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Abstract

Compressed sensing is a new paradigm capable of sampling and compressing signals in

one step. Its original purpose was to compress sparse or compressible signals in a way

that reconstruction from the measurements taken were possible. However, many applica-

tions do not require signal recovery. Therefore, a new branch of compressed sensing aims

to directly perform inference using the information encoded in the samples, instead of

recovering the complete signal and then solving inference problems over the reconstructed

signal. In this thesis, the mathematical framework for detection, classification, estimation

and filtering on compressed measurements was studied. Moreover, applications of infer-

ence mainly based on machine learning as an implementation tool were reviewed. Finally,

machine-learning algorithms were tested on compressed measurements.

Keywords— Compressed Sensing, Inference, Detection, Classification, Estimation, Filter-

ing, Compressed Learning, Machine Learning, Deep Neural Networks
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Resumen

El muestreo compresivo es un nuevo paradigma capaz de muestrear y comprimir señales

en un solo paso. Su objetivo original era el de comprimir señales sparse o compresibles de

tal modo que su reconstrucción a partir de las medidas tomadas fuera posible. Sin em-

bargo, muchas aplicaciones no requieren recuperar la señal. Por lo tanto, una nueva rama

del muestreo compresivo pretende realizar problemas de inferencia directamente usando

la información codificada en las muestras en lugar de recuperar completamente la señal

y posteriormente resolver el problema de inferencia sobre la señal reconstruida. En este

trabajo se estudia el marco matemático de los problemas de detección, clasificación, esti-

mación y filtrado. Además, se revisan aplicaciones de inferencia principalmente basadas

en el uso de herramientas de aprendizaje automático. Por último, se prueban algoritmos

de aprendizaje automático sobre medidas comprimidas.
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Chapter 1

Introduction

Paper documents, vinyls, photo negatives, physical books... Some of these objects are

already in the past and the others could soon be too. Physical information support is dis-

appearing due to digitization. Moreover, we are creating more and more digital contents

every second through smartphones, PC, GPS, sensors... They are examples of devices that

surround us everyday and generate data such as images or videos. To have an idea of the

rapid increase in the volume of information, according to International Data Corporation

(IDC), in 2006 there were 161 exabytes of digital data and by 2020 the estimate was 59

zettabytes. Taking into account that 1 zettabyte equals 1000 exabytes, the increase in

data to manage is enormous.

All this information brings about challenges related to data management, storage and

analysis. Proper data representation is needed, redundancy must be reduced and com-

pression has to be applied. Another challenge is energy consumption. Processing, storage

and transmission of massive data consume a lot of electrical energy. In this context, sig-

nal processing plays a major role to improve the situation with the development of new

theories able to simplify the work with signals. In particular, a focus of this thesis is on

how to process data acquired by sensors.

In classical signal processing, for transmission or storage purposes, a signal is first

sampled. In this process n elements are obtained. Subsequently, compression is applied,

which means that from these n elements, just k ≤ n are taken and the rest are discarded.

Then, this compressed signal can be either stored in a storage device or in the cloud, or

it can be transmitted. In this second case, the k elements are sent to the receiver, where

a decompression or reconstruction process is conducted.

Regarding sampling, the Nyquist-Shannon theorem [56] sets how to sample a band-

limited time-varying signal in order to be able to reconstruct it from the corresponding

measurements. In other words, this theorem determines how to keep the relevant infor-
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mation of the signal, which must be sampled uniformly at a rate that exceeds twice the

signal’s highest frequency. Although this result has been widely used, it presents some

drawbacks. As it has been mentioned before, after n measurements are taken, they are

compressed into k samples for storage or transmission purposes. Consequently, n − k

samples are discarded, which means it was not necessary to acquire them in the first

place. Additionally, for signals containing high frequencies, the sampling rate required by

Nyquist criterion might be too high to be practically implemented [64]. Furthermore, the

theorem is only applicable to band-limited signals whose band-limit is known a priori.

The aim of compression is to reduce redundancy and irrelevancy [36]. For example,

neighbouring pixels in an image are correlated, so there is intrinsic redundancy. However,

there can be some loss in the process of compression. In fact, well-known compression

algorithms, such as JPEG for images, are lossy because when compression is performed,

too much information is discarded, thereby causing degradation in the reconstruction with

respect to the original data. There are also lossless compression methods, for example

the algorithm related to the PNG format [8].

One of the most important techniques for compression is transform coding. Different

transforms provide representations of the original data in new domains where the number

of coefficients that gather the information is smaller than in the original domain. For

example, JPEG is based on the Discrete Cosine Transform (DCT) [50], which is an or-

thogonal transform that represents the image in the frequency domain.

Based on the idea of transform coding, and aiming to improve Nyquist-Shannon’s rate,

Compressed Sensing (CS) appeared in 2006 introduced by Donoho, Candès, Romberg, and

Tao [28, 11]. In [49] and [51], a theoretical review of CS is presented together with some

of its applications.

The aim of CS is to provide a theoretical framework in which the reconstruction of a

signal can be obtained from fewer measurements than using the Nyquist-Shannon rate.

This theory works with sparse or compressible representations of signals. This means

that, in a certain basis, the targeted signals are represented by a small set of coefficients

or by a set of coefficients that, if sorted, exhibit rapidly decaying values. Provided that

the signals of interest present this characteristic, fewer measurements than those result-

ing from applying the Nyquist criterion can be taken randomly while keeping all relevant

information. The fact that the acquisition and compression of measurements are carried

out concurrently gave its name to the theory: Compressed Sensing. Once simultaneous

sampling and compression is performed, the compressed signal would be transmitted to

the receiver for reconstruction.
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The fundamental idea of CS is solving an underdetermined linear system to implement

the recovery:

y = Φf (1.1)

In this expression, y is the compressed signal, Φ is a matrix that represents how the signal

was sampled, and f is the original signal that we need to reconstruct. To solve this, an

optimization problem is set that includes restrictions over the sparsity of the signal re-

covered. Many different approaches have been followed to develop algorithms capable of

reconstructing a signal under the CS framework. Some of them are reviewed in this thesis.

However, signal recovery is computationally expensive. Moreover, for many signal

processing problems, recovery is not always needed. Would it be possible to work just

with the compressed measurements? Let us focus on computer vision for example. Pat-

tern recognition, detection and classification are three major problems addressed by this

field. For any of them, the same steps are typically followed. For instance, if we wished

to classify an image, first we would need to acquire the visual information using a CS

sensor. The information with the compressed measurements would be sent to the device

that is going to analyze the data. In this device, the image is reconstructed and then

the classification is performed. However, knowing that the aforementioned problems are

solved by extracting the most important features from the original raw data and that

with CS such features are included in the measurements, the question arising is would it

be possible to avoid reconstruction and directly conduct classification on the compressed

samples? How can we achieve this? A mathematical framework to solve inference prob-

lems on compressive measurements is needed.

Statistical inference is a mathematical field that provides methods to obtain relevant

information about a statistical population with just partial information about that popu-

lation. Using techniques provided by statistics we could infer information from compressed

measurements. In fact, [22] provides mathematical bounds within which four inference

problems are solved when working with compressed measurements. These problems are

detection, classification, estimation and filtering. Two key points are that measurements

are taken randomly, as mentioned before, and that for inference there is no need to know

in which basis the signal is sparse or compressible.

Once this framework was developed, many approaches for achieving CS-based direct

inference used neural networks. Machine learning is a branch of artificial intelligence

that involves inference and database processing. Therefore, it seems natural to try to

join compressed sensing and neural networks. The idea is to have a sensing device in
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which the compressive process is performed during the acquisition of the signal, obtaining

compressed samples, and then inference is implemented using machine learning. Usually

the samples are said to be in a low dimension called compressed domain while the orig-

inal signal is in a high dimension called data domain. The aim is to perform inference

with similar accuracy in both dimensions. Thus, we would be achieving a dimensional-

ity reduction while preserving the most relevant information included in the original data.

Devices that directly acquire signals in a compressed form according to the require-

ments set by CS have already been implemented. A well-known example is the Single

Pixel-Camera (SPC) [30]. Current research is focused on applying inference to the mea-

surements taken with this type of devices.

The main objective of this thesis was to review state-of-the-art research about in-

ference on compressed measurements taken according to the CS theory and provide its

mathematical background. The thesis is organised as follows. Chapter 2 explains CS

theory, providing its mathematical framework and describing algorithms developed for

reconstruction, which was the original purpose of this theory; in this context, some of

the most important applications of CS are also reviewed. In Chapter 3, we introduce

statistical inference concepts and explain detection, classification, estimation and filtering

with compressed measurements. Inference applications are reviewed in Chapter 4 and we

also show how inference can be implemented using Python code. Finally, some concluding

remarks are provided in Chapter 5. The complete code developed throughout this thesis

is described in the Appendix.



Chapter 2

Compressed sensing

2.1 Background

Suppose a signal which is intended to be sampled so that the most important information

is preserved. Nyquist-Shannon theorem [56] shows how to sample a band-limited signal to

be able to reconstruct the original information from the measurements taken. To present

the theorem, some definitions are needed.

Definition 1 (Fourier transform). Let f ∈ L1(R) be a continuous time function. Its

Fourier transform is defined as

f̂(q) =

∫
R
f(t)e−2πitqdt (2.1)

where q ∈ R.

Definition 2 (Band-limit signal). Let f ∈ L1(R) be a continuous time function and f̂ its

Fourier transform. It is said that f is band-limited with bandwidth B if f̂ ⊂ [−B,B].

The Nyquist-Shannon theorem states that band-limited signals must be sampled at

a rate twice its bandwidth. If this condition is satisfied, the signal can be completely

reconstructed from the samples.

Theorem 1 (Nyquist-Shannon [31]). Let f ∈ L1(R) be a band-limited continuous time

function with bandwidth B. Then it occurs that

f(t) =
∑
k∈Z

f

(
k

2B

)
sinc(2πBt− πk) (2.2)

5



6 2.2. Theoretical framework

where

sinc(t) =


sin(t)
t

t 6= 0

1 t = 0
(2.3)

To apply this theorem, first the signal needs to be band-limited and second the value

of this limit must be known in advance, which may not always be possible. Also, we have

to take into account that the frequency along the signal varies. Therefore, in fragments

where the frequency is low we could be taking more measurements than truly needed.

The Nyquist-Shannon theorem shows how to sample a signal in order to reconstruct

it from the measurements taken. However, we want to do better and sample below the

Nyquist rate. With this purpose, the theory called Compressed Sensing (CS) has being

developed during the last few years. It provides certain hypotheses regarding sparsity of

the signal so that all the relevant information is preserved in compressed measurements.

Different algorithms have been developed to implement compressed sensing.

For mathematical treatment, signals are represented as elements of a Hilbert space H.

We are going to take H = RN . Therefore, x ∈ RN is a signal. To model the extraction of

M � N measurements we use a sensing matrix Φ ∈ MM×N(R) and let y ∈ RM be the

measurement vector. Finally, the mathematical expression of the problem addressed by

CS is to obtain x knowing that y = Φx.

2.2 Theoretical framework

In this section, we introduce definitions and mathematical results of CS [23].

Definition 3 (Sparse signal). A vector α ∈ RN is said to be sparse when the number of

non-zero coefficients that represents is small. It is said to be S-sparse if S is the number

of non-zero coefficients: S = |{i ∈ {1, 2, .., N} : αi 6= 0}|.

Definition 4 (Set of sparse signals). The set of all S-sparse vectors is defined as

ΣS = {α ∈ RN : ‖α‖0 := |supp(α)| ≤ S}

where supp(α) = {i ∈ {1, 2, .., N} : αi 6= 0}.

There are also signals that, even though their coefficients are mostly non-zero, they

decay rapidly when they are sorted from high to low values. This means that the infor-
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mation is encoded in the coefficients with higher values.

Definition 5 (Compressible signal). α ∈ RN is compressible if the sorted coefficients

|α1| ≥ |α2| ≥ ... ≥ |αN | obey

|αi| ≤ Ci−q

where C is constant, i ∈ 1, 2, ...N and q is the parameter that controls the decay.

The signals of interest for the CS theory are either sparse or compressible. Now let

us suppose that the signal we are working with is neither of them. In this case, it must

be transformed somehow in order to obtain a valid representation. The solution to this

problem implies finding a basis of the space in which the signal is sparse or compressible.

Definition 6 (Basis). The set Ψ = {ψi}i∈I with I = {1, 2, ...N} is a basis of RN if ψi

are linearly independent ∀i ∈ I.

Ψ can be considered as a matrix MN×N(R), called a transformation matrix, whose

columns are ψi. The representation of the signal x ∈ RN in a basis {ψi} is done as a

linear combination of the columns of Ψ.

x =
N∑
i=1

αiψi = Ψα

where αi = 〈x, ψi〉 and α ∈ RN .

Once a sparse representation of the targeted signal is found, we can extract measure-

ments from it with the sampling matrix Φ ∈ MM×N(R) with M � N . The product of

both sensing and transformation matrices, Θ = ΦΨ, is usually denoted as the recovery

matrix. In order to ensure that we are keeping all the important information and that

reconstruction is possible, the recovery matrix must have certain properties. In the first

place, we introduce the Restricted Isometry Property (RIP).

Definition 7 (Restricted Isometry Property). Let Ψ ∈ MN×N(R) be a basis and let

Φ ∈ MM×N(R) be a sensing matrix with M � N . It is said that RIP of order S is

satisfied if there exists δS ∈ (0, 1) with

(1− δS) ‖α‖2
2 ≤ ‖(ΦΨ)α‖2

2 ≤ (1 + δS) ‖α‖2
2 (2.4)
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for all S-sparse vector α ∈ ΣS.

If the RIP of order 2S is satisfied, it follows that for α1, α2 ∈ ΣS with α1 6= α2 then

‖α1 − α2‖ ≈ ‖ΦΨα1 − ΦΨα2‖2

and therefore, ΦΨ is an approximate isometry for S-sparse vectors, [12]. Moreover, all

subsets of 2S columns of ΦΨ are nearly orthogonal, and S-sparse signals are not in the

null space of the matrix. Note also that ΦΨα1 6= ΦΨα2 if α1 6= α2.

Sensing matrices are usually designed before extracting measurements. During their

generation, it must be ensured that they satisfy the properties needed.

Definition 8 (Random matrix). Let A be a matrix. A is said to be a random matrix if

its entries are random independent variables identically distributed to a Bernoulli, Gaus-

sian or sub-Gaussian distribution (in the two last cases, with zero mean, µ = 0, and unit

variance, σ2 = 1).

In fact, Bernoulli and Gaussian matrices are also sub-Gaussian matrices. We can con-

sider A as a random matrix, and Φ = 1√
M
A. These matrices are commonly used because,

with high probability, they verify the RIP. Moreover, it is fulfilled that E[‖ 1√
M
Ax‖2

2] =

‖x‖2
2 for any x ∈ RN and A is a sub-Gaussian matrix [31].

The selection of the sensing matrix is important because the value of M that can be

achieved depends on it. For example, for Gaussian or Bernoulli matrices, we would have

M ≥ CS log(N/S). The proof can be found in [31].

Definition 9 (Coherence). The coherence µ of matrices Φ and Ψ is defined as

µ(Φ,Ψ) =
√
N max

1≤i≤M,1≤k≤N
|〈φi, ψk〉| (2.5)

It measures the maximum correlation between elements of the two different matrices.

We have µ(Φ,Ψ) ∈
[
1,
√
N
]
. The goal in CS is to minimise this correlation. Conse-

quently, we are maximizing incoherence [12].

Finally, we define our problem mathematically. Suppose that x ∈ RN is the signal of

interest, Ψ is the sparsifying basis in which x = Ψα with α ∈ RN is a S-sparse vector, Φ

is the sensing matrix and y ∈ RM is the measurement vector with M � N . The recovery
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of α from the samples in y consists in solving y = ΦΨα. This is an underdetermined

system so it has infinite solutions. However, by formulating the reconstruction problem

as an optimization problem that minimises for the sparsest solution, that is, where α is

S-sparse with minimum S, we can achieve a unique solution. Taking into account the

sparsity property, the first attempt to write the convex problem would be:

min
α
‖α‖0 s.t. y = ΦΨα (2.6)

However, this is an NP problem whose implementation demands an enormous amount

of computational load. The proof is provided in [31]. We could have l2-minimization, but

it does not return sparse signals. Therefore, l1 norm is used:

min
α
‖α‖1 s.t. y = ΦΨα (2.7)

Finally, if we consider that measurements can contain error, then the following theo-

rem provides the conditions for which reconstruction is possible:

Theorem 2 (Candès [12]). Suppose ΦΨ satisfies the RIP of order 2S with δ2S <
√

2− 1.

Suppose also that the measurement vector has the form y = ΦΨα+ e with ‖e‖2 < ε. Then

the solution

α̂ = min
α
‖α‖1 s.t. ‖ΦΨα− y‖2 ≤ ε (2.8)

obeys

‖α̂− α‖2 ≤ C0ε+ C1
‖α− αS‖1√

S
(2.9)

where αS is the vector α with all but its largest S coefficients set to zero. C0 and C1 are

constants. If α is S-sparse, then the recovery is exact.

2.3 Reconstruction algorithms

According to [51] and [49], six categories of algorithms can be distinguished depending

on the approach used for reconstruction.

1. Convex optimization

A convex optimization problem is solved through linear programming. In general,

this type of algorithms are computationally expensive and the reconstruction time

is high.
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An example is the Basis Pursuit (BP) algorithm [15]. The convex problem it solves

is

α̂ = min
α
‖α‖1 s.t. y = ΦΨα (2.10)

This is functional when the measurement vector has no noise. Otherwise, a suit-

able algorithm is Basis Pursuit De-Noising (BPDN) [15], which solves the problem

defined in Theorem 2:

α̂ = min
α
‖α‖1 s.t. ‖ΦΨα− y‖2 ≤ ε (2.11)

2. Greedy algorithms

This category is formed by iterative algorithms that obtains a better approximation

of the solution in every iteration by selecting only columns of ΦΨ that are highly

correlated with the measurements. Every algorithm has its own stopping condition.

The most used ones are Matching Pursuit (MP) [46] and Orthogonal Matching Pur-

suit (OMP) [48]. However, when the signal is not sparse, the computational cost

becomes too high. To solve this, modifications to their structure were proposed,

giving rise to other algorithms such as Compressive Sampling Matching Pursuits

(CoSaMP) [47].

3. Iterative thresholding algorithms

This class consists of iterative algorithms that use a threshold in every update of

the solution. The most popular algorithms are Iterative Hard-Thresholding (IHT)

[6] and Iterative Soft-Thresholding (IST) [21]. The iterator used in both cases is

αk+1 = T
[
αk + λ(ΦΨ)T (y − ΦΨαk)

]
(2.12)

where λ is the step size and T() is the thresholding operator. Given a positive scalar

T , the Hard-Thresholding operator is defined as:

T(x)i =

xi |xi| ≥ T

0 |xi| < T
(2.13)

Concerning the Soft-Thresholding operator, it is given by:

TT (x)i = (|xi| − T )+ sign (xi) (2.14)
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4. Combinatorial algorithms

These algorithms pre-date CS literature but have been adapted for sparse recovery

[17]. Representative algorithms are Heavy Hitters on Steroids (HHS) [33] or Chain-

ing Pursuits [32].

5. Non-convex minimization algorithms

This approach uses the `p norm instead of the `1 norm in Eq. (2.7). It is used with

p ∈ (0, 1); however, note that when 0 ≤ p ≤ 1, ‖·‖p is not strictly a norm. With this

change, the minimization problem is no longer convex. However, it is still possible

to achieve sparse recovery with few measurements [14], [13]. As an example, we can

mention Focal Underdetermined System Solution (FOCUSS) [65].

6. Bregman iterative algorithms

This type of algorithms solve the constrained minimization problem by solving a

series of unconstrained problems generated by a Bregman iterative regularization

scheme [27]. The unconstrained problems have the form

α̂ = min
α
{µ‖α‖1 +

1

2
‖ΦΨα− y‖2

2} (2.15)

where µ ≥ 0.

2.4 Practical Examples

Based on [60], we next present CS concepts using Python code. First, we will represent

a 1D sparse signal and apply some greedy reconstruction algorithms. Then, in order to

show how a basis transform works, we will employ a non-sparse 1D signal and apply con-

vex reconstruction. Finally, we will show an example in which an image is reconstructed.

In all cases we provide the reconstruction error defined as

ε =
RMSE

Dinamic range
(2.16)

The dynamic range of a signal is the range of values that its coefficients take. This is,

the maximum value minus the minimum one. RMSE stands for Root Mean Square Error
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and is defined as

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x∗i )2 (2.17)

where x is the original signal and x∗ is the reconstructed one.

2.4.1 Sparsity and reconstruction

We first plot an example of sparse signal obtained randomly. The libraries employed in

this section are Numpy and Matplotlib.

import numpy as np

import matp lo t l i b . pyplot as p l t

A sparse signal can be created with the following commands. It generates S random

values according to a standard normal distribution and puts them in random positions.

In this example, the length of the signal is N = 1000 and the sparsity is S = 10.

#Generate S−Sparse 1D s i g n a l o f l ength N

N=1000 #Length

S=10 #Spar s i ty

x = np . z e ro s ( (N, 1 ) )

x [ 0 : S , : ] = np . random . randn (S , 1 )

np . random . s h u f f l e ( x )

We obtain the signal shown in Fig. 2.1.

Figure 2.1: 1D sparse signal with sparsity S=10.
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This signal is already sparse. Therefore, we do not have to apply any further trans-

formation. In the theoretical framework described previously in the present chapter, this

case corresponds to Ψ = I, where I represents the identity matrix of the corresponding

shape, which in this case is 1000× 1000.

The next step in CS is sampling. First, we set the number of measurements. In our

example, this is M = 200. This means that our compression ratio is M/N = 0.20. There-

fore, we are discarding 80% of the information in our original signal. Our sensing matrix

Φ is a 200× 1000 normal random matrix according to Definition 8.

# Random sens ing matrix

# 200 measurements taken

M = 200

Phi = np . random . randn (M,N) / np . s q r t (M)

print ( ”Compression r a t i o {0}” . format (M/N) ) # M/N=0.2

y = Phi @ x # Measurement vec to r

Once the samples are taken, the next step is to implement an algorithm to recover the

signal. We present two examples of implementations of greedy algorithms based on the

code reported in [54].

Example 1 (OMP). As mentioned in the previous section, OMP is a greedy algorithm

that is implemented as follows for a sparse signal:

1. Initialization:

Inputs: sensing matrix Φ, measurement vector y, sparsity S

Initial values: r = y, Ωk = ∅, k = 0

2. k-th iteration with k ∈ {1, ..., S}:

(a) Select the index of the most correlated column of Φ with r: λk = arg maxj |〈Φj, rk〉|

(b) Supports are joined: Ωk = Ωk−1 ∪ {λk}

(c) Solution in the k-th iteration: xk = (ΦT
Ωk

ΦΩk
)−1ΦT

Ωk
y

(d) Update residual: rk+1 = y − ΦΩk
xk

We can directly implement this pseudo-code in Python.

def omp(A, y , S) :

x k = np . z e r o s l i k e ( x )

r k = np . copy ( y )

Omega k = [ ]
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for k in range (S) :

lambda k = np . argmax (np . abs (A.T @ r k ) )

Omega k . append ( lambda k )

x k [ Omega k , : ] = np . l i n a l g . pinv (A[ : , Omega k ] ) @ y

r k = y − A @ x k

return x k

omp recovery = omp( Phi , y , S )

The outcome is shown in Fig. 2.2:

Figure 2.2: 1D sparse signal recovery with OMP.

The error of the reconstructed signal was ε = 6 · 10−15%.

Example 2 (CoSaMP ). This algorithm has the following scheme.

1. Initialization:

Inputs: sensing matrix Φ, measurement vector y, sparsity S

Initial values: r = y, Ω = ∅, k = 0

2. k-th iteration with k ∈ {1, ..., S}:

(a) Find the indices of the largest 2S coefficients of ΦT r and save them in Ω

(b) T = Ω ∪ supp(xk−1).

(c) xk = arg minx:supp(x)=T ‖Φx− y‖2

(d) Keep only the largest S coefficients of xk using hard-thresholding operator
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(e) r = y − Φxk

To implement this algorithm, the hard-thresholding operator is also needed.

def hard th r e sho ld ing (x , k ) :

x = x . f l a t t e n ( )

l ength = x . s i z e

H k x = np . z e r o s l i k e ( x )

i n d i c e s = l i s t (np . a r g s o r t (np . abso lu t e ( x ) ) [ : : − 1 ] [ 0 : k ] . f l a t t e n ( ) )

H k x [ i n d i c e s ] = x [ i n d i c e s ]

H k x = np . reshape ( H k x , ( length , 1) )

return i n d i c e s , H k x # Returns the l a r g e s t k c o e f f i c i e n t s and t h e i r

i n d i c e s

def cosamp (A, y , S) :

x prev i ous = np . z e r o s l i k e ( x )

r = np . copy ( y )

T = [ ]

A pinv T k = np . z e r o s l i k e (A)

for k in range (S) :

Omega = hard th r e sho ld ing (A.T @ r ,2∗ S) [ 0 ]

supp x prev ious = x prev i ous . f l a t t e n ( ) . nonzero ( ) [ 0 ] . t o l i s t ( )

T = l i s t ( set ( ) . union (T, Omega , supp x prev ious ) )

A pinv T k [ : ,T] = A[ : ,T]

x k = hard th r e sho ld ing (np . l i n a l g . pinv ( A pinv T k ) @ y , S) [ 1 ]

r = y − A @ x k

return x k

cosamp recovery = cosamp ( Phi , y , S )

The outcome is depicted in Fig. 2.3 and the error obtained is ε = 3 · 10−15%.

For both examples, the errors obtained are extremely small, around 10−15, which may

be associated to numerical error introduced by Python when computing the different

operations. Therefore, we can assume that the reconstructions achieved are perfect.

2.4.2 Non-sparse signals

Let us consider now a non-sparse input signal as done in the code reported in [19]. In

particular, let us consider a 1D signal, i.e., an artificial sound wave. It is the result of

mixing two sine functions with different frequencies.
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Figure 2.3: 1D sparse signal recovery with CoSaMP.

# Generate non spar s e s i g n a l : a r t i f i c i a l sound wave

N = 5000

t = np . l i n s p a c e (0 , 1/8 , N)

f1 = 200

f2 = 3900

X = np . s i n (2∗np . p i ∗ f 1 ∗ t ) + np . s i n (2∗np . p i ∗ f 2 ∗ t )

As shown in Fig. 2.4, the resulting signal is not sparse.

Figure 2.4: Artificial sound signal.

At this point, we need to apply a transform in order to have a sparse or compressible

signal to be able to apply CS. Specifically, we will use the Discrete Cosine Transform

(DCT) [2]:

# Compress ible r e p r e s e n t a t i o n o f a non−spar s e s i g n a l
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from s c ipy . f f t p a c k import dct , i d c t

Xdct = dct (X, norm=’ ortho ’ )

The DCT coefficients y ∈ RN of a vector x ∈ RN implemented by this function are:

y0 =
1√
N

N−1∑
n=0

xn (2.18)

yk =
2√
2N

N−1∑
n=0

xn cos (
πk(2n+ 1)

2N
) for k ∈ {1, .., N − 1} (2.19)

The resulting DCT transform for the sound signal is shown in Fig. 2.5.

Figure 2.5: DCT transform of the sound signal.

Just as we did for the sparse case, we next set the number of measurements to take

(M = 500, resulting in a compression ratio M/N = 0.1), build the sensing matrix, and

apply this matrix. The only difference now is that it is applied to the transformed signal:

M=500

Phi= np . random . randn (M, N) /np . s q r t (M)

print ( ”Compression r a t i o {0}” . format (M/N) ) # M/N=0.1

r e s h a p e s i g n a l=np . reshape ( Xdct , ( Xdct . shape [ 0 ] , 1 ) )

y=np . dot ( Phi , r e s h a p e s i g n a l )

Finally, we have to choose a reconstruction algorithm. Let us consider convex minimiza-

tion. There are various possible approaches. First, we could use the Python’s library

called CVXPY, tailored for convex optimization problems. The following code would

solve the problem:

import cvxpy as cvx
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vx = cvx . Var iab le ( (N, 1 ) )

o b j e c t i v e = cvx . Minimize ( cvx . norm( vx , 1) )

c o n s t r a i n t s = [ Phi@vx == y ]

prob = cvx . Problem ( ob j e c t i v e , c o n s t r a i n t s )

r e s u l t = prob . s o l v e ( )

Another command that we can use is Lasso [61] from the Scikit-Learn library. It mini-

mizes

min
x

{
1

2n
‖y − Φx‖2

2 + α‖x‖1

}
(2.20)

where α is a constant.

from s k l e a rn . l i n ea r mode l import Lasso

l a s s o = Lasso ( alpha =0.01)

l a s s o . f i t ( Phi , y )

Figure 2.6 shows the reconstruction of the transformed signal performed with Lasso.

Figure 2.6: Lasso recovery of the transformed signal.

The last step it to reverse the DCT transform.

Xhat = i d c t ( l a s s o . co e f , norm=’ ortho ’ )
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Figure 2.7: Reconstructed sound signal

The error obtained is ε = 8%. However, the reconstruction shows a tendency towards

zero in both extremes that cannot be controlled because there is no option to introduce

boundary conditions in the reconstruction. Therefore, we focus on the middle section of

the wave, from 0.04 s to 0.08 s. In this section the error is ε = 2%. To appreciate the

difference between the original signal and its reconstruction from compressed samples, we

can zoom a section and represent it for both cases, as depicted in Fig. 2.8.

Figure 2.8: Comparison between an original section and its reconstruction.

2.4.3 Image Reconstruction

Images are a collection of pixels. If we have a grayscale image, then each pixel takes a

value that represents brightness. This number is stored as an 8-bit integer. With 8 binary

digits we can express numbers from 0 to 255. Let 0 be the value for black and 255 for

white. The image has the form of a matrix with shape width×height where the elements

are the values of the pixels.
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Now let us suppose that our image is a color image. It will be usually encoded in

RGB representation, where R stands for red, G for green and B for blue. The idea of this

format is to divide the image into 3 layers called channels. Each one corresponds to one

of the three colors. In each channel every pixel is represented with values from 0 to 255,

where 0 is the color of the channel and 255 is white. Therefore, in this case the image is

a matrix of size width× height× channels.

Next, we describe how to reconstruct a color image by means of convex optimization

using the code provided in [60]. The underlying algorithm is OWL-QN [3]. It minimizes

a scalar function of the form:

f(x) = l(x) + c‖x‖1 (2.21)

where l : RN → R is a differentiable convex loss function, ∇l(x) is L−Lipschitz continuous

for some L > 0, and C is a constant. The expression becomes

f(x) = ‖Φx− y‖2
2 (2.22)

The following libraries are used:

import numpy as np

import matp lo t l i b as mpl

import matp lo t l i b . pyplot as p l t

import s c ipy . opt imize as spopt

import s c ipy . f f t p a c k as s p f f t

from skimage import i o

from py lb f g s import owlqn

Note that images are not usually sparse. Therefore, we need to use a transform basis,

in this case the DCT transform. We need a two-dimensional transform and, of course, we

also need the inverse 2D transform. Python does not provide them, hence the following

functions are defined:

def dct2 ( x ) :

return s p f f t . dct ( s p f f t . dct ( x .T, norm=’ ortho ’ , a x i s =0) .T, norm=’ ortho ’ ,

a x i s =0)

def i d c t 2 ( x ) :

return s p f f t . i d c t ( s p f f t . i d c t ( x .T, norm=’ ortho ’ , a x i s =0) .T, norm=’ ortho ’

, a x i s =0)
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The code begins defining the sampling rate. This is M/N in our theoretical framework.

Then the image is loaded into memory and its shape stored. An auxiliary variable Z col-

lects the reconstructions done for different compressions. Likewise, an auxiliary function

called evaluate, needed by the algorithm, is also defined. The code provided in [60] is

presented below, with the notation f(x) = ‖Ax− b‖2
2 and ∇f(x) = 2AT (Ax− b).

def eva luate (x , g , s tep ) :

”””An in−memory eva lua t i on c a l l b a c k . ”””

# we want to re turn two th ing s :

# (1) the norm squared o f the r e s i d u a l s , sum ( (Ax−b) . ˆ 2 ) , and

# (2) the grad i en t 2∗A ’(Ax−b)

# expand x columns− f i r s t

x2 = x . reshape ( ( nx , ny ) ) .T

# Ax i s j u s t the i n v e r s e 2D dct o f x2

Ax2 = i d c t 2 ( x2 )

# stack columns and e x t r a c t samples

Ax = Ax2 .T. f l a t [ r i ] . reshape (b . shape )

# c a l c u l a t e the r e s i d u a l Ax−b and i t s 2−norm squared

Axb = Ax − b

fx = np .sum(np . power (Axb , 2) )

# p r o j e c t r e s i d u a l vec to r ( k x 1) onto blank image ( ny x nx )

Axb2 = np . z e r o s ( x2 . shape )

Axb2 .T. f l a t [ r i ] = Axb # f i l l columns− f i r s t

# A ’ (Ax−b) i s j u s t the 2D dct o f Axb2

AtAxb2 = 2 ∗ dct2 (Axb2)

AtAxb = AtAxb2 .T. reshape ( x . shape ) # stack columns

# copy over the g rad i en t vec to r

np . copyto ( g , AtAxb)

return fx

# f r a c t i o n s o f the s c a l e d image to randomly sample at

s a m p l e s i z e s = ( 0 . 1 , 0 . 0 1 )

# read o r i g i n a l image

Xorig = i o . imread ( ” l eon .PNG” )

ny , nx , nchan = Xorig . shape
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# f o r each sample s i z e

Z = [ np . z e r o s ( Xorig . shape , dtype=’ u int8 ’ ) for s in s a m p l e s i z e s ]

masks = [ np . z e r o s ( Xorig . shape , dtype=’ u int8 ’ ) for s in s a m p l e s i z e s ]

for i , s in enumerate( s a m p l e s i z e s ) :

# c r e a t e random sampling index vec to r

k = round( nx ∗ ny ∗ s )

r i = np . random . cho i c e ( nx ∗ ny , k , r e p l a c e=False ) # random sample o f

i n d i c e s

# f o r each c o l o r channel

for j in range ( nchan ) :

# e x t r a c t channel

X = Xorig [ : , : , j ] . squeeze ( )

# take random samples o f image , s t o r e them in a vec to r b

b = X.T. f l a t [ r i ] . astype ( f loat )

# perform the L1 minimizat ion in memory

Xat2 = owlqn ( nx∗ny , eva luate , None , 5)

# transform the output back in to the s p a t i a l domain

Xat = Xat2 . reshape (nx , ny ) .T # stack columns

Xa = i d c t 2 ( Xat )

Z [ i ] [ : , : , j ] = Xa . astype ( ’ u int8 ’ )

The results obtained for this code are:

Figure 2.9: Image recovery.

The error for a 10% compression rate is ε = 3% and for a compression rate of 1% we

have ε = 3.4%.
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Another way of evaluating the quality of the reconstruction is with the Signal to Noise

Ratio (SNR). It compares in relative terms how the reconstructed image departs from the

original one [35]. It is usually expressed in decibels.

Definition 10 (Signal to Noise Ratio). Let Pi be the value of the i-th pixel in the original

image and let Qi be the value of the i-th pixel of the reconstructed image. SNR can be

defined as follows:

SNR = 20 log10

√
1
N

∑N
i=1 P

2
i√

MSE
(2.23)

where MSE = 1
N

∑
i (Pi −Qi)

2 is the Mean Square Error and
√

1
N

∑N
i=1 P

2
i is the Root

Mean Square of the original image.

For M/N = 0.1 we have SNR= 1.3 dB and for M/N = 0.01 the result is SNR = 0.4

dB. This makes sense because the higher the value of SNR the better the reconstruction

achieved.

2.5 Applications

There is a variety of application fields of compressed sensing. In [51] and [49], the most

important applications are reviewed. We next briefly summarised some of them.

1. Compressive imaging

Compressed sensing allows saving memory when images are stored because only a

reduced set of measurements are needed for reconstruction. Therefore, new tech-

nologies are being developed to directly obtain compressive visual samples.

An example of these devices is the Single Pixel-Camera (SPC) [30]. The idea is

two perform inner products between an N-pixel sampled version of the scene and

random vectors formed by elements with values in {1, 0} or in {1,−1}. M inner

products 〈x, φi〉 for i ∈ {1, 2...,M} have to be computed in order to obtain the M

measurements we need for CS. The vector φi represents a column of the sensing

matrix.
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The operation of this camera is based on a Digital Micromirror Device (DMD),

which consists on an array of N mirrors that can rotate into two positions that

corresponds to be switched on or off. Light reflects in the image and reaches these

micromirrors, which deviate part of the beam onto a single photon detector. This is

how an inner product is done, with mirrors acting as the elements of φi.To perform

a random measurement as proposed by CS, the orientations of the mirrors are set

randomly. Finally, the output of the detector, where the product is integrated, is a

voltage that is finally digitised by an A/D converter.

With each micromirror we can represent a value of 1 or 0. If we want φi to take

values in {1,−1}, we can express our φi as the subtraction of two vectors formed

of ones and zeros. Therefore, the inner product < x, φi > is the subtraction of two

inner products.

2. Biomedical applications

CS has also been applied in biomedical imaging. It has been shown that CS reduces

the scanning time, especially in Magnetic Resonance Imaging (MRI) [44], which is

a diagnostic tool.

In MRI, a constant magnetic field is applied to the patient. It interacts with hy-

drogen atoms in water molecules of the body polarising their spin into parallel or

anti-parallel positions with respect to the field applied. These nuclei also rotate

around the axis of the field with an angular frequency called precessional frequency.

With an additional radio frequency pulse the nuclei are excited, causing some of

them to absorb the energy of the pulse and move to a higher energy state, i.e.,

they move from parallel to anti-parallel. In this stage, the nuclei are said to be at

resonance. When the pulse is turned off, nuclei go back to their low energy state,

releasing energy which is detected by a sensor. As the rate of the energy release

depends on the tissue’s chemical properties, an image of the body can be obtained.

Data acquisition is done in the Fourier-transform domain called K-space, i.e., in the

frequency domain. However, the time needed to produce an image of certain quality

is large, which limits medical applications of MRI. For this reason, the use of CS

during the acquisition process has been explored. The fewer the samples needed,
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the less the time required. Algorithms applying CS have been developed specifically

for this field. In [25], a review of convex-optimization-based algorithms for MRI is

provided.

3. Compressive radar

A radar consists of an antenna that emits an electromagnetic wave. This wave is

reflected in surrounding objects and then reaches a receiver. Using the time delay

between the emission and the reception of the signal, the position of the object can

be estimated. Speeds can also be measured with a radar.

At the receiver, there are two possible approaches: i) a pulse compression through

a matched filter that consists in correlating the received signal with a template,

followed by an A/D converter; and ii) an A/D converter followed by a pulse com-

pression. These procedures require expensive equipment.

Using CS in radar systems results in a simplification of the hardware design. Ac-

cording to [5], the matched filter to compress the pulse can be eliminated, thereby

removing the requirement of high-rate A/D conversion at the receiver, which relies

on the Nyquist rate.

4. Communication systems

CS can be found in different areas of this application field. For example, it has been

proposed for wireless sensor networks (WSN) [43].

Suppose N sensors densely deployed in a prescribed area of interest; dj denotes the

reading of the j-th sensor. The usual transmission procedure consists of a chain of

transmission in which a sensor sj sends the readings of the first j sensors to sj+1.

This procedure continues until the last sensor sends all the readings to the sink.

The disadvantage of this system is that the last sensors consume more energy.

In the proposed compressed data gathering approach, M linear combinations of the

readings are sent to the sink. In the i-th sum, each sensor multiplies its reading

by a weight φi,j and adds it to the sum of the weighted reading of the previous
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sensors. Afterwards, this calculation is passed to the next sensor, i.e., the j-th sen-

sor sends
∑j

l=1 φi,ldl. At the end of the process, the sink receives
∑N

l=1 φi,ldl for all

i ∈ {1, 2, ...,M}.



Chapter 3

CS-based inference: Classical

approach

What is statistical inference? Suppose a population of which an attribute, represented by

a random variable x, has an unknown distribution. For example, a group of people and

their height. Samples of the value of x, represented as x1, x2, ..., xn, are taken for some

individuals of the population. From these results, we want to extract certain properties

of the random variable. For instance, we could ask ourselves about its expected value or

about the probability of having x ≥ β for a certain constant β.

This chapter explains some of the most important concepts of statistical inference

[62, 67] and the theoretical framework proposed in [22] to solve inferential problems upon

compressed measurements. In particular, the problems addressed are detection, classifi-

cation, estimation and filtering.

3.1 Concepts of statistical inference

Definition 11 (Simple random sample). It is said that (x1, x2, ..., xn) is a simple

random sample of size n of a random variable x with distribution function F if they are

random variables independent and identically distributed to x with common distribution F.

Definition 12 (Statistic). Let x be a random variable with distribution function F and

let x = (x1, x2,..,xn) be a simple random sample. It is said that T : RN → Rk with

T = T (x) is a statistic if it is a measurable function.

Some examples of statistics are:

27
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1. Expected value: x̄ = 1
n

∑n
i=1 xi

2. Variance: σ2 = 1
n

∑n
i=1 x

2
i − x̄2

For further theoretical development, we need to impose certain characteristics to the

distribution function of the random variable we are working with. We assume the para-

metric hypothesis, which means that the distribution function F depends on a parameter.

This is, F ∈ {Fθ : θ ∈ Θ ⊂ Rk} where Θ is called the parametric space and it contains all

the possible values of θ. Our aim, in parametric inference problems, is to know the value

of a function h : Θ→ R.

Definition 13 (Estimator). Let x = (x1, x2, ..., xn) be a simple random sample. T = T (x)

is said to be an estimator of h(θ) if T is a statistic that does not depend on unknown pa-

rameters and as far as possible T (x) ∈ h(Θ) ∀x.

Example 3. Suppose a group of people waiting for judgement. We want to know the

probability of being innocent.

The random variable takes two values, x = 1 if a person is innocent and x = 0 if

the person is guilty. Our variable has a Bernoulli distribution of unknown parameter p,

x ∼ Be(p). Therefore, we can take p as our parameter θ with p ∈ (0, 1) = Θ.

Given that we want to know P [x = 1] = p, our target function is h(p) = p. A possible

estimator is T = x̄. To check this we need to prove that T (x) ∈ h(Θ) = (0, 1) for almost

every x.

The possible values for x are the different tuples of n elements that can be formed

with zeros and ones. T applied to them gives us 0, 1/n, 2/n, ..., 1 ∈ [0, 1]. Therefore, T is

an estimator of h(p).

Statistics are functions that summarize the information of the simple random sample

studied and therefore, they collect information about θ. It is natural to think that some

statistics are better than others in the sense that they do not lose relevant information.

Following the example, suppose n = 50 and x = (1, 0, ..., 0, 1), which only has two ones.

With the statistic we defined above, T (x) = x̄ = 2/n = 0.04. Hence, we can infer

that the value of p is small. However, we could propose another statistic. For example,

T2(x) =
∏n

i=1 xi. In our case T2(x) = 0, which implies there is at least a zero in the simple

random sample, but it does not provide information about p. The best way to collect
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significant information about the parameter θ from a random sample is using a sufficient

statistic.

Definition 14 (Sufficient statistic). Let (x1, x2, ..., xn) be a simple random sample and

T = T (x1, x2, ..., xn) a statistic. It is said to be a sufficient statistic for θ if the conditional

probability distributions of (x1, ..., xn) given T = t0 do not depend on θ for all t0.

A simple way of characterizing sufficient statistics is using the Fisher-Neyman factor-

ization theorem.

Theorem 3 (Fisher-Neyman Factorization Theorem). Let (x1, x2, ..., xn) be a simple ran-

dom sample independently identically distributed to x, whose distribution function is f ,

and let T = T (x1, x2, ..., xn) be a statistic. T is a sufficient statistic if and only if there

exist g and h such that

f(x, θ) = g [T (x), θ]h(x) (3.1)

Now let us suppose we are interested in knowing whether a certain statement of our

unknown distribution is true or not. Following the previous example, if the police does

a good work, the majority of the people who go to trial are guilty. Therefore, we could

assume that the probability of being innocent is small. Expressing this mathematically,

our hypothesis could be written as:

H0 : p ≤ 1/100

This hypothesis is matched to an alternative hypothesis that considers a scenario in

which H0 is not true. For example:

H1 : p > 1/100

Is there a way to determine which of them is the correct one? The part of statistical

inference that deals with this type of problems is called hypothesis testing.

Definition 15 (Null and alternative hypothesis). Let x1, x2, ..., xn be a simple sample

of a random variable x whose distribution function satisfies the parametric hypothesis,

F ∈ {Fθ : θ ∈ Θ ⊂ Rk}. Let Θ = Θ0 ∪Θ1 be formed by two disjoint subsets, Θ0 ∩Θ1 = ∅.
Suppose we want to test H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1. It is said that H0 is the null

hypothesis and H1 is the alternative hypothesis.
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The idea of a test is whether to reject or not the null hypothesis according to the

experimental evidence. This is, for some values of x = (x1, x2, ..., xn) we accept H0 and

for others we do not. This creates a division in the space containing all possible values of

x which is denoted by Ω.

The critical region R ⊂ Ω is the set of x ∈ Ω such that H0 is rejected. In the same

way, we can define the acceptance region Ω \ R in which H0 is accepted. To distinguish

between both regions a test statistic is used. According to its value, it is decided whether

the null hypothesis is accepted or not.

Definition 16 (Critical region). Given a hypothesis test, the critical region is defined as:

R = {x ∈ Ω | s(x) > c} (3.2)

where s is the test statistic and c is the critical value.

When taking a decision, errors are always possible. In fact, there are two types of

errors in hypothesis testing. First, the null hypothesis could be rejected when it is true.

This is called Type-I error. Second, the Type-II error consists in accepting the null hy-

pothesis when it is false. Usually, in practice, the Type-I error is the one that is minimized.

The probability of Type-I error is:

PI = P [x ∈ R | θ ∈ Θ0] (3.3)

The probability of Type II-error is:

PII = P [x ∈ Ω \R | θ ∈ Θ1] (3.4)

where P [·] denotes the probability of something to occur.

Inference theory and many statistic concepts can be applied to signal processing [57].

Furthermore, the idea of hypothesis testing can be applied when working with compressed

measurements. In the next sections, we analyse different inference problems following the

guidelines reported in [22].

3.2 Detection

Suppose we have measurements of a signal x ∈ RN taken according to CS principles and

we want to distinguish whether it is pure noise or it contains a known signal of interest

with some noise. We can model noise with a Gaussian distribution of null mean and σ2
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variance, i.e., n ∼ N (0, σ2IN). The signal to detect is s. The hypothesis we have can be

written as: H0 : y = Φn

H1 : y = Φ(s+ n)
(3.5)

Another perspective for the detection problem statement is given in [29]. Suppose that

a signal x is sparse in Ψ and x =
∑N

i αiΨi. Let Γ be a set of indices with Γ ⊂ {1, 2, .., N}.
The objective is to know whether there are any non-zero coefficients αi associated to the

indices in Γ or not. Thus, the detection of the elements forming Ψ can be done because

we could know whether x is formed by them. If s = ΨΓαΓ, we can express x as follows:

x =
(

ΨΓ ΨI

)[αΓ

αI

]
+ n = s+ I + n (3.6)

where n again denotes Gaussian noise and I makes reference to the interference in the

signal x. We want to know if αΓ = 0 or αΓ 6= 0. The hypothesis testing associated to our

problem would be H0 : x = I + n

H1 : x = s+ I + n
(3.7)

However, for the detection problem, instead of using the complete signal x, we only

take incoherent measurements y = Φx. See Definition 9. Therefore, the hypothesis testing

can be reformulated as H0 : y = Φ(I + n)

H1 : y = Φ(s+ I + n)
(3.8)

In [29], a greedy algorithm based on the Matching Pursuit reconstruction algorithm

is proposed for this detection problem. See Point 2 in Section 2.3 for further information

about greedy algorithms.

Considering the case Γ = {1, 2, . . . , N}, this formulation leads us back to the first one

given at the start of this subsection. We focus on this case from now on. This is, we

aim at solving Eq. (3.5). We continue by defining two probabilities that are used in our

theoretical framework.

Definition 17 (Detection rate and False alarm). Given the hypothesis testing, the detec-

tion rate is defined as the probability of choosing H1 when it is true. This is, the probability
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of doing the detection:

PD = P [ Chose H1 when H1 is true ] (3.9)

The false alarm rate is defined as

PF = P [ Chose H1 when H0 is true ] (3.10)

By comparing definitions, we have that the false alarm rate is just the Type-I error of

the hypothesis test. Given both definitions, we want to maximize PD while controlling the

value of PF . We could do this by bounding the error, PF ≤ γ, in which case the decision

rule that satisfies this constrained problem is the Neyman-Pearson test [57]. Let f0(y)

denote the density function associated to H0; likewise for f1(y) to H1. The likelihood

ratio is defined as

Λ(y) =
f1(y)

f0(y)
(3.11)

Comparing this ratio to a threshold η, the election of hypothesis is done. According

to the Neyman-Pearson criterion, Λ > η for H1 and Λ < η for H0. The value of η is

calculated by setting PF = γ.

Example 4. To illustrate how to obtain the Neyman-Pearson test we consider a case with

a one-dimensional variable distributed according to a Gaussian distribution with known

σ, and we set a hypothesis test for the mean [55]:H0 : x ∼ N (0, σ2)

H1 : x ∼ N (1, σ2)
(3.12)

The expressions for the density function are known for both cases.

f0(x) =
1

σ
√

2π
exp

(
−x2

2σ2

)
(3.13)

f1(x) =
1

σ
√

2π
exp

(
−(x− 1)2

2σ2

)
(3.14)

For example, we can take σ = 1, and consequently we have

Λ(x) =
f1(x)

f0(x)
= exp (x− 1

2
) (3.15)

This leads to the condition:
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exp (x− 1
2
) < η for H0

exp (x− 1
2
) > η for H1

(3.16)

For simplification, we can apply a monotonic function to both sides of the inequalities.

We use logarithm, and taking η∗ = ln η + 1/2 we obtain the following decision rule: 1

x < η∗ for H0

x > η∗ for H1

(3.17)

To calculate η∗ we impose PF = γ. The Gaussian distribution function is φ(x) and we

define Q(x) = 1− φ(x):

PF =

∫
x>η∗

f0(x)dx =

∫ ∞
η∗

1

σ
√

2π
exp

(
−x2

2σ2

)
dx = 1− φ(η∗) = Q(η∗) = γ (3.18)

We conclude that η∗ = Q−1(γ). Also, PD can be calculated as

PD =

∫ ∞
η∗

f1(x)dx = Q(η∗ − 1) (3.19)

Finally, for our decision rule, the detection rate is

PD = Q(Q−1(PF )− 1) (3.20)

Our aim in this section is to apply this same procedure to the hypothesis testing in

Eq. (3.5), as reported in [22]. The principal difference between this case and the example

is that now we have more than one dimension. In particular, y is M−dimensional.

Assuming ΦΦT is invertible, the probability density functions are:

f0(y) =
exp (−1

2
yT (σ2ΦΦT )−1y)

|σ2ΦΦT |1/2(2π)M/2
(3.21)

f1(y) =
exp (−1

2
(y − Φs)T (σ2ΦΦT )−1(y − Φs))

|σ2ΦΦT |1/2(2π)M/2
(3.22)

Now the Neyman-Pearson test is set. We take logarithm and obtain a simplified

decision rule. The compressive detector is defined as

t := yT (ΦΦT )−1Φs (3.23)

1In inference, the usual notation for η∗ is γ and the constrain of the false alarm rate is PF = α.
However, in this thesis α is reserved to denote sparse signals. Therefore, the notation has been changed.
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and taking

η∗ = σ2 ln η + 1/2sTΦT (ΦΦT )−1Φs (3.24)

the resulting test can be expressed as:t < η∗ for H0

t > η∗ for H1

(3.25)

Now, we have to calculate η∗. To simplify the notation, we write PΦT = ΦT (ΦΦT )−1Φ.

This new operator verifies PΦT = P T
ΦT and PΦT = P 2

ΦT . These are the properties of an

orthogonal projection operator. In fact, we have that PΦT projects into the row space of

Φ. Furthermore, we have sTΦT (ΦΦT )−1Φs = ‖PΦT s‖2
2.

With this new notation, we have that the distribution of t in both hypothesis is:t ∼ N (0, σ2‖PΦT s‖2
2) for H0

t ∼ N (‖PΦT s‖2
2, σ

2‖PΦT s‖2
2) for H1

(3.26)

The probabilities PF and PD are calculated as in the example, i.e., PF = Q( η∗

σ‖P
ΦT s‖2

)

and PD = Q(
η∗−‖P

ΦT s‖22
σ‖P

ΦT s‖2
). By doing PF = γ, the threshold value is η∗ = σ‖PΦT s‖2Q

−1(γ),

and we obtain

PD(γ) = Q(Q−1(γ)− ‖PΦT s‖2/σ) (3.27)

Given that Q is a monotonic decreasing function, the smaller the argument it takes,

the larger the value it provides. Therefore, the larger the value of ‖PΦT s‖2/σ, the greater

the detection rate. From now on, we aim to bound the value of PD to characterize the

performance of the detection.

Let us first introduce a new property.

Definition 18 (δ−stable embedding). Let A,B ⊂ RN be given and δ ∈ (0, 1). It is said

that Φ is a δ−stable embedding of (A,B) if ∀a ∈ A and ∀b ∈ B it is satisfied that

(1− δ)‖a− b‖2
2 ≤ ‖Φa− Φb‖2

2 ≤ (1 + δ)‖a− b‖2
2 (3.28)

Theorem 4. Suppose
√
N/MPΦT is a δ−stable embedding of (S, {0}) for S ⊂ RN . Then

PD is bounded for every s ∈ S.

PD(γ) ≤ Q(Q−1(γ)−
√

1 + δ
√
M/N

√
SNR) (3.29)
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PD(γ) ≥ Q(Q−1(γ)−
√

1− δ
√
M/N

√
SNR) (3.30)

where the signal to noise ratio is defined as SNR = ‖s‖2
2/σ

2.

The proof is provided in [22]. However, it just needs to consider the definition of

δ−stable embedding. The article states also that for typical values of δ,

PD(γ) ≈ Q
[
Q−1(γ)−

√
M/N

√
SNR

]
. (3.31)

With the following corollary, [22] establishes a lower bound for the detection rate of s:

Corollary 1. Suppose
√
N/MPΦT is a δ−stable embedding of (S, {0}) for S ⊂ RN . Then

for s ∈ S the next bound is satisfied.

PD(γ) ≥ 1− C2 exp (−C1M/N) (3.32)

where C1 and C2 are constants depending on γ, δ and SNR.

If all the parameters are fixed except M , we have that, for growing values of M , the

exponential function decreases and PD is lower bounded by a value near 1. This implies

that the probability of detecting s is high.

To finish this section, we reproduce graphics presented in [22]. We represent the

approximation of PD in Eq. (3.31) by varying parameters to see the response of the

detection probability. For this purpose, we have to implement the function Q(x) that

appears in Eq. (3.31). Using the properties of the Gaussian distribution we have that

Q(x) = 1− P [N (0, 1) ≤ x] = 1− φ(x) = φ(−x) (3.33)

To define Q−1(x) we have to consider the percentile of −x. In Python, these functions

can be constructed as:

from s c ipy . s t a t s import norm

Q( x )= norm . cd f (−x )

Qinv ( x ) = −norm . ppf ( x )

In Fig. 3.1, PD is represented against γ, which is the value of the false alarm rate, for

different values of r = M/N with a fixed value for SNR of 20 dB. However, the value of

SNR introduced in the equation is not in dB. In this case, it would be SNR = 100. This

type of curve is called Receiver Operating Characteristic (ROC). It is used to study the
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Figure 3.1: Detection rate vs. False alarm rate.

performance of a decision rule.

According to Fig. 3.1, for large values of the false alarm rate, the performance of the

detector is identical for all curves. However, if the focus is on small values of PF , we can

see that for M/N = 0.4 or M/N = 0.2 the detection rate is almost 1, whereas for smaller

sets of measurements the difference in performance with these last values is small. There-

fore, we conclude that with M measurements, detection could be achieved successfully.

However, the difference between curves with high and low values of M could imply that

very low values of M are still not appropriate for detection.

In Fig. 3.2, PD is represented as a function of M/N for different values of SNR with

γ = 0.1. Note how the SNR value affects PD. For higher SNR the performance improves.

Note also that as M increases, the detection rate approaches higher values exponentially.

3.3 Classification

Let S = {si} ⊂ RN with i ∈ {1, 2.., R} be a collection of known signals and n ∼ N (0, σ2)

a noisy signal. The goal is to determine which si is present in the noise when the infor-

mation available is a measurement vector with M random samples of the received signal

that are taken before knowing s1, ..sR.

For the classification problem, we can set a hypothesis testing of R hypothesis:

Hi : y = Φ(si + n) for i ∈ {1, 2, .., R} (3.34)

Suppose R = 2. This case is called binary classification and it is equivalent to the
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Figure 3.2: Detection rate vs. M/N.

detection problem set in the previous section. The hypothesis would beH0 : y = Φ(s1 + n)

H1 : y = Φ(s2 + n)
(3.35)

However, if s = s2 − s1, this formulation is equivalent toH0 : y = Φ(s1 + n)− Φs1 = Φn

H1 : y = Φ(s2 + n)− Φs1 = Φ(s+ n)
(3.36)

Returning to Eq. (3.34), if each hypothesis is equally likely, according to [22] the

classifier with minimum probability error chooses Hi that minimizes

ti := (y − Φsi)
T (ΦΦT )−1(y − Φsi) (3.37)

This is due to the fact that, for classification, the hypothesis selected is the one that

best suits the data. Therefore, Hi∗ is chosen if the probability of y for Hi∗ is larger than

for any other hypothesis.

Supposing that there exists x ∈ RN such that y = Φx, we can write

ti = (y − Φsi)
T (ΦΦT )−1(y − Φsi) (3.38)

= (Φx− Φsi)
T (ΦΦT )−1(Φx− Φsi) (3.39)

= (x− si)TΦT (ΦΦT )−1Φ(x− si) (3.40)

= ‖PΦTx− PΦT si‖2
2 (3.41)
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Therefore, the goal is to minimize the distance between x and si once they have been

projected by PΦT . With this formulation of ti we conclude that the compressive classifier

selects the nearest si to x in the row space of Φ.

Theorem 5. Suppose that
√

(M/N)PΦT is a δ−stable embedding of (S,S). Let d be the

minimum distance between si, d = min‖si−sj‖2. Let y = Φ(si∗+n) for i∗ ∈ {1, 2, ..., R}.
Then, the probability of correctly classifying the signal is lower bounded.

PClassification ≥ 1−
(
R− 1

2

)
exp (−d2(1− δ)M/8σ2N) (3.42)

When the classification is correct, i∗ = arg min ti.

The proof is provided in [22]. From this result, we obtain that the error probability

decreases exponentially with M , just as in the detection problem.

To illustrate the performance of the compressive classifier, we represent the error prob-

ability for different cases and analyse how it changes with M . We first set N = 1000 and

R = 3. The signals s1, s2 and s3 that match each hypothesis are generated according to

a Gaussian distribution and are fixed. Then d is calculated, and for a certain value of

SNR = 10 log10(d2/σ2), we can know the value of σ2.

For every value of M , a Φ matrix is created. Then a loop is set with 300 iterations. In

each one, the noise vector n is generated, and x = s1 +n is established, which means that

the correct hypothesis is H1. All ti are calculated and the minimum of the three values is

obtained. If the minimum was achieved in t1, then H1 is chosen and the classification was

properly conducted. The error probability is given by the number of times the hypothesis

taken was not H1 divided by 300, which is the number of times that classification was

made.

We can see in Fig. 3.3 that the lower the SNR the higher the error probability. Also,

the error decreases for large values of M , as in detection. We also have that, for large

values of M , the computational cost increases due to the size of Φ and the operations

required to calculate ti for i ∈ {1, 2, 3}.

In this section we have supposed that the probability of every hypothesis is the same,

as in [22]. However, we could generalize this fact and assume that a priori probabilities of

each hypothesis are known. This is, f(H1), ..., f(HR) are known and the joint probability

density function for every i ∈ {1, 2, ..., R} is

f(y,Hi) = fi(y)f(Hi) (3.43)
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Figure 3.3: Error probability for classification vs. M/N.

where fi(y) = f(y|Hi).

In this case we are in the Bayesian Classification framework [57] and the hypothesis

selected is the one with the largest a posteriori probability. This value is defined as

f(Hi|y) =
fi(y)f(Hi)

f(y)
=

fi(y)f(Hi)∑R
j=1 f(y,Hj)

(3.44)

3.4 Estimation

In this section, the objective is to estimate 〈l, x〉 with l ∈ RN and y = Φx. In [22], two

estimators are presented. The first one, i.e., the orthogonalized estimator, is inspired in

the compressive detector described in Section 3.2 and is given by N/MxTΦT (ΦΦT )−1Φl.

The second estimator, i.e., the direct estimator, is computed by calculating the inner

product of y and Φl, and is given by 〈y,Φl〉.

For both estimators we have a bound for the error. However, in [22] it is only stated

and demonstrated for the direct estimator case. We next prove the result for the orthog-

onalized estimator.

Theorem 6. Suppose that l ∈ L ⊂ RN , x ∈ X ⊂ RN and Φ is a δ−stable embedding of

(L,X ∪ −X ), then

|〈Φl,Φx〉 − 〈l, x〉| ≤ δ‖l‖2‖x‖2 (3.45)
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With the error bound for the direct estimator, we can estimate the angle between two

vectors. The proof is provided in [22].

Corollary 2. Suppose that l ∈ L and x ∈ X , and Φ is a δ−stable embedding of (L ∪
{0},X ∪ −X ∪ {0}). Then ∣∣∣cos (Φ̂l,Φx)− cos (l̂, x)

∣∣∣ ≤ 2δ (3.46)

where cos (â, b) represents the cosine of the angle between vectors a and b.

Now, we continue with the same result as for the estimation error but particularised to

the case of the orthogonalised estimator. For the proof of the theorem, we follow the proof

presented in [22] for the direct estimator. However, in this case, for the final reasoning,

we have applied that PΦT is an orthogonal projector.

Theorem 7. Suppose that l ∈ L ⊂ RN , x ∈ X ⊂ RN and
√
N/MPΦT is a δ−stable

embedding of (L,X ∪ −X ), then∣∣∣∣NMxTPΦT l − 〈l, x〉
∣∣∣∣ ≤ δ‖l‖2‖x‖2 (3.47)

Proof. We work under the assumption ‖l‖2 = ‖x‖2 = 1 and later generalize for vectors of

arbitrary norm.

First, we have that
√
N/MPΦT is a δ−stable embedding of (L,X ) and of (L,−X ).

Therefore,

(1− δ)‖l ± x‖2
2 ≤ N/M‖PΦT l − PΦTx‖2

2 ≤ (1 + δ)‖l ± x‖2
2 (3.48)

We can expand ‖l ± x‖2
2 as:

‖l ± x‖2
2 = ‖l‖2

2 + ‖x‖2
2 ± 2〈l, x〉 = 2± 2〈l, x〉 (3.49)

Thus,

(1− δ)(2± 2〈l, x〉) ≤ N/M‖PΦT l − PΦTx‖2
2 ≤ (1 + δ)(2± 2〈l, x〉) (3.50)

The parallelogram identity implies

〈x, y〉 =
‖x+ y‖2

2 − ‖x− y‖2
2

4
(3.51)

Applying this equation we obtain
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〈PΦT l, PΦTx〉 =
‖PΦT l + PΦTx‖2

2 − ‖PΦT l − PΦTx‖2
2

4
(3.52)

≤ M

2N
((1 + δ)(1 + 〈l, x〉)− (1− δ)(1− 〈l, x〉)) (3.53)

=
M

N
(〈l, x〉+ δ) (3.54)

Analogously, a lower bound can be obtained:

− δ ≤ N

M
〈PΦT l, PΦTx〉 − 〈l, x〉 ≤ δ (3.55)

To conclude the result for ‖l‖2 = ‖x‖2 = 1 we have to take into account the properties

of PΦT as an orthogonal projector. First, we use that it is a self-adjoint operator, PΦT =

P T
ΦT , and then, given that it is a projector, P 2

ΦT = PΦT . Thus,

〈PΦT l, PΦTx〉 = 〈P 2
ΦT l, x〉 = 〈PΦT l, x〉 = xTΦT (ΦΦT )−1Φl (3.56)

With this we obtain the result when ‖l‖2 = ‖x‖2 = 1. To extended to vectors with

arbitrary norm we just have to consider the theorem for l̂ = l
‖l‖2 and x̂ = x

‖x‖2 .

We next estimate the mean value of a vector x. Fig. 3.4 depicts the estimation error

vs. M/N . The first step is to set N = 1000. Then, the vector x is generated with a

Gaussian distribution of mean and variance 1 and we take l = 1/N [1, .., 1]. Therefore,

〈l, x〉 =
∑N

i=1 xi/N = x̄. For different values of M we generate a random matrix Φ 300

times and compute

∣∣N/MxTΦT (ΦΦT )−1Φl − 〈l, x〉
∣∣ /(‖l‖2‖x‖2) (3.57)

The point represented in Fig. 3.4 for a certain value of M is the mean estimation error

over the 300 iterations.

Note that for large values of M the estimation error decreases rapidly. However, in

this range, the size of Φ is high. This increases the computational cost, especially in the

case of the orthogonalized estimator. On the other hand, the direct estimator presents a

higher estimation error. When choosing an estimator for a specific application, one would

have to decide between reducing computational costs or the estimation error.
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Figure 3.4: Estimation error vs. M/N.

A generalization of this theory to estimate vectors can be done easily. We just need

to consider a matrix L ∈ MZ×N(R) and estimate Lx ∈ RZ component by component.

Therefore, Z estimations are made.

3.5 Filtering

Suppose we have transmitted a signal and it has suffered interference along the way. The

signal x that reaches the receiver is the signal of interest xs ∈ Ss plus the interference

xI ∈ SI . Before processing the signal x we have to identify the part of interest. This is,

the goal is to filter the interference. However, in this thesis, we assume that the informa-

tion available at the receiver is a measurement vector y = Φ(xs + sI). Therefore, we filter

compressed measurements.

Theorem 8. Let SI be a KI−dimensional subspace of RN and assume that an orthonor-

mal basis is placed in the columns of ΨI , which is a N ×KI matrix. Let Ω = ΦΨI and

its pseudoinverse Ω† = (ΩTΩ)−1ΩT . Let PΩ = ΩΩ† be a projector onto the column space

of Ω. Then PΩ⊥ = I − ΩΩ† filters xI in the sense that

PΩ⊥ΦxI = 0 ∀xI ∈ SI (3.58)

Proof. Let Col(Ω) and R(Ω) be the column and row spaces of Ω respectively. We have

that PΩ is an orthogonal projector that projects onto Col(Ω). This is equivalent to say

that it projects onto the row space of ΩT .
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We have that PΩ⊥ projects to the complementary space. Therefore, the null space

of PΩ⊥ is the space of the columns of Ω. This is, Ker(PΩ⊥) = Col(Ω). Given that

ΦxI ∈ Col(Ω), we have that PΩ⊥ΦxI = 0 for all xI ∈ SI .

With PΩ⊥ we can eliminate interference. The problem is that we do not know how Ss
is transformed by this operator. However, if Ss were orthogonal to SI , then its structure

would be preserved under certain hypothesis. The following theorem incorporates this

idea:

Theorem 9. Let SI be a KI−dimensional subspace of RN with orthonormal basis ΨI .

Suppose that Φ is a δ−stable embedding of (Ŝs ∪ {0},SI). Let PΩ and PΩ⊥ be defined as

in Theorem 8. Let Ŝs = PS⊥I Ss be the projection of Ss onto S⊥I . Then, for all x = x̂s + xI

with x̂s ∈ Ŝs and xI ∈ SI , the following properties are satisfied:

PΩ⊥Φx = PΩ⊥Φx̂s (3.59)

PΩΦx = PΩΦx̂s + ΦxI (3.60)

1− δ

1− δ
≤ ‖PΩ⊥Φx̂s‖2

2

‖x̂s‖2
2

≤ 1 + δ (3.61)

‖PΩΦx̂s‖2
2

‖x̂s‖2
2

≤ δ2 1 + δ

(1− δ)2
(3.62)

According to Theorem 8, PΩ⊥ΦxI = 0 for all xI ∈ SI . We also have that PΩΦxI = ΦxI

because ΦxI ∈ Col(Ω). Moreover, taking into account the bounds presented in Theorem

9, we have that PΩ⊥ preserves the structure of Ŝs, and PΩ nearly cancels signals from Ŝs.
The proof of these bounds is provided in [22].

From Theorem 9 we have two corollaries. With the first one we obtain properties of

PΩ and PΩ⊥ that can be useful for performing other inference problems once the filtering

has been done.

Corollary 3. Let SI be a KI−dimensional subspace of RN with orthonormal basis ΨI .

Let Ω, PΩ and PΩ⊥ be defined as in Theorem 8. Suppose that Φ is a δ−stable embedding

of (Ŝs ∪ {0},SI). Then PΩ⊥Φ is a δ/(1− δ)−stable embedding of (Ŝs, {0}) and PΩΦ is a

δ−stable embedding of (SI , {0}).

The following corollary implies that the signal xs with sparsity ks can be recovered

under the CS framework once the interference has been filtered.
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Corollary 4. Suppose that Ψ is an orthonormal basis of RN and Φ is a δ−stable embed-

ding of (Ψ(Σ2ks), Col(ΨI)) where ΨI is an N ×KI submatrix of Ψ. Let PΩ and PΩ⊥ be

defined as in Theorem 8. Then PΩ⊥Φ is a δ
1−δ−stable embedding of (PΩ(ΨI)⊥Ψ(Σ2ks), {0}).

By comparing the RIP property (Definition 7) and a δ-stable embedding (Definition

18) we have that a sensing matrix Φ satisfies RIP of order 2k if and only if Φ is a δ−stable

embedding of (Σ2k, {0}), and ΦΨ satisfies RIP of order 2k if and only if Φ is a δ−stable

embedding of (Ψ(Σ2k), {0}) with Ψ(Σ2k) = {Ψα : α ∈ Σk}. With these equivalences in

mind and knowing that PΩ(ΨI)⊥Ψ(Σ2ks) is the original set of sparse signals but with zeros

in the positions indexed by ΨI , Corollary 4 implies that reconstruction is possible. In

other words, the hypothesis of Theorem 2 are satisfied and the sensing matrix that we

now consider is PΩ⊥Φ.

Now let us see how to apply these ideas of filtering and reconstruction in practical

terms. Suppose that we have the compression of a signal x that is composed by a sig-

nal of interest xs that we want to reconstruct, the interference xI , and Gaussian noise.

Therefore, x = xs +xI +n, and we want to recover just xs. Using filtering on compressed

measurements, [22] proposes a reconstruction approach called cancel then recover. It

consists in filtering xI directly on the measurements and then recover the signal with

CoSaMP, as described in Point 2 of Section 2.3 and in Subsection 2.4.1.

To implement this idea, we take the sparsity of xs as ks = 10 and the sparsity of

xI as kI = 20. We take separated supports for xs and xI and generate the coefficients

according to a standard Gaussian distribution. Finally we re-scale xI so that the signal-

to-interference ratio is 0 dB. The signal-to-interference ratio is defined analogously to the

SNR in Definition 10:

Definition 19 (Signal-to-Interference Ratio). Suppose that a signal x ∈ RN containing

a signal of interest xs and interference xI , i.e., x = xs + xI . The Signal-to-Interference

Ratio is defined as the ratio between the root mean square of xs and xI .

SIR = 20 log10

√
1
N

∑N
i=1(xs)2

i√
1
N

∑N
i=1(xI)2

i

(3.63)

Therefore, if we need SIR = 0 dB, then the norm of both signals has to be the same.

We can obtain this by scaling xI by the factor ‖xs‖2/‖xI‖2. The next step is to generate

the Gaussian noise; as in [22], we take the value of the variance so that SNR=15 dB,

which is the ratio between the root mean square of the signal and the noise in decibels.

If we impose that the mean of the noise is zero, then its root mean square is its variance,

σ2. We have:
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Figure 3.5: Test signal.

SNR = 15dB = 10 log10

1
N

∑N
i=1 x

2
i

σ2
(3.64)

The final test signal obtained is represented in Fig. 3.5.

This test signal can be sensed with a Gaussian matrix obtaining y = Φtest with

M = 200. Now we construct the projector PΩ⊥ taking ΨI as the standard basis. The pro-

jection of y gives us a new vector Py = PΩ⊥y. Finally, we reconstruct xs with CoSaMP.

To this end, the vector of measurements that we supply to the algorithm is Py and the

sensing matrix is PΩ⊥Φ. The error obtained with this procedure is ε = 0.4%. The recovery

can be seen in Fig. 3.6.

Finally, we can vary the value of kI from 10 to 90 at intervals of 10 and observe how

the SNR of the reconstruction varies. For every point in Fig. 3.7, we have calculated the

mean of the SNR value over 50 iterations. Note that as kI increases the performance of

the reconstruction method degrades. Therefore, the sparser the interference, the better

the reconstruction of the signal of interest.
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Figure 3.6: Recovery with CoSaMP using the so-called cancel-then-recover approach.

Figure 3.7: SNR vs. kI/ks using the so-called cancel-then-recover approach.



Chapter 4

CS-based inference: State of the art

The objective set in this thesis is to solve inference problems directly on compressed

measurements. The theory developed in Chapter 3 is a classical proposal to obtain our

goal. This is, through mathematics we can construct a solution to the main problems

we may have to face. However, in practice, the majority of the work currently done in

this field does not explicitly use mathematical background. Instead, machine learning is

applied. In particular, Neural Networks (NNs) have turned out to be the fundamental tool

to perform inference. If we pay attention to the dates of the related literature, we find

that the statistical approach to inference on compressive measurements was developed

around 2010. Just a couple of years later, the revolution of neural networks started.

4.1 Inference and Machine Learning

Machine learning is a field that aims to address problems that humans, as cognitive be-

ings, are able to solve. The approach followed to achieve this goal is learning. In other

words, programs must improve their results leveraging the experience of executing tasks

repeatedly [52]. Within the field of machine learning, NNs have gained relevance in the

recent years.

NNs simulate the functioning of the human brain. When input signals reach a neuron,

a weighted sum of them is calculated. The output is generated only if the inputs are

above a threshold. NNs are inspired by this process. They are composed of layers that

contain several neurons. Each neuron generates a weighted sum of its inputs that comes

from the previous layer. The output y of the j-th neuron in a layer is expressed as

yj = f

(∑
i=1

Wijxi + bj

)
(4.1)

where xi are inputs, Wij are weights, bj is a bias, and f(·) is a non-linear function. Weights

47
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and biases are the flexible parameters of the network. If the outputs of all neurons in a

layer are given by the weighted sum of all the inputs coming from the previous layer, then

both layers are said to be fully connected (FC) layers. If this is not the case, then we have

sparsely connected layers. Fig. 4.1 shows a representation of both types of connections.

Figure 4.1: Scheme of fully and sparsely connected layers provided in [59].

If there are more than three layers in the network, then it is called a Deep Neural

Network (DNN) [59].

To illustrate the use of DNNs let us suppose that we have images of various pets

and we want to classify them automatically according to the type of animal. First, some

images are supplied to the DNN together with the information of what animal category

they belong to so that it can learn and adjust the weights for correct classification. This

process is called training. Once this is done, a new image that has not been processed by

the network yet is introduced. Using the knowledge previously acquired during training,

the DNN will return a rank of probabilities associated with different possible categories

of the animal in the new image. This process is called inference. The relationship with

the problems stated in the previous chapter is direct. The DNN performs classification,

which is an statistical inference problem.

One of the first achievements done by NNs was in 1989 when the LeNet network was

developed for hand-written digit recognition [39]. However, it was not until 2010s that

huge progress took place in this field. For example, a Microsoft’s speech recognition sys-

tem appeared in 2013 [26]. In fact, the progress in accuracy of DNNs in classification and

detection tasks can be seen in the results of the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [53]. The ImageNet project started in 2010. A publicly available

database is provided to promote a yearly competition.

One of the challenges of the contest is image classification. The algorithms partici-

pating in the competition have to identify the class of a given image, that is, they must

infer the image content. A total of 1.3 millions of images divided into 1000 classes and
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labeled with their corresponding class are provided for training. Then, a database with

non-labeled images is supplied to test the accuracy of the algorithm proposed. In 2012,

the so-called AlexNet DNN achieved an error reduction of 10% with respect to the previ-

ous year.

The results throughout the years are presented in Fig. 4.2. Specifically, the top-5

classification error of the best entries of the contest are shown. This top-5 error is based

on whether the correct class of the test image is among the five classes that the algorithm

chooses as the most probable for the processed image.

The use of DNNs involved a significant step forward in classification accuracy. AlexNet

was just the beginning of the Deep-Learning era. In the following years, researchers de-

veloped deeper and more accurate networks. In 2015, a DNN called ResNet outperformed

human ability for classification in the contest.

Figure 4.2: Classification errors of the best entries in ILSVRC throughout the years [63].

The conceptual mixture of CS and machine learning leads to a new framework often

called Compressed Learning (CL). The original signals are said to be in the data domain.

We can then perform a dimensionality reduction by sampling according to the framework

of CS to enter the measurement domain. The objective of CL is to perform pattern recog-

nition in the measurement domain.

An example of classification applying CL theory is [10], which employed soft-margin

Supported Vector Machines (SVMs) (see Section 4.4.2 for further details on SVMs). In

general terms, an SVM [7, 18] is a machine-learning algorithm that can be used for
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classification. It constructs a hyperplane as a boundary between the classes we want to

distinguish. In [10], it was theoretically and experimentally demonstrated that a SVM

classifier trained using compressed data performs almost as well as the best SVM classifier

on the original data. Different approaches have been proposed over the years to implement

this idea of performing inference directly on sampled data. However, with the DNN

revolution, an increasing number of researchers have explored DNNs for CL.

4.2 Classification and recognition

Image classification and activity recognition are challenges that do not necessarily need

a full-image reconstruction. Therefore, there has been an attempt to adapt conventional

methods to this new scenario of inference on compressed measurements.

In [41], the authors proposed to address face recognition in the near-infrared spectrum

using compressed measurements of the faces. Given that infrared cameras are expensive,

alternative solutions must be found. In this study, an SPC (see application 1 in Section

2.5) was used to extract compressed images. Thus, they created their own database made

up of compressed face images in the near-infrared.

Feature correlation usually refers to the dependence on different attributes of the anal-

ysed data. In [41], the proposal was based on keeping correlation using filters applied to

the compressed data. They called them smashed filters. Once the feature extraction is

done, a SVM performs a one-vs-all classification to identify faces. Therefore, the multi-

class classification problem splits into a series of binary classifications, one per face, that

are solved.

To improve the accuracy obtained using filters, a DNN designed to classify on com-

pressed measurements was presented in 2015 [40]. The proposed scheme is the following:

1. Compressed measurements of a scene are obtained using an SPC. A measurement

vector is obtained that can be mathematically expressed as y = Φx, where x repre-

sents the scene and Φ is the sensing matrix that corresponds to the pattern formed

by the micromirrors of the camera.

2. A linear projection of the measurement vector is computed using ΦT , thereby ob-

taining a pseudoimage: x̂ = ΦTΦx.

3. The pseudoimage is the input of a special type of network called Convolutional

Neural Network (CNN) whose particular structure depends on the type of task

addressed.
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4. A last layer, called Softmax, is placed to output the probabilities of the original

image belonging to each class.

CNNs are networks with layers that perform convolution. Every weighted sum is cal-

culated using the same set of weights. Suppose that the input of the system is an image.

In a convolutional layer, the set of weights are placed in a 2D array called filter or kernel

whose dimension is smaller than the input, which is also a 2D array. This filter is applied

to a section of the input with the same size as the filter. The result is called an output

activation. The filter moves across the input producing more outputs, and the collection

of all of them is called feature map (fmap). In [59], this process is illustrated as shown in

Fig. 4.3.

Figure 4.3: Scheme of a 2D convolution provided in [59].

If the input image has colour, then it will have different channels and the input size

would be H ×W × C, where H stands for height, W for width, and C for channels. In

this case, we would use a stack of C 2D filters. Usually, this is called a 3D filter.

The experiments presented by [40] do not use the SPC physically but instead they

simulate its mechanism, i.e., the implementation of y = Φx, on software. The results are

based on two experiments that use the scheme described above.

In the first experiment, the objective was classification. The database used is MNIST,

which is a collection of 28 × 28 images in grayscale containing hand-written digits from

0 to 9. Therefore, it has 10 different classes. MNIST comprises a total of 70000 images,

among which 60000 are used for training and the rest for testing. The network developed

to classify these images is based on LeNet-5 and the sensing matrix chosen is a Gaussian

matrix. The network is trained and tested for different compression ratios M/N with

N = 28 × 28 = 784. Finally, the results are compared to the ones achieved with the

smashed filters proposed in [41].
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According to the experimental data reported in [40], Table 4.1 compares the results

of [40] and [41]. Clearly, the DNN approach achieves better performance.

Compression
ratio (M/N)

Test error Test error
Smashed Filters CNN approach

1 13,86% 0,89%
0,25 27,42% 1,63%
0,10 43,55% 2,99%
0,05 53,21% 5,18%
0,01 63,03% 41,06%

Table 4.1: Comparison of test error for MNIST classification with different approaches
[40].

In the second experiment, a complex database was chosen to test the proposed frame-

work. The authors worked with the ILSVRC 2012 dataset. The same aforementioned

scheme was followed. However, in this case, the sensing matrix is a Hadamard matrix

and the CNN is a modified version of AlexNet.

Based on this publication, other researchers contributed to the improvement of classi-

fication using compressed measurements. For example, [1] and [66] tested new networks

capable of learning the sensing matrix before performing inference. They added a first

layer, whose parameters are learned, to act as the sensing matrix Φ. A second layer learns

a new set of weights and projects the input measurements as ΦT in [40]. However, this

second matrix Ψ̂ is a different matrix.

Following these advances, [24] incorporated the learned-sensing-matrix approach and

also extracted both features with a DNN and hand-crafted features using DCT coeffi-

cients. Classification was conducted on the fused features and MNIST was used to test

the proposed network. The results were compared to the ones obtained using [41], [40],

and [1]. A significant improvement in accuracy was achieved with respect to the smashed

filter proposal and similar test errors to DNNs in [40] and [1] were obtained.

In [4], image classification based on learning the sensing matrix was also proposed.

This sensing matrix is to be employed as the matrix for an SPC. There are many other

proposals for image classification using DNNs. For example, [42] develops a system in-

spired in the functioning of the human retina to sense the image in an efficient way and

classify with good results. Also, some researches have put together classification and an

interactive interface. In [58], a DNN was developed that classifies compressed measure-

ments and can be tested through an interactive interface where one can write a digit,
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which is compressed and classified. Words can also be written and the letters recognized

are sent to a spelling corrector.

Finally, human-action recognition is addressed in [45]. A human action such as walk-

ing or running can be registered through the pertinent sensor. The aim is to distinguish

between different activities. A sensing-matrix design is proposed in [45] to apply CS mea-

surement acquisition and subsequent classification. To test their proposal, the authors

used the so-called CMU Mocap database, which contains images of skeletons in motion.

They selected 6 classes to classify: walk, run, walk with arms out, walk swinging, walk

with wild legs, and walk on toe.

4.3 Detection and estimation

Detection is an inference problem required in a variety of applications. For example, to

ensure security in roads or shopping centers, we may need to be able to detect and track

people. Detection can be also useful for certain medical applications to improve the di-

agnostics tools available.

In [38], the authors propose to perform human tracking on compressed measurements

using DNNs. Instead of taking linear measurements, they choose a special case of com-

pressed samples. They use subsampling, which implies retaining the value of random

pixels and discarding the rest. The database used to test their proposal is SENSIAC. It

contains videos of people walking in a background at different distances. In particular,

human tracking was tested at 500 m, 1000 m, and 1500 m. The idea is to perform tracking

by detection. This is, the person is detected in the video at different times and therefore,

a trajectory is formed.

Leaving aside computer-vision applications, there are other fields that can benefit from

performing inference with compressed measurements. One of these areas is health care,

[16, 20]. There is an increased usage of wireless body sensors to keep control of various

pathologies. By detecting a change in physiological signals or factors indicating a disease,

early intervention can be done. If the detection was achieved on compressed measure-

ments, less energy would be required by the wearable device.

Moreover, if we used the traditional CS paradigm, after sampling, we would have to

transmit the measurements and reconstruct the signals at the receiver point. This could

mean losing too much time during the recovery and consequently missing, for instance,

a disease indicator that appears during a brief period of time. This is the case of atrial
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fibrillation.

Detection of atrial fibrillation, which is a type of arrhythmia that can indicate throm-

bosis or strokes, was investigated in [16]. This fibrillation appears in electrocardiograms

(ECG). With Fig. 4.4, the authors showed the difference between a normal ECG signal

and one with atrial fibrillation.

Figure 4.4: ECG without and with atrial fibrillation extracted from [16].

Their aim was to detect atrial fibrillation in compressed measurements of an elec-

trocardiogram (ECG) using a DNN developed ad-hoc for this purpose. Similar to the

implementations for classification, the first layer of the network projects the compressed

measurements. However, instead of using ΦT , they used the pseudo-inverse of the sensing

matrix to initialise the weights of this layer, i.e., Φ†. With training, these weights, along

with the ones of the rest of the network, are optimized to maximize the detection accuracy.

Up to now, we have focused on applications using machine learning. However, it is

possible to implement inference using the classical techniques seen in Chapter 3. Follow-

ing with health care applications, not only detection is needed. Estimation can also be

useful. In [20], the heart rate is estimated in the compressed domain using the estimators

developed in Chapter 3. With an ECG, heart beats can be measured over a period of

time and the heart rate is determined by certain peaks called R-peaks, as shown on the

right plot in Fig. 4.4. The idea is to perform matched filtering in the compressed data

and apply a threshold to localize these peaks.

The ECG signal x(t) is a continuous signal in time and ψ(t) is a template of an R-

peak. Matched filtering consists in convolving the ECG signal, x(t), with a time-reverse

function of ψ(t):

R(t) =

∫ ∞
−∞

x(τ)ψ(τ − t)dτ (4.2)

With the resulting R, we will be able to detect the R-peaks that are placed where maxima

appear in the output.

If we consider x as a discrete signal of length N, then matched filtering consists in
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calculating a vector R whose components are Rn = 〈x, ψn〉 with n ∈ {1, ..., N}; ψn is

appropriately defined and contains the template used.

Now suppose that measurements are taken and we have y = Φx ∈ RM . With the

estimators analysed in Chapter 3, we can estimate the value of those inner products. For

example, in the case of the direct estimator, we would have R̂n = 〈y,Φψn〉.

4.4 Implementation

In this section, we describe how we tested some implementations of inference problems

using compressed measurements. We focus on detection and classification as they are the

tasks typically addressed by the research community.

4.4.1 MNIST database

As mentioned above, the MNIST database consists on 70000 28× 28 grayscale images of

hand-written digits from 0 to 9; 60000 of these images are reserved for training and the

remaining 10000 are for testing the targeted machine-learning algorithm. It is a simple

and widely used database that is accessible through Tensorflow.keras.

import t en s o r f l ow as t f

( X train , y t r a i n ) , ( X test , y t e s t ) = t f . keras . da ta s e t s . mnist . l oad data ( )

Figure 4.5: Examples of MNIST images with their labels.

Fig. 4.5 shows the first 10 images of the training section of the database. As we can

see from the code above, each image comes with a label that indicates the class it belongs

to. This is important for the training process, because the algorithm needs to know the
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class of every image to learn.

Given that each image is 28 × 28, when they are transformed into a vector, we will

have a vector of length N = 28 · 28 = 784. In the following subsections, we describe how

to detect and classify on MNIST.

4.4.2 Detection with SVM

As previously explained in this chapter, SVMs are algorithms used for classification that

rely on the construction of an hyperplane to separate classes [9]. This means that we can

use SVMs to perform detection by dividing the data into classes. For binary classification,

one of the classes represents the target category.

Suppose a dataset for training, {xi, yi}li=1, where xi ∈ RN encodes the data and yi

represents the corresponding label indicating the class of xi. We consider two possibilities

for the labels, namely yi ∈ {1,−1}. Suppose that the points {xi}li=1 are linearly separable,

i.e., there exists at least one hyperplane that leaves one class of the points on a side and

the other class on the other. In particular, let us suppose the hyperplane

w · x+ b = 0 (4.3)

where w ∈ RN is normal to the hyperplane and b ∈ R. If this hyperplane separates both

classes of data completely, we would have the followings inequalities:

w · xi + b ≥ 1 for yi = 1 (4.4)

w · xi + b ≤ −1 for yi = −1 (4.5)

The margins of the hyperplane, d+ and d−, are defined as the minimum distance be-

tween the proper hyperplane and the nearest data points on each side, called supported

vectors. These are the closest points with y = 1 on one side of the hyperplane and the

closest points with y = −1 on the other side. The end of these margins are given by taking

equalities in Eqs. (4.4) and (4.5); the distance in between is 2/‖w‖2. Therefore, we can

maximize the margins by minimizing ‖w‖2
2 subject to Eqs. (4.4) and (4.5). The SVM

tries to find the hyperplane with maximum margins. Fig. 4.6 represents this hyperplane

construction together with the supported vectors in a 2D space.

Now, let us assume that not all the points can be separated as indicated above. In

this case, we could relax the model and even let the SVM misclassify some samples of

the data. Thus, some points could fall into the margin regions or on the wrong side of
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Figure 4.6: Example of linear separation of 2D data extracted from [18]. Supported
vectors are marked with grey squares.

the hyperplane. To make sure the situation is controlled and the error committed is not

critical, a new parameter, usually called C, is introduced to penalize points improperly

placed. This algorithm is called soft-margin SVM. Finally, if the data considered are not

linearly separable, then every xi is mapped to a higher dimension where it is separable

through an application called kernel. In this case, the algorithm is called non-linear clas-

sifier.

The code provided in [34] implements an SVM that detects the digit 3 in images ex-

tracted from MNIST. First, ns images are selected from the database for training, half

of them are digit 3 whereas the rest are other digits. In the same way, nt images are

selected for testing, again half of them are digit 3. Once this is done, a linear supported

vector classifier is fed with the training set without compressing the images. The results

for detection in the data domain present an accuracy of 88%.

The next step is to obtain the accuracy in the measurement domain. We set different

values of measurements M . For each of them, we set a loop of 20 iterations to calculate

the mean accuracy obtained over them. In each iteration, Gaussian and Bernoulli ma-

trices of size M × N were generated, where N = 784 (see Section 4.4.1). The definition

of these matrices is provided in Definition 8. Detection is performed with each of the

matrices to compare their results.

Fig. 4.7 shows that in general the accuracy obtained is similar to the one in the data

domain. However, for small values of M there is an abrupt descent, which may imply

that those compression rates are not suitable for this implementation of detection in the

measurement domain. Note also that the performance of the Gaussian and the Bernoulli

matrices are very similar, although for small values of M there seems to occur a small

drop in accuracy for the Gaussian case with respect to the Bernoulli matrix.
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Figure 4.7: Detection accuracy vs. M/N for Gaussian and Bernoulli matrices.

4.4.3 Classification with DNN

In this subsection, we show how to construct a network to classify on MNIST using the

approach reported in [40]. In this approach, as previously explained in this chapter, every

image of the database is compressed with the sensing matrix Φ to simulate the measure-

ments that an SPC would return, and then they are projected with ΦT . Therefore, our

first step is to create a function to pre-process the complete dataset that returns pseu-

doimages to be used as inputs of the DNN.

The DNN implemented has been created according to the one proposed in [40], which

is based on the LeNet model. The scheme of the network is the following:

1. Convolutional layer: 20 output feature maps, kernels of size 5 × 5, and Rectified

Non-linear Unit (ReLU) as the nonlinear function.

ReLU is defined as f(x) = max(0, x).

2. Max pooling layer: size 2× 2 and stride =2.

Input windows of the size indicated are reduced or pooled by substituting it by

the maximum of the values in the window. The stride indicates the number of

movements in the horizontal or vertical direction to perform another pooling.

3. Convolutional layer: 50 output feature maps, kernels of size 5× 5 and ReLU.

4. Max pooling layer: size 2× 2 and stride = 2.

5. Fully connected layer: output feature vector of length 50.



4.4. Implementation 59

6. Fully connected layer: output feature vector of length 10 and softmax.

To train our DNN, we need an optimizer. This is an algorithm that updates weights

to reduce the loss and obtain better accuracy results. In this example, we have used

Adam optimizer [37], training the network for 10 epochs. On each epoch, the DNN is fed

with the training images and learns from them. We divided the images of the training set

between training and validation images. Once the training is done, the validation images

are used to calculate the accuracy of the network. For M/N = 0.3, we obtained an 87%

of accuracy. Finally, to illustrate the performance of our network, we randomly selected

10 images from the test set and compared the correct label and the predicted class for

M/N = 0.3, as shown in Table 4.2. We can see that only the first image was misclassified.

Correct label 6 7 0 5 7 8 1 6 8 2
Predicted class 8 7 0 5 7 8 1 6 8 2

Table 4.2: Classification results on MNIST.

If we train the network for different values of M/N , we obtain the plot depicted in

Fig. 4.8. It is clear that for a wide range of values of M , the results are promising.

However, for small values of M , the accuracy drops rapidly.

Figure 4.8: Accuracy of classification vs. M/N for Gaussian matrices.
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Chapter 5

Conclusions

We began this work talking about the technological revolution that is generating large

amounts of data every day. In turn, this is giving rise to the problem of efficiently trans-

mitting and storing such vast amount of information. In this context, CS emerged as a

new theoretical framework able to improve classical approaches with the characteristic of

concurrent sampling and compression. This new theory was developed for sparse or com-

pressible signals. Although this may seem a limitation of CS, signals can be transformed

to a new domain in which they have the necessary properties to be used.

Initially, CS was developed for signal reconstruction. Thus, a signal of interest is sam-

pled and compressed with a sensing matrix, and the objective is to reconstruct the original

signal as faithfully as possible from the measurements taken. However, it is not always

useful to reconstruct the complete signal or even try reconstruction at all. Furthermore,

if we are able to recover the signal from the compressed measurements is because all the

relevant information was already there. Therefore, we could perform inference directly on

compressed measurements.

We have studied the mathematical theory of four inference problems: detection, classi-

fication, estimation, and filtering. Concerning the first two problems, they were addressed

using hypothesis testing, which is a fundamental branch of statistical inference. The ex-

perimental results for detection rate and classification error illustrate that it is possible to

perform these tasks on compressed measurements with good results. However, for small

values of M/N , the error increases rapidly, meaning that high compression are not suit-

able. Continuing with estimation, we have studied two different estimators with similar

performance. Finally, filtering an unwanted signal in the compressed domain enables re-

constructing a signal of interest from a noisy signal. The cancel-then-recover technique

implies performing filtering in the compressed domain to eliminate the interference and

then reconstructing the signal of interest.
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When trying to implement inference on CS measurements, researchers have explored

a machine-learning perspective. The fusion of these two fields is called CL. In partic-

ular, after the NN revolution, many proposed approaches to leverage DNNs and many

applications have been developed. As examples, in Chapter 4 we have reviewed some

of these applications. Classification on compressed images has been widely studied and

different approaches have been developed to improve previous results. Face recognition

has also been addressed with CL. Detection on compressed measurements has been used

for applications as different as human tracking and disease detection. However, not all

inference applications use machine learning. We have also found an example that uses

estimators to estimate the heart rate.

Finally, we show experimental results of detection and classification on compressed

measurements as they are the principal problems addressed by researchers. We have

tested a code implementing detection on compressed measurements using an SVM and

two different types of random matrices. The results show that the accuracy is very similar

to the one obtained for non-compressed data even for few measurements, and the choice

between Gaussian or Bernoulli matrices does not make much difference in accuracy re-

sults. Concerning classification, we have conducted experiments on the basis of a code

developed according to the proposal in [40]. The results show that for a wide range of

compression ratios, classification on MNIST with good accuracy is achieved. However,

for very small values of M , the rapid decrease in accuracy makes accuracy unacceptable

for classification with this code.

In conclusion, inference on compressed measurements by means of CS as a sampling

and compression strategy is possible. We have studied four inference problems and re-

viewed applications of this new theoretical framework mainly using machine learning.

Moreover, we have shown experimental results of detection and classification obtaining

good accuracy for many compression ratios. However, it has also been observed a rapid

decrease in accuracy when the number of measurements is small.



Appendix

This appendix elaborates on the code used in Chapters 2, 3, and 4. The files are avail-

able in a Github repository that can be accessed in https://github.com/MarJimCom/

Inference_on_compressive_measurements.

Based on [54], we developed the code in Sparsity and reconstruction.py that is em-

ployed in Subsection 2.4.1. The file Non sparse signals.py, based in [60, 19], corresponds

to Subsection 2.4.2. To end with the code used in Chapter 2, Image reconstruction.py

contains the code from [60] used for image reconstruction and the calculation of our errors.

Following with Chapter 3, the plots depicted are produced by the codes in Detec-

tion.py, Classification.py, Estimation.py and Filtering.py.

Detection with SVM.py corresponds to the results provided in Section 4.4.2. The

complete implementation can be found in [34]. We include the changes we introduced

to obtain Fig. 4.7. Finally, Classification with DNN.py contains the DNN based on the

proposal reported in [40] and used to create the plot in Fig. 4.8 in Section 4.4.3.

63

https://github.com/MarJimCom/Inference_on_compressive_measurements
https://github.com/MarJimCom/Inference_on_compressive_measurements


64



Bibliography

[1] Adler, A., Elad, M., and Zibulevsky, M. Compressed Learning: A Deep

Neural Network Approach. arXiv:1610.09615 [cs] (Oct. 2016).

[2] Ahmed, N., Natarajan, T., and Rao, K. Discrete Cosine Transform. IEEE

Transactions on Computers C-23, 1 (Jan. 1974), 90–93.

[3] Andrew, G., and Gao, J. Scalable training of L 1 -regularized log-linear models.

In Proceedings of the 24th international conference on Machine learning - ICML ’07

(Corvalis, Oregon, 2007), ACM Press, pp. 33–40.

[4] Bacca, J., Correa, C. V., Vargas, E., Castillo, S., and Arguello, H.

Compressive Classification from Single Pixel Measurements Via Deep Learning. In

2019 IEEE 29th International Workshop on Machine Learning for Signal Processing

(MLSP) (Pittsburgh, PA, USA, Oct. 2019), IEEE, pp. 1–6.

[5] Baraniuk, R., and Steeghs, P. Compressive Radar Imaging. In 2007 IEEE

Radar Conference (Apr. 2007), pp. 128–133. ISSN: 2375-5318.

[6] Blumensath, T., and Davies, M. E. Iterative Hard Thresholding for Compressed

Sensing. arXiv:0805.0510 [cs, math] (May 2008).

[7] Boser, B. E., Guyon, I. M., and Vapnik, V. N. A training algorithm for opti-

mal margin classifiers. In Proceedings of the fifth annual workshop on Computational

learning theory (Pittsburgh, Pennsylvania, USA, July 1992), COLT ’92, Association

for Computing Machinery, pp. 144–152.

[8] Boutell, T. PNG (Portable Network Graphics) Specification Version 1.0. Tech.

Rep. RFC 2083, RFC Editor, Mar. 1997.

[9] Burges, C. J. A Tutorial on Support Vector Machines for Pattern Recognition.

Data Mining and Knowledge Discovery 2, 2 (June 1998), 121–167.

[10] Calderbank, R., and Jafarpour, S. Finding needles in compressed haystacks.

In Compressed Sensing: Theory and Applications, G. Kutyniok and Y. C. Eldar, Eds.

Cambridge University Press, Cambridge, 2012, pp. 439–484.

65



66 Bibliography

[11] Candes, E., Romberg, J., and Tao, T. Robust uncertainty principles: exact sig-

nal reconstruction from highly incomplete frequency information. IEEE Transactions

on Information Theory 52, 2 (Feb. 2006), 489–509.

[12] Candes, E., and Wakin, M. An Introduction To Compressive Sampling. IEEE

Signal Processing Magazine 25, 2 (Mar. 2008), 21–30.

[13] Chartrand, R. Exact Reconstruction of Sparse Signals via Nonconvex Minimiza-

tion. IEEE Signal Processing Letters 14, 10 (Oct. 2007), 707–710.

[14] Chartrand, R., and Staneva, V. Restricted isometry properties and nonconvex

compressive sensing. Inverse Problems 24, 3 (June 2008), 035020.

[15] Chen, S. S., Donoho, D. L., and Saunders, M. A. Atomic Decomposition by

Basis Pursuit. SIAM Journal on Scientific Computing 20, 1 (Jan. 1998), 33–61.

[16] Cheng, Y., Hu, Y., Hou, M., Pan, T., He, W., and Ye, Y. Atrial Fibrillation

Detection Directly from Compressed ECG with the Prior of Measurement Matrix.

Information 11, 9 (Sept. 2020), 436.

[17] Cormode, G., and Muthukrishnan, S. Combinatorial Algorithms for Com-

pressed Sensing. In 2006 40th Annual Conference on Information Sciences and Sys-

tems (Princeton, NJ, Mar. 2006), IEEE, pp. 198–201.

[18] Cortes, C., and Vapnik, V. Support-vector networks. Machine Learning 20, 3

(Sept. 1995), 273–297.

[19] Cox, W. A Brief Introduction to Compressed Sensing with Scikit-Learn.

http://www.gallamine.com/2014/02/a-brief-introduction-to-compressed.html, Feb.

2014.

[20] Da Poian, G., Rozell, C. J., Bernardini, R., Rinaldo, R., and Clifford,

G. D. Matched Filtering for Heart Rate Estimation on Compressive Sensing ECG

Measurements. IEEE Transactions on Biomedical Engineering 65, 6 (June 2018),

1349–1358.

[21] Daubechies, I., Defrise, M., and De Mol, C. An iterative thresholding al-

gorithm for linear inverse problems with a sparsity constraint. arXiv:math/0307152

(Nov. 2003).

[22] Davenport, M., Boufounos, P., Wakin, M., and Baraniuk, R. Signal

Processing With Compressive Measurements. IEEE Journal of Selected Topics in

Signal Processing 4, 2 (Apr. 2010), 445–460.



Bibliography 67

[23] Davenport, M. A., Duarte, M. F., Eldar, Y. C., and Kutyniok, G. In-

troduction to compressed sensing. In Compressed Sensing: Theory and Applications,

Y. C. Eldar and G. Kutyniok, Eds. Cambridge University Press, Cambridge, 2012,

pp. 1–64.

[24] Degerli, A., Aslan, S., Yamac, M., Sankur, B., and Gabbouj, M. Com-

pressively Sensed Image Recognition. In 2018 7th European Workshop on Visual

Information Processing (EUVIP) (Tampere, Nov. 2018), IEEE, pp. 1–6.

[25] Deka, B., and Datta, S. Compressed sensing magnetic resonance image recon-

struction algorithms. Springer Berlin Heidelberg, New York, NY, 2019.

[26] Deng, L., Li, J., Huang, J.-T., Yao, K., Yu, D., Seide, F., Seltzer, M.,

Zweig, G., He, X., Williams, J., Gong, Y., and Acero, A. Recent ad-

vances in deep learning for speech research at Microsoft. In 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing (May 2013), pp. 8604–8608.

ISSN: 2379-190X.

[27] Dong, B., Mao, Y., Osher, S., and Yin, W. Fast linearized Bregman itera-

tion for compressive sensing and sparse denoising. Communications in Mathematical

Sciences 8, 1 (2010), 93–111.

[28] Donoho, D. Compressed sensing. IEEE Transactions on Information Theory 52,

4 (Apr. 2006), 1289–1306.

[29] Duarte, M., Davenport, M., Wakin, M., and Baraniuk, R. Sparse Signal

Detection from Incoherent Projections. In 2006 IEEE International Conference on

Acoustics Speed and Signal Processing Proceedings (Toulouse, France, 2006), vol. 3,

IEEE, pp. III–305–III–308.

[30] Duarte, M. F., Davenport, M. A., Takhar, D., Laska, J. N., Sun, T.,

Kelly, K. F., and Baraniuk, R. G. Single-pixel imaging via compressive sam-

pling. IEEE Signal Processing Magazine 25, 2 (Mar. 2008), 83–91.

[31] Foucart, S., and Rauhut, H. A Mathematical Introduction to Compressive

Sensing. Applied and Numerical Harmonic Analysis. Springer New York, New York,

NY, 2013.

[32] Gilbert, A. C., Strauss, M. J., Tropp, J. A., and Vershynin, R. Sublinear

approximation of signals. R. A. Athale and J. C. Zolper, Eds., p. 623206.

[33] Gilbert, A. C., Strauss, M. J., Tropp, J. A., and Vershynin, R. One

sketch for all: fast algorithms for compressed sensing. In Proceedings of the thirty-



68 Bibliography

ninth annual ACM symposium on Theory of computing - STOC ’07 (San Diego,

California, USA, 2007), ACM Press, p. 237.

[34] Gupta, Y., and Agarwal, P. Compressed learning using svms. https://github.

com/pratyush1019/Compressed-Learning, 2020.

[35] Janse van Rensburg, C. Big data : a compressed sensing approach. Dissertation,

University of Pretoria, 2017.

[36] Kaur, R., and Choudhary, P. A Review of Image Compression Techniques.

International Journal of Computer Applications 142, 1 (May 2016), 8–11.

[37] Kingma, D. P., and Ba, J. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs] (Jan. 2017).

[38] Kwan, C., Gribben, D., and Tran, T. Multiple Human Objects Tracking

and Classification Directly in Compressive Measurement Domain for Long Range

Infrared Videos. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics &

Mobile Communication Conference (UEMCON) (New York City, NY, USA, Oct.

2019), IEEE, pp. 0469–0475.

[39] Le Cun, Y., Jackel, L., Boser, B., Denker, J., Graf, H., Guyon, I.,

Henderson, D., Howard, R., and Hubbard, W. Handwritten digit recognition:

applications of neural network chips and automatic learning. IEEE Communications

Magazine 27, 11 (Nov. 1989), 41–46.

[40] Lohit, S., Kulkarni, K., and Turaga, P. Direct inference on compressive

measurements using convolutional neural networks. In 2016 IEEE International

Conference on Image Processing (ICIP) (Phoenix, AZ, USA, Sept. 2016), IEEE,

pp. 1913–1917.

[41] Lohit, S., Kulkarni, K., Turaga, P., Wang, J., and Sankaranarayanan,

A. C. Reconstruction-free inference on compressive measurements. In 2015 IEEE

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)

(Boston, MA, USA, June 2015), IEEE, pp. 16–24.

[42] Lubana, E. S., Aggarwal, V., and Dick, R. P. Machine Foveation: An

Application-Aware Compressive Sensing Framework. In 2019 Data Compression

Conference (DCC) (Snowbird, UT, USA, Mar. 2019), IEEE, pp. 478–487.

[43] Luo, C., Wu, F., Sun, J., and Chen, C. W. Compressive data gathering for

large-scale wireless sensor networks. In Proceedings of the 15th annual international

conference on Mobile computing and networking - MobiCom ’09 (Beijing, China,

2009), ACM Press, p. 145.

https://github.com/pratyush1019/Compressed-Learning
https://github.com/pratyush1019/Compressed-Learning


Bibliography 69

[44] Lustig, M., Donoho, D., Santos, J., and Pauly, J. Compressed Sensing MRI.

IEEE Signal Processing Magazine 25, 2 (Mar. 2008), 72–82.

[45] Ma, R., Liu, G., Hao, Q., and Wang, C. Design of compressive imaging masks

for human activity perception based on binary convolutional neural network. In 2017

IEEE International Conference on Multisensor Fusion and Integration for Intelligent

Systems (MFI) (Daegu, Nov. 2017), IEEE, pp. 260–265.

[46] Mallat, S., and Zhifeng Zhang. Matching pursuits with time-frequency dictio-

naries. IEEE Transactions on Signal Processing 41, 12 (Dec. 1993), 3397–3415.

[47] Needell, D., and Tropp, J. A. CoSaMP: Iterative signal recovery from incom-

plete and inaccurate samples. arXiv:0803.2392 [cs, math] (Apr. 2008).

[48] Pati, Y., Rezaiifar, R., and Krishnaprasad, P. Orthogonal matching pursuit:

recursive function approximation with applications to wavelet decomposition. In

Proceedings of 27th Asilomar Conference on Signals, Systems and Computers (Pacific

Grove, CA, USA, 1993), IEEE Comput. Soc. Press, pp. 40–44.

[49] Qaisar, S., Bilal, R. M., Iqbal, W., Naureen, M., and Lee, S. Compressive

sensing: From theory to applications, a survey. Journal of Communications and

Networks 15, 5 (Oct. 2013), 443–456.

[50] Raid, A. M., Khedr, W. M., El-dosuky, M. A., and Ahmed, W. Jpeg

Image Compression Using Discrete Cosine Transform - A Survey. arXiv:1405.6147

[cs] (May 2014).

[51] Rani, M., Dhok, S. B., and Deshmukh, R. B. A Systematic Review of Compres-

sive Sensing: Concepts, Implementations and Applications. IEEE Access 6 (2018),

4875–4894. Conference Name: IEEE Access.

[52] Ray, S. A Quick Review of Machine Learning Algorithms. In 2019 International

Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMIT-

Con) (Faridabad, India, Feb. 2019), IEEE, pp. 35–39.

[53] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,

Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and

Fei-Fei, L. ImageNet Large Scale Visual Recognition Challenge. International

Journal of Computer Vision 115, 3 (Dec. 2015), 211–252.

[54] Schnoor, E. GitHub - ekki25/SparseRecovery: Implementation of different

compressive sensing sparse recovery algorithms. https://github.com/ekki25/

SparseRecovery, 2019.

https://github.com/ekki25/SparseRecovery
https://github.com/ekki25/SparseRecovery


70 Bibliography

[55] Scott, C. Statistical Signal Processing. https://cnx.org/contents/68ebe763-38ea-

436e-9fbd-c8abd71bae60@1.9, Dec. 2013.

[56] Shannon, C. Communication in the Presence of Noise. Proceedings of the IRE 37,

1 (Jan. 1949), 10–21.

[57] Spagnolini, U. Statistical signal processing in engineering. John Wiley & Sons,

Hoboken, NJ, 2017.

[58] Stubbs, J. J., Pattichis, M. S., and Birch, G. C. Interactive image and video

classification using compressively sensed images. In 2017 51st Asilomar Conference

on Signals, Systems, and Computers (Pacific Grove, CA, Oct. 2017), IEEE, pp. 2038–

2041.

[59] Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. Efficient Processing of

Deep Neural Networks: A Tutorial and Survey. Proceedings of the IEEE 105, 12

(Dec. 2017), 2295–2329.

[60] Taylor, R. Compressed Sensing in Python. http://www.pyrunner.com/weblog/

B/, 2016.

[61] Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. Journal of the

Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267–288.
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