Machines and FLAME, Journal of Automata, Languages and Combinatorics,
19(1–4), 239 – 250, 2014.

23. Gh. Păun, Computing with Membranes, Journal of Computer and System Sci-
ences, 61(1), 108 – 143, 2000.

24. Gh. Păun, Membrane Computing – An Introduction, Springer, 2002.
25. Gh. Păun, G. Rozenberg, A. Salomaa, eds., The Oxford Handbook of Membrane

Computing, Oxford University Press, 2010.





Space complexity of P Systems with Active
Membranes: A Survey

Alberto Leporati, Luca Manzoni, Giancarlo Mauri,
Antonio E. Porreca, Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

leporati/luca.manzoni/mauri/porreca/zandron@disco.unimib.it

Summary. P systems with active membranes are a variant of P systems where mem-
branes can be created during the computation by division of existing ones. Using this
feature, one can create an exponential number of membranes in a polynomial time, and
use them in parallel to solve computationally hard problems. This possibility raises many
interesting questions concerning the trade–off between time and space needed to solve
various classes of computational problems by means of membrane systems. In this paper
we give a survey on the results on this topic.

1 Introduction

P systems with active membranes have been introduced in [8] as a variant of P
systems where the membranes play an active role in the computation: an electri-
cal charge, that can be positive (+), neutral (0), or negative (−), is associated
with each membrane; the application of the rules can be controlled by means of
these electrical charges. Moreover, new membranes can be created during the com-
putation by division of existing ones. A very interesting feature of such systems
is that, using these operations, one can create an exponential number of mem-
branes in polynomial time, and use them in parallel to solve computationally hard
problems.

This possibility raises many interesting questions concerning the trade–off be-
tween time and space needed to solve various classes of computational problems by
means of membrane systems. In order to clarify such relations, a definition of space
complexity for P systems has been proposed [10], on the basis of an hypothetical
implementation of P systems by means of real biochemical materials: every single
object and every single membrane requires some constant physical space.

Research on the space complexity of P systems with active membranes has
shown that these devices, when using a polynomial amount of space, exactly char-
acterize the complexity class PSPACE, as shown in [11] and [12]. The result has



42 A. Leporati et al.

then been generalized, showing that any Turing machine working in space Ω(n)
can be simulated with a polynomial space overhead [1].

A natural research topic that follows immediately is to clarify the classes of
problems solved by P systems which make use of logarithmic space. The first nat-
ural approach, when considering the use of sublinear space in the framework of
membrane systems, is to compare logarithmic space P systems with Turing ma-
chines using the same amount of space. It has been shown [14] that DLOGTIME–
uniform (a standard, weak uniformity condition for families of Boolean circuits)
P systems with active membranes, using a logarithmic amount of space, are able
to simulate logarithmic-space deterministic Turing machines, and thus to solve all
problems in the class L. In [3] it is pointed out that, while logarithmic-space Tur-
ing machines can only generate a polynomial number of distinct configurations,
P systems working in logarithmic space have exponentially many potential ones,
and thus they can be exploited to solve computational problems that are harder
than those in L. In particular, polynomial-space Turing machines can be simulated
by means of P systems with active membranes using only logarithmic auxiliary
space, thus obtaining a characterization of PSPACE.

However, an even lower amount of space suffices: P systems using only a con-
stant amount of space have also been considered; in this case, it turned out [4]
that, quite surprisingly, a constant amount of space is sufficient (and trivially nec-
essary) to solve all problems in PSPACE. This result challenges our intuition of
space, formalized in the definition of space complexity for P systems adopted so
far. Thus, a more accurate estimate of the space required by a configuration of a
P system was proposed. Using the new space definition, all the results involving
at least a polynomial amount of space, according to the first definition, still hold.
The difference appears only when P systems with severely tight bounds on the
amount of space used during computations are considered.

2 Basic Notions

For a comprehensive introduction to P systems we refer the reader to The Oxford
Handbook of Membrane Computing [9]. The definition of space complexity for P
systems can be found in [10].

In order to consider general space complexity classes in the framework of P
systems (i.e., including sublinear and, possibly, constant space P systems), we
need to define a meaningful notion of space inspired by sublinear space definition
for Turing machines: two distinct alphabets, an INPUT alphabet and a WORK
alphabet, must be considered in the definition of a P system. The input objects
cannot be rewritten and do not contribute to the size of the configuration of a
P system. The size of a configuration is defined as the sum of the number of
membranes in the current membrane structure and the total number of working
objects they contain. We recall here the basic definitions related to P systems with
active membranes with an input alphabet [14]:



Space complexity of P Systems: a Survey 43

Definition 1. A P system with (elementary) active membranes having initial de-
gree d ≥ 1 is a tuple Π = (Γ,∆,Λ, µ, wh1 , . . . , whd

, R), where:

• Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
• ∆ is another alphabet, disjoint from Γ , called the input alphabet;
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) consisting of d membranes labelled by elements of Λ in a
one-to-one way;

• wh1 , . . . , whd
, with h1, . . . , hd ∈ Λ, are strings over Γ describing the initial

multisets of objects placed in the d regions of µ;
• R is a finite set of rules over Γ ∪∆.

Each membrane possesses, besides its label and position in µ, another attribute
called electrical charge, which can be either neutral (0), positive (+) or negative (−)
and is always neutral before the beginning of the computation.

A description of the available kinds of rule follows. This description differs from
the original definition [8] only in that new input objects may not be created during
the computation.

• Object evolution rules, of the form [a → w]αh
They can be applied inside a membrane labelled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by the
objects in w). At most one input object b ∈ ∆ may appear in w, and only if it
also appears on the left-hand side of the rule (i.e., if b = a).

• Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labelled by h, having charge α and such
that the external region contains an occurrence of the object a; the object a is
sent into h becoming b and, simultaneously, the charge of h is changed to β. If
b ∈ ∆ then a = b must hold.

• Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labelled by h, having charge α and con-
taining an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the charge of h is changed to β.
If b ∈ ∆ then a = b must hold.

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labelled by h, having charge α and contain-
ing an occurrence of the object a; the membrane h is dissolved and its contents
are left in the surrounding region unaltered, except that an occurrence of a
becomes b. If b ∈ ∆ then a = b must hold.

• Elementary division rules, of the form [a]αh → [b]βh [c]
γ
h

They can be applied to a membrane labelled by h, having charge α, contain-
ing an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charges β and γ; the object a is replaced, respectively, by b and c



44 A. Leporati et al.

while the other objects in the initial multiset are copied to both membranes. If
b ∈ ∆ (resp., c ∈ ∆) then a = b and c /∈ ∆ (resp., a = c and b /∈ ∆) must hold.

Each instantaneous configuration of a P system with active membranes is described
by the current membrane structure, including the electrical charges, together with
the multisets located in the corresponding regions. A computation step changes
the current configuration according to the following set of principles:

• Each object and membrane can be subject to at most one rule per step, except
for object evolution rules (inside each membrane several evolution rules can be
applied simultaneously).

• The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or elementary division
rules must be subject to exactly one of them (unless the current charge of the
membrane prohibits it). The same principle applies to each membrane that
can be involved in communication, dissolution, or elementary division rules.
In other words, the only objects and membranes that do not evolve are those
associated with no rule, or only to rules that are not applicable due to the
electrical charges.

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

• In each computation step, all the chosen rules are applied simultaneously (in an
atomic way). However, in order to clarify the operational semantics, each com-
putation step is conventionally described as a sequence of micro-steps as follows.
First, all evolution rules are applied inside the elementary membranes, followed
by all communication, dissolution and division rules involving the membranes
themselves; this process is then repeated to the membranes containing them,
and so on towards the root (outermost membrane). In other words, the mem-
branes evolve only after their internal configuration has been updated. For
instance, before a membrane division occurs, all chosen object evolution rules
must be applied inside it; this way, the objects that are duplicated during the
division are already the final ones.

• The outermost membrane cannot be divided or dissolved, and any object sent
out from it cannot re-enter the system again.

A halting computation of the P system Π is a finite sequence of configura-
tions C = (C0, . . . , Ck), where C0 is the initial configuration, every Ci+1 is reachable
from Ci via a single computation step, and no rules of Π are applicable in Ck. A
non-halting computation C = (Ci : i ∈ N) consists of infinitely many configura-
tions, again starting from the initial one and generated by successive computation
steps, where the applicable rules are never exhausted.

P systems can be used as language recognisers (see, e.g. [2]) by employing two
distinguished objects yes and no; exactly one of these must be sent out from the
outermost membrane, and only in the last step of each computation, in order to
signal acceptance or rejection, respectively; we also assume that all computations



Space complexity of P Systems: a Survey 45

are halting. If all computations starting from the same initial configuration are
accepting, or all are rejecting, the P system is said to be confluent. If this is
not necessarily the case, then we have a non-confluent P system, and the overall
result is established as for nondeterministic Turing machines: it is acceptance iff
an accepting computation exists. Unless otherwise specified, the P systems in this
paper are to be considered confluent.

In order to solve decision problems (i.e., decide languages over an alphabet Σ),
we use families of recogniser P systems Π = {Πx : x ∈ Σ⋆}. Each input x is
associated with a P system Πx that decides the membership of x in the language
L ⊆ Σ⋆ by accepting or rejecting. The mapping x 7→ Πx must be efficiently
computable for each input length [6].

Definition 2. Let E and F be classes of functions. A family of P systems Π =
{Πx : x ∈ Σ⋆} is said to be (E ,F)-uniform if and only if

• There exists a function f ∈ F such that f(1n) = Πn, i.e., mapping the unary
representation of each natural number to an encoding of the P system processing
all inputs of length n, and defining a specific membrane as the input membrane.

• There exists a function e ∈ E mapping each string x ∈ Σ⋆ to a multiset e(x) =
wx (represented as a string) over the input alphabet of Πn, where n = |x|.

• For each x ∈ Σ⋆ we have Πx = Πn(wx), i.e., Πx is Πn with the multiset
encoding x placed inside the input membrane.

Definition 3. If the mapping x 7→ Πx is computed by a single polynomial-time
Turing machine, the family Π is said to be F–semi-uniform (where F is a class of
functions). In this case, inputs of the same size may be associated with P systems
having possibly different membrane structures and rules.

Generally, the above mentioned classes of functions E and F are complexity
classes; in the most common uniformity condition E and F denote polynomial-
time computable functions, although weaker complexity classes are used for some
results presented in this paper.

Any explicit encoding of Πx is allowed as output of the construction, as long
as the number of membranes and objects represented by it does not exceed the
length of the whole description, and the rules are listed one by one. This restric-
tion is enforced in order to mimic a (hypothetical) realistic process of construction
of the P systems, where membranes and objects are presumably placed in a con-
stant amount during each construction step, and require actual physical space
proportional to their number; see also [6] for further details on the encoding of
P systems.

Finally, we describe how space complexity for families of recogniser P systems
is measured, and the related complexity classes [10, 14].

Definition 4. Let C be a configuration of a recogniser P system Π. The size |C|
of C is defined as the sum of the number of membranes in the current membrane
structure and the total number of objects from Γ (i.e, the non-input objects) they



46 A. Leporati et al.

contain. If C = (C0, . . . , Ck) is a computation of Π, then the space required by C
is defined as

|C| = max{|C0|, . . . , |Ck|}.

The space required by Π itself is then obtained by computing the space required by
all computations of Π and taking the supremum:

|Π| = sup{|C| : C is a computation of Π}.

Finally, let Π = {Πx : x ∈ Σ⋆} be a family of recogniser P systems, and let s : N →
N. We say that Π operates within space bound s iff |Πx| ≤ s(|x|) for each x ∈ Σ⋆.

By (E ,F)-MCD(f(n)) (resp. (E ,F)-MCSPACED(f(n))) we denote the class
of languages which can be decided by (E ,F)-uniform families of confluent P sys-
tems of type D (in the following we will mainly refer to P systems with ac-
tive membranes, and we denote this by setting D = AM), where each Πx ∈
Π operates within time (resp. space) bound f(|x|). The corresponding class
when we consider semi-uniform families is denoted by (E ,F)-MC⋆

D(f(n)) (resp.
(E ,F)-MCSPACE⋆

D(f(n))).
The class of problems that can be solved in [semi-uniform] (E ,F)-logarithmic

(respectively polynomial) space is denoted by (E ,F)-LMCSPACE
[⋆]
D (respectively

(E ,F)-PMCSPACE
[⋆]
D ).

In [11] it has been shown that recognizer P systems with active membranes
(using three polarizations) are able to solve all problems in PSPACE working
in polynomial space and exponential time. This result shows that recognizer
P systems with active membranes can solve in exponential time and polyno-
mial space problems that cannot be solved in polynomial time and space, unless
PTIME = PSPACE.

Theorem 1. PSPACE ⊆ PMCSPACED.

Proof. (Sketch) The PSPACE-complete problem Q3SAT is solved by a P system
working in polynomial space. The solution is uniform, in the sense that a fixed
P system is able to solve all the instances of Q3SAT of a given size. ⊓⊔

In [12] it has been shown that such P systems can be simulated by Turing
machines with only a polynomial increase in space requirements.

Theorem 2. [N]PMCSPACE
[⋆]
D ⊆ PSPACE, where [N] denotes optional non-

confluence, and [⋆] optional semi-uniformity.

Proof. (Sketch) The inclusion PMCSPACE⋆
D ⊆ PSPACE is proved by simulat-

ing a nondeterministic P system working in polynomial space by a Turing machine
working in polynomial nondeterministic space, which can then be reduced to poly-
nomial deterministic space by using Savitch’s theorem [7]. ⊓⊔



Space complexity of P Systems: a Survey 47

Together, the previous results give a precise characterization of the class
PSPACE in terms of space complexity classes for membrane systems.

This result was then generalized in [1], by showing that arbitrary single-tape
Turing machines can be simulated by uniform families of P systems with active
membranes with a cubic slowdown and quadratic space overhead. As a conse-
quence, the classes of problems solvable by P systems with active membranes and
by Turing machines coincide up to a polynomial with respect to space complexity.

Theorem 3. Let M be a single-tape deterministic Turing machine working in
time t(n) and space s(n), including the space required for its input. Then there
exists a uniform family of confluent P systems Π with restricted elementary active
membranes operating in time O

(
t(n)s(n) log s(n)

)
and space O

(
s(n) log s(n)

)
such

that L(Π) = L(M).

Proof. (Sketch) The techniques used in [11] and [12] to simulate Turing machines
via uniform families of P systems do not seem to apply when the space bound is
super-exponential, because membranes are identified by binary numbers. In fact,
when dealing with a super-exponential number of different membrane labels, such
numbers would be made of a super-polynomial number of digits, and such systems
cannot be built in a polynomial number of steps by a deterministic Turing machine,
as required by the notion of polynomial-time uniformity usually employed.

Instead, multiple copies of a single “dot” object are used to represent the cell
numbers in unary notation, and all membranes representing cells of the Turing
machine have the same label. A configuration of M where q is the state of the
machine, the visited portion of the tape has length m, the string on the visited
portion of the tape is w = w1 . . . wm ∈ Σm, and the head is placed on tape cell
p ∈ {1, . . . ,m}, is encoded as it follows:

• Three membranes labelled by q, p, and m contain, respectively, the unary en-
coding of q, p, and m, that is, as many copies of the dot object as the corre-
sponding value;

• The i–th cell of the Turing machine M containing the j–th symbol of the
alphabet, is simulated by means of a membrane containing the value K × i+ j
in unary notation.

To simulate a computation step of the Turing machine M we first need to
identify, among all membranes labelled by t, the one corresponding to the cell
located under the tape head of M. Notice that these membranes are externally
indistinguishable, and they differ only in the unary value contained in it. A non-
deterministically guess among all these membranes is performed, which is then
checked to verify if it is indeed the right one; if this is not the case, then the mem-
brane is marked, and the process repeated until we eventually find the correct
one.

Once correctly identified the involved membrane, the computation step is sim-
ulated, working on numbers in unary notations through a subroutine that simulate
a register machine to update the configuration of the P system, according to the
transition step of the Turing machine. ⊓⊔



48 A. Leporati et al.

From Theorem 3 we obtain inclusions of complexity classes for Turing ma-
chines and P systems when the space bound is at least linear (since we are deal-
ing with single-tape Turing machines). In particular, for every function f(n) ∈
Ω(n) the following inclusions hold: TIME(f(n)) ⊆ (L,L)-MCAM(O(f(n)3)) and
SPACE(f(n)) ⊆ (L,L)-MCSPACEAM(O(f(n)2)).

Moreover, by combining the previous results, we can prove equality between
space complexity classes for P systems and Turing machines under some (not very
restrictive) assumptions on the set of space bounds we are interested in.

Theorem 4. Let F be a class of functions N → N such that

• F contains the identity function n 7→ n;
• If s(n) ∈ F and p(n) is a polynomial, then there exists some f(n) ∈ F

with f(n) ∈ Ω(p(s(n))).

Then SPACE(F) = (L,L)-MCSPACEAM(F). In particular, we have the follow-
ing equalities:

PSPACE = (L,L)-PMCSPACEAM

EXPSPACE = (L,L)-EXPMCSPACEAM

2EXPSPACE = (L,L)-2EXPMCSPACEAM

kEXPSPACE = (L,L)-kEXPMCSPACEAM.

Another consequence of the possibility of P systems to simulate Turing ma-
chines with a polynomial overhead and vice versa is that we can translate theorems
about the space complexity of Turing machines into theorems about P systems.
As an example, the Savitch’s theorem and the Sapce hierarchy theorem for Turing
machines can be proved almost immediately for large enough space complexity
bounds.

3 Simulating Logarithmic–Space Turing Machines

To consider membrane systems working in logarithmic space is one of the first
natural research topic that has been addressed once obtained the result described
in the previous section. We first recall a result from [14] showing that P systems
with active membranes, using a logarithmic amount of space, are able to simulate
logarithmic-space deterministic Turing machines, and thus to solve all problems
in the class L.

In order to consider such systems, we need to define a uniformity condition for
the families of P systems that is weaker than the usual P uniformity, to avoid the
possibility to solve a problem directly by using the Turing machine that builds the
P systems we use to compute. One such possibility is to consider DLOGTIME-
uniformity, defined on the basis of DLOGTIME Turing machines [5]. Another
problem that the efficient simulation of logarithmic space Turing machines (or



Space complexity of P Systems: a Survey 49

other equivalent models) has to face, is that it cannot use a polynomial number of
working objects, to avoid violating the logarithmic space condition.

It has been shown in [14] that such problems can be avoided by a simulation
that uses membrane polarization both to communicate objects through membranes
as well as to store some information.

Theorem 5. Consider a deterministic Turing machine M , having an input tape
of length n, and with a work tape of length O(log n). Then, there exists a
(DLOGTIME,DLOGTIME)-uniform family Π of confluent recogniser P systems
with active membranes that works in logarithmic space such that L(M) = L(Π).

Proof. (sketch) Consider a Turing machine M working in logarithmic space. The
P system Πn that simulates M on input of length n is composed of:

• A skin membrane containing a state object object qi,w to indicate that M is
currently in state q and its tape heads are on the i-th and w-th symbols of the
input and work tape, respectively.

• O(log n) nested membranes (INPUT tape membranes) containing, in the in-
nermost one, the input symbols of M , and O(log(n)) membranes to store the
work tape of M (WORK tape membranes).

• Two sets of membranes, whose size depend on the dimensions of the input and
the working alphabet of M (SYMBOL membranes), respectively.

To simulate a computation step of M , the state object enters the INPUT
membranes, storing the bits corresponding to the actual position of the INPUT
head of M in their polarizations. Only one object (corresponding to the INPUT
symbol actually read) can travel to the outermost membrane by using send-out
rules; the other objects stop moving because they have the wrong charges. Then,
the state object identifies the symbol actually under the WORK head (using the
WORK tape membranes) and proceeds to simulate the transition of M using the
SYMBOLS membranes.

Each P system Πx (simulating each M(x) such that |x| = n) only requires
O(log |x|) membranes and objects besides the input objects; moreover, the family
Π is (DLOGTIME,DLOGTIME)-uniform. The time required by the simulation
is O

(
n · t(n)

)
, where t(n) is the maximum number of steps performed by M on

inputs of length n. ⊓⊔

An immediate corollary of Theorem 5 is that the class of problems solved by
logarithmic-space Turing machines is contained in the class of problems solved by
(DLOGTIME,DLOGTIME)-uniform, logarithmic-space P systems with active
membranes.

Corollary 1. L ⊆ (DLOGTIME,DLOGTIME)-LMCSPACEAM. ⊓⊔



50 A. Leporati et al.

4 Simulating Polynomial-Space Turing Machines in
Logarithmic Space

The result presented in the previous section only represents a lower bound for the
power of logarithmic-space P systems; as a matter of fact, already in [14] it was
conjectured that it could be improved, as P systems working in logarithmic space
have an exponential number of different configurations, which could possibly be
used to efficiently solve harder problems than those in the class L. It turned out [3]
that this is the case, and that polynomial-space deterministic Turing machines can
be simulated by means of P systems with active membranes using only logarithmic
auxiliary space, thus characterising PSPACE.

The simulation was based on two key ideas. First, input objects (of the form τi)
are distributed, during the computation, in various substructures. Apart from
an initial phase, the value of τ is disregarded: the symbol σ written on the i-th
tape cell of the Turing machine being simulated can be inferred from the label
of the substructure that contains τi. The second idea is applied when querying
the symbol under the tape head: the position i of the head is written in binary
in the electrical charges of the membranes composing the substructure where the
object τi is placed, so that the only input object having the correct subscript
can leave the substructure corresponding to the sought symbol, and reach the
skin membrane. The depth of each substructure is logarithmic, thus allowing to
represent a polynomial number of possible head positions. As a result, we can
simulate any polynomial space computation of a deterministic Turing machine
with only a logarithmic number of symbols (plus a polynomial number of read-
only input symbols) and membranes.

Theorem 6. Let M be a single-tape deterministic Turing machine working in
polynomial space s(n) and time t(n). Then, there exists an (L,L)-uniform fam-
ily Π of P systems with active membranes using object evolution and communi-
cation rules that simulates M in space O(log n) and time O(t(n)s(n)).

Proof. (sketch) Let x ∈ Σn be an input string, and let m = ⌈log s(n)⌉ be the mini-
mum number of bits needed in order to represent the tape cell indices 0, . . . , s(n)−1
in binary notation. The P system Πn, associated with the input length n, has a
membrane structure consisting of an external skin membrane that contains, for
each symbol of the tape alphabet of M , the following set of membranes, linearly
nested and listed from the outside in:

• a symbol-membrane;
• a query-membrane;
• for each j ∈ {0, . . . ,m− 1}, a membrane labelled by jσ.

An arbitrary configuration of M on input x is encoded by a configuration of Πx

as follows:

• the outermost membrane contains the state-object qi, (where q is the current
state of M , and i is the current tape head position);



Space complexity of P Systems: a Survey 51

• if membrane (m−1)σ contains the input object τi, then the i-th tape cell of M
contains the symbol σ.

The symbol written on the i-th tape cell of M can be inferred from the label
of the substructure which contains the corresponding input symbol τi. Notice that
a logarithmic depth membrane structure allows to represent a polynomial number
of possible head positions.

The state-object qi queries each membrane substructure, by encoding in binary
the tape position i on the electrical charges of the membranes. Only the symbol
whose subscript is i can reach the skin membrane and be used to conclude the
simulation of a computation step.

The family Π described above is (L,L)-uniform, and each P system Πx uses
only a logarithmic number of membranes and a constant number of objects per
configuration, besides the input objects, which are never rewritten. Πx works in
space O(log n) and in time O(t(n)s(n)). ⊓⊔

As a consequence, we have the following:

Theorem 7. For each class D ⊆ AM of P systems with active membranes using
object evolution and communication among their rules we have

(L,L)-LMCSPACED = (L,L)-PMCSPACED = PSPACE.

Proof. The inclusion PSPACE ⊆ (L,L)-LMCSPACED follows immediately from
Theorem 6. By definition, the class (L,L)-LMCSPACED is included in the class
(L,L)-PMCSPACED. Finally, to prove the inclusion of (L,L)-PMCSPACED
in PSPACE it suffices to simulate P systems by means of Turing machines, which
can be carried out with just a polynomial space overhead, as shown in [11, 1]. ⊓⊔

This was the first case where the space complexity of P systems and that of Tur-
ing machines differ by an exponential amount. Since, as previously said, PSPACE

had already been proved to be characterised by polynomial -space P systems, these
results also highlight a gap in the hierarchy of space complexity classes for P sys-
tems: super-polynomial space is required in order to exceed the computational
power of logarithmic space.

5 Constant–Space P systems

After considering P systems with active membranes working in logarithmic space, a
natural question arises concerning the power of such systems using only a constant
amount of space. Surprisingly it turned out that constant space is sufficient to
simulate polynomial-space bounded deterministic Turing machines, as proved in
[4]:

Theorem 8. (L,L)-MCSPACEAM(O(1)) = PSPACE.



52 A. Leporati et al.

Proof. (sketch) Let L ∈ PSPACE, and let M be a Turing machine deciding L in
space p(n). We can construct a family of P systems Π = {Πx : x ∈ Σ⋆} such
that L(Π) = L by letting F (1n) = Πn, where Πn is the P system simulating M
on inputs of length n, and

E(x0 · · ·xn−1) = x1,1 · · ·xn−1,n−1 ⊔n · · · ⊔p(n)−1,

i.e. by padding the input string x with p(n)− n blank symbols ⊔ before indexing
the result with the positions of the symbols on the tape.

The simulation relies on two main ideas. As in the previous proof of Theorem 6,
input objects of the form τi are distributed in substructures, and the symbol
written on the i-th tape cell of M can be inferred from the label of the substructure
where the corresponding input symbol τi is placed. The second idea is that it is
possible to “read” a subscript of an input object τi without rewriting it and by
using only a constant number of additional objects and membranes: in particular, a
timer object is used to change the charge of a membrane after a requested amount
of steps. Any other object that was counting together with the timer is able to
observe the charge of the membrane, and thus obtain the designed value.

Since at each computation step only a constant number of working objects and
membranes are present, then the simulation requires, according to Definition 4, a
constant amount of space. Moreover, both F and E can be computed in logarithmic
space by Turing machines, since they only require adding subscripts having a
logarithmic number of bits to rules or strings having a fixed structure, and the
membrane structure is fixed for all Πn. This proves the inclusion of PSPACE in
(L,L)-MCSPACEAM(O(1)), while the reverse inclusion is proved in [11]. ⊓⊔

6 Rethinking the Definition of Space

The result of Theorem 8 shows that all problems in PSPACE can be solved by
constant-space P systems with active membranes. This rises some natural ques-
tions about the definition of space complexity for P systems adopted until now [10].
Does counting each non-input object and each membrane as unitary space really
capture an intuitive notion of the amount of space used by a P system during a
computation? Is it fair to allow a polynomial padding of the input string when
encoding it as a multiset?

In [4], it was highlighted that the constant number of non-input objects ap-
pearing in each configuration of the simulation actually encode Θ(log n) bits of
information, since they are taken from an alphabet Γ of polynomial size. Accord-
ing to the original definition of space recalled in Section 2, each of these objects
would only require unitary space, whereas the binary representation of the sub-
script i requires log p(n) = Θ(log n) bits. It may be argued that this amount of
information needs a proportional amount of physical storage space. Similarly, each
membrane label contains Θ(log |Λ|) bits of information, which must also have a
physical counterpart.



Space complexity of P Systems: a Survey 53

The information stored in the positions of the objects within the membrane
structure is also not taken into account by Definition 4. However, the information
on the location of the objects is part of the system and it is not stored elsewhere,
exactly as the information on the location of the tape head in a Turing machine,
which is not counted as space.

Due to the above considerations, in [4] an alternative definition of space was
proposed:

Definition 5. Let C be a configuration of a P system Π. The size |C| of C is
defined as the number of membranes in the current membrane structure multiplied
by log |Λ|, plus the total number of objects from Γ (i.e., the non-input objects) they
contain multiplied by log |Γ |.

Adopting this stricter definition does not significantly change space com-
plexity results involving polynomial or larger upper bounds, i.e., the complex-
ity classes PMCSPACEAM, EXPMCSPACEAM, and larger ones remain un-
changed.

As for padding the input string, one may argue that this operation provides
the P system with some “free” storage, since input objects are not counted by
Definition 4. The proof of Theorem 8 exploits the ability to encode an input string
of length n as a polynomially larger multiset in a substantial way, as allowed by
the most common uniformity conditions, including P and LOGSPACE-uniformity,
but also weaker ones such as AC0 or DLOGTIME-uniformity.

The simulation described in the previous section would require logarithmic
space according to Definition 5. Also the space bounds of the simulation of
polynomial-space Turing machines by means of logarithmic-space P systems with
active membranes described in Section 4 also increase to Θ(log n log log n), since in
that case each configuration of the P systems contains Θ(log n) membranes with
distinct labels and O(1) non-input objects. Both simulations would be limited to
linear -space Turing machines, rather than polynomial-space ones, if input padding
were disallowed.

7 Final Remarks

In this paper we survey recent results concerning complexity of P systems with
active membranes. The results showed that such P systems can be simulated by
Turing machines with only a polynomial increase in space requirements and, more-
over, that arbitrary single-tape Turing machines can be simulated by uniform fam-
ilies of P systems with active membranes with a cubic slowdown and quadratic
space overhead. This leads to prove equalities among space complexity classes for
P systems and Turing machines (as long as the sets of space bounds satisfies some
reasonable properties). In particular, complexity classes defined in terms of poly-
nomial, exponential, double exponential, . . . , n-fold exponential space coincide for
the two kinds of device.



54 A. Leporati et al.

It has also been shown that the class PSPACE can be characterized by P sys-
tems with active membranes using logarithmic space or even constant amount of
space. In view of the last result, a new definition of space for P systems has been
proposed, that also take into account the number of bits necessary to encode the
non-input objects and the labels of the membranes. While the new definition does
not change any result involving an amount of space which is polynomial or larger,
it changes the result for sublinear space. In particular, according to the new def-
inition the simulation used to prove that constant space P systems with active
membranes characterize PSPACE would now require logarithmic space.

References

1. A. Alhazov, A. Leporati, G. Mauri, A.E. Porreca, C. Zandron, Space complexity
equivalence of P systems with active membranes and Turing machines, Theoretical
Computer Science, 529, 2014, 69–81.

2. E. Csuhaj-Varju, M. Oswald, Gy. Vaszil, P automata, Handbook of Membrane Com-
puting. Gh. Păun et al. (Eds.), Oxford University Press, 2010, 144-167.

3. A. Leporati, G. Mauri, A.E. Porreca, C. Zandron, A gap in the space hierarchy of P
systems with active membranes, Journal of Automata, Languages and Combinatorics
19 (2014) 14, 173184.

4. A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron, Constant–space P
systems with Active Membranes, Fundamenta Informaticae, to appear.

5. D.A. Mix Barrington, N. Immerman, H. Straubing, On uniformity within NC1. Jour-
nal of Computer and System Sciences 41(3), 1990, 274–306.

6. N. Murphy, D. Woods, The computational power of membrane systems under tight
uniformity conditions, Natural Computing 10(1), 2011, 613–632.

7. C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1993.
8. Gh. Păun, P systems with active membranes: Attacking NP-complete problems, J.

of Automata, Languages and Combinatorics 6(1), 2001, 75–90.
9. Gh. Păun, G. Rozenberg and A. Salomaa (Eds.), Handbook of Membrane Computing,

Oxford University Press, 2010.
10. A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, Introducing a space complexity

measure for P systems, Int. J. of Comp., Comm. & Control 4(3), 2009, 301–310.
11. A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, P systems with active membranes:

Trading time for space, Natural Computing 10(1), 2011, 167–182.
12. A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, P systems with active membranes

working in polynomial space, Int. J. Found. Comp. Sc., 22(1), 2011, 65–73.
13. A.E. Porreca, G. Mauri, C. Zandron, Complexity classes for membrane systems,

RAIRO-Theor. Inform. and Applic. 40(2), 2006, 141-162.
14. A.E. Porreca, C. Zandron, A. Leporati, G. Mauri, Sublinear space P systems with

active membranes, Membrane Computing: 13th International Conference, LNCS,
CMC 2012, Springer, Berlin, 2013, 342-357.



A Survey of Parallel Simulation of P Systems
with GPUs

Miguel A. Mart́ınez-del-Amor, Agust́ın Riscos-Núñez, Mario J. Pérez-Jiménez

Research Group on Natural Computing
Dept. Computer Science and Artificial Intelligence, University of Seville
Avda. Reina Mercedes S/N, 41012, Sevilla, Spain
{mdelamor,ariscosn,marper}@us.es

Summary. P system simulators become essential for model verification and validation,
since they reproduce the semantics of the models in an automatic way. For this reason,
in the literature, many authors have proposed several simulation tools. However, in order
to handle large instances in an efficient way, parallel simulators come into play.

High Performance Computing is a research branch that brings efficient tools for scien-
tific purposes. For decades, many parallel platforms and architectures have been designed,
with the goal of accelerating compute-demanding applications. But it was 10 years ago,
that this field was revolutionized with the dawn of GPU computing through CUDA.
This technology allowed programmers to run general-purpose parallel code in GPUs,
harnessing in a simplified manner the large amount of processors within a GPU.

Many authors have chosen this technology for accelerating the simulation of their
P system models. Recently, this topic has captured the attention of more researchers.
Therefore, in this paper we survey the related work on GPU-based simulators for P
systems, and its evolution over the time until today.

Key words: Membrane Computing, P systems, Parallel Computing, GPU computing,
CUDA

1 Introduction

Simulating P systems [27] is a task that has become important in the past years
[28]. Indeed, validating a model requires an automatic procedure in order to make
it feasible. Specifically, when employing P systems as a modeling framework for
biological phenomena in Computational Systems Biology or Population Dynamics
[12], simulation tools are critical since they enable experimental validation and
virtual experimentation.

Today’s challenge in P system simulators is their accuracy and efficiency [19].
For the former, the solution is to define simulation algorithms that represent in a
more reliable way the semantics of the corresponding P system model. For exam-
ple, non-determinism, rule competition, stochastic/probabilistic execution of rules



56 M.A. Mart́ınez-del-Amor et al.

are very difficult to handle in a simulator. For the latter, parallel platforms help to
accelerate the execution, so both the simulation algorithms and their implemen-
tations must be adapted for the specific kind of parallelism.

A new trend in High Performance Computing is to use heterogeneous systems,
where commodity CPUs have attached a massively parallel co-processor named
accelerator. This is the case of GPU computing, which became popular with the
introduction of CUDA 10 years ago [30]. Although the GPU is the device in charge
of rendering the graphics in a computer, its evolution has given a highly parallel
processor, with thousand of lightweight cores, that can be harnessed for scientific
- general purpose - computing [15]. Using CUDA or OpenCL, programmers design
their code for an abstract parallel architecture, where threads are executed in a
SIMD fashion, and distributed into blocks.

Since GPUs offer a shared memory system with a high degree of parallelism,
they have been considered for accelerating the simulation of some P system models
[20]. One example is the PMCGPU (Parallel simulators for Membrane Computing
on the GPU) [33] project, where the authors published the source code of the first
simulators of this kind.

In this paper, we provide an updated survey of the developed P systems sim-
ulators on the GPU. Moreover, we discuss some strategies followed, this article
serving as a tutorial as well. The paper is structured as follows: Section 2 intro-
duces the main concepts of GPU computing, while Section 3 gives an overview of
the parallel simulators of some P system models. Finally, Section 4 provides some
conclusions and future research lines.

2 GPU computing

The GPU (Graphics Processor Unit) is in the core of graphics cards [16]. They
were first conceived for rendering and computing color attributes of pixels in a
parallel way. With the fast growth of the graphics market in the recent years, the
GPU have evolved into a parallel processor with a special nature. The cores found
in a GPU are much simpler than normal CPUs, but in a larger number. They
provide a system optimized for data parallelism, where threads are executed in
SIMD (Single Instruction Multiple Data).

After the introduction of CUDA (Compute Unified Device Architecture) [31,
16] by NVIDIA, GPUs offered a programming model that abstracts the GPU
architecture to programmers. Hence, it is enough to learn some extensions to
C/C++ language (CUDA extensions) and the programming model, while the
CUDA driver executes the actual code on the GPU. The programming is flexi-
ble, but the achieved performance depends on how the implementation fits data
parallelism.

On the other side, OpenCL (Open Compute Language) [32] were introduced in
order to enable the usage of any kind of parallel devices using a similar abstracted
architecture as CUDA [16]. In fact, any modern GPU supports the execution of



A Survey on Parallel Simulation of P systems with GPUs 57

OpenCL regardless the brand (NVIDIA, AMD, Intel...). Although today many
brands have almost abandoned the support of OpenCL, it is still best choice for
those GPUs not supporting CUDA. The concepts in OpenCL and CUDA are
similar, so in what follows we will only focus on the description of the latter.

2.1 CUDA programming model

In the CUDA programming model, the CPU (host) takes control of the execution
flow, and permits the GPU (device) to execute a piece of code (kernel function)
in parallel. The execution is carried out by a grid of threads. Typically, a grid is
composed of thousands of threads, what allows to increase the occupancy of the
hardware resources. This is required in order to hide stalls in the execution of
threads (given by dependencies, memory accesses, etc.). The grid is a two-level
hierarchy (see Figure 1), where threads are arranged into thread blocks. All blocks
have the same number and organization of threads. Each block is identified by a
two dimensional identifier, and each thread within its block by a three dimensional
identifier (ID). In this way, any thread can be identified by the combination of both
thread and thread block identifiers. The execution of threads inside a block can be
synchronized by barrier operations ( syncthreads()), and threads of different
blocks can be synchronized only by finishing the execution of the kernel.

Another aspect in CUDA is that the memory hierarchy is explicitly managed.
This is composed in several levels, each one offering different speeds and storage
properties. Global memory is the largest but the slowest memory in the system. It
is accessed by the host (where the input and output data are allocated) and by any
thread in execution. An L2 cache memory system is built in recent GPUs, allowing
to speedup the access to global memory in a transparent way (this L2 cache system
is hidden to programmers). Shared memory is the smallest but fastest memory.
It is accessed by threads belonging to the same block. Normally, performance of
CUDA applications depends on how much shared memory is exploited. Finally,
every thread has access to its own variables in a very fast way allocated in registers.
Thus, the most efficient way to structure an algorithm is as follows: (1) threads of
each block read their corresponding data portion from global memory to shared
memory, (2) threads work with the data directly on the shared memory, and (3)
threads copy these data back to global memory.

A well-known strategy in parallel programming, and used also in CUDA, is
tiling. This strategy seeks to combine the previous structure of three phases with
partitioning data, so that the three phases are repeated for each data portion (or
tile), minimizing accesses to global memory. Finally, it is worth to remark that
the access to both shared and global memory achieves the best performance when
threads read contiguous portions of data (e.g., adjacent positions of an array).
This is called coalesced memory access, and maximizes the memory bandwidth
utilization.



58 M.A. Mart́ınez-del-Amor et al.

Fig. 1. Threading organization in CUDA. Threads are executed in a grid, and they are
organized in blocks. From [31].

2.2 GPU architecture

As mentioned above, the GPU architecture has evolved since its first introduc-
tion, offering even more computing capabilities. In general, it consists of a set of
Streaming Multiprocessors (SMs) containing Streaming Processors (SPs, or cores).
The number of them depends on the GPU: every microarchitecture version has
a given amount of SPs per SM, and the number of SMs depends on the device
range. SMs are based on the SIMT (Single-Instruction Multiple-Thread) model,
where all the threads execute the same instruction on different piece of data. SMs
create, manage, schedule and execute threads in groups of 32 threads (which is the
branching granularity of NVIDIA GPUs), called warp. Individual threads of the
same warp must start together at the same program address, enforcing a SIMD
execution. However, they are free to branch and execute independently, but at cost
of serialization and performance.

2.3 GPU features

Today, the GPU is considered as a relatively low cost technology offering a high
level of parallelism, but at expenses of dedicated designs to maximize the GPU



A Survey on Parallel Simulation of P systems with GPUs 59

utilization, requiring expertise knowledge to achieve best performance. This can be
observed from the large amount of research and theses available in the literature.

In summary, we can conclude that a GPU leverages:

• Good performance: for example, the NVIDIA Tesla K40 delivers 1.43 Ter-
aFLOPS double-precision peak floating point performance, 4.29 TeraFLOPS
of single-precision, and 288 GBytes/s of global memory bandwidth;

• An efficiently synchronized platform: GPU implements a shared memory sys-
tem, avoiding communication overload;

• A medium scalability degree: the amount of resources depend on the GPU
model, e.g., a K40 includes 2880 cores and 12 GBytes of memory. If the re-
sources of a GPU is not enough, there are more scalable solutions such as
multi-GPU systems, but they then require communication among nodes;

• Low-medium flexibility : although CUDA programming is based on C++, and
hence programmers are free to use the same data structures as in CPU, both
the algorithm and the data structure have to be adapted for best performance
on GPUs.

3 P systems simulators on GPUs

As discussed above, P system simulations can be accelerated by taking advan-
tage of today solutions in High Performance Computing. Current cutting-edge
parallel technologies offer enablers for many scientific applications. One example
is the importance of GPU computing, which is a requirement today to run deep
convolutional neural networks [30].

Specifically, real ecosystems models based on P systems are very time demand-
ing when being simulated. The need of running accurate, but expensive, simulation
algorithms several times in order to collect statistics points out to look for accel-
erators such as GPUs. In this way, model designers and expert users can interact
with their models close to real time.

For this reason, the project PMCGPU (Parallel simulators for Membrane Com-
puting on the GPU) [33] was initiated. Here, simulators for P systems on GPUs
are available in open source. In the forthcoming subsections we will go over the
simulators developed for GPUs, paying attention to their main features and some
design topics.

3.1 P systems with active membranes

The first test of concept for simulating P systems on GPUs was applied for P
systems with active membranes using CUDA (Cecilia et al. [7]). The aim was to
perform just one computation in order to avoid non-determinism, so confluence
is a required property for the simulated P systems. Moreover, this requirement is
used for another design decision: to select the “lowest-cost computation path” for



60 M.A. Mart́ınez-del-Amor et al.

the simulator; that is, the one in which least membranes and communication are
required.

The simulation algorithm consists basically in a loop over the transition steps,
reproducing one computation path of the whole tree. For each transition, two
stages are applied: selection and execution. Selection of rules is the most time-
consuming stage, since it implements all the semantics of the model concerning how
rules are applied. In this way, rules are chosen for a given P system configuration,
together with the number of times to apply each one. Preferences to rules that
lead to least membranes (e.g. dissolution over division rules) are imposed. The
result of this stage is used for the next one, which is the execution of the rules;
that is, updating the P system configuration. This two-staged strategy allows to
synchronize the application of rules within and among membranes.

The parallelism of P systems is mapped on the GPU using the double-parallel
nature of both of them: (elementary) membranes are assigned to thread blocks,
and a subset of rules to threads. For the latter, in fact, each thread was in charge
of selecting rules for a portion of the defined objects in the alphabet. Note that
for selection, looking to objects or rules needs similar strategies, since in active
membranes, rules have no cooperation.

It is easy to note that this mapping of parallelism is naive: the CUDA simulator
assumes by default that all the defined objects in the alphabet will be present
within each membrane, allocating memory space and assigning resources (threads)
for all of them. Although this is the worst case, it does not take place in the
majority of P systems to be simulated. Thus, the performance of the simulator
completely depends on the simulated P system, and drops as long as the variety
of different objects appearing in membranes decreases.

The performance of the simulator was tested on an NVIDIA Tesla C1060 GPU
(240 cores, 4GB memory) by using two benchmarks [19]: a simple test P system
designed to stress the simulator (A), and a family of P systems solving the SAT
problem (B). Up to 7x of speedup was reported for (A), and 1.67x for (B). Us-
ing these results, three indicators that affect performance were identified [19, 20]:
density of objects per membrane, rule intensity and communication among mem-
branes.

The simulator is available in the PMCGPU project as a standalone tool. It
receives a file in binary format, which specifies the P system to simulate and
the initial configuration. The output is then given in text format for debugging
purposes.

Maroosi et al. [26] improved this simulator by 38x, taking advantage of shared
memory and minimizing data transfers. A dependency graph is constructed from
the set of rules of the input model, so that rules having common objects in the left-
hand side and in the right-hand side (respectively) are more likely to be grouped
in a node of the graph. This is then employed to distribute those rules that will
trigger others in the same thread block, what allows to reduce the communication
between them. To date, the authors are extending the simulators in order to allow
the simulation of more than two levels in the membrane structure.



A Survey on Parallel Simulation of P systems with GPUs 61

3.2 A family solving SAT with active membranes

A subsequent project after simulating P system with active membranes was to
focus on a specific family of this model solving SAT in linear time (Cecilia et al.
[8, 9]). By analyzing this specific solution, the authors were able to put an upper
bound to the number of existing objects in membranes, maximizing in this way
the work done by threads. Moreover, the simulation algorithm is based on the
stages identified in the computation of any P system in the family: generation,
synchronization, check-out and output.

The design of the CUDA simulator follows the same basis as its predecessor:
a thread block is assigned to each elementary membrane (which in turn encodes
a truth assignment to the CNF formula), and each thread to each object that
might appear in the membranes. As mentioned above, the number of objects to be
represented in the data structures is decreased. In this case, it is enough to store
only the objects appearing in the input multiset (which is a literal of the CNF
formula). Therefore, threads are assigned to each object of the input multiset.

A hybrid simulator was also proposed, with the aim at improving the usage of
resources, and so, achieving better speedups. In this hybrid solution, the execution
of the first stages are reproduced exactly as the P system model does, but the last
ones are not. Although they give the same result, they are more efficiently executed
on the GPU.

The experiments carried out on an NVIDIA Tesla C1060 GPU report up to 63x
of speedup for the CUDA simulator against sequential solution, and the hybrid
CUDA simulator outperforms the CUDA simulator in 9.3x.

These simulators receive as input a DIMACS CNF file codifying an instance of
SAT through a CNF formula. The output is a summary of the codification, and
the answer yes or no. Therefore, they merely behave as a SAT solver whose design
is based on a P systems based solution.

Further developments were carried out to this family of simulators, with the
aim at being better tailored to the GPU idiosyncrasy. More efficient strategies
for GPUs were performed, such as tailing, as well as newer GPU architectures,
multi-GPU systems and supercomputers were utilized [9, 10]. An improvement of
60-90% was achieved by using these specific optimizations to the CUDA code.

3.3 A family solving SAT with tissue-like P systems

In order to explore which P system ingredients are better suited to be handled by
GPUs, another solution to SAT based on a family of tissue P systems with cell
division was simulated (Mart́ınez-del-Amor et al. [23]). The simulation algorithm
is based on the 5 stages identified in the computation of the P systems in the
family: generation, exchange, synchronization, check-in, and output.

The CUDA simulator design is similar to the one used in [8]. Each thread block
is assigned to each cell. However, the number of objects to be placed inside each
cell in the memory representation is increased, respecting to the solution in active
membranes. On the contrary, this simulator does not need to store nor handle



62 M.A. Mart́ınez-del-Amor et al.

charges associated to membranes. Threads are then used differently in each stage,
maximizing their usage in each case.

Experiments on an NVIDIA Tesla C1060 GPU showed that the CUDA simu-
lator outperforms a sequential version by 10x. This demonstrated that the usage
of charges associated to membranes helped to save instantiation of objects, while
they represent a lightweight ingredient to be represented and processed by threads.

3.4 Population Dynamics P systems

Population Dynamics P (PDP) systems define a formal modeling framework for
real ecosystems [11]. Their efficient simulation is critical for virtual experimenta-
tion and experimental validation, as discussed above. PDP systems are multienvi-
ronment models, and typically, simulation tools need to run several simulations of
them since the execution of rules follows a probabilistic distribution.

The selected simulation algorithm was the DCBA [25], since it provided better
accuracy in the simulation results. DCBA consists of two major stages, selection
and execution. Selection is in turn sub-divided into three micro-stages: phase 1
(distribution of objects), phase 2 (maximality) and phase 3 (probability). The
main component of this algorithm is a distribution table, employed to distribute
the objects in a proportional way between competing rules, i.e., with overlapping
left-hand sides. In turn, rules are grouped into rule blocks, when having the same
left-hand side. The main problem arises when simulating large PDP system models,
since the table can be too large and sparse. Therefore, the simulator workarounds
the table and, instead, works directly with the information of rules.

A first approach was to parallelize the simulator with OpenMP for multi-core
CPUs. This was done in three different ways [21]: 1) by simulations, 2) by envi-
ronments and 3) a hybrid approach. The experiments were ran on two multi-core
processors: the Intel i5 Nehalem and i7 Sandy Bridge, achieving speedups of up
to 2.5x by using all the cores of a single socket 4-core Intel i7. Experiments also
indicate the simulations are memory-bandwidth bound and the portion of the code
we parallelized consumes over 98% of the runtime in serial. From this initial work,
the authors concluded that parallelizing by simulations or hybrid techniques yields
the largest speedups.

The second approach was the creation of a CUDA simulator for PDP systems
[24]. The design of the simulator was the following: environments and simulations
are distributed through thread blocks, and rule blocks among threads. Phases 1, 3
and 4 were efficiently executed on the GPU, while Phase 2 was poorly accelerated
given that it is inherently sequential. Concerning phase 3, it requires the creation
of random binomial variate generation, what required the development of a new
CUDA library [30] for binomial and multinominal random number generation,
called cuRNG BINOMIAL. It uses the normal approximation for large parameters
values, and the BINV algorithm for low ones. For both situations, the cuRAND
library was used.

The simulator is available in the PMCGPU project as a standalone tool, re-
ceives as input a file in binary format, and outputs a csv file with the information



A Survey on Parallel Simulation of P systems with GPUs 63

collected for every transition and simulation performed. It was first benchmarked
with a set of randomly generated PDP systems (without biological meaning),
achieving speedups of up to 7x for large sizes on an NVIDIA Tesla C1060 GPU
over the multi-core version. In [22], the authors validated the simulator by using
a known ecosystem model of the Bearded Vulture in the Catalan Pyrenees [3].
The achieved speedup with this real ecosystem model, using the same very C1060
GPU, was up to 4.9x, and 18.1x using a K40 GPU (2880 cores).

3.5 Spiking Neural P systems

Cabarle et al. [4] initiated the first approaches to the parallel simulation of Spiking
Neural P (SNP) systems. The key component of this is the simulation algorithm,
which is based on a matrix representation of SNP systems. Introduced by Zeng
et al. [29], the simulation of a SNP system can be carried out by considering
the following vectors and matrices, aiming at providing a good representation for
GPUs since they have been demonstrated to be well-suited for linear algebra:

• Spiking transition matrix: contains information about rules and how transitions
are made. Assigns a row per rule and a column per neuron.

• Spiking vector: defines a selection of rules to be fired in a transition step, using
a position per rule. Note that with non-determinism, it would be possible to
have more than one spiking vector.

• Configuration vector: defines the number of spikes per neuron, that is, the
configuration in a given time.

The simulator, codenamed CuSNP, was written in Python, and the CUDA
kernels were launched by using the binding library PyCUDA. In the first approach,
SNP systems without delays were simulated by covering each computation path
in parallel, leading to speedups of up to 2.31x [5].

Recently, the authors developed a set of extensions to CuSNP [6], where, using
a GTX 750 GPU, the achieved speedups are of up to 50x for very large instances:

• SNP systems with delays are supported. For this reason, the simulation algo-
rithm, and hence the matrix representation, has been extended accordingly. In
this case, a vector for neuron statuses and another for delays are introduced.

• More types of regular expressions are supported for the left-hand side of rules.
• P-Lingua files are supported as input, through their conversion into files in

binary format [17].
• Validation of the simulators with models from the literature, such as a bitonic

sorting network.

Lagunda et al. [17] implemented the same simulation algorithm for SNP sys-
tems using OpenCL. As mentioned, OpenCL is conceived to be a standard for
GPU computing, being able to be executed in different kind of platforms, not only
in NVIDIA GPUs. In their experiments, they only used a mobile GeForce 720M
GPU, achieving up to 4.16x of speedup.



64 M.A. Mart́ınez-del-Amor et al.

Maćıas-Ramos et al. [18] introduced a novel GPU simulator for Fuzzy Rea-
soning Spiking Neural (FRSN) P systems, which is a variant of SNP systems
incorporating fuzzy logic elements. It allows modeling fuzzy diagnosis knowledge
and reasoning for fault diagnosis applications. The simulation algorithm, as with
SNP systems, is based on a matrix representation and vector-matrix operations.
First, the simulator was implemented within the pLinguaCore simulation frame-
work, written in Java. After validating the simulation algorithm, the core modules
were deployed to the GPU and connected directly with pLinguaCore by using the
binding library JCUDA.

3.6 Enzymatic Numerical P systems

Garćıa-Quismondo et al. [13] developed simulators for modeling robot controllers,
being significant for the Artificial Intelligence. The implemented simulation algo-
rithm reproduces the stages of an ENP system model: (1) Selection of applicable
programs, (2) calculation of production functions and (3) distribution of produc-
tion function results according to repartition protocols. Production functions are
computed using a recursive solution. In general, the GPU design parallelizes the
execution of programs among threads.

The simulators were implemented in Java (inside pLinguaCore) and C program-
ming languages as standalone tools, being included in PMCGPU. On a GeForce
GTX 460M, the achieved speedup was of up to 11x.

3.7 Evolution-Communication P systems with Energy

Initiated by Juayong et al. [14], the first simulator of Evolution-Communication
P systems with Energy (ECPE) and without Antiport Rules made use of a ma-
trix representation and linear-algebra based algorithm, similarly as for the spiking
neural P systems simulator. In this case, a configuration vector (representing the
frequency of objects in regions), a trigger matrix (objects satisfying a rule), an ap-
plication vector (frequency of rule applications) and a transition vector (effect of
rule applications) per region are used. The simulator was implemented in Python,
and the GPU kernels execute the search for application vectors and model transi-
tion in parallel, by using PyCUDA.

In Barangan et al. [2], the work was extended in such a way that all appli-
cation vectors were computed in parallel, leading to a solution that handles non-
determinism in an efficient way. In Argarin et al. [1], the simulator was also imple-
mented in OpenCL and extended to support antiport rules, leading to speedups of
up to 12x. As in the previous work, the GPU executes the corresponding kernels
by using the binding library for Python and OpenCL, PyOpenCL

4 Conclusions and future work

Since the introduction of CUDA 10 years ago, many scientific applications have
been accelerated. P system simulation is one of them: GPUs are good alternative



A Survey on Parallel Simulation of P systems with GPUs 65

to conventional computing platforms due to the double parallel nature that both
GPUs and P systems present. Their shared memory system also helps to efficiently
synchronize the simulation of the models. Many authors have implemented simu-
lators for their models of study. In order to do that, first, a simulation algorithm
has to be defined, allowing a parallel implementation on GPUs.

However, it has been shown that P systems simulations are memory and
memory-bandwidth bound. Indeed, simulating a P systems requires more data
accesses than computing, and also a high synchronization degree (e.g., the global
clock of the models). This fact restricts the design of parallel simulators, needing
a careful representation and management of each P system ingredient. A bad step
taken on GPU programming can easily break parallelism, and so, performance.

There is still a plethora of open lines concerning parallel simulation of P systems
on GPUs. So far, the majority of simulators have been a proof of concept, where
a good parallel design of the simulators was explored. However, none of them
have been used in real applications yet, since this requires efficient communication
protocols with more general, high-level simulation frameworks (such as P-Lingua).
Moreover, further improvements to the designs can be done, taking advantage of
the new features offered by the newest generation GPUs (such as the upcoming
thread groups in CUDA 9 [30]). Finally, other P system models can be considered to
be simulated on GPUs, as long as a simulation algorithm is well defined, accurate
enough and parallelizable.

References

1. P.J. Argarin, N.J. Joaquin, R.A. Juayong, N.H. Hernandez, H.N. Adorna, F.G.C.
Cabarle. An Implementation of Computations in Evolution-Communication P sys-
tems with Energy Using Open Computing Language. In Proceedings of 16th Philip-
pine Computing Science Congress, 2016, pp. 63–76.

2. Z.F. Bangalan, K.A.N. Soriano, R.A.B. Juayong, F.G.C. Cabarle, H.N. Adorna, M.A.
Mart́ınez-del-Amor. A GPU Simulation for Evolution-Communication P Systems
with Energy Having no Antiport Rules, In Proceedings of 11th Brainstorming Week
on Membrane Computing, 2013, pp. 25–50.

3. M. Cardona, M.A. Colomer, A. Margalida, I. Pérez-Hurtado, M.J. Pérez-Jiménez,
D. Sanuy. A P system based model of an ecosystem of some scavenger birds, Lecture
Notes in Computer Science, 5957, (2010), 182–195.

4. F. G. Cabarle, H. N. Adorna, M. A. Mart́ınez-del-Amor. A spiking neural P system
simulator based on CUDA. Lecture Notes in Computer Science, 7184 (2012), 87–103.

5. F. G. Cabarle, H. N. Adorna, M. A. Mart́ınez-del-Amor, M. J. Pérez-Jiménez. Im-
proving GPU simulations of spiking neural P systems, Romanian Journal of Infor-
mation Science and Technology, 15, 1 (2012), 5–20.

6. J.P. Carandang, J.M.B. Villaflores, F.G.C. Cabarle, H.N. Adorna, M.A. Mart́ınez-
del-Amor. CuSNP: Spiking Neural P Systems Simulators in CUDA. Romanian Jour-
nal of Information Science and Technology, 20, 1 (2017), 57–70.

7. J.M. Cecilia, J.M. Garćıa, G.D. Guerrero, M.A. Mart́ınez-del-Amor, I. Pérez-
Hurtado, M.J. Pérez-Jiménez. Simulation of P systems with Active Membranes on
CUDA, Briefings in Bioinformatics, 11, 3 (2010), 313–322.



66 M.A. Mart́ınez-del-Amor et al.

8. J.M. Cecilia, J.M. Garćıa, G.D. Guerrero, M.A. Mart́ınez-del-Amor, I. Pérez-
Hurtado, M.J. Pérez-Jiménez, Simulating a P system based efficient solution to SAT
by using GPUs, Journal of Logic and Algebraic Programming, 79, 6 (2010), 317–325.

9. J. M. Cecilia, J. M. Garćıa, G. D. Guerrero, M. A. Mart́ınez-del-Amor, M. J. Pérez-
Jiménez, M. Ujaldón. The GPU on the simulation of cellular computing models, Soft
Computing, 16, 2 (2012), 231–246.

10. J. M. Cecilia, J. M. Garćıa, G. D. Guerrero, M. Ujaldón. Evaluating the SAT problem
on P systems for different high-performance architectures, The Journal of Supercom-
puting, 69, 1 (2014), 248–272.

11. M.A. Colomer-Cugat, M. Garćıa-Quismondo, L.F. Maćıas-Ramos, M.A. Mart́ınez-
del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, L. Valencia-
Cabrera. Membrane system-based models for specifying Dynamical Population sys-
tems. In P. Frisco, M. Gheorghe, M.J. Pérez-Jiménez (eds.), Applications of Mem-
brane Computing in Systems and Synthetic Biology. Emergence, Complexity and
Computation series, Volume 7. Chapter 4, pp. 97–132, 2014, Springer Int. Publishing.

12. P. Frisco, M. Gheorghe, M. J. Pérez-Jiménez. Applications of Membrane Computing
in Systems and Synthetic Biology, Series: Emergence, Complexity and Computation,
7. Springer, 2014.

13. M. Garćıa-Quismondo, L. F. Maćıas-Ramos, M. J. Pérez-Jiménez. Implementing en-
zymatic numerical P systems for AI applications by means of graphic processing
units. Beyond Artificial Intelligence, volume 4 of Topics in Intelligent Engineering
and Informatics, 2013, pp. 137–159.

14. R. A. Juayong, F. G. Cabarle, H. N. Adorna, M. A. Mart́ınez-del-Amor. On the
simulations of evolution-communication P systems with energy without antiport rules
for GPUs. Tenth Brainstorming Week on Membrane Computing, volume I, 2012, pp.
267–290.

15. M. Harris. Mapping computational concepts to GPUs, ACM SIGGRAPH 2005
Courses, NY (USA), 2005.

16. D. Kirk, W. Hwu. Programming Massively Parallel Processors: A Hands On Ap-
proach, MA (USA), 2010.

17. A.R. Lagunda, G.I. Palaganas, F.G.C. Cabarle, H Adorna. Spiking Neural P Systems
GPU Simulation using OpenCL. In Proceedings of 16th Philippine Computing Science
Congress, 2016, pp. 215–221.

18. L.F. Maćıas-Ramos, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez. Simulating
FRSN P systems with real numbers in P-Lingua on sequential and CUDA platforms.
Lecture Notes in Computer Science, 9504 (2015), 262–276.

19. M.A. Mart́ınez-del-Amor. Accelerating Membrane Systems Simulators using High
Performance Computing with GPU. Ph.D. thesis, University of Seville, 2013.

20. M.A. Mart́ınez-del-Amor, M. Garćıa-Quismondo, L.F. Maćıas-Ramos, L. Valencia-
Cabrera, A. Riscos-Núñez, M.J. Pérez-Jiménez. Simulating P Systems on GPU De-
vices: A Survey. Fundamenta Informaticae, 136, 3 (2015), 269–284

21. M. A. Mart́ınez-del-Amor, I. Karlin, R. E. Jensen, M. J. Pérez-Jiménez, A. C. Elster.
Parallel simulation of probabilistic P systems on multicore platforms. In Proceedings
of the Tenth Brainstorming Week on Membrane Computing, volume II, 2012, pp.
17–26.

22. M.A. Mart́ınez-del-Amor, L.F. Maćıas-Ramos, L. Valencia-Cabrera, M.J. Pérez-
Jiménez. Parallel simulation of Population Dynamics P systems: updates and
roadmap. Natural Computing, 15, 4 (2016), 565–573.



A Survey on Parallel Simulation of P systems with GPUs 67

23. M.A. Mart́ınez-del-Amor, J. Pérez-Carrasco, M.J. Pérez-Jiménez. Characterizing the
parallel simulation of P systems on the GPU. International Journal of Unconven-
tional Computing, 9, 5-6 (2013), 405-424.

24. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, A. Gastalver-Rubio, A.C. Elster, M.J.
Pérez-Jiménez. Population Dynamics P systems on CUDA. In 10th Conference on
Computational Methods in Systems Biology, CMSB2012 (D. Gilbert, M. Heiner,
eds.), LNBI 7605 (2012), 247-266.

25. M. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo, L.F. Maćıas-
Ramos, L. Valencia-Cabrera, Á. Romero-Jiménez, C. Graciani-Dı́az, A. Riscos-
Núñez, M.A. Colomer, and M.J. Pérez-Jiménez. DCBA: Simulating population dy-
namics P systems with proportional object distribution. Lecture Notes in Computer
Science, 7762 (2013), 257-276.

26. A. Maroosi, R.C. Muniyandi, E.A. Sundararajan, A.M. Zin. Improved Implementa-
tion of Simulation for Membrane Computing on the Graphic Processing Unit, Pro-
cedia Technology, 11, 2013, pp. 184-190.

27. Gh. Păun. Computing with Membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for CS-TUCS Report No. 208, 1998

28. G. Păun, G. Rozenberg, A. Salomaa, eds. The Oxford Handbook of Membrane Com-
puting, Oxford University Press, USA, 2010.

29. X. Zeng, H. Adorna, M. A. Mart́ınez-del-Amor, L. Pan, M. J. Pérez-Jiménez. Matrix
representation of spiking neural p systems. Lecture Notes in Computer Science, 6501
(2011), 377–391.

30. NVIDIA CUDA website, last accessed 2017. https://developer.nvidia.com/

cuda-zone

31. NVIDIA CUDA programming guide, last accessed 2017. http://docs.nvidia.com/
cuda/cuda-c-programming-guide

32. Khronos Group OpenCL website, last accessed 2017. https://www.khronos.org/

opencl

33. The PMCGPU project, 2013. http://sourceforge.net/p/pmcgpu





Bibliographies

A Bibliography of Technological Applications
of Spiking Neural P Systems

Gexiang Zhang1,2, Qiang Yang1, Linqiang Pan3

1 Robotics Research Center, Key Laboratory of Fluid and Power Machinery of
Ministry of Education, Xihua University, Chengdu, 610039, China

2 School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031,
China

3 School of Automation, Huazhong University of Science and Technology, Wuhan
430074, China

This is a bibliography of technological applications of spiking neural P systems
(SN P systems, for short) reported in the past years.

The study of SN P systems and of their applications is a very active and
significant research topic. The bibliography may be useful and beneficial to the
researchers in the community of membrane computing and related areas, especially
to the researchers and students who are working on SN P systems.

Some of references in the list come from ”A bibliography of spiking neural
P systems” (L. Pan, T. Wu, Z. Zhang, Bulletin of IMCS, 2016, vol. 1, 63–78,
online: http://membranecomputing.net/ IMCSBulletin/). There are also some
updates. This list is meant to highlight the applications of SN P systems.

References

1. S. Aoki, A. Fujiwara: Asynchronous SN P systems for sorting. Networking and Com-
puting (ICNC), 2012 Third International Conference on. IEEE, 2012, 221–225.

2. A. Binder, R. Freund, M. Oswald: Extended spiking neural P systems with astro-
cytes - variants for modelling the brain. Proc. 13th Intern. Symp. AL and Robotics,
AROB2008, Beppu, Japan, 520–524.

3. R. Ceterchi, A.I. Tomescu: Spiking neural P systems, a natural model for sorting
networks. BWMC2008, 93–106.

4. R. Ceterchi, A.I. Tomescu: Computing the maximum bisimulation with spiking neu-
ral P systems. Computation, cooperation, and life, Springer Berlin Heidelberg, 2011,
151–157.



70 G. Zhang, Q. Yang, L. Pan

5. R. Ceterchi, A.I. Tomescu: Implementing sorting networks with spiking neural P
systems. Fundamenta Informaticae, 87, 1 (2008), 35–48.

6. H. Chen, X. Gao: Decimal Transforming Operations in Spiking Neural P Systems.
2nd International Conference on Biomedical Engineering and Informatics, 2009.

7. K. Chen, J. Wang, Z. Sun, J. Luo, T. Liu: Programmable Logic Controller Stage
Programming Using Spiking Neural P Systems. Journal of Computational and The-
oretical Nanoscience, 12, 7 (2015), 1292–1299.

8. D. Dı́az-Pernil, F. Peña-Cantillana, M. A. Gutiérrez-Naranjo: A parallel algorithm
for skeletonizing images by using spiking neural P systems. Neurocomputing, 115
(2013), 81–91.

9. D. Dı́az-Pernil, F. Peña-Cantillana, M. A. Gutiérrez-Naranjo: Skeletonizing images
by using spiking neural P systems. BWMC2010, 91–103.

10. S. Elias, A. Chandar, K. G.Krithivasan, S. V. Raghavan: An Adaptive e- Learning
Environment using Distributed Spiking Neural P Systems. Technology for Education
(T4E), 2011 IEEE International Conference on. IEEE, 2011, 56–60.

11. R. Freund, M. Oswald: Regular ω-languages defined by extended spiking neural P
systems. Fundamenta Informaticae, 83, 1–2 (2008), 65–73.

12. X. Gao, H. Chen: Signed integer arithmetic on spiking neural P systems. Applied
Mechanics and Materials, 20 (2010), 779–784.

13. M.A. Gutiérrez-Naranjo, A. Leporati: Solving numerical NP-complete problems by
spiking neural P systems with pre-computed resources. BWMC2008, 193–210.

14. M.A. Gutiérrez-Naranjo, A. Leporati: Performing arithmetic operations with spiking
neural P systems. BWMC2009, vol. I, 181–198.

15. M. A. Gutiérrez-Naranjo, A. Leporati: First steps towards a CPU made of spiking
neural P systems. Int. J. of Computers, Communications and Control, 4, 3 (2009),
244–252.

16. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez: A first model for Hebbian learning
with spiking neural P systems. BWMC2008, 211–234.

17. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez: Hebbian learning from spiking neural
P systems view. Proc. WMC9, Edinburgh, UK, 2008, 217–230.

18. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez: A Spiking Neural P system based
model for Hebbian Learning. Proc. WMC9, Edinburgh, UK, 2008, 189–207.

19. R. Hamabe, A. Fujiwara: Asynchronous SN P systems for logical and arithmetic
operations. Proceedings of International Conference on Foundations of Computer
Science, 2012, 58–64.

20. O.H. Ibarra, A. Pǎun, A. Rodriguez-Patón: Sequentiality induced by spike numbers
in SN P systems. Proc. 14th Intern. Meeting on DNA Computing, Prague, June 2008,
36–46.

21. O.H. Ibarra, S. Woodworth: Characterizing regular languages by spiking neural P
systems. Intern. J. Found. Computer Sci., 18, 6 (2007), 1247–1256.

22. R. Idowu, R. Chandren, Z. Othman: Advocating the use of fuzzy reasoning spiking
neural P systems in intrusion detection. ACMC 2014, 1–5.

23. R. Idowu, R. Muniyandi, Z. Othman: The Prospects of Using Spiking Neural P
Systems for Intrusion Detection. International Journal of Information and Network
Security, 2, 6 (2013), 492.

24. M. Ionescu, D. Sburlan: Some applications of spiking neural P systems. Proc. WMC8,
Thessaloniki, June 2007, 383–394, and Computing and Informatics, 27 (2008), 515–
528.



Technological Applications of SN P systems 71

25. M. Ionescu, C.I. T̂ırnǎucǎ, C. T̂ırnǎucǎ: Dreams and spiking neural P systems. Ro-
manian J. Inform. Sci. and Technology, 12, 2 (2009), 209–217.

26. M. Ionescu, D. Sburlan: Some applications of spiking neural P systems. Computing
and Informatics, 27, 3 (2012), 515–528.

27. T.-O. Ishdorj, A. Leporati: Uniform solutions to SAT and 3-SAT by spiking neural
P systems with pre-computed resources. Natural Computing, 7, 4 (2008), 519–534.

28. T.-O. Ishdorj, A. Leporati, L. Pan, X. Zeng, X. Zhang: Deterministic solutions to
QSAT and Q3SAT by spiking neural P systems with precomputed resources. Theo-
retical Computer Sci., 411, 25 (2010), 2345–2358.

29. T.-O. Ishdorj, A. Leporati, L. Pan, J. Wang: Solving NP-Complete problems by spik-
ing neural p systems with budding rules. Proc. WMC10, Curtea de Argeş, Romania,
August 2009, 335–353.

30. Y. Kong, D. Zhao: Parallel Programming in Spiking Neural P Systems with Synapses
States. Journal of Computational and Theoretical Nanoscience, 12, 10 (2015), 3418–
3423.

31. A. Leporati, M. A. Gutiérrez-Naranjo: Solving Subset Sum by spiking neural P sys-
tems with pre-computed resources. Fundamenta Informaticae, 87, 1 (2008), 61–77.

32. A. Leporati, G. Mauri: Towards a High-Level Programming of Spiking Neural P
Systems. Emerging Paradigms in Informatics, Systems and Communication, (2009),
99.

33. A. Leporati, G. Mauri, C. Zandron, Gh. Pǎun, M.J. Pérez-Jiménez: Uniform solutions
to SAT and Subset-Sum by spiking neural P systems. Natural computing, 8, 4 (2009),
681–702.

34. A. Leporati, C. Zandron, C. Ferretti, G. Mauri: Solving numerical NP-complete prob-
lems with spiking neural P systems. Proc. WMC8, Thessaloniki, June 2007, 405–424.

35. X. Li, Z. Wang, W. Lu, Z. Chen, Y. Wang, X. Shi: A Spiking Neural System Based on
DNA Strand Displacement. Journal of Computational and Theoretical Nanoscience,
12, 2 (2015), 298–304.

36. X. Liu, Z. Li, J. Liu, X. Zeng: Implementation of Arithmetic Operations With Time-
Free Spiking Neural P Systems. IEEE Transactions on NanoBioscience, 14, 6 (2015),
617–624.

37. X. Liu, Z. Li, J. Suo, J. Liu, X. Min: A uniform solution to integer factorization using
time-free spiking neural P system. Neural Computing and Applications, 26, 5 (2015),
1241–1247.

38. L. F. Maćıas-Ramos, M. A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez: Simulating
FRSN P Systems with Real Numbers in P-Lingua on sequential and CUDA plat-
forms. 16th International Conference on Membrane Computing 2015 (G. Rozenberg
et al., eds.), LNCS 9504, 2015, Springer Berlin Heidelberg, 262–276.

39. V. P. Metta, A. Kelemenová: Sorting Using Spiking Neural P Systems with Anti-
spikes and Rules on Synapses. 16th International Conference on Membrane Comput-
ing 2015 (G. Rozenberg et al., eds.), LNCS 9504, 2015, Springer Berlin Heidelberg,
290–303.

40. V.P. Metta, K. Krithivasan: Spiking neural P systems and Petri nets. Proceedings of
the International Workshop on Machine Intelligence Research, 2009.

41. V. P. Metta, K. Krithivasan, D. Garg: Protocol Modeling in Spiking Neural P systems
and Petri nets. International Journal of Computer Applications, 1, 24 (2010), 56–61.

42. J.M. Mingo: Sleep-awake switch with spiking neural P systems: A basic proposal and
new issues. BWMC2009, vol. II, 59–72.



72 G. Zhang, Q. Yang, L. Pan

43. T. Y. Nishida: Computing k-block Morphisms by Spiking Neural P Systems. Funda-
menta Informaticae, 111, 4 (2011), 453–464.

44. A. Obtulowicz: Spiking neural P systems and modularization of complex networks
from cortical neural network to social networks. BWMC2009, 109–114.

45. Gh. Pǎun, M.J. Pérez-Jiménez: Spiking neural P systems. Recent results, research
topics. Algorithmic Bioprocesses (A. Condon, D. Harel, J. N. Kok, A. Salomaa, E.
Winfree, eds.), Springer Berlin Heidelberg, 2009, 273–291.

46. Gh. Pǎun, M.J. Pérez-Jiménez: Spiking neural P systems. An overview. Advancing
Artificial Intelligence through Biological Process Applications (A.B. Porto, A. Pazos,
W. Buno, eds.), Medical Information Science Reference, Hershey, New York, 2008,
60–73.

47. Gh. Pǎun, M.J. Pérez-Jiménez, G. Rozenberg: Computing morphisms by spiking
neural P systems. Intern. J. Found. Computer Sci., 18, 6 (2007), 1371–1382.

48. X. Peng, X. Fan, J. Liu: Performing Balanced Ternary Logic and Arithmetic Opera-
tions with Spiking Neural P Systems with Anti-Spikes. Advanced Materials Research.
Trans Tech Publications, 505 (2012), 378–385.

49. H. Peng, J. Wang: Adaptive spiking neural P systems. 2010 Sixth International Con-
ference of Natural Computing (ICNC2010), 2010, vol. 6, 3008–3011.

50. H. Peng, J. Wang, M.J. Pérez-Jiménez, H. Wang, J. Shao, T. Wang: Fuzzy reasoning
spiking neural P system for fault diagnosis. Information Sciences, 235 (2013), 106–
116.

51. M.J. Pérez-Jiménez: Simulating FRSN P Systems with Real Numbers in P-Lingua
on sequential and CUDA platforms. 16th International Conference on Membrane
Computing 2015 (G. Rozenberg et al., eds.), LNCS 9504, 2015, Springer Berlin Hei-
delberg, 262.

52. C. Qiu, L. Xiang, X. Liu: Broadcast Routing Algorithms in Hypercube Based on SN
P Systems. Pervasive Computing and the Networked World, Springer International
Publishing, 2013, 487–496.

53. D. Reid, M. Barrett-Baxendale: Spatiotemporal Processing in a Spiking Neural P
System. Proc. DESE’09, 2009, 394–399.

54. T. Song, L. Luo, J. He, Z. Chen, K. Zhang: Solving subset sum problems by time-free
spiking neural P systems. Applied Mathematics & Information Sciences, 8, 1 (2014),
327.

55. T. Wang, J. Wang, H. Peng, H. Wang: Knowledge representation and reasoning based
on FRSN P system. Intelligent Control and Automation (WCICA), 2011 9th World
Congress on. IEEE, 2011, 849–854.

56. T. Wang, T. Wang, H. Peng, Y. Deng : Knowledge representation using fuzzy spiking
neural P system. Proceedings of the IEEE Sixth International Conference on Bio-
Inspired Computing: Theories and Applications, Changsha, China, 2010, 586–590.

57. T. Wang, G. Zhang, M.J. Pérez-Jiménez: Application of weighted fuzzy reasoning
spiking neural P systems to fault diagnosis in traction power supply systems of high-
speed railways. BWMC2014, 329–350.

58. T. Wang, G. Zhang, M.J. Pérez-Jiménez: Fault diagnosis models for electric locomo-
tive systems based on fuzzy reasoning spiking neural P systems. 15th International
Conference on Membrane Computing 2014 (M. Gheorghe et al., eds.), LNCS 8961,
Springer, 2014, 385–395.

59. T. Wang, G. Zhang, M.J. Pérez-Jiménez, J. Chen: Weighted fuzzy reasoning spiking
neural P systems: application to fault diagnosis in traction power supply systems of



Technological Applications of SN P systems 73

high-speed railways. Journal of Computational and Theoretical Nanoscience, 12, 7
(2015), 1103–1114.

60. T. Wang, G. Zhang, H. Rong, M.J. Pérez-Jiménez: Application of fuzzy reason-
ing spiking neural P systems to fault diagnosis. International Journal of Computers
Communications & Control, 9, 6 (2014), 786–799.

61. T. Wang, G. Zhang, J. Zhao, J. Wang, M.J. Pérez-Jiménez: Fault diagnosis of electric
power systems based on fuzzy reasoning spiking neural P systems. IEEE Transactions
on Power Systems, 30, 3 (2015), 1182–1194.

62. J. Wang, H. J. Hoogeboom, L. Pan, Gh. Pǎun, M.J. Pérez-Jiménez: Spiking neural
P systems with weights. Neural Computation, 22, 10 (2010), 2615–2646.

63. J. Wang, H. J. Hoogeboom, L. Pan: Spiking neural P systems with neuron division.
11th International Conference on Membrane Computing 2010 (M. Gheorghe et al.,
eds.), LNCS 6501, Springer, 2010, 361–376.

64. J. Wang, H. J. Hoogeboom, L. Pan, Gh. Pǎun: Spiking neural P systems with weights
and thresholds. Proc. 10th Workshop Membrane Comput., Aug. 2009, 514–533.

65. J. Wang, H. Peng: Fuzzy knowledge representation based on an improving spik-
ing neural P system. 2010 Sixth International Conference on Natural Computation
(ICNC2010), 2010, 3012–3015.

66. J. Wang, H. Peng: Adaptive fuzzy spiking neural P systems for fuzzy inference and
learning. International Journal of Computer Mathematics, 90, 4 (2013), 857–868.

67. J. Wang, P. Shi, H. Peng, M.J. Pérez-Jiménez, T. Wang: Weighted fuzzy spiking
neural P systems. IEEE Transactions on Fuzzy Systems, 21, 2 (2013), 209–220.

68. J. Wang, L. Zhou, H. Peng, G. Zhang: An extended spiking neural P system for fuzzy
knowledge representation. International Journal of Innovative Computing, Informa-
tion and Control, 7, 7 (2011), 3709–3724.

69. G. Xiong, D. Shi, L. Zhu, X. Duan: A new approach to fault diagnosis of power
systems using fuzzy reasoning spiking neural P systems. Mathematical Problems in
Engineering, 2013 (2013).

70. L. Xu, P. Jeavons: Simple neural-like P systems for maximal independent set selec-
tion. Neural computation, 25, 6 (2013), 1642–1659.

71. J. Xue, X. Liu: Solving directed hamilton path problem in parallel by improved SN p
system. Pervasive Computing and the Networked World, Springer Berlin Heidelberg,
2012, 689–696.

72. X. Zeng, C. Lu, L. Pan: A weakly universal spiking neural P system. Mathematical
and Computer Modelling, 52, 11 (2010), 1940–1946.

73. X. Zeng, T. Song, L. Pan, X. Zhang: Spiking neural P systems for arithmetic op-
erations. Proc. IEEE Sixth International Conference on Bio-Inspired Computing:
Theories and Applications, Penang, Malaysia, 2011, 296–301.

74. X. Zeng, T. Song, X. Zhang, L. Pan: Performing four basic arithmetic operations
with spiking neural P systems. IEEE Transactions on NanoBioscience, 11, 4, (2012),
366–374.

75. X. Zhang, T.-O. Ishdorj, X. Zeng, L. Pan: Solving PSPACE-complete problems by
spiking neural P systems with pre-computed resources. Submitted, 2008.

76. G. Zhang, H. Rong, F. Neri, M.J. Pérez-Jiménez: An optimization spiking neural P
system for approximately solving combinatorial optimization problems. International
Journal of Neural Systems, 24, 5 (2014), 1440006.

77. X. Zhang, X. Zeng, B. Luo, J. Xu: Several applications of spiking neural P systems
with weights. Journal of Computational and Theoretical Nanoscience, 9, 6 (2012),
769–777.



74 G. Zhang, Q. Yang, L. Pan

78. H. Peng, J. Wang, J. Ming, P. Shi, M. J. Pérez-Jiménez, W. Yu, C. Tao: Fault
Diagnosis of Power Systems Using Intuitionistic Fuzzy Spiking Neural P Systems.
IEEE Transactions on Smart Grid, accepted, doi:10.1109/TSG.2017.2670602.

79. J. Wang, H. Peng, M. Tu, M. J. Pérez-Jiménez, P. Shi: A Fault Diagnosis Method
of Power Systems Based on an Improved Adaptive Fuzzy Spiking Neural P Systems
and PSO Algorithms. Chinese Journal of Electronics, 25, 2(2016), 320–327.

80. T. Song, P. Zheng, M.L.D. Wong, X. Wang: Design of logic gates using spiking
neural P systems with homogeneous neurons and astrocytes-like control. Information
Sciences, 372(2016), 380–391.

81. Z. Chen, P. Zhang, X. Wang, X. Shi, T. Wu, P. Zheng: A computational approach
for nuclear export signals identification using spiking neural P systems. Neural Com-
puting and Applications, 2016, 1–11.

82. C. Diaz, T. Frias, G. Sanchez, H. Perez, K. Toscano, G. Duchen: A novel parallel
multiplier using spiking neural P systems with dendritic delays. Neurocomputing,
239(2017), 113–121.

83. K. Huang, T. Wang, Y. He, G. Zhang, M. J. Pérez-Jiménez: Temporal Fuzzy Reason-
ing Spiking Neural P Systems with Real Numbers for Power System Fault Diagnosis.
Journal of Computational and Theoretical Nanoscience, 13, 6(2016), 3804–3814.

84. K. Huang, G. Zhang, X. Wei, H. Rong, Y. He, T. Wang: Fault Classification of Power
Transmission Lines Using Fuzzy Reasoning Spiking Neural P Systems. Bio-Inspired
Computing-Theories and Applications, 2016, 109–117.

85. Y. Yahya, A. Qian, A. Yahya: Power Transformer Fault Diagnosis Using Fuzzy Rea-
soning Spiking Neural P Systems. Journal of Intelligent Learning Systems and Ap-
plications, 8, 2016, 77–91.

86. J. Li, Y. Huang, J. Xu: Decoder Design Based on Spiking Neural P Systems. IEEE
Transactions on NanoBioscience, 15, 7, 2016, 639–644.

87. G. Duchen, C. Diaz, G. Sanchez, H. Perez: First steps toward memory processor unit
architecture based on SN P systems. Electronics Letters, 53, 6, 2017, 384–385.

88. C. Tao, W. Yu, J. Wang, P. Hong, K. Chen, J. Ming: Fault Diagnosis of Power Sys-
tems Based on Triangular Fuzzy Spiking Neural P Systems. Bio-Inspired Computing-
Theories and Applications, 2016, 385–398.

89. J. Xue, X. Liu, P. Chen. Rhombic Grid Based Clustering Algorithm with Spiking
Neural P Systems. Journal of Computational and Theoretical Nanoscience, 13, 6,
2016, 3895–3901.



Books Announcements

Membrane Computing for Distributed Control of
Robotic Swarms: Emerging Research and
Opportunities

Andrei George Florea, Cătălin Buiu

Laboratory of Natural Computing and Robotics
Department of Automatic Control and Systems Engineering
Politehnica University of Bucharest
Romania
{andrei.florea, catalin.buiu}@acse.pub.ro

We are pleased to announce the publication
of our book Membrane Computing for Dis-
tributed Control of Robotic Swarms: Emerg-
ing Research and Opportunities by IGI Global
(http://www.igi-global.com/), an U.S.A.-
based publisher of Academic Research. The
first author is Andrei Florea, a Ph.D. student
and the main co-worker of prof. Cătălin Buiu
(http://catalin.buiu.net), the second au-
thor. The foreword is written by Gheorghe
Păun.

In 2011 we realized the first numerical P
systems simulator, SNUPS. In 2012 we pre-
sented the first membrane controllers for mo-
bile robots, that were based at that time on
standard and enzymatic numerical P systems.
In 2016 we introduced a new type of P colony,

the XP colony, and the P swarm, a colony of XP colonies. Lulu, an open-source
P colony/P swarm simulator (https://github.com/andrei91ro/lulu pcol sim)
was also developed and presented in 2016.

After a brief introduction to swarm robotics, in Chapter 2 of the book we
provide a theoretical overview of membrane computing that is completed with a



76 A.G. Florea, C. Buiu

description of existing membrane computing simulators in Chapter 3. The core of
the book is Chapter 4 in which we focus on the use of P colonies and P swarms
for the control of single robots, but also for the control of multiple robots simulta-
neously. Execution diagrams are used to describe the behaviour of the membrane
controllers and their effect on the state of the controlled robots. Some experiments
that required large swarms (up to 15000 robots at 5x real speed, on a modern
CPU) were executed using a port of Lulu in C that is small enough to be exe-
cuted on the microcontroller of a real Kilobot robot. Each robot is controlled by
one P colony or XP colony and all interactions are modelled using them. The last
chapter provides a detailed guide on how to integrate membrane computing in
mobile robotics applications in addition to other modelling and simulation tools
and computational approaches.

There are many simulation examples presented in this new book, and part of
the included experiments are validated on open-source, low cost mobile robots
(Kilobot). The dedicated webpage (http://membranecomputing.net/IGIBook/)
is an additional source of information where source code, input files, user manuals,
and demonstration videos can be found.

The book, both in printed and electronic form, may be bought from http://www.

igi-global.com/book/membrane-computing-distributed-control-robotic/

173023 (the coupon code IGI40 will grant a 40% discount). The book is also avail-
able on Google Books (https://books.google.ro/books?hl=en&lr=&id=E2xxD
gAAQBAJ&oi=fnd&pg=PR1&ots=G19HceLr0C&sig=z0bXG3GJtKdk8kE8b-wR RmAT

YA&redir esc=y#v=onepage&q&f=false).

Fig. 1. An example simulation of a swarm of 50 Kilobot robots using the Kilombo
simulator. Each robot is executing a time interrupt-driven P colony controller that allows
them to chose a new direction every two seconds

We look forward to receiving your comments, suggestions and questions. We
are also open for a future cooperation in this area.



Real-life Applications with Membrane Computing

Gexiang Zhang1, Mario J. Pérez-Jiménez2, Marian Gheorghe3

1 Robotics Research Center,
Xihua University, Chengdu 610039, P.R. China; and
The Key Laboratory of Fluid and Power Machinery,
Xihua University, Ministry of Education, Chengdu 610039, P.R. China
gexiangzhang@gmail.com

2 Department of Computer Science and Artificial Intelligence,
The University of Seville, Spain
marper@us.es

3 School of Electrical Engineering and Computer Science,
The University of Bradford, UK
m.gheorghe@bradford.ac.uk

We are pleased to inform the Membrane Computing community about a newly
published research monograph, with the title and authors mentioned above, in
2017, as Vol. 25 of the Emergence, Complexity and Computation series, with
Springer. The book4 has a preface and seven chapters, as mentioned below.

Table of contents

Chapter 0: Preface
Chapter 1: Membrane Computing - Key Concepts and Definitions
Chapter 2: Fundamentals of Evolutionary Computation
Chapter 3: Membrane Algorithms
Chapter 4: Engineering Optimization with Membrane Algorithms
Chapter 5: Electric Power System Fault Diagnosis with Membrane Systems
Chapter 6: Robot Control with Membrane Systems
Chapter 7: Data Modeling with Membrane Systems: Applications to Real Ecosys-
tems

This book presents for the first time to the international community a complex
set of real-life applications modeled and analyzed with a membrane computing ap-
paratus consisting of methods and tools integrating previous membrane systems
research threads as well as new developments. The most significant new research
approaches include a combination of different P systems and evolutionary or fuzzy

4 http://www.springer.com/series/10624



78 G. Zhang, M.J. Pérez-Jiménez, M. Gheorghe

reasoning methods. The applications presented in the book cover a broad spec-
trum of topics, from various engineering areas, including engineering optimization,
power systems fault diagnosis, mobile robots controller design, to complex biolog-
ical systems involving data modeling and process interactions.

We will briefly present the topics investigated in each of the book chapters.

– In Chapter 1, Membrane Computing - Key Concepts and Definitions, are pre-
sented basic membrane computing concepts that are used in the models in-
troduced in the next chapters. The most significant references to the research
text books and overview papers are also provided.

– In Chapter 2, Fundamentals of Evolutionary Computation, are introduced fun-
damental concepts and principles of evolutionary computation. Five variants of
evolutionary computation techniques, including genetic algorithms, quantum-
inspired evolutionary algorithms, ant colony optimization, particle swarm op-
timization and differential evolution, are discussed. Details regarding their be-
havior, performances and usage are provided.

– In Chapter 3, Membrane Algorithms, are discussed a set of hybrid approximate
optimization algorithms, called membrane algorithms or membrane-inspired
evolutionary algorithms, integrating the hierarchical/network structure of P
systems with meta-heuristic approaches. Most of these models have been in-
troduced by the authors of the book. The design principles, their developments
with key instances and examples are discussed. In addition, the impact of dif-
ferent variants of P systems with respect to membrane algorithms is analyzed.

– In Chapter 4, Engineering Optimization with Membrane Algorithms, a wide
range of engineering applications of membrane algorithms with cell-like, tissue-
like and neural-like P systems are discussed. The engineering problems include
radar emitters signal analysis, digital image processing, controllers design, mo-
bile robots path planning, constrained manufacturing parameters optimization
problems, and distribution networks reconfiguration. Each model is presented
with all the necessary details for implementing and analyzing its outcomes.

– In Chapter 5, Electric Power System Fault Diagnosis with Membrane Systems,
Spiking Neural P systems incorporating fuzzy logics are utilized to solve fault
diagnosis problems of electric power systems. Definitions, reasoning algorithms
and examples of fuzzy reasoning spiking neural P systems are presented. The
results are presented and comparisons with other approaches are mentioned.

– In Chapter 6, Robot Control with Membrane Systems, Numerical P (NP) sys-
tems and Enzymatic Numerical P (ENP) systems are employed for designing
membrane controllers for mobile robots. Simulators for NP systems and ENP
systems modeling the robots’ behavior are described and the results analyzed.



Books Announcements 79

– In Chapter 7, Data Modeling with Membrane Systems: Applications to Real
Ecosystems, a bioinspired computing modeling paradigm within membrane
computing, namely multienvironment P systems, is presented. This paradigm
provides two different approaches (multicompartmental P systems and pop-
ulation dynamics P systems). The last approach is used to model popula-
tion dynamics of real-world ecosystems. Ad-hoc algorithms and simulators are
introduced to simulate, analyze and (experimentally) validate population dy-
namics P systems. These models target a wide class of applications, envisaging
multi-disciplinary collaborations and aim at further extensions.

The book is of interest to a wider and diverse international audience, from
researchers and academics working with natural and unconventional computational
modeling, to PhD students looking for exciting, novel and challenging research
topics, and from modelers and engineers interested in complex systems modeling
and optimization, to researchers in biology, ecology, and more generally in natural
sciences, interested in using mathematical and computational models for their own
problems.

We hope that this book will provide to the researchers from the membrane
computing community, especially to young and enthusiastic researchers and PhD
students, a set of models and tools, as well as application areas, that will trigger
further investigations into more complex and challenging applications of membrane
computing and new interactions with other models and research areas.

Enjoy reading the book and do not hesitate to contact the authors when/if
you have in mind interesting applications of membrane computing and are looking
at some of the methods and tools presented by us. Any comments regarding this
book, the methods introduced and the applications presented are welcome.





Open Problems

Some Open Problems on Numerical P Systems
with Production Thresholds

Zhiqiang Zhang

Key Laboratory of Image Information Processing and Intelligent Control of Education
Ministry of China, School of Automation, Huazhong University of Science and
Technology, Wuhan 430074, Hubei, China

Summary. In this note, we propose some open problems on numerical P systems with
production thresholds. First, the definition of numerical P systems with production
thresholds is given, then some known results are shown, finally some problems are for-
mulated.

1 Numerical P Systems with Production Thresholds

In this section, we give the definition of the computation model considered in this
note. For more details, please refer to [1].

A numerical P system with production thresholds (in short, a TNP system) is
a construct

Π = (m,L, µ, T, (V1, P r1, V1(0)), . . . , (Vm, P rm, Vm(0)), Vin, Vout),

where

• m ≥ 1 is the number of membranes;
• L is an alphabet of labels for membranes in µ;
• µ is a rooted tree with m nodes labeled with the elements of L;
• T is a set of integers, the elements of which are called thresholds;
• Vi = {xj,i | 1 ≤ j ≤ ki}, 1 ≤ i ≤ m, is the set of variables in region i;
• Pri, 1 ≤ i ≤ m, is the set of programs in region i; each program has the

following form:

Fl,i(x1,i, . . . , xki,i)|Tl,i
→ cl,i,1|vl,i,1 + . . .+ cl,i,li |vl,i,li ,

where Fl,i(x1,i, . . . , xki,i) is the production function, and cl,i,1|vl,i,1 + . . . +
cl,i,li |vl,i,li is the repartition protocol of the program; Tl,i ∈ T is a constant;



82 Z. Zhang

• Vi(0), 1 ≤ i ≤ m, is the set of initial values of the variables in region i (the
values of variables are integers);

• Vin and Vout are the sets of input and of output variables, respectively.

The programs allow the system to evolve the values of variables during compu-
tations. A program is composed of three parts: a production function, a repartition
protocol and a threshold. Each program is evaluated in three phases, production-
comparison-distribution.

– Production: The production function Fl,i(x1,i, . . . , xki,i) computes a value from
the values of its variables at that time. Fl,i(x1,i, . . . , xki,i) can be any function
using variables from the region that contains the program (only polynomial
functions are considered here).

– Comparison: the production value is compared with the threshold Tl,i. Here,
we consider two kinds of thresholds: bounding the production function value
from below (lower-threshold) and bounding it from above (upper-threshold).
More precisely, in the lower-threshold (resp., upper-threshold) case, if the pro-
duction function value is greater (resp., smaller) than or equal to the threshold
associated with it (the program is active), then the system proceeds to the
distribution step; otherwise (the program is inactive), this production value
is lost and no variable value is changed by this program at this step. For the
active programs, after computing the production function value, the variables
involved in the production function are reset to zero.

– Distribution: the production value is distributed to variables from the region
where the program resides, and to variables in its upper (parent) and lower
(children) compartments, as specified by the repartition protocol. Formally, for
a repartition protocol RPl,i, {vl,i,1, . . . , vl,i,li} ⊆ Vi ∪ Vpar(i) ∪ (

∪
ch∈Ch(i) Vch),

where par(i) is the parent of membrane i and Ch(i) is the set of children of
membrane i. The coefficients cl,i,1, . . . , cl,i,li are natural numbers (they may also
be 0, in this case the terms “+0|x” are omitted), which specify the proportion
of the current production value distributed to each variable vl,i,1,. . . ,vl,i,li . At

time t, if we denote with Cl,i =
∑li

s=1 cl,i,s the sum of all coefficients of the
repartition protocol, and denote with

ql,i(t) =
Fl,i(x1,i(t), . . . , xki,i(t))

Cl,i
(1)

the “unitary portion”, then the value adl,i,r(t) = ql,i(t) · cl,i,r represents the
value added to variable vl,i,r. If variable vl,i,r appears in several repartition
protocols RPl1,i1 , . . . , RPlk,ik of the applied programs, then all these values
adl1,i1,r, . . . , adlk,ik,r are added to variable vl,i,r. So, if at time t variable vl,i,r
is involved in at least one production function of the applied programs and
appears in several repartition protocols RPl1,i1 , . . . , RPlk,ik of the applied pro-

grams, then its value at time t + 1 is vl,i,r(t + 1) =
∑k

s=1 adls,is,r(t); other-
wise, if at time t variable vl,i,r appears only in some repartition protocols



Open Problems on Numerical P Systems with Thresholds 83

RPl1,i1 , . . . , RPlk,ik of the applied programs not in any production function of

the applied programs, then vl,i,r(t+ 1)=vl,i,r(t) +
∑k

s=1 adls,is,r(t).

Note that the three phases, production-comparison-distribution, take place in
one time unit.

TNP systems can evolve in one of the following modes:

– sequential: at each step, only one program is applied in each membrane; if
more than one program in a membrane can be used, then one of them is non-
deterministically chosen;

– all-parallel: at each step, in each membrane, all applicable programs are applied,
allowing that more than one program share the same variable;

– one-parallel: apply programs in the all-parallel mode with the restriction that
one variable can appear in only one of the applied programs; in the case of
multiple choices, the programs to be applied are chosen in the non-deterministic
way.

Initially, the variables have the values specified by Vi(0), 1 ≤ i ≤ m. At time
t ∈ N , the values of all the variables of Π are defined as the configuration of Π at
time t. Using programs in the way mentioned above, and choosing the program in
the all-parallel or sequential mode, we obtain transitions among configurations. A
sequence of such transitions forms a computation. If no applicable set of programs
produces a change in the current configuration, we say that the system reaches a
final or a halting configuration. (Because of thresholds, it is also possible to have
halting computations in the standard sense, with no rule applicable.)

In this way, a numerical P system can compute a function f : Nα → Nβ

(α, β ≥ 0): the α values of the arguments are introduced in the system as the
initial values of variables in Vin and the β-vector of the function value is obtained
in the variables from Vout in the halting configuration of the system. If the system
never reaches a halting configuration, then no result is obtained.

By ignoring the input variables (Vin is then omitted), (non-deterministic) nu-
merical P systems with production thresholds can also be used in the generating
mode, whereas by ignoring the output variables (Vout is then omitted) we can use
(deterministic or non-deterministic) numerical P systems with production thresh-
olds in the accepting mode.

Note that in equation (1), ql,i(t) is an integer only if the value of the production
function Fl,i(x1,i(t), . . . , xki,i(t)) is divisible by the respective sum Cl,i. If at any
step, all the values of the production functions are divisible by the respective sum,
we associate this kind of systems with the notation div. If a current production
is not divisible by the associated coefficients total, then we can take the follow-
ing decisions: (i) the remainder is lost (the production which is not immediately
distributed is lost), (ii) the remainder is added to the production obtained in the
next step (the non-distributed production is carried over to the next step), (iii)
the system simply stops and aborts, no result is associated with that computation.
We denote these three cases with lost, carry, stop, respectively. In this work, the



84 Z. Zhang

TNP systems are of the div type. In fact, for NP systems of the non-div type,
without threshold, the computational university has been proved.

The set of natural numbers generated or accepted in the way mentioned
above by a system Π is denoted by Nη(Π), η ∈ {gen, acc}. We use NηT

γ
m1

PD
m2

(polyn(r), ν) to denote the family of all sets Nη(Π) of numbers computed by sys-
tems Π working in η mode, with m1 thresholds used in the γ ∈ {l, u} way, with
l indicating the lower-threshold and u indicating the upper-threshold case; with
at most m2 membranes, production functions which are polynomials of degree
at most n, with integer coefficients, with at most r variables in each polynomial,
using the rules in the mode ν ∈ {all, seq}, where all stands for all-parallel, and
seq stands for sequential; the letter D indicates the use of deterministic systems
(we remove D when the systems may also be non-deterministic). If one of the
parameters m1,m2, n, r is not bounded, then it is replaced with ∗.

2 Known Results

The following results are obtained in [1] (NRE is the family of Turing computable
sets of natural numbers).

Theorem 1. NaccT
l
4P

D
1 (poly1(2), all) = NaccT

u
4 P

D
1 (poly1(2), all) = NRE.

Theorem 2. NgenT
l
5P1(poly

2(3), seq) = NgenT
u
6 P1(poly

2(3), seq) = NRE.

Corollary 2.1 NaccT
l
5P

D
1 (poly2(3), seq) = NaccT

u
6 P

D
1 (poly2(3), seq) = NRE.

3 Open problems

In this section, we list the following open problems for further investigation.

• It is proved that for NPT systems with lower-thresholds and upper-thresholds
working both in the all-parallel mode and in the sequential mode, one mem-
brane suffices to reach universality. The case of the one-parallel computation
remains open.

• It remains open whether the number of thresholds used in the systems con-
structed in the proofs given in [1] can be decreased. In particular, it is of
interest to investigate whether the system can reach universality by using the
same threshold for all programs – we have a unique threshold for all variables.

• In the definition of numerical P systems with production thresholds, if the pro-
duction function value is greater (resp., smaller) than or equal to the threshold
associated with it in the case of lower-threshold (resp., upper-threshold), then
the system proceeds to the distribution step. It deserves to check whether the
computation power of systems changes if thresholds are used in the strict way
(that is, a program can be applied only when the production value is strictly
greater or smaller than the threshold). It is also of interest to investigate the



Open Problems on Numerical P Systems with Thresholds 85

computation power of systems when thresholds are used in the mixed way (that
is, in a system, some programs are associated with lower-thresholds and some
programs are associated with upper-thresholds).

• Generally, numerical P systems working in the sequential mode need more than
one membrane to reach computational universality. However, with the feature
of threshold, all the universal numerical P systems working in the sequential
mode constructed in [1] have only one membrane, which is similar to some sort
of parallel rewriting grammar without actually exploiting the typical feature
of membranes. It is of interest to consider whether we can construct univer-
sal numerical P systems with thresholds having less programs when several
membranes are used.

References

1. Linqiang Pan, Zhiqiang Zhang, Tingfang Wu, Jinbang Xu, Numerical P Systems with
Production Thresholds, to appear in Theoretical Computer Science.





Open Problems on Symport/Antiport (Tissue)
P Systems with Channel States

Bosheng Song

Key Laboratory of Image Information Processing and Intelligent Control of Education
Ministry of China,
School of Automation, Huazhong University of Science and Technology,
Wuhan 430074, Hubei, China

Communication is an important feature of P systems that allows objects to move
from one cell (or environment) to another region. Symport/antiport rules are typi-
cal examples of communication rules, which are inspired from the active transport
of molecules across the membrane. P systems with symport/antiport rules were in-
troduced in [5], where several results concerning computational completeness were
obtained and then extended/improved in [1, 3].

The notion of channel states was first proposed in tissue P systems with sym-
port/antiport rules [2], and several results about Turing universality and non-
universality of symport/antiport tissue P systems are obtained considering as pa-
rameters the number of cells, the number of channel states and the length of
symport/antiport rules [2, 7]. In [2], rules in a system are used in a sequential
manner at the level of each channel (for each channel associated with two neigh-
boring regions, at most one rule can be used at one step) and in a parallel manner
at the level of the system (all channels which can use a rule must do it). In [4], flat
maximal parallelism of using rules was proposed: in each step, in each membrane, a
maximal set of applicable rules is chosen and each rule in the set is applied exactly
once. Tissue P systems with channel states and symport/antiport rules working in
the flat maximally parallel way were considered in [9], and the computation power
of such P systems was investigated considering as parameters the number of cells,
the number of channel states and the length of symport/antiport rules.

In [8], channel states were introduced into cell-like P systems with sym-
port/antiport rules, where at most one channel is established between neighboring
regions, each channel is associated with one state in order to control communica-
tion at each step, and rules are used in the same manner as in [2] (a sequential
manner at the level of each channel and in a parallel manner at the level of the
system).

In what follows, we formulate some open problems about symport/antiport
(tissue) P systems with channel states for further research.



88 B. Song

• The rules of cell-like P systems with channel states and symport/antiport rules
are used in a sequential way on each channel. What is the computation power
of cell-like P systems with channel states and symport/antiport rules that use
rules on channels in other strategies, for instance, asynchronous, flat maximal
parallelism, etc?

• In symport/antiport (tissue) P systems with channel states, there is at most
one channel between two cells or between a cell and the environment. What is
the computation power of symport/antiport (tissue) P systems with channel
states if there are two or more channels between two cells or between a cell and
the environment?

• The descriptional complexity of P systems with symport/antiport rules with
respect to the number of objects was considered in [6]. It is of interest to inves-
tigate universal (tissue) P systems with channel states and symport/antiport
rules with a small number of objects (following, for instance, the ideas of [6]).

• A usual idea for solving hard computational problems is to add the membrane
division or membrane separation rules into a P system, an exponential space
in a linear time can be produced and calculating in parallel for all possible
candidate solutions. It would be interesting to introduce a variant of sym-
port/antiport P systems with channel states that can have exponential channel
states in linear time, thus solving NP-complete problems by using the expo-
nentially many channel states instead of the exponentially many membranes
generated by membrane division or membrane separation.

References

1. A. Alhazov, R. Freund, P systems with one membrane and symport/antiport rules
of five symbols are computationally complete, in: Proc. of the Third Brainstorming
Week on Membrane Computing, 2005, pp. 19–28.

2. R. Freund, Gh. Păun, M. J. Pérez-Jiménez, Tissue P systems with channel states,
Theor. Comput. Sci. 330, 2005, 101–116.

3. P. Frisco, H. J. Hoogeboom, P Systems with symport/antiport simulating counter
automata, Acta Inform. 41, 2004, 145–170.

4. L. Pan, Gh. Păun, B. Song, Flat maximal parallelism in P systems with promoters,
Theor. Comput. Sci. 623, 2016, 83–91.

5. A. Păun, Gh. Păun, The power of communication: P systems with symport/antiport.
New Generat. Comput. 20(3), 2002, 295–305.

6. Gh. Păun, J. Pazos, M. J. Pérez-Jiménez, A. Rodŕıguez-Patón, Symport/antiport P
systems with three objects are universal, Fund. Informa. 64, 2005, 1–4.

7. Gh. Păun, G. Rozenberg, A. Salomaa, (Eds.), The Oxford Handbook of Membrane
Computing, Oxford University Press, New York, 2010.

8. B. Song, L. Pan, M. J. Pérez-Jiménez, Cell-like P systems with channel states and
symport/antiport rules, IEEE Trans. NanoBiosci. 15(6), (2016), 555–566.

9. B. Song, M. J. Pérez-Jiménez, Gh. Păun, L. Pan, Tissue P systems with channel
states working in the flat maximally parallel way, IEEE Trans. NanoBiosci. 15(7),
(2016), 645–656.



Calls for Participation to MC and
Related Conferences/Meetings

18th International Conference on Membrane
Computing (CMC18)

Bradford, United Kingdom

24-28 July, 2017

http://computing.brad.ac.uk/cmc18/

IMPORTANT DATES

• Deadline for submissions: 17 April 2017
• Notification of acceptance: 29 May 2017
• Final version: 19 June 2017
• Conference: 24 - 28 July 2017

SCOPE AND LOCATION

The Conference on Membrane Computing (CMC) series started in 2000 as the
Workshop on Multiset Processing. The first Workshop on Membrane Computing
was organized in Curtea de Argeş, Romania, in 2001. In 2010 it was transformed
into a conference, CMC11. The last edition, CMC17, was held in Milan, Italy,
in 2016. Nowadays a Steering Committee takes care of the continuation of the
CMC series which is organized under the auspices of the International Membrane
Computing Society (IMCS).

The 18th edition of the International Conference on Membrane Computing
series will take place at the University of Bradford, UK, one of the top ten greenest
universities in the world. Bradford is a multicultural, vibrant, and well-connected
city in the heart of Yorkshire. Full of history, it was once the wool capital of the
world, also the first UNESCO City of Film. Home to the National Media Museum,



90 Call for Papers - CMC18

Bradford is famous for some of the finest Asian food in the UK, being crowned
Curry Capital of Britain for six consecutive years! It benefits from a maritime
climate, with limited seasonal temperature ranges, and generally moderate rainfall
throughout the year.

The goal of CMC18 is to bring together researchers working in membrane
computing and related fields, in a friendly atmosphere enhancing communication,
cooperation and continuing the tradition of the past meetings. Membrane comput-
ing (P systems theory) is an area of computer science aiming to abstract computing
ideas and models from the structure and the functioning of living cells, as well as
from the way the cells are organized in tissues or higher order structures.

CONFERENCE FORMAT

This edition aims to have the following format, although some changes might occur
based on suggestions made by the Steering Committee. It is planned to include:
(1) three days of communications with invited speakers and short and long con-
tribution talks according to the papers submitted and the reviews of the Program
Committee, and (2) an Interaction Day similar in spirit to the Brainstorming Week
on Membrane Computing (BWMC) that is usually organized in Sevilla every year,
where the participants will work in a collaborative way to address open problems
and propose new approaches, problems and results. An IMCS General Assembly
will be also organized.

SUBMISSION OF PAPERS

Authors are invited to submit papers presenting original, unpublished research in
PDF format. There are two tracks for submission:

1. full paper (of a reasonable length),
2. extended abstract for poster presentation (maximum four pages). Typical ex-

tended abstracts present significant work-in-progress, late-breaking results, or
contributions from students new in the field or at the start of their research
career.

Only electronic submissions are accepted. Papers should be written in LaTeX
and formatted according to the usual LNCS article style which can be downloaded
at Springer’s LNCS website (http://www.springer.com/lncs). Please, include
all source files as well as all additional files (figures etc.), and also attach a PDF
version of the submission.

Submissions have to be sent through the EasyChair web page
https://easychair.org/conferences/?conf=cmc18.



Call for Papers - CMC18 91

PROCEEDINGS

A pre-proceedings volume will be available at the conference in electronic format,
online, and optionally hardcopies. A volume devoted to selected and additionally
revised papers will be published in the Lecture Notes in Computer Science series
of Springer-Verlag after the event.

STEERING COMMITTEE

Henry Adorna (Quezon City, Philippines)
Artiom Alhazov (Chişinău, Moldova)
Bogdan Aman (Iaşi, Romania)
Matteo Cavaliere (Edinburgh, Scotland)
Erzsébet Csuhaj-Varjú (Budapest, Hungary)
Giuditta Franco (Verona, Italy)
Rudolf Freund (Wien, Austria)
Marian Gheorghe (Bradford, UK) - Honorary Member
Thomas Hinze (Cottbus, Germany)
Florentin Ipate (Bucharest, Romania)
Shankara N. Krishna (Bombay, India)
Alberto Leporati (Milan, Italy)
Taishin Y. Nishida (Toyama, Japan)
Linqiang Pan (Wuhan, China)
Gheorghe Păun (Bucharest, Romania) - Honorary Member
Mario J. Pérez-Jiménez (Sevilla, Spain)
Agust́ın Riscos-Núñez (Sevilla, Spain)
José M. Sempere (Valencia, Spain)
Petr Sośık (Opava, Czech Republic)
Kumbakonam Govindarajan Subramanian (Penang, Malaysia)
György Vaszil (Debrecen, Hungary)
Sergey Verlan (Paris, France)
Claudio Zandron (Milan, Italy) - Chair
Gexiang Zhang (Chengdu, China)

PROGRAM COMMITTEE

Henry Adorna (Quezon City, Philippines)
Artiom Alhazov (Chişinău, Moldova)
Bogdan Aman (Iasi, Romania)
Lucie Ciencialová (Opava, Czech Republic)
Erzsébet Csuhaj-Varjú (Budapest, Hungary)
Giuditta Franco (Verona, Italy)



92 Call for Papers - CMC18

Rudolf Freund (Wien, Austria)
Thomas Hinze (Cottbus, Germany)
Marian Gheorghe (Bradford, UK)
Florentin Ipate (Bucharest, Romania)
Shankara N. Krishna (Bombay, India)
Alberto Leporati (Milan, Italy)
Vincenzo Manca (Verona, Italy)
Giancarlo Mauri (Milan, Italy)
Radu Nicolescu (Auckland, New Zealand)
Linqiang Pan (Wuhan, China)
Gheorghe Păun (Bucharest, Romania)
Mario J. Pérez-Jiménez (Sevilla, Spain)
Antonio E. Porreca (Milan, Italy)
Agust́ın Riscos-Núñez (Sevilla, Spain)
José M. Sempere (Valencia, Spain)
Petr Sośık (Opava, Czech Republic)
György Vaszil (Debrecen, Hungary)
Sergey Verlan (Paris, France)
Claudio Zandron (Milan, Italy)
Gexiang Zhang (Chengdu, China)

ORGANIZING COMMITTEE

Marian Gheorghe (Bradford, UK) - Co-chair
Savas Konur (Bradford, UK) - Co-chair
Raluca Lefticaru (Bradford, UK) - Communication Chair
Daniel Neagu (Bradford, UK)

CONTACT INFO

Please do not hesitate to contact us if you have any question.
Marian Gheorghe (email: m.gheorghe@bradford.ac.uk)
Savas Konur (email: s.konur@bradford.ac.uk)



The 6th Asian Conference on
Membrane Computing (ACMC2017)
21-25 September, 2017 Chengdu (P.R. China)

Website: 2017.asiancmc.org

Call for papers

ACMC 2017 is one of the flagship conferences on Membrane Computing, aiming
to provide a high-level international forum for researchers working in membrane
computing and related areas, especially for the ones from the Asian region. This
conference is the sixth edition of ACMC with the five editions having successfully
taken place in Wuhan (China, 2012), Chengdu (China, 2013), Coimbatore (South
India, 2014), Anhui (China, 2015), and Bangi (Malaysia, 2016), and also a geo-
graphical expansion of CMC (Conference on Membrane Computing) which is held
every year from the year of 2000 in different European Countries.

Like artificial neural networks, evolutionary algorithms, swarm intelligence,
cellular automata and DNA computing, membrane computing is also a branch of
natural computing or nature-inspired computing and was initiated by Gheorghe
Pǎun in 1998. It aims to abstract computing models, called membrane systems
or P systems, from the structure and the functioning of the living cell as well
as from the cooperation of cells in tissues, organs, and populations of cells. This
research area has grown into a vigorous scientific discipline and has attracted a
large number of researchers all over the world.

ACMC 2017 is planned as a friendly interactive conference with several intro-
ductory tutorials, several keynote lectures and some specialized sessions, which
will cover a wide range of topics on membrane computing, including theory, ap-
plications, implementation and various aspects related to membrane computing.
The registration fee will be of about 3500 RMB per person. This fee covers the
participation, the special dinner, the tourist programme, as well as the lunches.
The accommodation, to be paid by each participant, will be available at various
prices. Various accommodation possibilities will be posted soon on the conference
page.



94 Call for papers ACMC 2017

Topics

The Sixth Asian Conference on Membrane Computing (ACMC2017) provides an
open platform to bring together scholars worldwide to present their recent work on
membrane computing. The topics of this conference are as follows (but not limited
to):

(1) Theoretical aspects of membrane computing

• Various variants of computing models: cell-, tissue- and neural-like P systems.
• Computing power of membrane computing models.
• Computing efficiency of membrane computing models.

(2) Applications of membrane computing

• Robots controller design.
• Modeling using P systems for biological systems, ecological systems, etc.
• Membrane-inspired optimization algorithms for various problems.
• Fault diagnosis of various systems, such as robots, power systems, etc.
• Other applications.

(3) Implementation of membrane computing models

• Software implementation.
• Hardware implementation.
• Biological implementation.
• Other implementation.

Awards

ACMC 2017 sets up two best papers awards, BEST PAPER AWARD and BEST
STUDENT PAPER AWARD, which aims to promote the academics, encourage
young scientists to participate in academic activities, further to improve the paper
quality and expand conference influence.

1. Best Paper Award Regulations:
(1) Eligibility
The considered papers must satisfy:

(i) The paper is accepted by the ACMC 2017;
(ii) One of the authors must register;
(iii) One of the authors must present the paper at the conference.

(2) Requirement
The paper should present a significant contribution with regard to theoretical

results, applications or implementation of P systems, or comprehensive and high-
level surveys on a specific topic, and should be written in a professional way.

2. Best Student Paper Award Regulations
(1) Eligibility
The considered papers must satisfy:



Call for papers ACMC 2017 95

(i) The paper is accepted by the ACMC 2017;
(ii) The first author must be an undergraduate, master or PhD student.
(iii) The student must finish the registration process and present the paper

at the conference.
(2) Requirement
The paper should present a significant contribution with regard to theoretical

results, applications or implementation of P systems, or comprehensive and high-
level surveys on a specific topic, and should be written in a professional way.

3. Procedure
The best paper and best student paper are selected by a Technical Committee

through evaluating the reviewing reports, quality and presentation.

4. Award
The best papers elected by these regulations are awarded:
(1) A certificate of “ACMC 2017 Best Paper Award” or ”ACMC 2017 Best

Student Paper Award”. The certificate is signed by the conference chair;
(2) Prize or gifts.

Invited Speakers

Mario J. Pérez-Jiménez, University of Sevilla, Spain
Marian Gheorghe, University of Bradford, UK
Ferrante Neri, De Montfort University, UK
Linqiang Pan, Huazhong University of Science and Technology, China
Sergey Verlan, University of Paris Est, France
Kumbakonam Govindarajan Subramanian, Madras Christian College, India
Jun Wang, Xihua University, China

Publications

Papers accepted for presentation will appear in conference pre-proceedings of
ACMC 2017. After the conference, all the accepted papers will be selected to
be considered for publication in the following reputed publications:

(1) A selection of the ACMC2017 accepted papers will be re-reviewed and
published in the SCI-indexed journal International Journal of Computers, Com-
munications and Control (IJCCC);

(2) A selection of the ACMC2017 accepted papers will be combined with the
CMC2017 papers to be re-reviewed and published in Lecture Notes in Computer
Science (LNCS) (EI-indexed volume), Springer;

(3) A selection of the ACMC2017 accepted papers will be combined with the
BIC-TA2017 papers to be re-reviewed and published in Communications in Com-
puter and Information Science (CCIS) (EI-indexed volume), Springer;

(4) A selection of the ACMC2017 accepted papers will be re-reviewed and
published in the Springer journal Journal of Membrane Computing (JMC);

(5) More SCI-indexed journals are under discussion.



96 Call for papers ACMC 2017

Important Dates

Submission deadline: Sunday July 23, 2017
Acceptance notification: Wednesday August 23, 2017
Camera-ready version and early registration: Sunday September 3, 2017

Submission

Authors are invited to submit their original research contributions (in-
cluding significant work in progress) on membrane computing, its applica-
tions and related subjects. Papers (of reasonable length) should be for-
matted according to Lecture Notes in Computer Science (LNCS) for-
mat (please refer to http://acmc2013.org/file/LatexTemplate.zip). All
papers should be submitted as PDF files through EasyChair confer-
ence system website. The submission Web page for ACMC 2017 is
https://easychair.org/conferences/?conf=acmc2017.

If there is any difficulty or problem, please do not hesitate to contact the
organizer by email: gexiangzhang@gmail.com.

Host institutions

Xihua University, Chengdu, China
Southwest Jiaotong University, Chengdu, China

Sponsors

International Membrane Computing Society (IMCS)

Xihua University, Chengdu, China

Committees

Steering Committee:
Henry Adorna (Quezon City, Philippines)
Artiom Alhazov (Chisinau, Moldova)



Call for papers ACMC 2017 97

Bogdan Aman (Iasi, Romania)
Matteo Cavaliere (Edinburgh, Scotland)
Erzsébet Csuhaj-Varjú (Budapest, Hungary)
Giuditta Franco (Verona, Italy)
Rudolf Freund (Wien, Austria)
Marian Gheorghe (Bradford, UK) - Honorary member
Thomas Hinze (Cottbus, Germany)
Florentin Ipate (Bucharest, Romania)
Shankara N. Krishna (Bombay, India)
Alberto Leporati (Milan, Italy)
Taishin Y. Nishida (Toyama, Japan)
Linqiang Pan (Wuhan, China) – Co-Chair
Gheorghe Pǎun (Bucharest, Romania) - Honorary member
Mario J. Pérez-Jiménez (Sevilla, Spain)
Agust́ın Riscos-Núñez (Sevilla, Spain)
José M. Sempere (Valencia, Spain)
Petr Sośık (Opava, Czech Republic)
Kumbakonam Govindarajan Subramanian (Chennan, India)
György Vaszil (Debrecen, Hungary)
Sergey Verlan (Paris, France)
Claudio Zandron (Milan, Italy) – Co-Chair
Gexiang Zhang (Chengdu, China)

Program Committee:
Henry Adorna (Quezon City, Philippines)
Cǎtǎlin Buiu (Bucharest, Romania)
Matteo Cavaliere (Edinburgh, Scotland)
Erzsébet Csuhaj-Varjú (Budapest, Hungary)
Xiaoju Dong (Shanghai, China)
Marian Gheorghe (Bradford, UK)
Ping Guo (Chongqi, China)
Thomas Hinze (Cottbus, Germany)
Florentin Ipate (Bucharest, Romania)
Alberto Leporati (Milan, Italy)
Xiyu Liu (Jinan, China)
Taishin Nishida (Toyama, Japan)
Tseren-Onolt Ishdorj (Mongolia)
Jose M. Sempere (Valencia, Spain)
Ravie Chandren Muniyandi (Bangi, Malaysia)
Radu Nicolescu (Auckland, Australian)
Linqiang Pan (Wuhan, China) – Chair
Gheorghe Pǎun (Bucharest, Romania)
Hong Peng (Chengdu, China)
Mario J. Pérez-Jiménez (Sevilla, Spain)



98 Call for papers ACMC 2017

Agust́ın Riscos-Núñez (Sevilla, Spain)
Tao Song (Qingdao, China)
Kumbakonam Govindarajan Subramanian (Chennan, India)
D.G. Thomas (Chennai, India)
Sergey Verlan (Paris, France)
Jun Wang (Chengdu, China)
Jianhua Xiao (Tianjing, China)
Hsu-Chun Yen (Taiwai, China)
Claudio Zandron (Milan, Italy)
Xiangxiang Zeng (Xiamen University)
Gexiang Zhang (Chengdu, China) – Co-Chair
Xingyi Zhang (Anhui, China)
Xue Zhang (Boston, USA)
Xuncai Zhang (Zhengzhou, China)

Organizing Committee:
Qingyou Liu (Xihua University, China) – General Chair
Gexiang Zhang (Xihua University, China, gexiangzhang@gmail.com) – Chair
Jun Wang (Xihua University, China) – Co-Chair
Wei Yang (Xihua University, China)
Zhongfan Xiang (Xihua University, China)
Xiantai Gou (Southwest Jiaotong University, China)
Haina Rong (Southwest Jiaotong University, China)
Zhi’ang Wan (Xihua University, China)
Qiang Yang (Xihua University, China)
Tao Ren (Xihua University, China)
Yujia Li (Xihua University, China)
Yu Wang (Xihua University, China)
Xiaoxiao Song (Xihua University, China)
Youxing Zeng (Xihua University, China)
Xucai Zeng (Xihua University, China)

Contact

Conference Secretaries
Qiang Yang, Youxing Zeng, Xucai Zeng (Xihua University, China)
No. 999, Jinzhou Road, Jinniu District, Chengdu, China
E-mail: qiangychd@126.com (English), zengyouxinxhu@163.com (Chinese),

1084948226@qq.com (Chinese)



15th International Conference on Automata and
Formal Languages

Debrecen, Hungary

September 4-6, 2017

http://www.inf.unideb.hu/afl2017

Important dates:

Paper submission deadline: May 15, 2017.
Author notification: July 1, 2017.
Camera-ready deadline: July 15, 2017
Conference: September 4-6, 2017.

Scope, location, format

The AFL series, initiated by the late Professor István Peák in 1980, has a long tra-
dition. The AFL conferences cover all aspects of automata and formal languages,
including theory and applications. In 2017, the conference is organized by the Fac-
ulty of Informatics of the University of Debrecen and the Faculty of Informatics
of the Eötvös Loránd University of Budapest, Hungary.

Topics of interest include (but are not limited to):

• Grammars, acceptors and transducers for strings, trees, graphs, arrays, etc.,
• algebraic theories for automata and languages,
• combinatorial properties of words and languages,
• formal power series,
• decision problems,
• efficient algorithms for automata and languages.
• Relations to

– complexity theory and logic,
– picture description and analysis,
– quantum computing,
– cryptography,



100 Call for Papers - AFL 2017

– concurrency.
• Applications of automata and language theory in

– biology,
– natural language processing,
– and other fields.

The scientific program will consist of invited lectures and contributed presen-
tations selected by the international Program Committee.

Invited speakers:

• Paola Bonizzoni (Università di Milano-Bicocca, Milan, Italy)
• Henning Bordihn (University of Potsdam, Germany)
• Szilárd Zsolt Fazekas (Akita University, Japan)
• José M. Sempere (Technical University of Valencia, Spain)
• Akihiro Yamamura (Akita University, Japan)

Program Committee:

Francine Blanchet-Sadri (Greensboro)
Victor Bovdi (Al Ain)
Erzsébet Csuhaj-Varjú (Budapest, co-chair)
Jürgen Dassow (Magdeburg)
Pál Dömösi (Debrecen, co-chair)
Henning Fernau (Trier)
Zoltán Fülüp (Szeged)
Viliam Geffert (Kosice)
Marian Gheorghe (Bradford)
Oscar H. Ibarra (Santa Barbara, CA)
Szabolcs Iván (Szeged)
Galina Jirasková (Kosice)
Juhani Karhumäki (Turku)
Alica Kelemenová (Opava)
Miklós Krész (Szeged)
Martin Kutrib (Giessen)
György Maróti (Veszprm)
Alexander Meduna (Brno)
Victor Mitrana (Bucharest, Madrid)
Andreas Maletti (Stuttgart)
Benedek Nagy (Famagusta)
Chrystopher Nehaniv (Hertfordshire)
Friedrich Otto (Kassel)
Gheorghe Păun (Bucharest)
Giovanni Pighizzini (Milano)
Agust́ın Riscos-Núñez (Sevilla)



Call for Papers - AFL 2017 101

Jeffrey Shallit (Waterloo, Canada)
Petr Sośık (Opava)
Bianca Truthe (Giessen)
György Vaszil (Debrecen, co-chair)
Laurent Vuillon (Chambéry)
Claudio Zandron (Milano)

Proceedings, special issue

The proceedings will be published in the EPTCS series (Electronic Proceedings in
Theoretical Computer Science, http://about.eptcs.org/).

A special issue of the International Journal of Foundations of Computer Sci-
ence containing expanded versions of selected papers will be published after the
conference.

Submissions:

Submissions to AFL2017 must not exceed 15 pages (in EPTCS style and including
bibliography). If the authors believe that more details are essential to substantiate
the main claims, they may include a clearly marked appendix that will be read at
the discretion of the program committee. Simultaneous submission of papers to any
other conference with published proceedings or submitting previously published
papers is not allowed. Only electronic submissions in PDF format are accepted.

Information about the submission procedure is available on the conference web
page (http://www.inf.unideb.hu/afl2017).

Organizing Committee:

Géza Horváth (Debrecen, co-chair)
Ernoné Kása (Debrecen)
Gábor Kolonits (Budapest)
Katalin Anna Lázár (Budapest)
György Vaszil (Debrecen, co-chair)
Ildikó Vecsei (Debrecen)

Contact:

afl2017@inf.unideb.hu

csuhaj@inf.elte.hu (Erzsébet Csuhaj-Varjú)
domosi@unideb.hu (Pál Dömösi)
vaszil.gyorgy@inf.unideb.hu (György Vaszil)





Reports on MC Conferences/Meetings

Report about 15th BWMC

The 15th Brainstorming Week on Membrane Computing (BWMC) was held in
Sevilla, from January 31 to February 3, 2017, hosted by the Research Group on
Natural Computing (RGNC) from the Department of Computer Science and Ar-
tificial Intelligence of Universidad de Sevilla.

In the style of previous editions in this series, the organization of the meet-
ing was focused on the cooperation among the participants. The program included
sessions for not-so-formal talks, where participants were supposed to present ideas,
open problems and research topics in a “provocative” way, in order to trigger inter-
actions. On the other hand, joint-work sessions were scheduled in the afternoons,
so that the participants have collaborated in a friendly atmosphere. The program
was available at www.gcn.us.es/15bwmc program

After each BWMC, one or two special issues of various international journals
were published. Here is their list:

• BWMC 2003: Natural Computing – volume 2, number 3, 2003, and New Gen-
eration Computing – volume 22, number 4, 2004;

• BWMC 2004: Journal of Universal Computer Science – volume 10, number 5,
2004, and Soft Computing – volume 9, number 5, 2005;

• BWMC 2005: International Journal of Foundations of Computer Science –
volume 17, number 1, 2006);

• BWMC 2006: Theoretical Computer Science – volume 372, numbers 2-3, 2007;
• BWMC 2007: International Journal of Unconventional Computing – volume 5,

number 5, 2009;
• BWMC 2008: Fundamenta Informaticae – volume 87, number 1, 2008;
• BWMC 2009: International Journal of Computers, Control and Communica-

tion – volume 4, number 3, 2009;
• BWMC 2010: Romanian Journal of Information Science and Technology –

volume 13, number 2, 2010;
• BWMC 2011: International Journal of Natural Computing Research – volume

2, numbers 2-3, 2011;



104 Report about 15th BWMC

• BWMC 2012: International Journal of Computer Mathematics – volume 99,
number 4, 2013;

• BWMC 2013: Romanian Journal of Information Science and Technology, vol.
17, nr. 1, 2014;

• BWMC 2014: Fundamenta Informaticae, volume 134, numbers 1-2, 2014;
• BWMC 2015: Natural Computing – volume 15, issue 4, 2016 (some papers from

ACMC 2015 were also selected for this special issue);
• BWMC 2016: Theoretical Computer Science – to appear.

***
The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. José Antonio Andreu Guzmán, Universidad de Sevilla (Spain)
andreuguzman36@gmail.com

2. Lucie Ciencialová, Silesian University (Opava, Czech Republic)
ciecilka@gmail.com

3. Rudolf Freund, Technological University of Vienna (Austria)
rudifreund@gmx.at

4. Carmen Graciani, Universidad de Sevilla (Spain)
cgdiaz@us.es

5. Miguel A. Gutiérrez-Naranjo, Universidad de Sevilla (Spain)
magutier@us.es

6. Sergiu Ivanov, Université Paris-Est Créteil (France)
sivanov@colimite.fr

7. Gábor Kolonits, Eötvös Loránd University (Hungary)
kolonits.gabor@gmail.com

8. Alberto Leporati, University of Milan-Bicocca (Italy)
leporati@disco.unimib.it

9. Francisco J. Maćıas Garćıa, Universidad de Sevilla (Spain)
franmaciassevilla@gmail.com

10. Luca Manzoni, University of Milan-Bicocca (Italy)
luca.manzoni@disco.unimib.it

11. Miguel A. Mart́ınez del Amor, Universidad de Sevilla (Spain)
mdelamor@us.es

12. David Orellana Mart́ın, Universidad de Sevilla (Spain)
dorellana@us.es

13. Mario de J. Pérez-Jiménez, Universidad de Sevilla (Spain) and Academia Eu-
ropaea
marper@us.es

14. Antonio Enrico Porreca, University of MilanBicocca (Italy)
porreca@disco.unimib.it

15. Agust́ın Riscos-Núñez, Universidad de Sevilla (Spain)
ariscosn@us.es



Report about 15th BWMC 105

16. Daniel Rodŕıguez Chavarŕıa, Universidad de Sevilla (Spain)
danrodcha@gmail.com

17. Álvaro Romero-Jiménez, Universidad de Sevilla (Spain)
romero.alvaro@us.es

18. Eduardo Sánchez-Karhunen, Universidad de Sevilla (Spain)
sanchek@gmail.com

19. Jose Maŕıa Sempere Luna, Politechnical University of Valencia (Spain)
jsempere@dsic.upv.es

20. Luis Valencia Cabrera, Universidad de Sevilla (Spain)
lvalencia@us.es

21. Gyorgy Vaszil, University of Debrecen (Hungary)
vaszil.gyorgy@inf.unideb.hu

22. Lian Ye, Chongqing University (China)
ylredleaf@cqu.edu.cn

The meeting was partially supported by Universidad de Sevilla, more precisely
by Department of Computer Science and Artificial Intelligence and VI Plan Propio,
Vicerrectorado de Investigación de la Universidad de Sevilla.

Research Group on Natural Computing
Universidad de Sevilla

(March 2017)





A Summary of the Second China Workshop on
Membrane Computing (CWMC 2017)

Gexiang Zhang1,2, Qiang Yang1, Linqiang Pan3

1 Robotics Research Center, Key Laboratory of Fluid and Power Machinery of
Ministry of Education, Xihua University, Chengdu, 610039, China

2 School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031,
China

3 School of Automation, Huazhong University of Science and Technology, Wuhan
430074, China

The Second China Workshop on Membrane Computing (CWMC 2017) was suc-
cessfully held at Xihua University, Chengdu, China, from 6-9 April 2017, with the
full support of Xihua University. The aim of this workshop is to provide a friendly,
flexible, and collaborative platform to Chinese researchers in the area of mem-
brane computing and related topics. Hopefully, this workshop has strengthened
the collaborations among the participants and has inspired some new ideas. More
than 60 participants, including professors, lecturers, Ph.D. students and master
students from about 17 universities, attended the conference. The invited speaker,
professor Linqiang Pan, presented his group’s work. More than 20 researchers pre-
sented their recent results and open problems on both theoretical and application
aspects of membrane computing.

A feature of CWMC 2017 is that a French researcher, professor Sergey Verlan,
joined this workshop, and an impressive session on how to prepare and write a
professional paper at the level of international journal standard was organized.

Invited Talk 1 – Biocomputing and Its Applications

Linqiang Pan, Professor
Huazhong University of Science and Technology, Wuhan, China
E-mail: lqpan@mail.hust.edu.cn

Professor Pan introduced his research group from the aspects of backgrounds,
research topics, work done in the recent years, achievements, and future researches.

Professor Pan’s group focuses on bio-inspired computing and related nanotech-
nology, such as membrane computing and DNA nanotechnology.

The research backgrounds mainly include the following points:

• The semiconductor industry will soon abandon its pursuit of Moore’s Law.



108 G. Zhang, Q. Yang and L. Pan

• The development of biotechnology and nanotechnology gives technical support
to information processing based on biological materials.

• Biocomputing provides a platform for non-deterministic computation.
• The leading scientists initiated the ideas on biocomputing and push its devel-

opment.

The research work on experiments includes:

• Information coding units were developed.
• Multiple input logic gates were developed.
• Biocomputing units were cascaded.
• DNA nanotubes with large diameter were developed.

The research work on theory includes:

• Time-free computing models were developed.
• Computing models with small computing resources were constructed.

The research work on simulation software includes:

• The simulation software P-Lingua has been used to simulate several biocom-
puting models.

The research achievements include:

• The research team has published 76 SCI-indexed papers in the past five years,
where 16 papers were published in IEEE Trans., 11 papers in Theoretical Com-
puter Science, and one paper in PNAS.

• The research team has been involved in several research projects, including
a key project of National Natural Science Foundation of China, a key inter-
national joint research program, 15 general programs from National Natural
Science Foundation of China, and 4 research programs for young researchers
from National Natural Science Foundation of China.

• The research team was awarded with Natural Science Award (first class) by
Ministry of Education of China and Natural Science Award (first class) by
Hubei province.

In the future, the group will focus on the following research topics:

• Computing models that are close to the biological implementation will be de-
veloped.

• Biological implementation of evolutionary algorithms such as simulated anneal-
ing algorithms and genetic algorithms will be investigated.

• The application of biocomputing will be considered such as modeling biological
systems and using biocomputing models as a cell doctor.

Open Problems 1 – Open Problems on the Complexity of Tissue P
Systems

Linqiang Pan, Professor



A Summary of CWMC 2017 109

Huazhong University of Science and Technology, Wuhan, China
E-mail: lqpan@mail.hust.edu.cn

Inspired by the biological phenomena, cell division or cell separation is intro-
duced into tissue P systems in order to obtain exponential workspace in polynomial
time. It has been shown that tissue P systems with cell division or cell separation
can solve NP-complete problems in a polynomial time, and that the known upper
bound to the complexity class that confluent tissue P systems with cell division
or cell separation characterize is PSPACE.

Some open problems about cell- or tissue-like P systems with cell division or
cell separation remain to be explored.

• Can cell-like P systems with symport/antiport rules and membrane division
characterize PSPACE?

• Can PSPACE be reached by tissue P systems with division or separation rules
if the systems are allowed to be non-confluent?

• Can confluence and determinism in other variants of P systems, in particular,
P systems with active membranes, characterize the same complexity classes?

• Is there a resource bound that identifies distinct complexity classes for tissue
P systems with cell division and cell separation?

• Minimize the length of communication rules. It is known that a maximum
length of 2 across all communication rules in tissue P systems with cell division
suffices for solving NP-complete problems in polynomial time; furthermore,
a length of 3 across all communication rules in tissue P systems with cell
separation suffices for solving NP-complete problems (assuming that P 6= NP).
It is unknown whether these values are enough to solve P#P problems.

Open Problems 2 – Open Problems about Spiking Neural P Systems
with Polarizations

Tingfang Wu, Ph.D. student
Huazhong University of Science and Technology, China
tfwu@hust.edu.cn

In spiking neural (SN, for short) P systems, the application of a rule is con-
trolled by checking the number of spikes in the neuron against a regular expression
associated with the rule. However, it is an NP-complete problem to decide whether
a natural number is in the length set of the language associated with a regular
expression. Therefore, it is a rather natural idea to avoid using regular expressions
and consider easy ways to determine the applicability of rules. A new mechanism
for controlling the applicability of rules by using electrical charges (i.e., positive,
neutral, and negative charges) associated with neurons is introduced. The result-
ing systems, called SN P systems with polarizations (in short, PSN P systems),
are proved to be Turing universal.

Some research topics about PSN P systems remain to be explored:

• A universal PSN P system with 164 neurons was constructed. By using the
extended rules and adding the feature of delay, the improvement about the



110 G. Zhang, Q. Yang and L. Pan

number of neurons is obtained. It is meaningful and challenging to significantly
decrease the number of neurons in the universal PSN P system.

• Besides the synchronized (sequential in each neuron) mode considered in
PSN P systems, it deserves to consider PSN P systems working in the non-
synchronized mode, the exhaustive mode, or the sequential mode.

• In the proof of the universality of PSN P systems, three charges are used.
Is it possible to decrease the number of charges, but without the loss of the
computation power?

Open Problems 3 – Open Problems about Tissue-like P Systems with
Promoters

Bosheng Song, Postdoctor
Huazhong University of Science and Technology, China
Email: boshengsong@hust.edu.cn

Tissue P systems with promoters (TP P systems, for short) are distributed
parallel computing models, and several theoretical results have already been ob-
tained. It is proved that TP P systems using only antiport rules of length 2 or
using only symport rules of length 1 are able to compute only finite sets of non-
negative integers. Moreover, TP P systems with one cell and using antiport rules
of length 2 and symport rules of length 1 or only using symport rules of length 2
are Turing universal. When cell division is considered in TP P systems (TPD P
systems, for short), we present a uniform solution to the SAT problem by TPD P
systems using only antiport rules of length 2.

The open problems are as follows:

• The computation power of TP P systems working in the maximally parallel
way has been investigated. What is the computation power of TP P systems
by using rules in the flat maximally parallel way?

• Small universal P systems have been studied widely. It remains open how to
construct small universal tissue P systems with promoters.

• The length of symport/antiport rules is an essential parameter for the descrip-
tional complexity of P systems. It is interesting to investigate tissue P systems
with promoters and cell separation from a computational complexity perspec-
tive.

Open Problems 4 – Open Problems on Numerical P Systems with
Production Thresholds

Zhiqiang Zhang, Postdoctor
Huazhong University of Science and Technology, China
Email: zhiqiangzhang@hust.edu.cn

In numerical P systems with production thresholds, each program is associ-
ated with a constant (called threshold). The production function value can be
distributed only when it is not smaller (the lower-threshold case) or not greater
(the upper-threshold case) than its associated threshold.



A Summary of CWMC 2017 111

• What is the computation power of numerical P systems with thresholds working
in the one-parallel mode?

• It remains open whether or not the number of thresholds used in our proofs
can be decremented.

• What are other ways to use the thresholds, such as taking the same threshold
for the whole system or for the same membrane?

• What is the computation power of numerical P systems with thresholds when
mixing the ways to use the thresholds in the lower and upper ways; or consid-
ering the threshold in a strict way?

Presentation 1 – Power network fault location with distributed gen-
eration

This presentation discussed the use of SN P systems to realize power network
fault location with distributed generation. This work focuses on the transformation
from state quantities to electrical quantities.

Presentation 2 – The application of energy control in multi-
microgrids system with distributed membrane systems

Based on a distributed membrane system, a novel feasible idea might be pro-
posed to deal with the energy control in a multi-microgrids system.

Presentation 3 – The application of membrane computing in opera-
tion and control strategies of micro power grid

The operation and control model of micro power grid is constructed by SN P
systems.

Presentation 4 – Automatic design of SN P systems

An evolutionary way is introduced to implement automatic design of an SN
P system. This is the first attempt to consider this topic. This study starts from
the simplified formulation of automatic design of an SN P system by considering
a redundant evolution rule set.

Presentation 5 – Selection of single-phase-to-ground fault lines using
SN P systems

An information fusion method is developed by using a fuzzy reasoning SN P
system to decide the single-phase-to-ground fault line in a power system. The
fault features are first extracted from the zero sequence component. The line fault
measure was introduced based on the fault features. Rough set theory is used to
fuse the features. Fuzzy reasoning SN P systems are used to construct the classifier.

Presentation 6 – The application of membrane controller in Quadro-
tors

A parallel membrane controller is being considered to implement on FPGA.

Presentation 7 – Implementation of KNN categorization algorithm
based on membrane computing



112 G. Zhang, Q. Yang and L. Pan

An improved KNN categorization algorithm is proposed based on P systems.

Presentation 8 – Membrane clustering

Based on the spectral graph theory and membrane computing theory, a method
for clustering dataset is proposed.

Presentation 9 – Some ideas about hardware implementation of
membrane systems

This research focuses on the representation of membrane configuration, the
implementation of maximally parallelism computing and the execution of non-
deterministic selection of evolution rules on hardware circuits. This is a very chal-
lenging topic.

Presentation 10 – Mathematical model of membrane algorithms

This work focuses on the design of membrane algorithms by combing a P
system and genetic algorithms or ant colony optimization. Traffic network layout
optimization problems are considered in the experiments.

The group photo of CWMC 2017

Fig. 1. Group photo from China Workshop on Membrane Computing



Miscellanea

About the Limits of (Bio)Informatics
With Some Illustrations from DNA and
Membrane Computing⋆

Gheorghe Păun

Romanian Academy, Bucharest, Romania
gpaun@us.es, curteadelaarges@gmail.com

Summary. This is an informal, mainly autobiographical discussion about a series of
limits-frontiers-borderlines appearing in computer science, often addressed in natural
computing, in particular, in bio-computing. One only mentions such limits dealing with
the competence and the performance of computing models and of existing computers, as
well as other ”impossibility theorems” known in the literature.

Keywords: Turing computability, Turing-Church thesis, Gandy theorem, P ver-
sus NP, DNA computing, membrane computing, Conrad theorems, no free lunch
theorems

1 Introduction

The topic announced in the title above is a subject for a book, here I will only
mention a few ideas and references. The semantics itself of the notions limit, fron-
tier, borderline should be clarified, but I will rely on the intuitive meaning of
them, as well as on the examples considered below. An explicit and systematic
discussion about limits is not very usual in computer science, although the lim-
its are present everywhere and most researches, in particular, the unconventional
models of computation, are directly motivated by such limits met by the existing
models and computers. Here I only mention some of these limits, together with
attempts to overpass them, promises, achievements and criticisms, with new lim-
its appearing in the new frameworks - with a few illustrations from the two areas

⋆ Informal presentation dedicated to acad. Mircea Maliţa, on the occasion of his 90th
birthday, April 2017.



114 Gh. Păun

of bio-inspired computation I have worked in the last (more than) two decades,
DNA and membrane computing. Three classes of limits are considered: concerning
the computing power (competence), the computing efficiency (performance), and
impossibility theorems (like Conrad theorems). Of course, there are many other
similar limits/frontiers (just two examples: the borderline between decidable and
undecidable, in automata and language theory, the borderline between universal-
ity and non-universality in membrane computing), but I will not touch them here.
The discussion is informal, but the references provided allow the reader to start
exploring deeper the domain.

2 The Turing ”Barrier”

The general framework of what follows is that of Turing computability, based
on the notion of what is now called a Turing machine, the answer Alan Turing
proposed in his 1936 PhD thesis (Systems of Logic Based on Ordinals, written in
Princeton under the guidance of Alonzo Church) to David Hilbert question (from
1928) concerning ”what is mechanically computable”. Turing abstracted the way
a human being computes until reaching the ”minimalistic” device in the figure
below: a tape infinite to the right, with a read-write head able to read a cell of
the tape, under the control of a state from a finite set of states, to change the
contents of the cell and the state and to move to the left or to the right. Although
so simple at the first sight, this device was proved to be able to simulate all
computing models proposed before (by Post, Church, Kleene, Gödel) and became
the standard definition of the notion of an algorithm.

s0

6 -�

a1 a2 a3 a4 a5 a6 B B

In his thesis, Turing not only introduced his machine, but he has also provided
the first example of a problem which cannot be solved by it (namely, the halting
problem: given an arbitrary Turing machine, is there another Turing machine which
can say whether the arbitrary machine halts when starting with an arbitrarily given
input on its tape?) and, furthermore, proved the existence of a universal Turing
machine, a fixed one able to simulate any particular Turing machine as soon as
a code of the particular one is placed on the tape of the universal machine (this



About the Limits of (Bio)Informatics 115

suggested to John von Neumann the architecture of the programmable computers
he has constructed at the beginning of 1940). See also (Turing, 1936).

The next figure suggests a ”map” of computability, in the form of the Chomsky
hierarchy, with the class of Turing computable functions (languages, numbers, de-
cidable problems) denoted by RE (from ”recursively enumerable”). The smallest
class, REG, denotes the family of regular languages, corresponding to the com-
puting power of finite automata, the most restricted class of Turing machines.

These are the two ”poles of computability”: according to the Turing-Church
Thesis, everything that is algorithmically computable can be computed by a Tur-
ing machine, that is, RE is the largest family of computable functions/numbers/
languages.

Actually, the thesis has several versions, and there are several papers discussing
it. I mention here only (Doyle, 2002).

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%
�
�

�
�

RE

REC

CS

CF

LIN

REG

Can we pass beyond the ”Turing barrier”? This possibility was named hyper-
computing, and there are many proposals, more than one dozen, of how we can
”compute the uncomputable”. Here are only three references: (Ord, 2002), (Ord,
2006), (Syropoulos, 2008).

Interesting enough, Turing itself proposed a way to compute more than his ma-
chine, by considering Turing machines with oracles. In the meantime, many other
ideas were examined: coupled Turing machines, networks of Turing machines, ora-



116 Gh. Păun

cles via (quantum) randomness, accelerated machines/processes, infinite time Tur-
ing machines, neural networks with real numbers as weights, Turing machines with
an infinite input, and so on and so forth. The book (Syropoulos, 2008) provides
details and references.

However, all these are considered by Martin Davis tricks - something uncom-
putable is introduced in the machine and then the machine is proved, e.g., to solve
the halting problem for Turing machines, which already Turing proved that this
is a unsolvable problem: (Davis, 2004), (Davis, 2006).

As expected, these criticisms raised counterarguments from the people involved
in hypercomputing, see, e.g., (Sundar and Bringsjord, 2011).

Anyway, biocomputing brings new ideas and motivations in this area. One of
the ideas is suggested by the strategy used in 1994 by Leonard Adleman, in his
history making experiment of solving the Hamiltonian Path Problem (known to be
NP-complete, hence intractable for the Turing machine) in linear time by using
DNA molecules, (Adleman, 1994).

This was a great achievement, a demo that DNA can be used as a support for
computing (Hartmanis, 1994), the start of DNA computing as a branch of natural
computing. Actually, at the theoretical level, DNA computing started in 1987,
when T. Head introduced his splicing operation, as a language theory model of the
recombinant behavior of DNA molecules, (Head, 1987).

In the Adleman experiment one starts by producing all possible paths in a
graph (in the form of DNA molecules), then one filters out molecules which do
not encode Hamiltonian paths. Otherwise stated, in terms of languages, one starts
from a given set of strings and one removes strings until reaching the solution,
that is, one removes the complement of the solution. This is the idea of computing
by carving, proposed in (Păun, 1997).

In this way, we can compute languages outside RE, because the family RE is
not closed under complement.

Actually, a ”reasonable” way to ”carve” is proposed in the mentioned paper:
one starts from a regular language (hence easy to compute) and we repeatedly
remove a sequence of regular languages which are linked to each other in the
following way: the first language is given, the next one is obtained from the first
one by means of a sequential translation (the simplest kind of transducers), and
so on.

Formulated as a theorem, the conclusion is that a language is computable in this
way (by carving) if and only if it can be written as the complement of a recursively
enumerable language.

Also membrane computing can suggest hypercomputing ideas.
I only mention that membrane computing is a branch of natural computing

initiated in (Păun, 1998), with a rapid development, (Păun, 2002). It abstracts
computing models (usually called P systems), from the architecture and the func-
tioning of the living cells. A comprehensive presentation of the domain can be
found in (Păun, Rozenberg, and Salomaa, 2010), with news available at the do-
main webpage http://ppage.psystems.eu.



About the Limits of (Bio)Informatics 117

The cell membranes have two main roles in the cells: to enclose ”protected
reactors”, with a specific biochemistry, and to facilitate the collision of reactants.

This means that smaller the space, faster the reactions. In the style of accel-
erated machines (which perform the first step of a computation in one time unit,
the second one in half of a time unit, and so on, decreasing by two the external
time needed to perform each next step), we can assume that the reactions in a
membrane inside another membrane are twice faster than in the upper membrane.
Generalizing this assumption, we get a way to solve the halting problem: (Calude
and Păun, 2003).

In both cases (carving and accelerating by creating membranes inside mem-
branes) we pass beyond the family RE, the biology motivates/supports the ideas,
nothing infinite or uncomputable was introduced in the model itself, but still Mar-
tin Davis is right: in both cases the process should be infinite (the carving and the
hierarchy of constructed membranes). If we stop computing after a finite number
of steps, then we remain inside RE.

I end this section by mentioning an important result concerning the Turing
barrier, namely, Gandy’s Theorem, from (Gandy, 1980).

Robin Gandy was a student and collaborator of Turing who tried to get an
abstract description of a ”computable device”. He coined four principles (The
finiteness of description, The principle of limitation of hierarchy, The principle of
unique reassembly, The principle of local causality), formulated in algebraic terms,
and proved that whatever can be calculated by a device satisfying principles I – IV
is Turing computable.

These principles are general enough to support Martin Davis opinion about
hypercomputability, but they also suggest ways to go beyond Turing; for instance,
the last principle suggests that a machine able of transmitting instantaneously
signals at an arbitrary distance (on its tape) could be able of hypercomputation.

3 Feasible versus Unfeasible (or P versus NP)

The competence (computing power) is important, in particular, the equivalence
with Turing machines is important practically (this brings ”for free” the univer-
sality, hence the programmability of the computing device), but in applications it
is still more important to know the resources (space and, mainly, time) needed in
order to compute something. This is the motivation behind the powerful theory
of computational complexity developed in computer science, a framework where
problems which can be solved in a time polynomial with respect to the size of the
input are considered tractable and the problems requesting an exponential time
(for the known algorithms, but solvable in polynomial time in a non-deterministic
way) are considered intractable. The two classes of complexity are denoted by P
and NP, respectively. The inclusion of P in NP is obvious, the question whether
or not P = NP is probably the most important open problem of computer sci-
ence. This is also confirmed by the fact that this problem is the first one in the



118 Gh. Păun

list of seven ”Millennium Problems” compiled by the Clay Mathematics Institute
(www.claymath.org) in 2000, which provides a prize of one million dollars for a
solution.

Such a solution can be of various forms: strict inclusion, equality proved in
a nonconstructive manner, constructive equality with huge coefficients and ex-
ponents of polynomials, constructive equality with reasonable coefficients - the
consequences for practical computing increases in this order.

However, the expectation is that N is not equal to NP and then, with this
assumption in mind, one looks for ways to pass over the ”feasibility barrier”;
imitating the term hypercomputing, the term fypercomputing was proposed in
(Păun, 2012) for such an achievement.

As mentioned in the previous section, DNA computing started with such a
promise, illustrated by Adleman’s experiment. The strategy is based on trading
space for time, making use of the fact that DNA molecules are very efficient data
supports, of a nanometric size. However, exponentially many DNA molecules, as
in Adleman’s experiment, do not really help, as soon observed, (Hartmanis, 1995).

This is the case in today DNA computing: many successful computing exper-
iments were reported, but all of them are dealing with toy problems. Scaling-up
to the level of problems of a practical size looks unfeasible (this could request
huge amounts of DNA). Further details (as well as many theoretical developments,
based, e.g., on the Head splicing operation) can be found in the monograph (Păun,
Rozenberg, and Salomaa, 1998).

Many theoretical ways to solve NP-complete problems in a polynomial time,
hence to obtain fypercomputations, are also provided by membrane computing,
again trading space by time. In this framework, the exponential space is obtained
by means of biologically inspired operations, such as membrane division, membrane
creation, string replication. Another interesting idea is to start with arbitrarily
large pre-computed resources, without containing ”too much” information (not to
be possible to hide the solution of the problem there and then to claim that it
is obtained through a simulated computation), to introduce the problem in this
given pre-computed space, then to activate as much space as necessary, and solve
the problem (this is the way the brain and the liver are functioning).

Like in the case of DNA computing, also in this case the Hartmanis criticism is
valid, as we need an exponential working space (created during the computation,
through bio-like operations).

Interesting enough, the creation of new, exponentially many membranes (or
strings) cannot be avoided. This is stated by the so-called Milano Theorem from
(Zandron, 2001).

From a practical point of view, another strategy is much more useful: looking
not for exact optimal solutions, but for approximate solutions, known to be good
with a specified probability. This is the strategy of a very developed area of natural
computing, namely evolutionary computing. It contains a large number of classes
of algorithms, usually based on a search in the space of solutions, making use of
the brute force of the existing computers, with the search conducted in a way in-



About the Limits of (Bio)Informatics 119

spired from biology. There are many classes of such approaches: genetic algorithms,
immune computing, ant colony algorithms, bee colony algorithms, swarm comput-
ing, water flowing algorithms, cultural algorithms, cuckoo algorithms, strawberry
algorithms, firefly algorithm, etc. etc.

These algorithms have a lot of practical applications, but also this approach has
a drastic limitation, first provided in (Wolpert and Macready, 1997): informally
formulated, the no free lunch theorem says that all approximative algorithms are
equally good (one can also read ”equally bad”), for each of them there are problems
for which the provided solutions are bad.

4 Further Limits

Computer science contains also further limits. A typical one is pointed out by
Conrad Theorems – see references in (Conrad, 1988).

The main theorem says that a computing system cannot at the same time
have high programmability, high computational efficiency, and high evolutionary
adaptability. It is rather possible that further similar ”impossibility theorems” can
be proved (if too many conditions are simultaneously imposed, then no computing
model exists which satisfies all of them).

Such theorems are probably possible also in more general frameworks, for in-
stance, in biological modeling, where the user (the biologist) asks for many features
(understandability, scalability, adequacy to reality, relevance), at the same time
with the computer scientist (easy programmability, efficiency) - and it is possible
that no model exists to fulfil all requests.

Still more general: some classic experts of artificial intelligence, such as R.
Brooks and J. McCarthy, have even estimated that it is possible that the current
mathematics itself is not sufficiently developed for modeling such subtle notions
like life and intelligence, and a new stage of mathematics is necessary for making
significant progresses in this area.

About such limits of mathematics has warned us also acad. Mircea Maliţa,
already in Aurul cenuşiu (The Grey Gold), vol. II, Ed. Dacia, Cluj-Napoca, 1972.
And, the limits of mathematics extend also to (theoretical) computer science.

References

1. L.M. Adleman: Molecular computation of solutions to combinatorial problems. Sci-
ence, 226 (Nov. 1994), 1021–1024.

2. C. Calude and Gh. Păun: Bio-steps beyond Turing, CDMTCS Research Report 226,
Univ. of Auckland (November 2003), and BioSystems, 77 (2004), 175–194.

3. M. Conrad: The price of programmability. In The Universal Turing Machine: A Half-
Century Survey, R. Herken, ed., Kammerer and Unverzagt, Hamburg, 1988, 285–307.

4. M. Davis: The myth of hypercomputation. In Alan Turing: Life and Legacy of a
Great Thinker, C. Teuscher, ed., Springer, 2004, 195–211.



120 Gh. Păun

5. M. Davis: Why there is no such discipline as hypercomputation. Applied Mathematics
and Computation, 178, 1 (2006), 4–7.

6. J. Doyle: What is Church’s Thesis? An outline. Minds and Machines, 12 (2002),
519–520.

7. R. Gandy: Church’s Thesis and principles for mechanisms. In The Kleene Symposium,
J. Barwise, H.J. Keisler, and K. Kunen, eds., North-Holland, 1980, 123–148.

8. J. Hartmanis: About the nature of computer science. Bulletin of the EATCS, 53
(June 1994), 170–190.

9. J. Hartmanis: On the weight of computation. Bulletin of the EATCS, 55 (February
1995), 136–138.

10. T. Head: Formal language theory and DNA: An analysis of the generative capacity of
specific recombinant behaviors. Bulletin of Mathematical Biology, 49 (1987), 737–759.

11. T. Ord: Hypercomputation: Computing More Than the Turing Machine. Honours
Thesis, Dept. of CS, Univ. of Melbourne, September 2002.

12. T. Ord: The many forms of hypercomputation. Applied Mathematics and Computa-
tion, 178 (2006), 143–153.

13. Gh. Păun: (DNA) Computing by carving. Technical Report CTS-97-17, Center for
Theoretical Study at Charles Univ. and the Academy of Sciences of the Czech Re-
public, Prague, 1997, and Soft Computing, 3, 1 (1999), 30–36.

14. Gh. Păun: Computing with membranes. Turku Center for Computer Science-TUCS
Report No 208, 1998 (www.tucs.fi), and Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

15. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
16. Gh. Păun: Towards ”fypercomputations” (in membrane computing). In Languages

Alive. Essays Dedicated to Jrgen Dassow on the Occasion of His 65 Birthday, H.
Bordihn, M. Kutrib, and B. Truthe, eds., LNCS 7300, Springer, Berlin, 2012, 207–
221.

17. Gh. Păun, G. Rozenberg, and A. Salomaa: DNA Computing. New Computing
Paradigms. Springer, Berlin, 1998; Springer, Tokyo 1999; Tsinghua Univ. Press, Bei-
jing, 2004; Mir, Moskow, 2005.

18. Gh. Păun, G. Rozenberg, and A. Salomaa, eds.: The Oxford Handbook of Membrane
Computing. Oxford Univ. Press, 2010.

19. N. Sundar G. and S. Bringsjord: The myth of ”The myth of hypercomputation”.
Proc. of Combined P&C2011/HyperNet 11, May 2011, 185–196.

20. A. Syropoulos: Hypercomputation: Computing Beyond the Church-Turing Barrier.
Springer, Berlin, 2008.

21. A.M. Turing: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc., Ser. 2, 42 (1936), 230–265; a correction,
43 (1936), 544-546.

22. D.H. Wolpert and W.G. Macready: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1, 1 (1997), 67–82.

23. C. Zandron: A Model for Molecular Computing: Membrane Systems. PhD Thesis,
University of Milano-Bicocca, Milano, Italy, 2001.



Contents of Previous Volumes

June 2016 Volume

Letter from the President . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

IMCS Matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

– Structure of IMCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

– Constitution of IMCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

– Report from the Treasurer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

News from MC Research Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

– Gexiang Zhang: NICSG: Nature-Inspired Computation and Smart
Grid Lab in China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

– Thomas Hinze: Interlocal Research Group on Molecular
and Membrane Computing at Brandenburg University
of Technology (Cottbus) and Friedrich Schiller University (Jena) . . . . 29

– Research Group of Theoretical Computer at Science Silesian
University in Opava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

– Research Group on Natural Computing – Universidad de Sevilla . . . . 37

– Vincenzo Manca: The Research Group in Bioinformatics
at the University of Verona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Tutorials, Surveys, Bibliographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

– Marian Gheorghe: A Survey of Membrane Computing Results
Published Between CMC14 and CMC15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

– Zhiqiang Zhang, Tingfang Wu: A Bibliography of Numerical
P Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



122 Contents of Previous Volumes

– Linqiang Pan, Tingfang Wu, Zhiqiang Zhang: A Bibliography
of Spiking Neural P Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Open Problems, Inquiries, Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

– Gheorghe Păun, Tingfang Wu, Zhiqiang Zhang: Open Problems,
Research Topics, Recent Results on Numerical and Spiking Neural
P Systems (The “Curtea de Argeş 2015 Series”) . . . . . . . . . . . . . . . . . . . . . 79

– Artiom Alhazov, Rudolf Freund, Sergiu Ivanov: Spiking Neural
P Systems with Polarizations – Two Polarizations Are Sufficient
for Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Software News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

– Andrei George Florea, Cătălin Buiu: Lulu, an open-source
P colony/P swarm simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Abstracts of PhD Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

– Luis Felipe Maćıas-Ramos: Developing Efficient Simulators
for Cell Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

– Pradeep Isawasan: Variants of Array-Rewriting P Systems
for Generating Picture Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

– Francis George C. Cabarle: Computations in Spiking Neural
P Systems: Simulations and Structural Plasticity . . . . . . . . . . . . . . . . . . . 116

Reports on MC Conferences/Meetings . . . . . . . . . . . . . . . . . . . . . . 119

– Report about 14th BWMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

– H.N. Adorna, F.G.C. Cabarle, N.H.S. Hernandez, R.A.B. Juayong:
A Report about the Membrane Computing Seminar (together
with PCSC2016), March 2016, at Puerto Princesa, Palawan,
Philippines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

– A Summary of 2016 China Workshop on Membrane
Computing (CWMC 2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Miscellanea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Gheorghe Păun: Obituary Solomon Marcus (1925–2016) . . . . . . . . . . . 135



Contents of Previous Volumes 123

December 2016 Volume

Letter from the President . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

IMCS Matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

– Structure of IMCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

– Constitution of IMCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

News from MC Research Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

– The Research Group on Modeling, Simulation and Verification
of Biological Systems at the University of Pisa . . . . . . . . . . . . . . . . . . . . . . 23

– Research Group on Bio-Inspired Computing at Huazhong University
of Science and Technology in China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

– Hong Peng, Jun Wang: RGMCA: Research Group on Membrane
Computing and Applications at Xihua University, Chengdu . . . . . . . . . . 31

– José M. Sempere: The Spanish Thematic Network on Biomolecular
and Biocellular Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

– Formal Methods Laboratory (FML) in Iaşi . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

– Marian Gheorghe: Kernel P Systems Bibliography . . . . . . . . . . . . . . . . . . . 47

– PhD Theses in Membrane Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

– Membrane Computing, 16th International Conference,
CMC 2015, Valencia, Spain, August 17-21, 2015, Revised Selected
Papers, LNCS 9504, Springer-Verlag, Berlin, 2015 . . . . . . . . . . . . . . . . . . . 55

– Ludek Cienciala: Membrane Agents – Book Summary . . . . . . . . . . . . . . . 61

– Andrew Adamatzky, ed.: Advances in Unconventional
Computing. Vol. I: Theory, Vol. 2: Prototypes, Models
and Algorithms. Springer, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Tutorials, Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

– Luis Valencia-Cabrera, David Orellana-Mart́ın, Agust́ın Riscos-Núñez,
Mario J. Pérez-Jiménez: Complexity Perspectives on Minimal
Cooperation in Cell-like Membrane Systems . . . . . . . . . . . . . . . . . . . . . . . . . 69

– Artiom Alhazov, Rudolf Freund, Sergiu Ivanov: Polymorphic
P Systems: A Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

– Daniel Dı́az-Pernil, Miguel A. Gutiérrez-Naranjo, Hong Peng:
Some Notes on Membrane Computing and Image Processing . . . . . . . 103



124 Contents of Previous Volumes

– Lucie Ciencialová, Erzsébet Csuhaj-Varjú, Luděk Cienciala,
Petr Sośık: P Colonies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Technical Notes, Open Problems, Inquiries, Answers . . . . . . . . 157

– Vincenzo Manca: Multiset Generalization of Balanced
Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

– Matteo Cavaliere, Alvaro Sanchez: Evolutionary Resilience
of Membrane Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

– Gheorghe Păun, José M. Sempere: Families of Languages
Associated with SN P Systems: Preliminary Ideas,
Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

– Marian Gheorghe: Membrane Systems Analysis . . . . . . . . . . . . . . . . . . . . 165

– Alan Mehlenbacher: P System for Two-Level Economic Exchange
with Investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

– Linqiang Pan, Gheorghe Păun, Gexiang Zhang: SN P Systems
with Communication on Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Abstracts of PhD Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

– Christian Bodenstein: Theoretical Analysis of Cyclic Processes
in Biology in the Context of Ca2+ Oscillations, Circadian
Rhythms and Synthetic Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

– Zhiqiang Zhang: Research on the Computational Power
of Numerical P Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

– Lea Weber: Implementation of an Artificial Evolution
for Optimal Placement of Processing Units on a Freely
Configurable Two-dimensional Grid Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

– Sergiu Ivanov: On the Power and Universality
of Biologically-Inspired Models of Computation . . . . . . . . . . . . . . . . . . . . . 207

– Ciprian Dragomir: Formal Verification of P Systems . . . . . . . . . . . . . . . 210

– Tao Wang: Spiking Neural P Systems and Their Applications
in Fault Diagnosis of Electric Power Systems . . . . . . . . . . . . . . . . . . . . . . 212

Calls for Participation to MC Conferences/Meetings . . . . . . . . 217

– Call for Participation Fifteenth Brainstorming Week
on Membrane Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

– CMC 18, 24-28 July 2017, Bradford, UK. First Call for Papers . . . . . 219

– Call for Papers WMC at UCNC 2017, Fayetteville, USA . . . . . . . . . . . 223

Reports on MC Conferences/Meetings . . . . . . . . . . . . . . . . . . . . . . 225



Contents of Previous Volumes 125

– Alberto Leporati, Claudio Zandron: Report on CMC17
The Seventeenth Conference on Membrane Computing . . . . . . . . . . . . . 225

– Linqiang Pan, Gexiang Zhang, Ravie Chandren Muniyandi,
Bosheng Song: A Summary of The 5th Asian Conference
on Membrane Computing (ACMC 2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

– Marian Gheorghe, Savas Konur: Workshop on Membrane
Computing at the International Conference on Unconventional
Computation and Natural Computation, Manchester,
UK, July 11-15 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

– Svetlana Cojocaru, Alexandru Colesnicov, Ludmila Malahov:
Workshop on Unconventional Computing Systems in commemoration
of Yurii Rogozhin Chişinău, Moldova, November 11, 2016 . . . . . . . . . . 237

Miscellanea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Gheorghe Păun: Some Wonders of a Bio-Computer-Scientist . . . . . . . 241




	001frontpages
	003foreword
	005CONTENTS
	007Letter
	009structureIMCS
	015constitution
	021prizes2016
	023New journal
	025kP-systems
	041Milanospace
	055surveyGPU
	069SNP
	075membraneComputingForRoboticSwarms
	Books Announcements[12mm] Membrane Computing for Distributed Control of Robotic Swarms: Emerging Research and Opportunities
	Andrei George Florea, Catalin Buiu

	077Real-lifeAppl-MC
	081NPTZZhang
	087WuhanNote
	089CfP_CMC18_v2
	093Call_for_papers_ACMC2017-V4
	099callAFL
	103repBWMC2017
	107CWMC
	113Limite
	121OldContents

