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A B S T R A C T

A mobile robot acting in a human environment should follow social conventions, keeping safety
distances and navigating at moderate speeds, in order to respect people in its surroundings
and avoid obstacles in real-time. The problem is more complex in differential-drive wheeled
robots, with trajectories constrained by nonholonomic and kinematics restrictions. It is an
NP-hard problem widely studied in the literature, combining disciplines such as Psychology,
Mathematics, Computer Science and Engineering. In this work, we propose a novel solution
based on Membrane Computing, Social Force Model and Dynamic Window Approach Algorithm.
The resulting model is able to compute, in logarithmic time, the best motion command for
the robot, given its current state, considering the surrounding people and obstacles. The
model is compatible with other membrane computing models for robotics and suitable for an
implementation on parallel hardware. Finally, a visual simulator was implemented in ROS and
C++ for validation and testing.

. Introduction

The problem of motion planning in robotics can be described in the configuration space of a robot as follows: Given an initial robot
onfiguration state and a goal configuration state, find a sequence of motion commands to move the robot towards the goal state while avoiding
tatic and dynamic obstacles. In general, the motion planning problem is crucial in robotics and other areas such as verification,
omputational biology, and computer animation [1]. In particular, a critical case is given when a wheeled or legged robot is walking
n a human environment populated with people, for example a pedestrian street, an office, a hospital or a marketplace. In this
ituation, the robot must not only avoid obstacles while trying to reach its goal, but also generate socially acceptable trajectories.
n extensive survey on human-aware navigation can be found in [2]. Moreover, it implies several philosophical questions concerning

he challenges of the application of these technologies to real-life scenarios. In the case a robot has to choose irretrievably between
njuring one out of two persons, what should it do? And who would be the one condemned for such an act? [3]. On the other hand,
everal applications for these technologies can be found in the literature [4]. The problem is complex and involves multidisciplinary
ields including Psychology, Mathematics, Computer Science and Engineering. Furthermore, even if the robot’s optimal velocity
ector could be computed for each step of time, there are several physical constraints to be considered, such as acceleration limits
nd nonholonomic restrictions.
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In this paper, we present the first solution based on membrane computing to the motion planning problem in human
nvironments. Membrane computing [5] is a branch of natural computing inspired in the structure and functions of the living cells.
he computational devices in membrane computing are called membrane systems or P systems, and they have been successfully
pplied to a large variety of scientific areas: the modeling of microscopic and macroscopic biological systems [6,7]; and the study
f neural models [8,9] incorporating fuzzy reasoning [10], among others. In particular, a variant of P systems called Enzymatic
umerical P systems (ENPS) has been used to simulate robot controllers [11,12] and to simulate robot navigation algorithms [13,14].

One of the most important features of any robot navigation system is the need to provide real-time solutions to complex situations.
herefore, most of the classical algorithms can only provide approximate solutions given a fixed time of computation. Several authors
ave studied how to accelerate such algorithms by using parallel hardware [15]. On the other hand, an intermediate computing
aradigm can be used. In this sense, the membrane computing paradigm provides an inherently parallel computing framework with
large variety of simulators that can emulate computations over parallel hardware [16,17]. Thus, ENPS can be used to model

olutions to robot navigation problems, and well-studied hardware simulators can apply the solutions to real case studies. The main
dvantage of this approximation is to use the computational power of membrane computing, which is inherently parallel, as well as
idely-studied and robust simulation algorithms for parallel hardware. On the other hand, the main disadvantage is the complication
f adapting such algorithms, requiring expert knowledge of both robotics and membrane computing.

The problem of motion planning can be divided in two sub-problems [18]: the global planning problem, in which only static
bstacles are considered, and the local planning problem, in which the robot must follow a path while avoiding static and dynamic
bstacles. If the dynamic obstacles are given by moving people, then it is a social local planning problem, since the robot should
xecute socially acceptable trajectories. In this paper, we provide a novel ENPS model for social local planning with a computational
omplexity of (𝑙𝑜𝑔(𝑛)) based on the Social Force Model (SFM) [19,20] and the Dynamic Window Approach Algorithm (DWA) [21].
he model is compatible with global planning ENPS models such as [14] and can be simulated in parallel hardware. A software
imulator has been implemented for validation and testing purposes by using the Robot Operating System (ROS)1 and C++. The

simulator introduces in a virtual environment a number of human agents walking, following the SFM and a dual-wheeled non-
holonomic robot, navigating according to the proposed ENPS model. Average velocities and distances to obstacles and other agents
are measured for all the simulated agents to provide some results and discussion.

The rest of this work is structured as follows: Section 2 introduces the necessary preliminaries to understand the paper. Section 3
presents the proposed social local planning algorithm. Section 4 explains the corresponding ENPS model. Section 5 presents the
simulation tool. Section 6 is devoted to analysis and discussion. Finally, Section 7 enumerates some conclusions and future work.

2. Preliminaries

This Section provides the reader with the basic concepts and notations used throughout this paper, from the description of the
problem addressed in this study to the methods involved in the proposed solution.

2.1. Global and local planning

The problem of motion planning in robotics can be partially solved by a software architecture in three levels [18]: global planner,
local planner and PID controller. Firstly, the global planner is the module in charge of solving the motion planning problem without
considering dynamic obstacles (usually surrounding people). The output of the global planner is a trajectory or plan representing
the path from the starting point to the goal area. This process is usually carried out by using a pre-computed map of static obstacles,
i.e., walls, furniture, and other fixed obstacles that have been previously tracked. The computation is done before the robot starts
to move by applying algorithms such as variants of RRT [22,23], and RRT* [24], among others. After global planning has been
performed, the local planner module generates motion commands to follow the trajectory in a safe manner, by considering the
information given by the robot sensors in real time. The Dynamic Window Approach for Obstacle Avoidance Algorithm [21] and
the Pure Pursuit Algorithm [25] are well-known algorithms for local planning. Finally, a PID controller module [26] manages the
power of the motors to fit each motion command and maintain a constant velocity until the next command is processed.

2.2. Differential wheeled robots

Depending on the motion constraints imposed, two types of mobile robots can be distinguished: holonomic and nonholonomic.
On the one hand, holonomic robots are those that can move in any direction in the configuration space. On the other hand,
nonholonomic robots are systems where the velocities (magnitude and/or direction) and other derivatives of the position are
constrained. In this paper, we consider the type of differential wheeled robots in which each wheel is driven independently; in
particular, we focus on two-wheeled robots. A differential wheeled robot can be characterized in a 2D space by using a tuple
(𝑥, 𝑦, 𝜃), known as its 2D pose, where 𝑥, 𝑦 are the Cartesian coordinates of its center and 𝜃 is its yaw angle, i.e., the orientation of its
head. A differential wheeled robot is a nonholonomic robot, since the possible velocities are constrained for each value of 𝜃; e.g.,
it cannot move laterally along its axle. It should be noted that in this paper we also use poses in order to characterize the position
and orientation of people surrounding the robot.

1 https://www.ros.org/.
2

https://www.ros.org/


Computers and Electrical Engineering 95 (2021) 107408I. Pérez-Hurtado et al.
Fig. 1. A differential wheeled robot. The movement of the non-holonomic robot with speed 𝑉 and angle 𝜃 is depicted. In this case, 𝑉𝑅 > 𝑉𝐿 makes the robot
rotate to its left side.

The possible trajectories for a differential wheeled robot can be expressed as circular trajectories passing through the center of
the robot, as is shown in Fig. 1. Each trajectory is centered in a point called Instantaneous Center of Curvature (ICC). If the ICC
is located at the center of the robot, the corresponding motion produces a contrary rotation of the wheels, which is an in-place
rotation. On the other hand, if the ICC is located at the infinity along the robot perpendicular axis, then the wheels move at the
same velocity, resulting in a straight-line motion.

The motion commands used for differential wheeled robots, i.e., the commands generated by the local planner, are pairs of linear
and angular velocities (𝑣, 𝜔), where 𝑣 is the desired linear velocity of the robot (i.e., the magnitude of its instant velocity vector) and
𝜔 is the desired angular velocity of the robot over the ICC. Therefore, the PID controller computes the individual linear velocities
𝑣𝑙 and 𝑣𝑟 for each wheel in order to fit 𝑣 and 𝜔 by applying the kinematic equations for differential drive [27]. Finally, the PID
powers the motors in an open loop to maintain a constant velocity until the next motion command is applied.

In this work, we make use of the kinematic equations to compute the future pose (𝑥′, 𝑦′, 𝜃′) after applying a motion command
(𝑣, 𝜔) from a starting pose (𝑥, 𝑦, 𝜃) for a time 𝛿, based on the following calculations: 𝑥′ = 𝑥+𝑣 ⋅𝛿 ⋅ 𝑐𝑜𝑠(𝜃+ 𝜔⋅𝛿

2 ), 𝑦′ = 𝑦+𝑣 ⋅𝛿 ⋅𝑠𝑖𝑛(𝜃+ 𝜔⋅𝛿
2 )

and 𝜃′ = 𝜃 + 𝜔 ⋅ 𝛿.
Additionally, the resulting instant velocity vector 𝐯′ = (𝑣′𝑥, 𝑣

′
𝑦) is given by: 𝑣′𝑥 = 𝑣 ⋅ 𝑐𝑜𝑠(𝜃′) and 𝑣′𝑦 = 𝑣 ⋅ 𝑠𝑖𝑛(𝜃′)

2.3. The dynamic window approach for obstacle avoidance algorithm

Given the pose of a differential wheeled robot, its current instant velocity vector and the map of surrounding obstacles, there
are three types of possible circular trajectories:

1. The set of circular trajectories that cannot be executed in a time 𝛿 due to the robot velocity vector and its hardware
acceleration limits. For example: A robot moving forward cannot begin to move backwards in a very short period of time.
We consider these trajectories as non-reachable.

2. The set of reachable trajectories that can provoke a collision with surrounding obstacles, i.e., when there are one or more
obstacles in the trajectory curve and the robot cannot stop in a safe manner within time 𝛿 due to its velocity vector and
hardware acceleration limits. We consider these trajectories as non-admissible.

3. The remaining circular trajectories are called safe trajectories. They can be evaluated according to some fitness function
related to the robot’s goal.

In [21], the problem of computing and selecting safe circular trajectories is addressed and the authors propose the Dynamic
Window Approach for Obstacle Avoidance Algorithm (DWA), which is shown in Algorithm 1.

The algorithm uses a set of predefined circular trajectories , a.k.a. motion commands. It should be noted that a motion command
(𝑣, 𝜔) ≡ (0, 0) to stop the robot must be included in the set. Then, the algorithm assigns a fitness value for each safe circular trajectory
and selects a trajectory with the minimum fitness value. The fitness function is user-defined; in [21], the authors use a weighted
sum of features, such as the distance to obstacles in the trajectory, the velocity of the robot and the distance to the goal position.

Furthermore, in [21], the authors give the following definition for the subset of reachable trajectories in time 𝛿:

𝑟 ≡ {(𝑣, 𝜔) ∈ |𝑣 ∈ [𝑣𝑎 − 𝑣̇ ⋅ 𝛿, 𝑣𝑎 + 𝑣̇ ⋅ 𝛿] ∧ 𝜔 ∈ [𝜔𝑎 − 𝜔̇ ⋅ 𝛿, 𝜔𝑎 + 𝜔̇ ⋅ 𝛿]}

where (𝑣 , 𝜔 ) are the current robot linear and angular velocities and (𝑣̇, 𝜔̇) are the robot linear and angular acceleration limits.
3
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Algorithm 1 DWA Algorithm
Require: Set of predefined circular trajectories  ≡ {(𝑣𝑖, 𝜔𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑀}; maximum robot linear and angular accelerations (𝑣̇, 𝜔̇);

trajectory execution time 𝛿; map of obstacles ; robot position 𝐫, yaw angle 𝜃, velocity vector 𝐯.
for 𝑖 from 1 to 𝑀 do

Check if (𝑣𝑖, 𝜔𝑖) is reachable given 𝐯, 𝛿, 𝑣̇, 𝜔̇.
Check if (𝑣𝑖, 𝜔𝑖) is admissible given 𝐫, 𝜃, 𝑣̇, 𝜔̇, .
if (𝑣𝑖, 𝜔𝑖) is not reachable or (𝑣𝑖, 𝜔𝑖) is not admissible then

Set the fitness value 𝑓𝑖 ← ∞
else

Set the fitness value 𝑓𝑖 ← 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑣𝑖, 𝜔𝑖, 𝛿, 𝐫, 𝜃)
end if

end for
Execute a circular trajectory (𝑣, 𝜔) ∈  with minimum fitness value.

Additionally, the authors provide the following definition for the subset of admissible trajectories:

𝑎 ≡ {(𝑣, 𝜔) ∈ 𝑟|𝑣 ≤
√

2 ⋅ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) ⋅ 𝑣̇ ∧ 𝜔 ≤
√

2 ⋅ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) ⋅ 𝜔̇}

here 𝑑𝑖𝑠𝑡(𝑣, 𝜔) is the Euclidean distance to the closest obstacle in the circular trajectory.

.4. The Social Force Model

The Social Force Model (SFM) was introduced in [19] and widely extended in [28,29], among other works. The SFM studies
he motion of pedestrians as particles acting under the influence of forces in the environment. These forces can be attractive or
epulsive, being produced by people’s intentions, static obstacles (walls, furniture, etc.) and dynamic obstacles (people moving in
he environment). Attractive forces usually represent people’s intentions to reach specific goals. On the other hand, repulsive forces
odel comfort distances between people in movement, as well as safety distances to obstacles during the execution of trajectories.

In this paper, we consider a Social Force Model based on [28,29], which can be summarized as follows: The instant velocity 𝐯(𝑡)
nd position 𝐫(𝑡) at time 𝑡 for a pedestrian (the subject hereafter) trying to reach a desired goal 𝐫𝑔𝑜𝑎𝑙 as socially as possible are given
y: 𝐯(𝑡) = 𝐯(𝑡 − 𝛿) + 𝛿 ⋅ 𝐅(𝑡) and 𝐫(𝑡) = 𝐫(𝑡 − 𝛿) + 𝛿 ⋅ 𝐯(𝑡), where 𝐅(𝑡) is the instant force for the subject at time 𝑡. Considering unitary
ass, such a force is equal to the acceleration. Following the SFM, 𝐅(𝑡) is:

𝐅(𝑡) = 𝐾1 ⋅ 𝐅𝑔𝑜𝑎𝑙(𝑡) +𝐾2 ⋅ 𝐅𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) +𝐾3 ⋅ 𝐅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒(𝑡)

here 𝐾1, 𝐾2 and 𝐾3 are the weights for the corresponding forces, and:

• 𝐅𝑔𝑜𝑎𝑙(𝑡) =
𝑣
𝜏 [𝐞𝑔𝑜𝑎𝑙(𝑡 − 𝛿) − 𝐯(𝑡 − 𝛿)] is the subject’s attractive force to 𝐫𝑔𝑜𝑎𝑙 at time 𝑡, where 𝑣 is a parameter called the comfort

subject’s velocity, 𝜏 is a parameter known as relaxation time and 𝐞𝑔𝑜𝑎𝑙 is the unitary vector from 𝐫(𝑡 − 𝛿) to 𝐫𝑔𝑜𝑎𝑙.
• 𝐅𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) =

∑𝑁
𝑖 𝐟 𝑠𝑜𝑐𝑖𝑎𝑙𝑖 (𝑡) is the subject’s repulsion force at time 𝑡 produced by the surrounding pedestrians, where 𝑁 is the

number of pedestrians and 𝐟 𝑠𝑜𝑐𝑖𝑎𝑙𝑖 (𝑡) is the repulsion force from pedestrian 𝑖 at time 𝑡. The latter is defined as 𝐟 𝑠𝑜𝑐𝑖𝑎𝑙𝑖 (𝑡) =

−𝐴𝑒
− 𝑑𝑖

𝐵|𝐝𝐢 |
[

𝑒−(𝑛′𝐵|𝐝𝐢|𝛾𝑖)2 𝐭𝑖 + 𝜂𝑖𝑒−(𝑛𝐵|𝐝𝐢|𝛾𝑖)
2𝐧𝑖

]

, where: 𝐴, 𝐵, 𝑛′ and 𝑛 are parameters; 𝑑𝑖 is the distance between the subject and
pedestrian 𝑖 at time 𝑡− 𝛿; 𝐭𝑖 is the interaction direction given by 𝐝𝑖

|𝐝𝑖|
, with 𝐝𝑖 = 𝜆[𝐯(𝑡− 𝛿)−𝐯𝑖(𝑡− 𝛿)]+ 𝐞𝑖, where 𝜆 is a parameter,

𝐯𝑖(𝑡 − 𝛿) is the instant velocity of pedestrian 𝑖 at time 𝑡 − 𝛿 and 𝐞𝑖 is the unitary vector from 𝐫(𝑡 − 𝛿) to 𝐫𝑖(𝑡 − 𝛿), with 𝐫𝑖(𝑡 − 𝛿)
being the position of pedestrian 𝑖 at time 𝑡− 𝛿; 𝐧𝑖 is an orthonormal vector to 𝐭𝑖; 𝛾𝑖 is the angle from 𝐭𝑖 to 𝐞𝑖; and 𝜂𝑖 is the sign
of 𝛾𝑖 (-1 if negative, 0 if null or 1 if positive).

• 𝐅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒(𝑡) =
1
𝑀

∑𝑀
𝑖 𝐟𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑖 (𝑡) is the subject’s repulsion force at time 𝑡 from static obstacles (not people), where 𝑀 is the number

of surrounding obstacles and 𝐟𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑖 (𝑡) is the repulsion force from obstacle 𝑖 at time 𝑡, given by: 𝐟𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑖 (𝑡) = 𝑎𝑒−
𝑑𝑖
𝑏 𝐞𝑖, where 𝑎

and 𝑏 are parameters, 𝑑𝑖 is the distance from the subject to obstacle 𝑖 at time 𝑡− 𝛿 and 𝐞𝑖 is the unitary vector from 𝐫(𝑡− 𝛿) to
the obstacle position.

.5. Enzymatic numerical P systems

Membrane systems or, simply, P systems are computing models studied in Membrane Computing. They have an associated structure
given by a rooted tree or a directed graph), whose nodes (unit processors) are called compartments (membranes, cells or neurons).
ompartments basically work with two types of elements: (a) multisets of symbols of a given (working) alphabet (called objects)
nd (b) some kinds of rules, generally inspired by nature (chemical reactions, neurons, dynamics of real ecosystems, etc.). Starting
rom an initial situation, the multisets of objects evolve according to fixed semantics for the rules. Membrane systems basically work
ith natural numbers through the multiplicity of objects in different compartments. Numerical P systems (NPS) are a special type of
embrane systems where the concept of multisets of objects is replaced by numerical variables (real numbers), while the evolution
4
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rules are, in this case, programs. Numerical variables and programs are associated with compartments in a way that, from an initial
situation (initial values associated with variables), they evolve dynamically, according to fixed semantics for programs.

There are membrane systems where the application of the evolution rules is controlled by certain elements, such as P systems
with promoters and inhibitors. Inspired by this fact, Enzymatic Numerical P systems (ENPS) were introduced in [11] as an extension
f numerical P systems in which some variables, named enzymes, control the execution of the programs. This computing model is
eing applied in different areas, especially in the simulation of control mechanisms of mobile and autonomous robots.

In this work, we have extended the original definition of ENPS introduced in [11] as follows:

efinition 2. An enzymatic numerical P system of degree 𝑞 ≥ 1 is a tuple 𝛱 = (𝐻,𝜇, {(𝑉 𝑎𝑟ℎ, 𝐸ℎ, 𝑃 𝑟ℎ, 𝑉 𝑎𝑟ℎ(0)) ∣ ℎ ∈ 𝐻}), where:

1. 𝐻 is an alphabet of labels, containing 𝑞 symbols;
2. 𝜇 is a rooted tree with 𝑞 nodes bijectively labeled by elements from 𝐻 ;
3. 𝑉 𝑎𝑟ℎ, ℎ ∈ 𝐻 , is a finite set of numerical variables 𝑥𝑗,ℎ associated with the membrane labeled by ℎ, with 1 ≤ 𝑗 ≤ 𝑘ℎ, 𝑘ℎ = |𝑉 𝑎𝑟ℎ|;
4. 𝐸ℎ, ℎ ∈ 𝐻 , is a subset of variables 𝑒𝑡,ℎ from 𝑉 𝑎𝑟ℎ, called enzymes, with 1 ≤ 𝑡 ≤ 𝑟ℎ, 𝑟ℎ = |𝐸ℎ|, 𝑟ℎ < 𝑘ℎ;
5. 𝑃𝑟ℎ, ℎ ∈ 𝐻 , is a finite set of programs associated with the membrane labeled by ℎ, where each program 𝑝 ∈ 𝑃𝑟ℎ has the

following form

𝐹𝑝(𝑥1,ℎ,… , 𝑥𝑘ℎ ,ℎ)|𝐶𝑜𝑛𝑑𝑝(𝑒1,ℎ ,…,𝑒𝑟ℎ,ℎ)
⟶ 𝑐𝑝,1|𝑣𝑝,1,… , 𝑐𝑝,𝑛𝑝 |𝑣𝑝,𝑛𝑝

where

– the left-hand side 𝐹𝑝(𝑥1,ℎ,… , 𝑥𝑘ℎ ,ℎ) is a computable function, with 𝑉 𝑎𝑟ℎ = {𝑥1,ℎ,… , 𝑥𝑘ℎ ,ℎ};
– 𝐶𝑜𝑛𝑑𝑝(𝑒1,ℎ,… , 𝑒𝑟ℎ ,ℎ) is a condition function R𝑟ℎ → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} using the set of enzymes 𝐸ℎ = {𝑒1,ℎ,… , 𝑒𝑟ℎ ,ℎ}, in such a

way that it disables the program when the output is 𝑓𝑎𝑙𝑠𝑒.
– the right hand side 𝑐𝑝,1|𝑣𝑝,ℎ,… , 𝑐𝑝,𝑛𝑝 |𝑣𝑝,𝑛𝑝 is an expression, with: 𝑐𝑝,1,… , 𝑐𝑝,𝑛𝑝 being natural numbers, and 𝑣𝑝,1,… , 𝑣𝑝,𝑛𝑝

numerical variables from membrane ℎ, the parent membrane of ℎ and all children of ℎ according to 𝜇.

6. 𝑉 𝑎𝑟ℎ(0), ℎ ∈ 𝐻 , represents the initial values of the variables in 𝑉 𝑎𝑟ℎ.

An enzymatic numerical P system, 𝛱 = (𝐻,𝜇, {(𝑉 𝑎𝑟ℎ, 𝐸ℎ, 𝑃 𝑟ℎ, 𝑉 𝑎𝑟ℎ(0)) ∣ ℎ ∈ 𝐻}), of degree 𝑞 ≥ 1, can be viewed as a set of 𝑞
membranes, labeled by elements of 𝐻 , arranged in a hierarchical structure 𝜇 given by a rooted tree, whose root is called the skin
membrane, thus the membrane labeled by ℎ has: (a) a finite set 𝑉 𝑎𝑟ℎ of numerical variables 𝑥𝑗,ℎ (their initial values are defined by
the set 𝑉 𝑎𝑟ℎ(0)), (b) a subset 𝐸ℎ of variables from 𝑉 𝑎𝑟ℎ, called enzymes, and (c) a finite set 𝑃𝑟ℎ of programs, where each program
𝑝 has the following form 𝐹𝑝(𝑥1,ℎ,… , 𝑥𝑘ℎ ,ℎ)|𝐶𝑜𝑛𝑑𝑝(𝑒1,ℎ ,…,𝑒𝑟ℎ,ℎ)

⟶ 𝑐𝑝,1|𝑣𝑝,1,… , 𝑐𝑝,𝑛𝑝 |𝑣𝑝,𝑛𝑝 , where:

• 𝐹𝑝(𝑥1,ℎ,… , 𝑥𝑘ℎ ,ℎ) is a computable function (called production function of the program), with 𝑉 𝑎𝑟ℎ = {𝑥1,ℎ,… , 𝑥𝑘ℎ ,ℎ};
• 𝐶𝑜𝑛𝑑𝑝(𝑒1,ℎ,… , 𝑒𝑟ℎ ,ℎ) is a Boolean function R𝑟ℎ → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} (named condition function), with 𝐸ℎ = {𝑒1,ℎ,… , 𝑒𝑟ℎ ,ℎ}.
• 𝑐𝑝,1|𝑣𝑝,1,… , 𝑐𝑝,𝑛𝑝 |𝑣𝑝,𝑛𝑝 is the so-called repartition protocol, associated with the program, with 𝑐𝑝,1,… , 𝑐𝑝,𝑛𝑝 being natural numbers

specifying the proportion of the current production distributed to variables 𝑣𝑝,1,… , 𝑣𝑝,𝑛𝑝 ∈
(

𝑉 𝑎𝑟ℎ ∪ 𝑉 𝑎𝑟𝑝𝑎𝑟(ℎ)
⋃

𝑏∈𝑐ℎ(ℎ) 𝑉 𝑎𝑟𝑏
)

,
with 𝑝𝑎𝑟(ℎ) being the parent of ℎ and 𝑐ℎ(ℎ) the set of children of ℎ in 𝜇;

A configuration or instantaneous description of an ENPS at time 𝑡 ∈ N is a tuple (𝑉 𝑎𝑟1(𝑡),… , 𝑉 𝑎𝑟𝑞(𝑡)), where 𝑉 𝑎𝑟ℎ(𝑡), for ℎ ∈ 𝐻 ,
provides the values of all numerical variables 𝑥𝑗,ℎ from the set 𝑉 𝑎𝑟ℎ at time 𝑡 (the value of 𝑥𝑗,ℎ at time 𝑡 ∈ 𝐍 is denoted by 𝑥𝑗,ℎ(𝑡)).
The initial configuration of 𝛱 is the tuple (𝑉 𝑎𝑟1(0),… , 𝑉 𝑎𝑟𝑞(0)).

A program 𝑝 ≡ 𝐹𝑝(𝑥1,ℎ,… , 𝑥𝑘ℎ ,ℎ)|𝐶𝑜𝑛𝑑𝑝(𝑒1,ℎ ,…,𝑒𝑟ℎ,ℎ)
⟶ 𝑐𝑝,1|𝑣𝑝,1,… , 𝑐𝑝,𝑛𝑝 |𝑣𝑝,𝑛𝑝 is executable (applicable) to a membrane labeled by

ℎ from configuration 𝑡 if 𝐶𝑜𝑛𝑑𝑝(𝑒1,ℎ(𝑡),… , 𝑒𝑟ℎ ,ℎ(𝑡)) is 𝑡𝑟𝑢𝑒. When such a program is executed to a membrane labeled by ℎ from
configuration 𝑡: (a) the value of function 𝐹𝑝 at time 𝑡 is computed: 𝐹𝑝(𝑥1,ℎ(𝑡),… , 𝑥𝑘ℎ ,ℎ(𝑡)); (b) if we denote 𝐶𝑝 =

∑𝑛𝑝
𝑠=1𝑐𝑝,𝑠 then the

contribution to the value of variable 𝑣𝑝,𝑠, 1 ≤ 𝑠 ≤ 𝑛𝑝, at time 𝑡 + 1, is 𝑞 ⋅ 𝑐𝑝,𝑠 value 𝑞 =
𝐹𝑝(𝑥1,ℎ(𝑡),…,𝑥𝑘ℎ,ℎ(𝑡))

𝐶𝑝
. Then the value 𝑣𝑝,𝑠(𝑡 + 1)

of the variable 𝑣𝑝,𝑠 at time 𝑡 + 1 will be the sum of total contributions that 𝑣𝑝,𝑠 receives from the neighboring membranes at time 𝑡.
It is worth pointing out that the enzymes 𝑒𝑡,ℎ with 1 ≤ 𝑡 ≤ 𝑟ℎ, which enables the execution of programs, are variables from 𝑉 𝑎𝑟ℎ.
Therefore, their values can change due to the contribution they receive from other programs and compartments.

Let us assume that there exists a global clock marking the time. In our semantics, all the programs that can be executed are
selected in each time unit. The concept of transition step from a configuration 𝑡 to 𝑡+1 and the concept of computation for ENPS are
defined in [11].

3. A social local planning algorithm for differential wheeled robots

In this section, we propose a social local planning algorithm for differential wheeled robots, using the SFM, presented in
Section 2.4, to compute the robot’s optimal instant velocity vector for each time step.

In an actual environment, not all the velocity vectors can be executed by a robot due to acceleration limits and collision threats,
as explained in Section 2.3. Moreover, some velocity vectors cannot be executed due to nonholonomic constraints, as explained
5

in Section 2.2. Therefore, the problem is to find a circular trajectory, i.e., a motion command, approaching the optimal instant
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velocity vector. In our approximation, we apply the DWA algorithm to solve it. Thus, for each time step, we use a fixed set of
motion commands and filter admissible and reachable commands with respect to acceleration limits and surrounding static/dynamic
obstacles. Finally, a fitness function is computed for each filtered command, and one with the best fitness value is executed by the
PID controller. The fitness function evaluates the difference between the corresponding circular trajectory and the optimal instant
velocity vector, as explained below in this section. The computation is repeated in a loop until the robot’s goal is reached or an
error is produced, as shown in Algorithm 2.

Algorithm 2 A social local planning algorithm
Require: Set of predefined motion commands  ≡ {(𝑣𝑖, 𝜔𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑀}; maximum robot linear and angular accelerations (𝑣̇, 𝜔̇);

goal position 𝐠 = (𝑔𝑥, 𝑔𝑦); average loop period 𝛿.
while 𝐠 has not been reached by the robot and there is no error do

Get the current robot position 𝐫 ≡ (𝑟𝑥, 𝑟𝑦).
Get the current robot yaw angle 𝜃.
Get the current robot velocity vector 𝐯 ≡ (𝑣𝑥, 𝑣𝑦).
Get the current set of obstacle positions  ≡ {(𝑜𝑥, 𝑜𝑦)𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑁}.
Get the current set of people positions  ≡ {(𝑝𝑥, 𝑝𝑦)𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑄}.
Get the current set of people velocities  ≡ {(𝑣𝑥, 𝑣𝑦)𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑄}.
Get the optimal robot velocity vector 𝐯′ ← 𝑆𝐹𝑀(𝐫, 𝐯, 𝐠, 𝛿,, ,)
for 𝑖 from 1 to 𝑀 do

Check if (𝑣𝑖, 𝜔𝑖) is reachable given 𝐯, 𝛿, 𝑣̇, 𝜔̇.
Check if (𝑣𝑖, 𝜔𝑖) is admissible given 𝐫, 𝜃, 𝑣̇, 𝜔̇, ,  .
Set the fitness value 𝑓𝑖 ← 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑣𝑖, 𝜔𝑖, 𝛿, 𝐫, 𝜃, 𝐯′)

end for
Execute a motion command (𝑣, 𝜔) ∈  with minimum fitness value.

end while

𝑀 is the number of pre-defined motion commands. 𝑁 is the number of static obstacles surrounding the robot and 𝑄 is the
number of surrounding pedestrians. Function 𝑆𝐹𝑀(𝐫, 𝐯, 𝐠, 𝛿,, ,) applies the calculation described in Section 2.4 to compute the
robot’s optimal instant velocity vector by applying the Social Force Model. Function 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑣𝑖, 𝜔𝑖, 𝛿, 𝐫, 𝜃, 𝐯′) computes a fitness value
or a motion command (𝑣𝑖, 𝜔𝑖) given the robot pose (𝐫, 𝜃), as well as time 𝛿 and the optimal instant velocity vector 𝐯′ as reference.
𝑖𝑡𝑛𝑒𝑠𝑠(𝑣𝑖, 𝜔𝑖, 𝛿, 𝐫, 𝜃, 𝐯′) = ∞ if (𝑣𝑖, 𝜔𝑖) is not reachable or (𝑣𝑖, 𝜔𝑖) is not admissible. This fitness value is obtained in three steps:

1. Compute the theoretical pose of the robot (𝑥′, 𝑦′, 𝜃′) after executing the circular trajectory described by (𝑣𝑖, 𝜔𝑖) for time 𝛿 by
applying the equations in Section 2.2.

2. Compute the theoretical pose of the robot (𝑥′′, 𝑦′′, 𝜃′′) after following the optimal instant velocity vector 𝐯′ as if the robot
were holonomic, i.e., in a straight line for time 𝛿.

3. Compute and return the fitness value as follows: 𝑘1[(𝑥′ − 𝑥′′)2 + (𝑦′ − 𝑦′′)2] + 𝑘2|𝜃′ − 𝜃′′|

here 𝑘1 and 𝑘2 are parameters. More precisely: 𝑘1 is the weight for the error in the robot’s position and 𝑘2 is the weight for the
rror in the robot’s yaw angle. Such values can be set respectively to 1.0 and 0.1 by default and optimized or tuned by simulation
r experimentation. Finally, it should be noted that 𝛿 must be low enough for a safe navigation in real time, e.g., 0.01 or 0.02 s.

. An ENPS model for social local planning

In this section, a novel ENPS model 𝛱 = (𝐻,𝜇, {(𝑉 𝑎𝑟ℎ, 𝐸ℎ, 𝑃 𝑟ℎ, 𝑉 𝑎𝑟ℎ(0)) ∣ ℎ ∈ 𝐻}) for social local planning is presented, where
≡ {1} and, therefore 𝜇 ≡ [ ]1. For the sake of simplicity, since there is only one membrane, we are going to omit the membrane

abel ℎ in the numerical variables. Furthermore, a simplified syntax will be used for the programs in 𝑃𝑟1:

𝐹 (𝑥1,… , 𝑥𝑛)|𝑐𝑜𝑛𝑑 ⟶ 𝑦

here 𝐹 (𝑥1,… , 𝑥𝑛) is a computable function; 𝑥1,… , 𝑥𝑛 and 𝑦 are numerical variables from 𝑉 𝑎𝑟1; and, 𝑐𝑜𝑛𝑑 is a Boolean condition
sing enzymes from 𝐸1, which must be 𝑡𝑟𝑢𝑒 in order to execute the program.

The set of numerical variables 𝑉 𝑎𝑟1 is defined as follows:

𝑉 𝑎𝑟1 ≡ {𝜃, 𝛿, 𝑣, 𝜏, 𝜆, 𝐴, 𝐵, 𝑛, 𝑛′, 𝑎, 𝑏, 𝑒, 𝐾1, 𝐾2, 𝐾3, 𝛼, 𝛼0} ∪

{𝑟𝑖, 𝑣𝑖, 𝑣′𝑖 , 𝑔𝑖, 𝐹𝑖, 𝑘𝑖 ∶ 1 ≤ 𝑖 ≤ 2} ∪

{𝑣̂𝑖, 𝜔̂𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑀} ∪ {𝑜𝑖,1, 𝑜𝑖,2, 𝑑′𝑖 , 𝑒
′
𝑖,1, 𝑒

′
𝑖,2, 𝑓

′
𝑖,1, 𝑓

′
𝑖,2 ∶ 1 ≤ 𝑖 ≤ 𝑁} ∪

{𝑝𝑖,1, 𝑝𝑖,2, 𝑣𝑖,1, 𝑣𝑖,2, 𝑑𝑖, 𝑑𝑖,1, 𝑑𝑖,2, 𝑡𝑖,1, 𝑡𝑖,2, 𝑒𝑖,1, 𝑒𝑖,2, 𝑓𝑖,1, 𝑓𝑖,2, 𝛾𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑄} (1)

here 𝑀 is the number of pre-defined motion commands; 𝑁 is the number of static obstacles surrounding the robot and 𝑄 is the
umber of surrounding pedestrians; 𝑣, 𝜏, 𝜆, 𝐴, 𝐵, 𝑛, 𝑛′, 𝑎, 𝑏, 𝐾 ,𝐾 ,𝐾 are the SFM parameters explained in Section 2.4; 𝛼 and 𝛼 are
6
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enzymes for synchronization purposes; (𝑟1, 𝑟2, 𝜃) is the current robot’s pose; (𝑣1, 𝑣2) is the current robot’s velocity vector; (𝑣′1, 𝑣
′
2) is

he optimal robot’s velocity vector; (𝑔1, 𝑔2) is the robot’s goal position; (𝐹1, 𝐹2) is the robot’s force vector to the goal position; (𝑘1, 𝑘2)
re the weights for an user-defined fitness function (see Section 3); 𝛿 is the average period of execution; 𝑒 is the Euler’s number;
(𝑣̂𝑖, 𝜔̂𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑀} is the set of pre-defined motion commands; {𝑓𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑀} is the fitness value for the pre-defined motion
ommands; {(𝑜𝑖,1, 𝑜𝑖,2) ∶ 1 ≤ 𝑖 ≤ 𝑁} is the set of positions of static obstacles; {𝑑′𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑁} is the set of distances from the robot
o each static obstacle position; {(𝑒′𝑖,1, 𝑒

′
𝑖,2) ∶ 1 ≤ 𝑖 ≤ 𝑁} is the set of unitary vectors from the robot to each static obstacle position;

(𝑓 ′
𝑖,1, 𝑓

′
𝑖,2) ∶ 1 ≤ 𝑖 ≤ 𝑁} is the set of forces from each obstacle position to the robot; {(𝑝𝑖,1, 𝑝𝑖,2) ∶ 1 ≤ 𝑖 ≤ 𝑄} is the set of pedestrian

ositions; {(𝑣𝑖,1, 𝑣𝑖,2) ∶ 1 ≤ 𝑖 ≤ 𝑄} is the set of velocity vectors of pedestrians; {𝑑𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑄} is the set of distances from the robot
o each pedestrian; {(𝑑𝑖,1, 𝑑𝑖,2) ∶ 1 ≤ 𝑖 ≤ 𝑄} is the set of interaction vectors from the robot to each pedestrian; {(𝑡𝑖,1, 𝑡𝑖,2) ∶ 1 ≤ 𝑖 ≤ 𝑄}
s the set of interaction direction vectors from the robot to each pedestrian; {(𝑒𝑖,1, 𝑒𝑖,2) ∶ 1 ≤ 𝑖 ≤ 𝑄} is the set of unitary vectors from
he robot’s position to each pedestrian position; {(𝑓𝑖,1, 𝑓𝑖,2) ∶ 1 ≤ 𝑖 ≤ 𝑄} is the set of social forces from each pedestrian to the robot;
𝛾𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑄} is the set of interaction angles between the robot and the pedestrians.

The set of initial values is as follows:

𝑉 𝑎𝑟1(0) ≡ {𝜃(𝑖𝑛𝑝𝑢𝑡), 𝛿(𝑖𝑛𝑝𝑢𝑡), 𝑣(0.6), 𝜏(0.5), 𝜆(2.0), 𝐴(1.5), 𝐵(0.35), 𝑛(2.0),

𝑛′(3.0), 𝑎(1.0), 𝑏(0.2), 𝑒(2.71828), 𝐾1(2.0), 𝐾2(2.1), 𝐾3(10.0), 𝛼(1), 𝛼0(0)} ∪

{𝑟𝑖(𝑖𝑛𝑝𝑢𝑡), 𝑣𝑖(𝑖𝑛𝑝𝑢𝑡), 𝑣′𝑖(0), 𝑔𝑖(𝑢𝑠𝑒𝑟), 𝐹𝑖(0), 𝑘𝑖(𝑢𝑠𝑒𝑟) ∶ 1 ≤ 𝑖 ≤ 2} ∪

{𝑣̂𝑖(𝑢𝑠𝑒𝑟), 𝜔̂𝑖(𝑢𝑠𝑒𝑟), 𝑓𝑖(0) ∶ 1 ≤ 𝑖 ≤ 𝑀} ∪

{𝑜𝑖,1(𝑖𝑛𝑝𝑢𝑡), 𝑜𝑖,2(𝑖𝑛𝑝𝑢𝑡), 𝑑′𝑖 (0), 𝑒
′
𝑖,1(0), 𝑒

′
𝑖,2(0), 𝑓

′
𝑖,1(0), 𝑓

′
𝑖,2(0) ∶ 1 ≤ 𝑖 ≤ 𝑁} ∪

{𝑝𝑖,1(𝑖𝑛𝑝𝑢𝑡), 𝑝𝑖,2(𝑖𝑛𝑝𝑢𝑡), 𝑣𝑖,1(𝑖𝑛𝑝𝑢𝑡), 𝑣𝑖,2(𝑖𝑛𝑝𝑢𝑡), 𝑑𝑖(0), 𝑑𝑖,1(0), 𝑑𝑖,2(0),

𝑡𝑖,1(0), 𝑡𝑖,2(0), 𝑒𝑖,1(0), 𝑒𝑖,2(0), 𝑓𝑖,1(0), 𝑓𝑖,2(0), 𝛾𝑖(0) ∶ 1 ≤ 𝑖 ≤ 𝑄} (2)

where the word input means a value obtained by the robot’s on-board sensors and the word user means an user-defined value.
The set of Enzymes is 𝐸1 ≡ {𝛼, 𝛼0} and the set of programs 𝑃𝑟1 is as follows:

𝑝1 ≡
𝑣
𝜏 ⋅ ( 𝑔1−𝑟1

√

(𝑔1−𝑟1)2+(𝑔2−𝑟2)2
− 𝑣1)|𝛼=1 ⟶ 𝐹1

𝑝2 ≡
𝑣
𝜏 ⋅ ( 𝑔2−𝑟2

√

(𝑔1−𝑟1)2+(𝑔2−𝑟2)2
− 𝑣2)|𝛼=1 ⟶ 𝐹2

𝑝3,𝑖 ≡
√

(𝑝𝑖,1 − 𝑟1)2 + (𝑝𝑖,2 − 𝑟2)2|𝛼=1 ⟶ 𝑑𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑄

𝑝4,𝑖 ≡
√

(𝑜𝑖,1 − 𝑟1)2 + (𝑜𝑖,2 − 𝑟2)2|𝛼=1 ⟶ 𝑑′𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑁

In the first step of the computation, programs 𝑝1 and 𝑝2 are executed to generate the robot’s force to the goal position. Programs
𝑝3,𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑄 and 𝑝4,𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑁 are executed to generate, respectively, the Euclidean distances from the robot to each pedestrian
position and from the robot to each obstacle position.

𝑝5,𝑖 ≡
𝑟1−𝑝𝑖,1

𝑑𝑖
|𝛼=2 ⟶ 𝑒𝑖,1 ∶ 1 ≤ 𝑖 ≤ 𝑄

𝑝6,𝑖 ≡
𝑟2−𝑝𝑖,2

𝑑𝑖
|𝛼=2 ⟶ 𝑒𝑖,2 ∶ 1 ≤ 𝑖 ≤ 𝑄

𝑝7,𝑖 ≡
𝑟1−𝑜𝑖,1

𝑑′𝑖
|𝛼=2 ⟶ 𝑒′𝑖,1 ∶ 1 ≤ 𝑖 ≤ 𝑁

𝑝8,𝑖 ≡
𝑟2−𝑜𝑖,2

𝑑′𝑖
|𝛼=2 ⟶ 𝑒′𝑖,2 ∶ 1 ≤ 𝑖 ≤ 𝑁

In the second step of computation, programs 𝑝5,𝑖, 𝑝6,𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑄 generate the unitary vectors from the robot’s position to each
edestrian position. Programs 𝑝7,𝑖, 𝑝8,𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑁 produce the corresponding unitary vectors from the robot’s position to each
bstacle position.

𝑝9,𝑖 ≡ 𝜆(𝑣1 − 𝑣𝑖,1) + 𝑒𝑖,1|𝛼=3 ⟶ 𝑑𝑖,1 ∶ 1 ≤ 𝑖 ≤ 𝑄
𝑝10,𝑖 ≡ 𝜆(𝑣2 − 𝑣𝑖,2) + 𝑒𝑖,2|𝛼=3 ⟶ 𝑑𝑖,2 ∶ 1 ≤ 𝑖 ≤ 𝑄
𝑝11,𝑖 ≡

𝑑𝑖,1
√

𝑑2𝑖,1+𝑑
2
𝑖,2

|𝛼=4 ⟶ 𝑡𝑖,1 ∶ 1 ≤ 𝑖 ≤ 𝑄

𝑝12,𝑖 ≡
𝑑𝑖,2

√

𝑑2𝑖,1+𝑑
2
𝑖,2

|𝛼=4 ⟶ 𝑡𝑖,2 ∶ 1 ≤ 𝑖 ≤ 𝑄

In the third and fourth steps of computation, programs 𝑝9,𝑖, 𝑝10,𝑖, 𝑝11,𝑖, 𝑝12,𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑄 compute the interaction directions from
he robot to each pedestrian.

𝑝13,𝑖 ≡ atan2(𝑒𝑖,2, 𝑒𝑖,1) − atan2(𝑡𝑖,2, 𝑡𝑖,1)|𝛼=5 ⟶ 𝛾𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑄

In the fifth step of computation, programs 𝑝13,𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑄 are executed to obtain the angles between the interaction directions
nd the unitary vectors from the robot to each pedestrian, by using the 2-argument arctangent (atan2).

− 𝑑𝑖
𝐵′𝑖
(

𝑒−(𝑛
′𝐵′

𝑖 𝛾𝑖)
2
𝑡 − 𝜂 𝑒−(𝑛𝐵

′
𝑖 𝛾𝑖)

2
𝑡

)

7

𝑝14,𝑖 ≡ −𝐴𝑒 𝑖,1 𝑖 𝑖,2 |𝛼=6 → 𝑓𝑖,1 ∶ 1 ≤ 𝑖 ≤ 𝑄
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𝑝15,𝑖 ≡ −𝐴𝑒
− 𝑑𝑖

𝐵′𝑖 (𝑒−(𝑛
′𝐵′

𝑖 𝛾𝑖)
2
𝑡𝑖,2 + 𝜂𝑖𝑒

−(𝑛𝐵′
𝑖 𝛾𝑖)

2
𝑡𝑖,1)|𝛼=6 → 𝑓𝑖,2 ∶ 1 ≤ 𝑖 ≤ 𝑄

𝑝16,𝑖 ≡ 𝑎𝑒−
𝑑′𝑖
𝑏 𝑒′𝑖,1|𝛼=6 ⟶ 𝑓 ′

𝑖,1 ∶ 1 ≤ 𝑖 ≤ 𝑁

𝑝17,𝑖 ≡ 𝑎𝑒−
𝑑′𝑖
𝑏 𝑒′𝑖,2|𝛼=6 ⟶ 𝑓 ′

𝑖,2 ∶ 1 ≤ 𝑖 ≤ 𝑁

𝑝18 ≡ max(⌊log2(𝑁 − 1)⌋, ⌊log2(𝑄 − 1)⌋)|𝛼=6 ⟶ 𝛼0

In the sixth step of computation, programs 𝑝14,𝑖, 𝑝15,𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑄 compute the robot’s social forces for each pedestrian, being
𝐵′
𝑖 = 𝐵

√

𝑑2𝑖,1 + 𝑑2𝑖,2 and 𝜂𝑖 the sign of 𝛾𝑖. Programs 𝑝16,𝑖, 𝑝17,𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑁 generate the robot’s obstacle forces for each static obstacle.
Finally, the mission of program 𝑝18 is to compute a temporal variable 𝛼0 for synchronization purposes. Let 𝑛̂ = ⌊log2(𝑁 − 1)⌋ and
𝑞 = ⌊log2(𝑄 − 1)⌋.

𝑝19,𝑖,𝑗 ≡ 𝑓 ′
𝑖,1 + 𝑓 ′

𝑖+2𝑗 ,1
|𝛼=𝑛̂−𝑗+7 ⟶ 𝑓 ′

𝑖,1 ∶ 1 ≤ 𝑖 ≤ 2𝑗 , 0 ≤ 𝑗 ≤ 𝑛̂

𝑝20,𝑖,𝑗 ≡ 𝑓𝑖,1 + 𝑓𝑖+2𝑗 ,1|𝛼=𝑞−𝑗+7 ⟶ 𝑓𝑖,1 ∶ 1 ≤ 𝑖 ≤ 2𝑗 , 0 ≤ 𝑗 ≤ 𝑞
𝑝21,𝑖,𝑗 ≡ 𝑓 ′

𝑖,2 + 𝑓 ′
𝑖+2𝑗 ,2

|𝛼=𝑛̂−𝑗+7 ⟶ 𝑓 ′
𝑖,2 ∶ 1 ≤ 𝑖 ≤ 2𝑗 , 0 ≤ 𝑗 ≤ 𝑛̂

𝑝22,𝑖,𝑗 ≡ 𝑓𝑖,2 + 𝑓𝑖+2𝑗 ,2|𝛼=𝑞−𝑗+7 ⟶ 𝑓𝑖,2 ∶ 1 ≤ 𝑖 ≤ 2𝑗 , 0 ≤ 𝑗 ≤ 𝑞

Programs 𝑝19,𝑖,𝑗 , 𝑝21,𝑖,𝑗 ∶ 1 ≤ 𝑖 ≤ 2𝑗 , ⌊log2(𝑁 − 1)⌋ ≥ 𝑗 ≥ 0 and programs 𝑝20,𝑖,𝑗 , 𝑝22,𝑖,𝑗 ∶ 1 ≤ 𝑖 ≤ 2𝑗 , ⌊log2(𝑄 − 1)⌋ ≥ 𝑗 ≥ 0 use a
reduction procedure2 to compute, respectively, the sum of social and obstacle forces in logarithmic time.

𝑝23 ≡ 𝑣1 + 𝛿(𝐾1𝐹1 +𝐾2𝑓1,1 +
𝐾3
𝑁 𝑓 ′

1,1)|𝛼=𝛼0+8 ⟶ 𝑣′1
𝑝24 ≡ 𝑣2 + 𝛿(𝐾1𝐹2 +𝐾2𝑓1,2 +

𝐾3
𝑁 𝑓 ′

1,2)|𝛼=𝛼0+8 ⟶ 𝑣′2

In the step of computation max(⌊log2(𝑁 −1)⌋, ⌊log2(𝑄−1)⌋)+8, the optimal velocity vector for the robot is computed by applying
programs 𝑝23 and 𝑝24

𝑝25,𝑖 ≡ f itness(𝑣̂𝑖, 𝑤̂𝑖, 𝛿, 𝑘1, 𝑘2, 𝑟1, 𝑟2, 𝜃, 𝑣′1, 𝑣
′
2)|𝛼=𝛼0+9 ⟶ 𝑓𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑀

In the step of computation max(⌊log2(𝑁 − 1)⌋, ⌊log2(𝑄 − 1)⌋) + 9, a user-defined fitness function is computed for each motion
command. Such a function should assign an infinite value to non-reachable and/or non-admissible commands, and other values
otherwise.

𝑝26,𝑖,𝑗 ≡ min∗(𝑣̂𝑖, 𝑣̂𝑖+2𝑗 , 𝑓𝑖, 𝑓𝑖+2𝑗 )|𝛼=⌊log2(𝑀−1)⌋−𝑗+𝛼0+10 ⟶ 𝑣̂𝑖 ∶ 1 ≤ 𝑖 ≤ 2𝑗 , ⌊log2(𝑀 − 1)⌋ ≥ 𝑗 ≥ 0
𝑝27,𝑖,𝑗 ≡ min∗(𝜔̂𝑖, 𝜔̂𝑖+2𝑗 , 𝑓𝑖, 𝑓𝑖+2𝑗 )|𝛼=⌊log2(𝑀−1)⌋−𝑗+𝛼0+10 ⟶ 𝜔̂𝑖 ∶ 1 ≤ 𝑖 ≤ 2𝑗 , ⌊log2(𝑀 − 1)⌋ ≥ 𝑗 ≥ 0

The programs enumerated above are devoted to obtain a motion command with the minimum fitness value by applying a
reduction procedure in logarithmic time by means of the function:

min∗(𝑎, 𝑏, 𝑐, 𝑑) =

{

𝑎, if 𝑐 < 𝑑
𝑏, if 𝑐 ≥ 𝑑

𝑝28 ≡ 𝛼 + 1|𝑡𝑟𝑢𝑒 ⟶ 𝛼

Finally, program 𝑝28 is included for synchronization purposes.
Therefore, after ⌊log2(𝑀 − 1)⌋ +max(⌊log2(𝑁 − 1)⌋, ⌊log2(𝑄 − 1)⌋) + 10 steps of computation, the best motion command is stored

in (𝑣̂1, 𝜔̂1).

5. Simulator

A simulation tool was implemented in this work for validation and testing purposes. The Robot Operating System (ROS)
framework was selected to develop the simulator. ROS is a flexible framework for writing robot software. It contains a wide variety
of tools and libraries, which simplifies the task of creating robust software. ROS can be used together with Python and/or C++. In
this work, the C++ programming language was selected. We adapted the BSD-licensed libraries LightSFM3 and Pedlab4 to simulate
the human agents. The RVIZ tool5 was used to generate a real-time 3D visualization. The simulator is GNU GPLv3 licensed and can
be downloaded from https://github.com/RGNC/enps_dwa.

2 A reduction procedure applies an associative binary operator to reduce the elements of a collection into a single value. This procedure can be parallelized
n logarithmic scale.

3 https://github.com/robotics-upo/lightsfm.
4 https://github.com/robotics-upo/pedlab.
5 http://wiki.ros.org/rviz.
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Fig. 2. Real-time 3D visualization showing each agent in the indoor environment. Yellow, dark-blue and light-blue arrows represent the global, obstacle and
social forces for all the agents. The robot can only detect nearby humans which are marked with a semi-transparent red circle on the floor. The robot uses a
360-degree simulated LIDAR scanner to detect obstacles which are marked with small red dots. All possible motion commands, i.e., circular trajectories, are
represented in front of the robot by using gray thin lines. The selected motion command for each time-instant is highlighted with a thick red line.

Fig. 3. Probabilistic Distribution Functions (PDF) of the robot and people velocities during the simulation. The robot tries to navigate at maximum velocity
(0.6 m/s) most of the time. Several in-place rotations were produced by applying a linear velocity of 0 m/s along with an angular velocity different from 0
rad/s. The rest of the motion commands produce the remaining circular trajectories. Human agents have no velocity constraints and, therefore, they can follow
a desired velocity vector regardless of its direction.

The software simulates an indoor environment with obstacles containing a configurable number of human agents walking
according to a social random walk, i.e., each agent selects a nearby goal and walks approaching it by following the SFM explained
in Section 2.4, when the goal is reached, another goal is selected. A dual-wheeled non-holonomic robot agent is also included,
navigating according to the ENPS model proposed in Section 4. The robot’s goals are randomly selected in the same way.

The ENPS model was simulated ad-hoc, i.e., the model definition was developed inside the simulator’s source code. More
precisely, the file simulator.hpp implements the behavior of the model.

A 3D visualization of the virtual world is generated in real-time by using RVIZ. A screenshot of the visualization is shown in
Fig. 2. The visualization includes the environment, the agents, the force vectors, the simulated LIDAR scan, the people detections,
the possible robot’s motion commands, i.e., circular trajectories and the selected robot’s trajectory at each time-instant.

The robot model is based on the TERESA robot, whose parameters are: radius of 0.3 m, linear velocity from 0 m/s to 0.6 m/s,
angular velocity from −0.8 rad/s to 0.8 rad/s, people detection range (360◦) of 2.5 m and obstacle detection range (360◦) of 10 m. A
more thorough explanation can be found in [30].

Regarding the computational complexity of the simulator, it is worth noting that it is greater than (𝑙𝑜𝑔(𝑛)), since the
implementation is purely sequential for the sake of simplicity and according to the purposes of validation and testing.

6. Analysis

We run an experiment of 160 min by using the software presented in Section 5. Twenty human agents and 1 robot agent were
included in the simulation. The robot and SFM parameters were set to the common parameters of the TERESA robot. A set of 33
possible angular velocities from −0.8 rad∕s to 0.8 rad∕s was combined with a set of 13 possible linear velocities from 0 m∕s to 0.6 m∕s,
producing a whole set of 429 possible motion commands for the robot. The initial velocity of each human agent is randomly set by
using a Gaussian distribution with 𝜇 = 1.2 m∕s and 𝜎 = 0.001.

For each agent and for each second of simulation, the software records in a file the instant velocity and the Euclidean distances
to the corresponding nearest obstacle and nearest agent. Despite the natural differences between people and robot velocities shown
9
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Fig. 4. The distances from the robot and from each human to their corresponding nearest obstacle and nearest agent were measured at each second of simulation.
Such distances can be used as metric to compare the social behavior of the agents. Despite the differences in the velocity PDFs, a high similarity is observed in
the average distances.

in Fig. 3, we observed a similar social behavior when considering the average distances to obstacles and other agents during the
simulation, as shown in Fig. 4.

7. Conclusions and future work

This work presents the first model based on membrane computing for the social navigation of robots in human environments.
Such a model is based on the ENPS framework, the Social Force Model and the Dynamic Window Approach Algorithm. It is
carefully designed for differential-drive wheeled robots where nonholonomic and kinematic constraints are taken into account. The
computational complexity of the model is (𝑙𝑜𝑔(𝑛)) and it is compatible with other ENPS models for the navigation of robots. The
main advantage of using the ENPS framework is the natural way to expose parallelism in the algorithm and, therefore, enabling the
possibility of using parallel hardware simulators. A simulation tool was implemented in this work for validation and testing purposes.
The simulation was conducted in a 3D environment and metrics about velocities and distances were recorded. We run experiments
with the software in order to compare the social behavior of the simulated human agents and the simulated robot. Despite the
differences related to non-holonomic constraints and velocity limits, we observed a similar social behavior in the simulation with
respect to average distances to nearby obstacles and agents. The main research line for future work is the simulation of the model
by using parallel architectures in order to approach the (𝑙𝑜𝑔(𝑛)) computational complexity, as well as the integration of this model
in the navigation workflow of actual robots.
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