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Abstract: The aim of this study is to perform a review of the state-of-the-art of the reactors available
in the literature, which are used for solid-gas reactions or thermal decomposition processes around
1000 °C that could be further implemented for thermochemical energy storage in CSP (concentrated
solar power) plants, specifically for SPT (solar power tower) technology. Both direct and indirect
systems can be implemented, with direct and closed systems being the most studied ones. Among
direct and closed systems, the most used configuration is the stacked bed reactor, with the fixed
bed reactor being the most frequent option. Out of all of the reactors studied, almost 70% are used
for solid—gas chemical reactions. Few data are available regarding solar efficiency in most of the
processes, and the available information indicates relatively low values. Chemical reaction efficiencies
show better values, especially in the case of a fluidized bed reactor for solid-gas chemical reactions,
and fixed bed and rotary reactors for thermal decompositions.

Keywords: high temperature; concentrated solar power (CSP); thermochemical energy storage (TCM);
solid—gas reactors; review

1. Introduction

The production of electricity from concentrated solar power plants, which are known as CSP
plants, is still a maturing technology, although it has been in operation commercially at the utility scale
since 1985 [1]. Nevertheless, it has experienced a worldwide large increase in deployment in recent
years [2], and there are plans to expand its application in industrial processes and the generation of
solar fuels. According to the Renewable Energy Policy Network for the 21st Century (REN21) [3],
total installed capacity in CSP in 2016 was 4.81 GW, growing from 600 MW in 2009. The deployment
was mostly in Spain (with 2300 MW) and the United States (USA) (with 1738 MW). Other countries
with plants are India, Morocco, South Africa, the United Arab Emirates, Algeria, Egypt, Australia,
China, and Thailand. Today, parabolic trough technology dominates the CSP market, both in number
of projects and total installed capacity (around 85% of capacity) [4].
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Moreover, according to different sources, the future deployment of CSP around the world is
bright. The International Renewable Energy Agency (IRENA) [5] stated that CSP will grow between
52 GW (44 GW according to its REmap [6]) and 83 GW with the reference and Remap 2030 scenario,
respectively. On the other hand, the International Energy Agency (IEA) [7] reported a CSP capacity
installed of 110 GW in its 450 scenarios. According to IEA [8], under a high renewable energy scenario,
11% of electricity generation will come from CSP in 2050, with 954 GW of installed capacity. In the
IEA CSP technology roadmap [9], the IEA updated the installed capacity to 982 GW in 2050. Finally,
the European Solar Thermal Electricity Association (ESTELA), the CSP European industry association,
reported a worldwide implementation of 1080 GW in 2050 [10].

Del Rio et al. [2] analyzed the drivers and barriers of the deployment of CSP in Europe.
Those authors concluded that these drivers and barriers include techno-economic, administrative,
policy, and social acceptance factors. According to them, the most relevant barriers are the high costs
of the technology and uncertain and retroactive policies.

The biggest technological drawback of solar energy is its temporal intermittency. To overcome
this problem, backup systems can be used in the so-called hybrid plants, where fossil fuel or biomass
is burned; another solution is the use of thermal energy storage (TES) [11-14]. Prieto et al. [15] stated
that there is a need to extend the operation of a CSP plant up to 15 h, in order to achieve a plant that is
more versatile to comply with unexpected peak demand during nighttime, where no power is being
produced. Moreover, the reliance during operating hours would increase.

There are three technologies for TES: sensible energy storage, latent energy storage, and thermochemical
energy storage (which include sorption and chemical reactions) [16,17]. Ming et al. [18] reviewed
the literature on TES for CSP. These authors concluded that current research efforts in the area of
sensible TES focus on the development of new molten salts with lower freezing temperatures and
higher decomposition temperatures, the development of ionic liquids for next generation heat transfer
fluids (HTFs), the utilization of nanotechnology to improve the specific heat capacity and thermal
conductivity, and the development of low-cost solid storage media and their evaluation through
compatibility tests with molten salts. On the other hand, the research on latent TES for CSP plants has
aimed at increasing the thermal conductivity of phase change materials (PCM) through encapsulation,
utilizing heat pipes, and making PCMs mobile—the so-called dynamic PCM—in order to increase the
discharge phase.

In CSP, sensible energy storage is the most mature technology, as well as the only that is
commercially available today [19]. Sensible storage can be found in commercial plants such as
the PS10 and PS20 projects (2007 and 2009), and the Andasol 1 and Andasol 2 plants (2008) in Spain,
and the Solar One plant (1982) in the USA [15]. Today, two TES technologies are currently implemented
in commercial CSP plants: the so-called Ruth’s storage for direct steam generation plants, and the
two-tank molten salts technology [16].

A cost comparison between these two commercial TES systems for CSP was carried out by
Gonzélez-Roubaud et al. [19] using a levelized cost of electricity (LCOE) calculation. This metric is
used in power generation in order to compare the cost of electricity between sources. The results show
that the Ruth accumulator has the lowest thermal cost for storage capacities lower than 3 h, followed
by the direct and indirect molten salt TES. The trend reverses when storage capacities increase.

A parallel study was done by Dowling et al. [20], where an economic assessment of complete
CSP plants with two different methods, LCOE and revenue, was presented. They demonstrated that
the value of TES is not correctly captured when the LCOE is used, since this does not include the
economic opportunities coming from the time-varying value of electricity (which are increasing as
more non-dispatchable renewable power is included in the grid). These authors state that storage
capacity increases the flexibility of CSP generators, as well as the revenues that are available to them.

The second storage technology, latent heat storage, allows large amounts of energy to be stored in
relatively small volumes (high energy density) [21]. Although there are several studies [22-25] related
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to the use of phase change materials (PCM, the materials used in latent heat storage) in CSP plants,
this technology is still not installed in commercial plants.

Finally, thermochemical energy storage is receiving increasing attention among researchers.
Prieto et al. [15] presented a review of chemical reaction processes for CSP from the technological
point of view. The authors presented the different cycles that have been studied by other researchers,
such as sulfur base cycles and metal oxide redox cycles (calcium carbonate cycle, calcium hydroxide
cycle, and manganese oxide cycle), and perovskite-form structures. Previously, reaction candidates for
medium or high-temperature applications (250-800 °C) were listed by Felderhoff et al. [26]. The listed
candidates included metal hydrides, metal hydroxides, and metal carbonates. In 2014, Pardo et al. [27]
published a state-of-the-art of the thermochemical heat storage solutions, focusing on temperatures
comprised between 573-1273 K, and not focused only on CSP applications, but more generally on
high temperature. The materials listed are metal hydrides, carbonate systems, hydroxide systems,
redox systems, ammonia systems, and organic systems. In their conclusions, these authors claimed
that thermochemical energy storage appears to be the most promising TES system for solar plants
during long periods, because both the storage period and transport distance are theoretically unlimited,
since there is no loss of heat during storage (storage happens at ambient temperature).

Although some of these reviews present and comment on the different configurations and
prototypes used for each material or reaction, none of them has provided a detailed assessment of the
reactor itself. Therefore, the aim of this new review is to fill this gap found in the literature, evaluating
the reactor concepts, and highlighting their advantages and disadvantages.

2. Materials Used in Thermochemical Reactions

Currently, there are different processes using solar energy, from CSP plant technology to
performing a chemical reaction [28-32]. All of them have in common the objective of reducing fossil
fuel consumption, and therefore reducing CO; emissions. The different processes that require solar
reactors and also working temperatures above 1000 °C are two-step thermochemical H,O/CO,
splitting, the gasification/cracking of carbonaceous feedstock, thermochemical heat storage, and the
recycling/procurement of raw materials.

The two-step thermochemical H,O/CO; splitting [33,34] is based on a two-redox reaction cycle
for CO and H; production, which is considered as solar fuel. This gas is used as fuel for fuel cells
or feedstock for in Fischer—Tropsch reactions. In this case, in order to split CO, and H,O molecules,
a metal oxide is used to perform a thermal reduction of metal oxide, obtaining a metal (or metal
oxide) (Equation (1)) that is capable of reducing (split) CO; or H,O (Equation (2)). Depending on
the metal oxide, the working temperature or the system pressure must be adjusted [35]. In addition,
in Equation (1), the key is the solid product of the reaction, while in Equation (2), the important step is
the gas product. These key issues will be the points affecting the reactor design.

MO, +Q — MO,y + %02 )

MOx_y + yCO, /H,O — MO, + yCO/H, @)

The processes gasification/cracking of carbonaceous feedstock [29,36] are based on biogas
cracking (Equation (3)) or carbonaceous feedstock gasification (Equation (4)) to obtain solar fuel,
for fuel cell or for a Fischer—Tropsch reaction. When necessary, these reactions can be performed under
catalytic reaction to accelerate kinetics. A system for collecting the gases will be significant for the
reactor design in this type of process:

CyHy +Q — xC + %H2 3)
CH,Oy + (1 - y)H,0 +Q — (§+1—y)H2+Co @)
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Thermochemical energy storage [26,27] is designed to store heat through a reversible reaction
(Equation (5)). A heat exchanger is required for this process in order to revert the solar heat that has
been stored. However, although this technology/process has still not been neither extensively studied
nor implemented, its definition can be found in the literature [37].

MO, +Q < MO,y + %02 )

Finally, there is the recycling/procurement of raw materials. As it is well known, many processes
for obtaining raw materials, such as Zn or CaO, require high-energy inputs to perform a carbothermal
reduction. In this case, several materials can sustain thermal reductions by using concentrated
solar power.

As mentioned above, all of the processes prioritize some design aspects (heat exchanger, product
collection, versatility, etc.). However, all of them can be classified according the reaction type, heating
system, or limiting step of process (reaction, diffusion, etc.).

3. Classification of Reactors

There are several ways to classify the solar reactors depending on the focus. Classifications based
on the reactor or on the system can be found in the literature [28,38]. Therefore, a new classification
is suggested based on the process by itself, which is at the end what will give us the limiting step.
The limiting step is essential to properly designing the reactor and the system containing the future
TCM (thermochemical material) selected reaction, which will be implemented in solar power tower
(SPT) technology.

3.1. Classification Based in the Reactor

Figure 1 shows the classification of the reactors that has been taken into account in Table 1.
Within stacked beds (modular ones), fixed beds are recommended for solar catalytic reactions. For those
reactions that require good thermal transfer properties, Villermaux [38] suggested the employment
of fluidized beds. Cyclones are interesting if the further separation between solid and gas is desired,
but their use is similar in terms of the ad/disadvantages of fluidized bed reactors (Table 1).

' Reactors
Stacked Entrained
bed bed
' Fixed ' Mobile 'Rotatory - ' Cyclone ' Pneumatic
Fluidized
bed

. Fluidized Blown
Vibrated or ' bed I ' bed I
pulsated

Figure 1. Classification according to the reactor type.

Following a flow pattern classification, three main gas—solid technologies can be found, including
fixed, moving and fluidized bed [39]. Their main advantages and disadvantages are shown in Table 1.
In fixed bed reactors (also called packed bed reactors), the solid particles are located inside a vessel
with the flux of reactants flowing through the stationary bed. When the diameter of the packed bed
increases, heat transfer rates are poor; therefore, high heat transfer rates should be considered when
fluidized beds are required [40]. In mobile/moving bed reactors, the bed can be moved continuously
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or periodically with a fluid circulation similar to the prior one. In addition, in fluidized bed reactors,
the solid has a very small diameter and is maintained in suspension.

Table 1. Comparison between fixed, moving, and fluidized bed reactors for solar applications [41].

Reactor Advantages Disadvantages
Low heat and mass transfer
High-pressure drop
Difficulties to be implemented in solar
Low cost receiver cavities at continuous
Fixed /packed bed Non-parasitic commercial process
Easier for modeling Stacked bed needed, with higher

complexity in solar-focused strategies
Non-uniform irradiance distributions on
the particle volume

Difficulties to be implemented in solar
reactors

Non-uniform irradiance distributions on
the particle flow

Need to control the residence time to
increase the heat transference in particle
receiver

Complex hydrodynamics

Direct heat transfer between solids
Mobile/moving bed and the gas
Increase of the heat transfer coefficient

Difficulties of scalability to lager
. . . . ial sol
High chemical conversion due to high commerciél soat s,.ystems .

Increase of parasitic energy consumption

heat and mass transfer

Rotary Versatilit due to the movement of the reactor
Lone life com }c])nen ts Higher risk of mechanical maintenance
& P cost due to the use of a rotatory element

at high temperature

Difficulties to be implemented in solar
reactors

Need of gas for fluidization

Increase of parasitic energy consumption
due to the need of fluidized gas

Erosion of internal components
Complex reactor hydrodynamics and
modeling

Minimization of the risk of hotspots
Fluidized bed and thermal instability
Heat transfer coefficients are high

3.2. Classification Based in the System

As mentioned in Table 1, the implementation of the reactors in the solar plant is the main problem
for the system configuration. A possible classification based on the irradiation and the solar receiver
can be established according to the heat integration mode into the reaction chamber. This is related
with the maximum system efficiency (solar-to-chemical). Furthermore, solar reactors are indirect or

l Open Closed

Figure 2. Classification according to the system.

direct, as shown in Figure 2.




Energies 2018, 11, 2358 6 of 23

Indirect reactors are those where a container material is directly irradiated to heat the solid or the
heat transfer fluid. This configuration is mostly used for fluidized beds, where the solid can be forced
upward through irradiated tubes by an airflow, which fluidizes the particles and increases the heat
transfer from the tube walls to the flowing particles [28,42].

On the other hand, in direct reactors, reactants are directly irradiated and heated by a solar
radiation input. Some of them have a receiver aperture that can be opened (open reactor) or closed by
a transparent window (mainly quartz-closed reactors). The quartz window is mandatory in a direct
system at high temperature in order to reduce the heat and mass losses. The design of a suitable
window for high-temperature processes (T > 900 °C) is still a bottleneck in the design of solar receivers.

Therefore, for direct reactors (both configurations: open and closed), it is important to consider
the absorptivity /emissivity of the material, since the more radiation that is absorbed, the higher the
reactor efficiency and conversion, because the materials are basically heated by radiation, although
they are also heated by convection and conduction. Higher temperatures are expected within direct
reactors when compared to indirect reactors, but it is difficult to get homogeneous temperatures inside
the reaction chamber.

On the other hand, an indirect system is defined as a system that uses concentrated solar power
to heat a black body, and then transfers the heat to the reaction cavity by conduction and convection.
Therefore, an indirect reactor requires a thermal conductor between the receiver and reactor to heat the
reaction cavity [43]. However, such systems minimize the thermal shock (the temperature gradients
are lower than in direct reactors) by maintaining a uniform temperature inside the reaction chamber.

Energy efficiency is directly affected by this choice, since when transferring sun energy to
a material, there is always some losses, which at the end is translated to less system efficiency.
The indirect system implies one more resistance than the direct system.

3.3. Classification Based in the Process Limiting Step

The classification shown in Figure 3 is suggested by the authors. From the point of view of our
knowledge, it is very important to distinguish between a reaction with two phases and a decomposition
of a solid due to the effect of heat. This classification enables us to make a relation with the limiting
step of the process inside the reactor. Moreover, the limiting step (chemical or diffusive controlled)
must be identified in order to start the reactor design.

Thermal
decomposition

Solid-gas
reaction

Figure 3. Classification according to the thermochemical material (TCM) process.

The diffusion control step can be separated in two diffusion processes, which occur in solid-gas
reactions: one from the gas to the solid surface (external diffusion), and a second from the outer surface
of the solid particle to the inner part of the particle (internal diffusion) [37,38].

Another limiting step could be the chemical reaction, and thus kinetics itself. There are several
criteria to identify the influence of diffusion and temperature difference within the particle on the
reaction rate. This should be studied for each specific reaction in order to differentiate the processes
controlled by chemical reaction (thermal decomposition) and processes to be studied as its limiting
step (solid—gas reaction).
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4. Reactors Used in Solar Plants

Table 2 is a summary of all of the available experimental reactors that have been published until
September 2017, of which most work at temperatures above 1000 °C (1273 K).

Sixty-eight experimental reactors have been found in the literature working at high temperatures,
including 48 of them working above 1000 °C. Both thermal decomposition and solid—gas chemical
reaction processes are carried out in these reactors, with the chemical reaction type the being the
dominant one. Most of the reactors (81%) are part of a direct and closed system, followed by indirect
systems (15%); direct and open systems only make up 3%. Then, when looking at the highest-level
group of system configurations (direct and closed), the main observations are:

e  All of the available and described reactor types are presented: entrained, stacked, and fluidized.

e The main available reactors that have been tested at the lab scale are stacked /fixed bed, 50%.

e  Fluidized beds are the second most reported option, with around 21%.

e  Stacked/rotary reactors are in third position, with 15% of the implementation within this group.

e Cyclone reactors have been implemented in all of the possible system configurations:
direct/open, direct/closed, and indirect. The most available ones are in active/direct/closed
system configuration.

In general, and as a summary of all of the reactor configurations listed in Table 2, the statistics of
different combinations of system, reactors, and processes are presented in Table 3.

The rotary reactors, which are within the stacked bed reactors, are mainly found in the direct
and closed system group, with half of them using decomposition processes, and the other half using
chemical reactions. Those reactors account for around 24% of the total decomposition processes.
The solar efficiencies of these decomposition processes are between 12-88%, and chemical conversion
varies between 30-95% in these reactors. Rotary reactors reduce radiation losses with constant
temperature in the internal wall. Moreover, the movement of the particles increases the heat transfer [44].

Fluidized beds are used in reactors in direct/closed systems, with most of them using solid—gas
reactions (13 out of 14). They represent 28% of the total number of reactors used for solid-gas reactions.
Chemical conversions vary from less than 10% to 100%. Data regarding solar efficiency is only available
for three of the reactors, with values ranging between 10-15%.

Fixed bed reactors, which are the most frequent type of reactors, have been used for both
processes; almost 32% for thermal decomposition and 68% for solid—gas reactions. They represent
49% of the reactors used for solid—gas reactions. Chemical conversions vary from 25% to 100% for
thermal decomposition and from less than 15% to 85% for solid—gas reactions (note that there is
a reactor presenting a 2% chemical conversion, which uses a foam matrix, and has been discarded in
this comparison [28]). Furthermore, very little data is available concerning solar efficiency, especially
for direct, closed fixed bed reactors, due to the difficulties of scaling up this technology in commercial
solar applications.
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Table 2. Summary of reactor configurations.
Power Solar Chemical
Process Heated System Reactor Type Thermochemical Process Tested in kW] Tmax [K] Efficiency Efficiency Reference
[%] [%]
Entrained Calcite decomposition PSI furnace 18-28 1273 43 90 [28,45,46]
cyclone (Switzerland)
Open Stacked Decomposition of limestone PSI furnace 10 1423 20 95 [47]
bed-Rotary kiln (CaCO3) (Switzerland)
Entrained e Weizmann
cyclone Thermal splitting methane Institute (Israel) n.a 1320 n.a 28.1 [48-50]
CNRS-PROMES
Icite d iti lar f 2 157 .
Fluidized bed Calcite decomposition solar furnace 573 14 n.a [28]
(France)
Mn, 03 reduction IMDEA (Spain) 1073 1020 n.a. n.a. [51]
MnO, reduction IMDEA (Spain) n.a 2100 n.a 25 [28,52]
Mn30O4 reduction IMDEA (Spain) 1 1673 n.a. 60 [28]
Mn, 03, Mn30y, CeO reduction  IMDEA (Spain) 2 1723 47 100 [28]
Thermal Direct PSLf
decomposition ZnO thermal decomposition ,rurnace 45 2400 na na [30,53,54]
(Switzerland)
Closed CeO,/Ce;Os thermal na. 2 2273 na 95 [54]
reduction for H production
Stacked - -
bed-Fixed bed CeO,/H, Dish/Starling 10 kWe 1773 n.a 40 [55]
. CNRS-PROMES
Zn0O, SO, thermal reduction ) gyace 1 1900 na 48/72 [28,31,56]
cycle for Hy production
(France)
CNRS-PROMES
Fe304/FeO/CO; splitting solar furnace 1.5 1873 n.a 97 [36,39]
(France)
Biomass gasification CEA-LITHEN 1 1673 n.a 28 [57]
(France)
Stacked ZnO, thermal reduction cycle PSI furnace 10 1900 na na [28,58]

bed-Mobile bed

for Hp production

(Switzerland)
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Table 2. Cont.

90f23

Power Solar Chemical
Process Heated System Reactor Type Thermochemical Process Tested in kW] Tmax [K] Efficiency Efficiency Reference
[%] [%]
" PSI furnace
ZnO thermal decomposition (Switzerland) 10 2000 n.a. 35 [59,60]
ZnO thermal decomposition PSI furnace 10 1900 12 95 [60,61]
P (Switzerland) ,
Stacked ZnO thermal decomposition PSI furnace 10 2136 n.a 90 [30,62]
bed-Rotary kiln P (Switzerland) : 30,
" PSI furnace
ZnO thermal decomposition (Switzerland) 15 2023 n.a 30 [63]
ZnO thermal decomposition oL fumace 115 2000 0.88 3 [64]
(Switzerland) ’
. - PSI furnace
CaCOj; lime decomposition (Switzerland) 10 1873 35 95 [65]
Indirect Stacked
bed-Fixed bed CNRS-PROMES
Wood solar furnace 1 1673 28 82 [66]
(France)
ZnO reduction with CH4 and PSI. furnace 5 1600 na 90 [67]
Entrained bed syngas production (Switzerland)
cyclone S PSI furnace
Steam gasification of petcoke (Switzerland) 5 1818 9 87 [67,68]
ZnO reduction with CH4 and PS¥ furnace 29 1373 na 43 [69]
syngas production (Switzerland)
Chemical ) Ca0O/CaCOj3, atmospheric CO, PSI furnace
reaction Direct Closed capture (Switzerland) n-a 1150 n-a 71 (701
. Niigata
Fluidized bed NiFe;0,/m-ZnO ivers,
thermochemical cycle/H; Um\.lerSIty solar 2 1473 n.a 45 [71-73]
. simulator
production
(Japan)
CNRS-PROMES
Steam gasification of charcoal solar furnace 2 1773 10 100 [29,74,75]

(France)
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10 of 23

Power Solar Chemical
Process Heated System Reactor Type Thermochemical Process Tested in kW] Tmax [K] Efficiency Efficiency Reference
[%] [%]
University of
Steam gasification of charcoal =~ Minnesota solar 6 1600 n.a 100 [29,76]
furnace (USA)
Center for
CeO, water splitting Transdisciplinary 7 1173 n.a n.a. [77]
research
e ETH Zurich
CeO, water splitting (Switzerland) 2.8-3.8 1873 n.a n.a. [78]
Center for
CO + H;O Transdisciplinary 5 2073 15 <10 [79]
research (Japan)
Colorado School
Sr-doped + CaMnO3 of Mines (USA) n.a 1273 n.a n.a. [80]
Niigata
i University solar
Fe,O3 water splitting simulator 30 1473 n.a n.a. [81]
(Japan)
Ca0/CaCO University of na 1100 na 15 82]
3 Sevilla (Spain) : .
DLR solar
Metal oxide reduction furnace na 1073 n.a n.a. [83]
(Germany)
Calcium looping IRC (Italy) 3 1023 n.a n.a. [84]
Fep O3, Fe304, Mn3O4 PSI furnace -
reduction (Switzerland) n-a 2100 na 8 [28,50]
Ce0, CO-HR0 splitting PSI furnace 2 1913 0.7-0.8 2 [28,30,31,85-87]
(foam) (Switzerland)
Stacked
bed-Fixed bed . . Plataforma Solar
Ferrite for H production de Almeria 100 1473 na 30 [31,86-89]
(honeycombs) .
(Spain)
Syngas production via SANDIA (USA) 97 1473 na 54 [31,90]

CH4—CO; (foam)
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11 of 23

Power Solar Chemical
Process Heated System Reactor Type Thermochemical Process Tested in kW] Tmax [K] Efficiency Efficiency Reference
[%] [%]
Niigata
NiFe,;O4/m-ZrO,-coated for University solar
Hj production (foam) simulator 0.7.2) 1773 na. 60 [31,72,91]
(Japan)
University of
CeO-CO, splitting Minnesota solar 4.4 1847 n.a. 72 [92]
furnace (USA)
- ETH Zurich
CO, splitting redox (Switzerland) 3.8 1873 n.a. <15 [93]
DLR solar
Co0304/Co0O furnace n.a 1273 65 n.a. [94]
(Germany)
DLR solar
CaO/Ca(OH), furnace n.a 773 94 n.a. [95]
(Germany)
CEA-LITHEN
CaO/Ca(OH), (France) 55 773 n.a. n.a. [96]
IT Power
NH;3/N; (Australia) 5 948 n.a. n.a. [97]
Guangdong
CH,4 Yudean Xinhui n.a 800 50 47.2 [98]
Generation
(China)
Sun Yat-Sen
CHy University n.a 563 n.a. n.a. [99]
(China)
CHy n.a. n.a 948 55 25 [100]
CeO, water splitting CIEMAT (Spain) 57.5 1473 n.a. n.a. [101]
CNRS-PROMES
Ce0,-CO; splitting solar furnace n.a 1273 n.a. n.a. [102]
(France)
n.a n.a. n.a 1073 99 n.a. [103]
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Table 2. Cont.
Power Solar Chemical
Process Heated System Reactor Type Thermochemical Process Tested in kW] Tmax [K] Efficiency Efficiency Reference
[%] [%]
. DLR solar
C00/Co30 thermochemical furnace 10 173 na 70 [37,104]
heat storage
(Germany)
CuO/Cu0O, thgrmochemmal IER—UNAM 285 na na 80 [105]
reaction (Mexico)
. University of
Rotary kiln CuO/Cu0, the.rmochemmal Antofagasta n.a 1153 n.a 80 [106]
reaction .
(Chile)
Mny,O3/Mnz 0y IMDEA (Spain) 10 1700 15 85 [106]
CNRS-PROMES
SrBr,-H,O/SrBrg-6H,O solar furnace 300-600 353 n.a n.a [107]
(France)
Stacked ETH Zurich
bed-Mobile bed Zn0 (Switzerland) 10 1446 14 <124 [108]
DLR solar
Direct/Indirect CONTISO.L CH,4 furnace 6 1223 n.a n.a [109]
configuration
(Germany)
. PSI solar
Entrained bed Steam gasification of charcoal furnace 3 1425 1.53 26 [110,111]
cyclone .
(Switzerland)
PSI solar
Steam gasification of charcoal furnace 5 1440 29 na [29,112,113]
(Switzerland)
Indirect PSI solar
Stacked Steam gasification of charcoal . fgrnafe 4 8 1490 28 n.a [29,114]
bed-Fixed bed (Switzerland)
DLR solar
CaO/Ca(OH), furnace 10 823 90 n.a [115]
(Germany)
Mn,O3 and ALO; IMDEA solar 21 1673 254 416 [16]

furnace (Spain)
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Table 2. Cont.

13 of 23

Power Solar Chemical
Process Heated System Reactor Type Thermochemical Process Tested in kW] Tmax [K] Efficiency Efficiency Reference
[%] [%]
DLR solar
CaO/Ca(OH), furnace 2 873 95 n.a [117]
(Germany)
CaO/Ca(OH), IET (China) 2 613 n.a n.a [118]
Stacked PSI solar
ZnO reduction with carbon furnace 5 1500 15 25 [119,120]

bed-Mobile bed

(Switzerland)
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Table 3. Statistics of systems, reactors, and processes undergone.

Type of Reactor Number of Reactors Thermal Decomposition Chemical Reaction

Direct Open Entrained Cyclone 1 1 0 —
Direct Open Stacked Rotary 1 1 0 —
Direct Closed Entrained Cyclone 3 1 2
Direct Closed Fluidized Fluidized 15 1 14

[69]
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Table 3. Cont.

15 0f 23

Type of Reactor Number of Reactors Thermal Decomposition Chemical Reaction

GRS

Direct Closed Stacked Rotary 10 ) = l“l

ENESRe

- {1

122345 [106]
[30,62]

Direct Closed Stacked Fixed 26
Direct Closed Stacked Mobile 2
Indirect Stacked Fixed 8

[65]

[29,112,113
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Table 3. Cont.

16 of 23

Type of Reactor Number of Reactors Thermal Decomposition Chemical Reaction
Indirect Stacked Mobile 1 0 — 1
[119,120]
Indirect Entrained Cyclone 1 0 — 1
[110,111]
Direct/Indirect CONTISOL configuration 1 0 — 1
[111]
TOTAL 68 21 — 47 —
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5. Conclusions

The analysis of the available literature shows that there will not be a single reactor configuration
to be applied for solar thermochemical process. The diversity of the detailed problems shows that the
technology is still in low technology readiness level (TRL)—less than five—and significant research
and development are still demanded. The design and optimization of the reactor to be used must be
defined by the chemistry of the reaction, the dominant transfer mechanisms, and the compatibility of
the materials. Moreover, all of this must be designed with ambitious solar efficiency objectives in order
to minimize the cost of the solar field, which continues to be one of the limitations in the cost savings
of CSP.

Reactors implemented in direct systems are by far the most studied ones. A very high percentage
of both solid-gas reactions and thermal decompositions, around 81% of the total systems analyzed,
consists of a direct and closed system configuration. Within this configuration, the majority of all of
the processes—around 69%—take place in stacked reactors, and within this reactor type, fixed bed
reactors are preferred (68%). The direct configuration has a significant lower cost than an indirect
system. Additionally, the closed configuration is mandatory at high temperature to increase the solar
efficiency in the reactor receiver.

Fixed beds are being used to undergo both processes; they are more used for chemical reactions
and show better chemical conversion in thermal decomposition processes. However, their use in
solar applications is at a very preliminary stage of application. The control of the temperature in
the irradiated solid, the uniformity of the flux map, the effect of the diffusion mechanism, and the
scalability of the processes makes their applicability difficult.

Fluidized beds are preferred for solid—gas reactions, and are known to increase two phases
(gas and solid) contact and thus heat and mass transfer. Therefore, they are recommended for solid—gas
reactions, whose limiting step is diffusion, which is either external or internal. Nevertheless, complexity
in design, increase in the self-consumption, and the erosion/wear of internal components are big
drawbacks to overcome.

Solar efficiencies up to now have been very low. Those values cannot be compared, since very
little data is found in the published papers. The state-of-the-art showed 50% as the maximum solid
receiver efficiency achieved so far; however, a value higher than 80% is required to make this solar
system economically feasible.

Chemical conversions are acceptable in some specific cases; these are mainly fluidized bed reactors
for solid—gas chemical reactions, and fixed bed reactors and rotary reactors for thermal decompositions.

Most of the problems found when working experimentally with these reactors are due to material
resistance and low chemical conversions due to an insufficient radiation power or bad use of it.
Important operational and design parameters when working with a CSP reactor are the geometry of
the reactor, which needs to be optimized, the preheating of the inlet gas, the reactor configuration
(continuous or batch), and re-radiation losses.
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