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A B S T R A C T

Knowledge Graphs (KGs) currently contain a vast amount of structured information in the form of entities
and relations. Because KGs are often constructed automatically by means of information extraction processes,
they may miss information that was either not present in the original source or not successfully extracted. As
a result, KGs might lack useful and valuable information. Current approaches that aim to complete missing
information in KGs have two main drawbacks. First, some have a dependence on embedded representations,
which impose a very expensive preprocessing step and need to be recomputed again as the KG grows. Second,
others are based on long random paths that may not cover all relevant information, whereas exhaustively
analyzing all possible paths between entities is very time-consuming. In this paper, we present an approach to
complete KGs based on evaluating candidate triples using a set of neighborhood-based features. Our approach
exploits the highly connected nature of KGs by analyzing the entities and relations surrounding any given
pair of entities, while avoiding full recomputations as new entities are added. Our results indicate that our
proposal is able to identify correct triples with a higher effectiveness than other state-of-the-art approaches,
achieving higher average F1 scores in all tested datasets. Therefore, we conclude that the information present
in the vicinities of the two entities within a candidate triple can be leveraged to determine whether that triple
is missing from the KG or not.
. Introduction

Knowledge Graphs (KGs) are vast repositories of structured informa-
ion that have gained increasing popularity over the past years (Hogan
t al., 2020). Large volumes of information about different domains can
e found in some well-known KGs, such as DBpedia (Lehmann et al.,
015), NELL (Mitchell et al., 2018), Freebase (Bollacker et al., 2008)
r the Google Knowledge Vault (Dong et al., 2014), and can be used
or tasks like question answering (Bordes et al., 2014a; Huang et al.,
019).

KGs are most commonly built by extracting non-structured (Dong
t al., 2014; Mitchell et al., 2018) or semi-structured (Glass and
liozzo, 2018; Lehmann et al., 2015) information from web sources,

hough some smaller KGs can be manually curated by domain ex-
erts (Miller, 1995). When information extraction systems are applied
o extract knowledge from online sources, that information is then
emantized (Ayala et al., 2019b; Neumaier et al., 2016) and stored
n a KG as triples (Schlegel and Freitas, 2019), which represent facts
n the form of two entities connected by means of a certain relation.
egardless of the specific process by which a KG is constructed, the
esulting structure usually lacks a certain amount of information, either
ecause said information was not originally present in the information
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D. Ruiz).

source, or because it was incorrectly extracted or semantized (Bordes
and Gabrilovich, 2014). Because of this inherent incompleteness, KGs
operate under the Open World Assumption, i.e., a piece of information
that is not present in a KG is not considered to be incorrect, but rather
just unknown (Galárraga et al., 2015). Therefore, it is mandatory to
refine KGs after their creation in order to expand the knowledge they
contain and to increase the accuracy of their information (Paulheim,
2017). Such is the example of the Google Knowledge Vault (Dong et al.,
2014), a KG that is commonly used for question answering, which is
under continuous expansion and refinement.

Deriving additional knowledge from an existing KG to augment it is
a task known as Knowledge Graph completion (Paulheim, 2017). In KG
completion, the goal is to identify triples that are missing from the KG
and have a reasonable chance of being correct. This is usually done by
creating, training and applying a prediction model in a task known as
triple classification (Borrego et al., 2019; Lin et al., 2018). Clearly, it is
desirable for these models to achieve a high precision to ensure that the
triples that are considered to be missing from the KG represent correct
facts in the real world (Nentwig et al., 2017).

KG completion can be approached with two complementary goals
in mind: completing information about entity types (Neelakantan and
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Chang, 2015), or completing the relations between entities (Galárraga
et al., 2013; Lao and Cohen, 2010; Lin et al., 2015; Socher et al., 2013).
Furthermore, KG completion techniques can use both external features,
i.e., features that depend on external information sources; or internal
features, which are computed using only the KG itself (Drumond et al.,
2012; Ji et al., 2015).

As a motivational example, Fig. 1 presents a KG that contains
information about fictional works, actors, writers and characters. This
KG is incomplete, as it is missing certain information from the real
world. An example of completing relations between entities would be
relating Daniel Radcliffe and Harry Potter by means of the relation plays,

hich represents a correct fact that is not included in this KG.
In this work, we focus in KG completion using only internal features,

ince this line of research has shown promising results while avoiding
ependencies to external sources of information (Paulheim, 2017).
here are several related proposals in the literature that use solely

nternal features (Galárraga et al., 2015; Gardner and Mitchell, 2015;
i et al., 2015; Lin et al., 2015; Socher et al., 2013; Wang et al., 2014).
nfortunately, they suffer from a number of drawbacks. On one hand,

ome of them are embedding-based, which imposes a very expensive
re-processing step to map the entities and relations present in the KG
o the embedding space. On the other hand, other proposals are based
n random walks that are non-deterministic by definition and, as a
onsequence, they may not cover relevant information in the vicinity
f an entity.

In this paper, we present CAFE, our approach for KG Completion
sing neighborhood-aware features, which uses a feature set that lever-
ges information from the neighborhoods of the entities, i.e., other
earby entities and relations. This feature set transforms triples in
he KG into feature vectors, which are then used to train neural pre-
iction models. These models help to discern between correct triples
hat should be added to the KG, and incorrect ones that should be
isregarded.

The main contributions of our work are as follows:

• A set of neighborhood-based features. We propose a set of
features that can be applied directly to any KG, without the need
for computing embedded representations. This, in addition to the
fact that the proposed features do not require any pre-processing
of the KG, means that KG completion can be performed in a more
agile way. This is especially appealing for ever-growing KGs, since
full recomputations are not needed.

• Deterministic KG completion. Because the proposed features
do not rely on random paths, all the contextual information
surrounding any given entity is always taken into account. This
is especially useful in dense KGs, in which relevant information
may not be covered by random paths due to mere randomness.

• A KG completion workflow. We propose a KG completion tech-
nique, CAFE, that leverages the previously discussed set of fea-
tures to perform KG completion with a minimal amount of user
intervention.

• High effectiveness. Our experimental results show that CAFE is
able to predict which relations should be added to a KG with
a comparable or higher effectiveness than other state-of-the-art
approaches.

The rest of this paper is organized as follows: Section 2 analyzes
he related work in KG completion proposals, Section 3 describes our
erminology and the set of features that CAFE uses, Section 4 presents
ur proposal for training classification models for triples in a KG,
ection 5 reports on our experimental results; finally, Section 6 presents
ur conclusions.
2

. Related work

In the field of KG completion, the existing techniques can be clas-
ified into three types: rule-based, embedding-based and path-based
roposals.

Rule-based proposals rely on discovering logical rules that deter-
ine whether a given triple is correct. In this regard, some authors
ropose using Inductive Logic Programming to find Horn rules that
xpress the relations between entities in a KG, and then applying
hese rules to produce new explicit knowledge (Galárraga et al., 2013;
olthoff and Dutta, 2015), under the assumption that all triples that
atch the rules are correct. The performance of the obtained rules is
sually measured using metrics such as rule support or confidence, or
variant of these metrics (Galárraga et al., 2015).

Proposals that are based on embeddings aim to evaluate possible
elations in a KG by learning embedded representations of its entities
nd relations, either by using them as inputs for a binary classification
odel (Socher et al., 2013), or by performing different transformations

n an embedding space (Kazemi and Poole, 2018; Lin et al., 2015; Liu
t al., 2017; Sun et al., 2019; Trouillon et al., 2016). The resulting
mbedding space – or spaces – is subsequently used to evaluate the
ikelihood of a candidate triple to be correct or incorrect, since en-
ities that are supposed to be related by means of a certain relation
re expected to be close to each other in the embedding space. A
imilar line of work includes representing a KG as a tensor, and then
actorizing it to obtain latent, more compact representations of the
riples contained within it (Drumond et al., 2012; Nickel et al., 2012).
hese proposals suffer from a performance drawback: due to the way

n which the embedded representations are obtained, they need to be
ecomputed whenever new triples are added to the KG, which is a
elatively frequent event (Dong et al., 2014; Mitchell et al., 2018). Gen-
rally, embedding-based proposals rank triples in order of decreasing
ikelihood, according to how close the two entities in the triples are in
he generated space. Thus, they are commonly evaluated using ranking-
ased metrics, such as MRR or Hits@N (Wang et al., 2019); however,
likelihood threshold can be set to compute traditional classification
easures such as precision, recall, or F1 (Han et al., 2018).

Finally, path-based techniques exploit the highly relational nature
f KGs to learn how to predict new relations between entities. Our
pproach, CAFE, belongs to this category. In this line of work, Lao
nd Cohen (2010) introduced the Path Ranking Algorithm (PRA),
two-step process to find which paths may be useful to predict a

ertain relation. An evolution of PRA named Subgraph Feature Extrac-
ion (SFE) is proposed by Gardner and Mitchell (2015). SFE achieves
etter performance than PRA and produces more expressive results.
t also requires the creation of a handmade ‘‘Alias’’ relation, which
elates entities in the same KG that refer to the same element in the
eal world. Mazumder and Liu (2017) propose a random walk-based
pproach using neighborhood-guided path finding, where semantic
imilarities between entities are computed by applying a Word2vec-
ased embedding model on the names of the entities. Reinforcement
earning has also been used to find valuable paths that can help to
uccessfully complete a KG (Xiong et al., 2017). Unfortunately, due to
he non-deterministic way in which these paths are computed, they may
iss relevant information by mere chance.

As of recent, there also exist a number of KG completion proposals
hat combine the previous approaches. For example, Shen et al. (2019)
ropose computing embeddings of the entities and relations, and then
ombining these embeddings in the forms of paths. This can be helpful
or determining whether a certain triple is correct. A different way
f obtaining embedded representations of the elements in a KG is
resented by Wang et al. (2019), by using graph neural networks to
apture information pertaining to the structure of the graph. Entity
mbeddings have also been used to aid in the production of KG com-
letion rules (Ho et al., 2018). While embedded representations can
ndoubtedly be helpful, CAFE avoids computing them for the sake of
gility of application, and instead relies only on analyzing the structure
f the KG as is.
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Fig. 1. An example of a KG describing works, actors, writers and characters.
3. Neighborhood-aware features

In this section, we first introduce some preliminary concepts that are
necessary to understand our proposal, such as reachability and neigh-
borhood subgraphs. We then define our set of neighborhood-aware
features.

3.1. Preliminaries

The following definitions form the core of our proposal.

Definition 1 (Triple). Let  be a set of entities, and let  be a set of
relations. We define a triple as a 3-tuple that represents the existence
of a relation 𝑟 ∈  between a source entity 𝑠 ∈  and a target entity
𝑡 ∈  . We denote triples as (𝑠, 𝑟, 𝑡).

In the sample KG depicted in Fig. 1, a sample triple is (Emma Wat-
son, starred_in, Beauty and the Beast).

Definition 2 (Knowledge Graph). Let  be a set of entities, let  be a
set of relations, and let  be a set of triples of the form {(𝑠, 𝑟, 𝑡) ∣ 𝑠, 𝑡 ∈
 , 𝑟 ∈ }. We define a Knowledge Graph as  = ( , ,  ).

Fig. 1 graphically represents a KG with 13 entities, 7 distinct rela-
tions and 19 triples.

Definition 3 (Path Between Entities). Let  = ( ,,  ) be a Knowledge
Graph, and let 𝑠, 𝑡 ∈  be two entities in . We define a path 𝑝
between 𝑠 and 𝑡 as a sequence of triples of the form 𝑝 = ⟨ (𝑒𝑖, 𝑟𝑖, 𝑒𝑖+1) ⟩
for 𝑖 = 1..𝑛, where 𝑒1 = 𝑠, 𝑒𝑛+1 = 𝑡 and (𝑒𝑖, 𝑟𝑖, 𝑒𝑖+1) ∈  for 𝑖 = 1..𝑛. We
define the length of a path as the number of triples it contains, i.e., |𝑝|.
We denote a path 𝑝 of length 𝑛 between 𝑠 and 𝑡 using the relations
𝑟1 … 𝑟𝑛 as 𝑝𝑎𝑡ℎ(𝑠, 𝑡, 𝑟1, 𝑟2,… , 𝑟𝑛), or 𝑝𝑎𝑡ℎ𝑛(𝑠, 𝑡) for short. We denote the
set of all possible distinct paths of the form 𝑝𝑎𝑡ℎ(𝑠, 𝑡, 𝑟1, 𝑟2,… , 𝑟𝑛) as
(𝑠, 𝑡, 𝑟1, 𝑟2,… , 𝑟𝑛).

In the KG depicted in Fig. 1, an example of a path of length 2
between the entities J.K. Rowling and The Cuckoo’s Calling is ⟨ (J.K.
Rowling, created, Robin Ellacott ), (Robin Ellacott, appears_in, The Cuckoo’s
Calling ) ⟩.

Definition 4 (Reachability). Let  = ( ,,  ) be a Knowledge Graph,
let 𝑠, 𝑡 ∈  be two entities in , let 𝑟 ∈  be a relation in , and
let 𝑛 ≥ 1 be a natural number. We define reachability as a predicate
that determines whether there exists a path of length 𝑛 between 𝑠 and
𝑡 in  such that the relation 𝑟 appears in the last triple of the path,
i.e., 𝑅𝑒𝑎𝑐ℎ(, 𝑠, 𝑡, 𝑟, 𝑛) ⟺ ∃ 𝑝𝑎𝑡ℎ𝑛(𝑠, 𝑡) ∧ ∃ 𝑎 ∈  ∣ 𝑙𝑎𝑠𝑡(𝑝𝑎𝑡ℎ𝑛(𝑠, 𝑡)) =
(𝑎, 𝑟, 𝑡). We define the set of entities that can be reached from 𝑠 through
a relation 𝑟 at distance 𝑛 as the set of entities that match the predicate
3

Reach under such circumstances, i.e., {𝑡 ∈  ∣ 𝑅𝑒𝑎𝑐ℎ(, s, t, r, n)}. We
denote the previously defined set as 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑠, 𝑟, 𝑛).

In the example KG depicted in Fig. 1,
𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(Hermione Granger, writer, 2) =
{J.K. Rowling}.

Definition 5 (Neighborhood Subgraph). Let  = ( ,,  ) be a Knowl-
edge Graph, let 𝑒 ∈  be an entity in , and let 𝑛 ≥ 1 be a natural
number. We define the neighborhood subgraph of 𝑒 of size 𝑛 as a
Knowledge Graph 𝑛𝑒 = (𝑛

𝑒 , ,  𝑛
𝑒 ) that contains the triples whose

target entities can be reached from 𝑒 at a distance of at most 𝑛 through
any relation, and the entity set that can be derived from such triples,
where  𝑛

𝑒 = {(𝑠′, 𝑟′, 𝑡′) ∈  ∣ 𝑅𝑒𝑎𝑐ℎ(, e, 𝑡′, 𝑟′, i), i = 1..n} and 𝑛
𝑒 =

⋃

{{𝑠, 𝑡} ⊆  ∣ (𝑠, 𝑟, 𝑡) ∈  𝑛
𝑒}.

Fig. 2 illustrates this definition, with two possible neighborhood
subgraphs for the KG shown in Fig. 1.

3.2. Feature set

We propose a set of neighborhood-aware features that takes neigh-
borhood subgraphs, reachable entities and paths into account. Due to
the large number of possible variations of each feature, we present
our feature set in terms of groups of features. Each group can be
parameterized to obtain a specific feature, which we call an instance
of the feature group.

Definition 6 (Feature). Let  = ( ,,  ) be a Knowledge Graph. We
define a feature 𝑓 as a function 𝑓 ∶  → R that assigns a real number
to a triple.

For example, a feature 𝑓 may convert a triple into the number of
entities in the neighborhood subgraph of size 2 of the source entity,
i.e., 𝑓 ∶ (𝑠, 𝑟, 𝑡) ↦ |2

𝑠 |.

Definition 7 (Feature Group). Let  = ( ,,  ) be a Knowledge Graph.
We define a feature group 𝑓𝑛 as a function 𝑓𝑛 ∶  → ( → R) that
receives a set of parameters  and returns a feature.

For example, a feature group 𝑓0 may return a feature that converts
a triple into the number of entities in the neighborhood subgraph of
size 𝑛 of the source entity, i.e., 𝑓0(𝑛) = 𝑓 ∶ (𝑠, 𝑟, 𝑡) ↦ |𝑛

𝑠 |, where 𝑛 is a
parameter of the feature group. Thus, 𝑓0(2) ∶ (𝑠, 𝑟, 𝑡) ↦ |2

𝑠 |, which is the
feature shown in the previous example. Consequently, feature groups
allow us to represent a set of very similar features in a more compact
way, where the only distinction between said features is a given set of
parameters.
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Fig. 2. Two neighborhood subgraphs for the sample KG depicted in Fig. 1.

In the following, we present the feature groups that CAFE uses. For
the sake of clarity, we illustrate a possible instance of every feature
group and its value using the example triple 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 = (Daniel Radcliffe,
plays, Harry Potter), the KG shown in Fig. 1 and the neighborhood
subgraphs described in Fig. 2.

Feature group 𝑓1: Number of entities in the neighborhood subgraph of size
of the source entity in the triple.

Features in this group are computed as:

𝑓1(𝑛) ∶ (𝑠, 𝑟, 𝑡) ↦ |𝑛
𝑠 |

In the example shown in Fig. Fig. 2(a), 𝑓1(2) applied to the example
triple is |{Daniel Radcliffe, Harry Potter and the Goblet of Fire (movie),
Harry Potter and the Prisoner of Azkaban (movie), Harry Potter and the
Goblet of Fire (book), Harry Potter and the Prisoner of Azkaban (book)}|
5.

eature group 𝑓2: Number of entities in the neighborhood subgraph of size
of the target entity in the triple.

Features in this group are computed as:

𝑓2(𝑛) ∶ (𝑠, 𝑟, 𝑡) ↦ |𝑛
𝑡 |

n the example shown in Fig. Fig. 2(b), 𝑓2(3) applied to the example
riple is |{Harry Potter, J.K. Rowling, Harry Potter and the Goblet of Fire
book), Harry Potter and the Prisoner of Azkaban (book), Robin Ellacott,
ermione Granger}| = 6.

eature group 𝑓3: Degree of n-path centrality of the source entity in the
riple.

Features in this group are computed as:

𝑓3(𝑛) ∶ (𝑠, 𝑟, 𝑡) ↦
|𝑛

𝑠 |
|| − 1

4

In the example shown in Fig. Fig. 2(a), 𝑓3(1) applied to the example
triple is |{Harry Potter and the Goblet of Fire (movie), Harry Potter and
he Prisoner of Azkaban (movie)}|∕(13 − 1) = 2∕12 ≈ 0.17.

Feature group 𝑓4: Degree of N-path centrality of the target entity in the triple.
Features in this group are computed as:

𝑓4(𝑛) ∶ (𝑠, 𝑟, 𝑡) ↦
|𝑛

𝑡 |

|| − 1

In the example shown in Fig. Fig. 2(b), 𝑓4(1) applied to the example
triple is |{Harry Potter and the Goblet of Fire (book), Harry Potter and the
Prisoner of Azkaban (book)}|∕(13 − 1) = 2∕12 ≈ 0.17.

Feature group 𝑓5: Number of common entities between the neighborhood
subgraph of size 𝑛 of the source entity and the neighborhood subgraph of
size 𝑚 of the target entity in the triple.

Features in this group are computed as:

𝑓5(𝑛, 𝑚) ∶ (𝑠, 𝑟, 𝑡) ↦ |𝑛
𝑠 ∩ 𝑚

𝑡 |

In the example shown in Fig. Fig. 2, 𝑓5(2, 3) applied to the example
triple is |{Harry Potter and the Goblet of Fire (book), Harry Potter and the
Prisoner of Azkaban (book)}| = 2.

Feature group 𝑓6: Jaccard index of similarity between the entities in the
neighborhood subgraph of size 𝑛 of the source entity and the neighborhood
subgraph of size 𝑚 of the target entity in the triple.

Features in this group are computed as:

𝑓6(𝑛, 𝑚) ∶ (𝑠, 𝑟, 𝑡) ↦ 𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝑛
𝑠 , 

𝑚
𝑡 )

In the example shown in Fig. Fig. 2, 𝑓6(2, 3) applied to the example
triple is |{Harry Potter and the Goblet of Fire (book), Harry Potter and the
Prisoner of Azkaban (book)}| ∕ |{Daniel Radcliffe, Harry Potter and the
Goblet of Fire (movie), Harry Potter and the Prisoner of Azkaban (movie),
Harry Potter and the Goblet of Fire (book), Harry Potter and the Prisoner
of Azkaban (book), Harry Potter, J.K. Rowling, Robin Ellacott, Hermione
Granger}| = 2 ∕ 9 = 0.22.

Feature group 𝑓7: Adamic–adar index of closeness between the neighborhood
subgraphs of size 𝑛 of the source and target entities in the triple.

Features in this group are computed as:

𝑓7(𝑛) ∶ (𝑠, 𝑟, 𝑡) ↦
∑

𝑒∈𝑛𝑠∩𝑛𝑡

1
𝑙𝑜𝑔|𝑛

𝑒 |

n the example shown in Fig. Fig. 2, 𝑓7(2) applied to the example triple
s 1

𝑙𝑜𝑔|2𝐻𝑎𝑟𝑟𝑦𝑃 𝑜𝑡𝑡𝑒𝑟𝑎𝑛𝑑𝑡ℎ𝑒𝐺𝑜𝑏𝑙𝑒𝑡𝑜𝑓𝐹 𝑖𝑟𝑒(𝑏𝑜𝑜𝑘)|
= 1

𝑙𝑜𝑔|3| ≈ 2.09.

Feature group 𝑓8: Number of reachable entities through the relation 𝑟 at
distance 𝑛 from the source entity in the triple.

Features in this group are computed as:

𝑓8(𝑟, 𝑛) ∶ (𝑠, 𝑟, 𝑡) ↦ |𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑠, 𝑟, 𝑛)|

In the example shown in Fig. Fig. 2(a), 𝑓8(hasPrequel, 2) applied to
the example triple is |{Daniel Radcliffe, Harry Potter and the Prisoner of
Azkaban (movie)}| = 2.

Feature group 𝑓9: Number of reachable entities through the relation 𝑟 at
distance 𝑛 from the target entity in the triple.

Features in this group are computed as:

𝑓9(𝑟, 𝑛) ∶ (𝑠, 𝑟, 𝑡) ↦ |𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑡, 𝑟, 𝑛)|

In the example shown in Fig. Fig. 2(b), 𝑓9(created, 2) applied to the
example triple is |{Harry Potter, Hermione Granger, Robin Ellacott}| = 3.
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Feature group 𝑓10: Number of common reachable entities through the re-
ation 𝑟 from the source entity at distance 𝑛 and from the target entity at
distance 𝑚.

Features in this group are computed as:

𝑓10(𝑟, 𝑛, 𝑚) ∶ (𝑠, 𝑟, 𝑡) ↦ |𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑠, 𝑟, 𝑛) ∩ 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑡, 𝑟, 𝑚)|

In the example shown in Fig. Fig. 2, 𝑓10(created, 2, 3) applied to the
example triple is |{Daniel Radcliffe} ∩ {Harry Potter, Hermione Granger,
Robin Ellacott}| = 0.

Feature group 𝑓11: Jaccard index of similarity between the reachable entities
through the relation 𝑟 from the source entity at distance 𝑛, and those
reachable through the relation 𝑟 from the target entity at distance 𝑚.

Features in this group are computed as:

𝑓11(𝑟, 𝑛, 𝑚) ∶ (𝑠, 𝑟, 𝑡) ↦ 𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑠, 𝑟, 𝑛), 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑡, 𝑟, 𝑚))

In the example shown in Fig. Fig. 2, 𝑓11(created, 2, 3) applied to
the example triple is |∅| ∕ |{Harry Potter, Hermione Granger, Robin
Ellacott}| = 0 ∕ 3 = 0.

Feature group 𝑓12: Number of distinct paths of length 𝑛 between the source
and the target entity in the triple, using relations 𝑟1,… , 𝑟𝑛.

Features in this group are computed as:

𝑓12(𝑛, 𝑟1,… , 𝑟𝑛) ∶ (𝑠, 𝑟, 𝑡) ↦ |(𝑠, 𝑡, 𝑟1,… , 𝑟𝑛)|

In the example shown in Fig. Fig. 1, 𝑓12(4, starred_in, based_on, writer,
created) applied to the example triple is 1, as there is one path of length
4 between the entities Daniel Radcliffe and Harry Potter that matches
the given relations.

3.3. Discussion of the feature set

The rationale behind this set of features is manifold. Regarding 𝑓1
and 𝑓2, knowing the size of the neighborhood of an entity can be
helpful to determine whether said neighborhood encompasses relevant
information. For instance, our hypothesis is that very large neighbor-
hoods tend to contain a higher amount of unrelated information. The
same idea is leveraged in 𝑓3 and 𝑓4, which provide normalized indices
of centrality with respect to the total amount of entities in the KG.
Following the previous reasoning, we hypothesize that entities with
large indices of centrality (i.e. highly connected to other entities) will
yield less useful information. Meanwhile, feature groups 𝑓5, 𝑓6 and
𝑓7 measure the degree of overlap that exists in the neighborhoods of
the two entities, both in absolute and in relative terms, under the
assumption that correct triples have a higher degree of overlap between
the neighborhoods of their entities.

The previously discussed feature groups do not take into account the
specific relations involved. However, we deem it reasonable to assume
that some relations may be more useful than others to determine
whether a triple is correct, depending on their specific semantics. For
example, having one or more children in common can be an indication
of a marriage, while having the same nationality is not. In order to
exploit this fine-grained information, feature groups 𝑓8, 𝑓9, 𝑓10 and 𝑓11
are similar to the previously discussed groups but restrict themselves
to only one relation. These groups are computed for every relation in
a KG.

Finally, feature group 𝑓12 allows CAFE to find the number of paths
that exist between two entities for any given relations. It is our intuition
that correct triples have more alternative paths between the two entities
they contain than false ones.

4. Our proposal

Our proposal, CAFE, receives a KG and a set of relations from that
KG as input, and outputs a classification model for each of the provided
relations. These models are able to determine if a given triple that
represents an instance of the relation is correct and should belong
to the KG. Our workflow is depicted in Fig. 3 and, in the following
subsections, we describe each of its steps.
5

4.1. Loading the KG

CAFE internally stores the input KG in the form of (𝑠, 𝑟, 𝑡) triples,
using an efficient data structure based on hashable properties, which is
suitable for a high frequency of read operations. The triples that contain
relations for which a predictive model does not need to be generated
are still taken into account when computing features, since they may
provide valuable predictive information, but they are not transformed
into feature vectors in the following steps.

4.2. Generating negative examples

A KG contains only positive information, i.e., it contains examples
of the occurrence of a relation 𝑟 between two entities. However, it
does not contain explicit information about pairs of entities for which
𝑟 does not hold. Our proposal relies on a classification model that
requires negative examples for training, which means that a number of
negatives for each positive triple must be produced. To accomplish this,
we follow the type-constrained local closed world assumption (Bansal
et al., 2020), i.e., we generate negative examples from every triple
(𝑠, 𝑟, 𝑡) present in a KG by replacing their target entity 𝑡 with a different
one, 𝑡′, such that the resulting triple (𝑠, 𝑟, 𝑡′) does not exist in the
KG. Furthermore, to preserve the range of each relation, we randomly
choose 𝑡′ such that there exists some other triple in the KG where 𝑡′

appears as the target entity for the relation 𝑟. This is known as type
constraint.

In the example depicted in Fig. 1, a valid negative example is
(Hermione Granger, appears_in, The Cuckoo’s Calling), since we know
that The Cuckoo’s Calling is a valid target for the relation appears_in.
However, (Hermione Granger, appears_in, Daniel Radcliffe) would not be
allowed as a negative example, because Daniel Radcliffe never appears
as the target of the relation 𝑎𝑝𝑝𝑒𝑎𝑟𝑠_𝑖𝑛.

It can be argued that generating negative evidence in this manner
can produce false negatives by mere chance, i.e., statements that are
deemed incorrect but that are true in the real world. While this is
indeed plausible we, as other authors (Ji et al., 2015; Lin et al., 2015;
Socher et al., 2013), consider that the chances of this happening are
low and, as a consequence, the possible effects on the final results are
not significant.

4.3. Converting triples into feature vectors

Once negative examples have been generated, our feature set is
instantiated and applied to all triples. For all feature groups, we obtain
all possible feature instances by applying all possible combinations of
the values of their parameters. Each feature instance assigns a real
number to each triple. Therefore, applying several features to a triple
results in a feature vector. Each position of the feature vector represents
that real number that the corresponding feature assigned to the triple.

It is important to note that, to compute features on a positive
training triple, we temporarily remove it from the KG, since not doing
so would result in trivial prediction models such as ‘‘a person plays a
character if there exists a triple in the KG stating that the person plays
that character’’.

4.4. Grouping feature vectors

The previous step computes feature vectors of triples. Since these
triples can be either positive or negative, the feature vectors are labeled
as positive or negative. Based of the labeled feature vectors, we train
a classification model for each relation that predicts whether a triple
should be added to the KG. We do this in order to allow the models to
capture meaningful and distinctive information for every relation: even
though the same set of features is applied to all triples, some features
might have more predictive power for a relation, and other features
may be more helpful for a different one.
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Fig. 3. Workflow of CAFE.
.5. Training and evaluating the models

For every relation that we predict, we create one or more neu-
al models, where each model focuses only on the features that are
btained from a certain neighborhood size. Thus, using only neigh-
orhood subgraphs of size 1 results in one model, using neighborhood
ubgraphs of size of up to 2 results in two models, and so on. This allows
ach model to capture the specific information that every neighborhood
ize may yield. To combine two or more models, we use an additional
ombination layer to produce a single output.

The neural models are trained using the labeled feature vectors in
he training split for the desired relation, where each model receives
nly the features corresponding to its assigned neighborhood size, and
he label or ground truth is shared among them. Prior to training our
odels, we first remove any individual features that have the exact

ame value in every feature vector and thus lack any predictive power.
uch a removal helps the model focus only on a subset of potentially
ore useful features, which has been shown to improve classification

esults (Karasu et al., 2020). An example of this are path-based features
𝑓12), since only a small subset of all possible paths of fixed length occur
etween two given entities, and as a consequence most of them have a
alue of 0.

Note that we use neural classification models because they have
een shown to consistently achieve satisfactory results in many differ-
nt classification tasks (Aggarwal and Zhai, 2012; Altan and Karasu,
020; Yadav and Bethard, 2019), although other classification models
hat make use of our features could be used in this step.

. Evaluation

In this section, we present the experimental results that we obtained
fter evaluating the classification effectiveness of CAFE using several
atasets, and we compare it with respect to other state-of-the-art KG
ompletion techniques. In the following, we introduce the datasets
hat we used for evaluation, our experimental setting and, finally, our
esults.

.1. Datasets

We evaluated our proposal using four datasets provided by the
reely available AYNEC-DataGen (Ayala et al., 2019a) tool: FB13-A,

N11-AR, WN18-AR and NELL-AR. These datasets are based on the
ell-known FB13, WN11 (Socher et al., 2013), WN18 (Bordes et al.,
014b), and a subset of NELL proposed by Gardner and Mitchell (2015).
owever, they have been processed to remove reciprocal relations
etected by AYNEC, i.e., relations 𝑟 and 𝑟′ such that, if (𝑠, 𝑟, 𝑡) exists,
6

Table 1
Overview of the datasets used for evaluation.

Dataset Training
triples

Test triples Ents. Rels.

FB13-A-10 228,172 481,457 74,998 13
WN11-AR-10 77,948 198,231 38,195 9
WN18-AR-10 71,984 183,051 40,943 11

NELL-AR-10 86,971
(1451)

219,374
(5083)

53,934 148
(9)

then (𝑡, 𝑟′, 𝑠) also exists very frequently. Additionally, relations that
amount to less than 5% of the total number of triples in the graph have
been removed.

These datasets originally contained one negative example per each
positive triple in both their training and testing splits. In order to
study how the KG completion techniques perform when presented with
a much higher volume of negative evidence, we created versions of
these datasets whose testing splits contained 10 negative examples
per positive, using the AYNEC-DataGen tool. We believe that this is
a more realistic scenario, since a much higher number of negative
examples per positive triple is typically expected in real-world KG
completion tasks (Borrego et al., 2019). To avoid confusion, we denote
these versions as FB13-A-10, WN11-AR-10, WN18-AR-10 and NELL-AR-
10. For the sake of reproducibility, our source code and datasets are
publicly available on GitHub.1

For FB13-A-10, WN11-AR-10 and WN18-AR-10, we aimed to pre-
dict all possible relations, and for NELL-AR-10 we focused on the
same subset of 10 relations that were used to evaluate SFE (Gard-
ner and Mitchell, 2015). However, in the latter dataset, one relation
was removed by AYNEC for being the reciprocal of another relation,
leaving 9 relations for evaluation. In the specific case of FB13-A-10,
we transferred 25% of the training triples over to the testing set in
order to provide testing examples for some relations, as they were not
available in the original dataset as introduced in Socher et al. (2013).
Table 1 provides an overview of the aforementioned datasets. In the
case of NELL-AR-10, we show in parentheses the amount of triples and
relations that were considered for evaluation, although the entire graph
was used for computing features.

5.2. Evaluation method

A neural prediction model was created for every relation of interest
and trained using its corresponding training set. Then, the model was

1 https://github.com/DEAL-US/CAFE.

https://github.com/DEAL-US/CAFE
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Fig. 4. F1 scores for all relations obtained by CAFE and other state-of-the-art proposals.
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pplied to all feature vectors in the test set, and we compared the
xpected label (which denotes whether it represents a valid triple or
ot) against the label that was produced by our model. We report our
esults in terms of precision, recall and F1, in order to determine how
ffective our proposal is when determining the correctness of a given
riple.

We evaluated three versions of CAFE, denoted CAFE1 to CAFE3,
hich were limited to using feature instances that exploited neighbor-
ood subgraphs and paths of a maximum size of 1, 2, and 3, respec-
ively. This was done in order to study how using larger neighborhoods
ffects the effectiveness of CAFE.

There exist many different KG completion proposals and, as shown
n Section 2, they often use different evaluation metrics. Due to this,
t is very difficult to perform a comparison across a large number of
hem in a manner that is fair and rigorous. For this reason, we used
ransE (Bordes et al., 2013), TransD (Ji et al., 2015), TransH (Wang
t al., 2014), TransR (Lin et al., 2015), Analogy (Liu et al., 2017),
implE (Kazemi and Poole, 2018) and RotatE (Sun et al., 2019) as
aselines for our evaluation, since they are some of the most well-
nown state-of-the-art KG completion proposals. In order to provide
common evaluation environment for these different proposals, we

sed the OpenKE (Han et al., 2018) framework to train and evaluate
hese proposals using our datasets. Additionally, since these proposals
sually report metrics like MRR and Precision@N, we used the utilities
rovided by OpenKE to obtain binary labels for the testing triples, by
etting a likelihood threshold in a way that optimized the classification
esults.

We selected the following values for the hyperparameters of our
eural models: 3 layers with 1024, 512 and 256 neurons each, learning
ate of 0.001, batch size of 16, dropout of 0.1 for all layers, 100
pochs and validation ratio of 10%. When two or more models were
o be combined, we joined their results using a hidden layer with 3
eurons and an output layer with a single neuron. These values for
he hyperparameters were chosen using a hold-out or ‘‘dev’’ set for the
B13-A-10 dataset, and all datasets were then evaluated using the same
yperparameters. We chose them because they provided satisfactory
esults in our empirical tests.

All our experiments were conducted on a computer equipped with
n Intel Core i9-9900K CPU, 32 GB of RAM and an Nvidia RTX 2080

i GPU. i

7

5.3. Results and discussion

In Fig. 4, we show the evaluation results for CAFE1, CAFE2, CAFE3,
nd the related state-of-the-art proposals. For the sake of clarity, this
igure only displays the F1 values for each technique. Additionally,
able 2 shows the detailed results for all relations in every dataset and
or all metrics under evaluation.

Our results show that CAFE is able to match the performance of
tate-of-the-art embedding-based proposals, and in many cases achieve
igher values on the metrics under evaluation. In the cases of FB13-
-10 (Fig. 4(a)) and WN18-AR-10 (Fig. 4(d)), CAFE can reach or
urpass the F1 scores achieved by other state-of-the-art proposals in
consistent manner. CAFE also provides better results in the WN11-
R-10 (Fig. 4(c)) dataset, although with a higher degree of variability,
nd matches the performance of the rest of the analyzed techniques
n the NELL-AR-10 (Fig. 4(b)) dataset. These results show that CAFE
an be more effective than other proposals in challenging classification
cenarios.

Table 2 displays that, in general, both a satisfactory precision and
ecall can be achieved, and thus we consider that CAFE is generally
ffective. However, there exists a number of relations for which a very
igh precision value is obtained at the expense of a lower recall or vice-
ersa, resulting in a typical precision–recall trade-off. We also observe
hat the nature of every individual relation has a significant impact in
he results, since some of them are harder to predict than others. Such
s the case of the relation cause_of_death, since learning to predict the
ause of the death of a person with a very high effectiveness would be
remarkable achievement that unfortunately falls out of the scope of

his work. We further discuss these limitations in Section 5.4.
Regarding the question of how using different neighborhood sizes

ffects the effectiveness of CAFE, Fig. 4 shows that the metrics under
valuation are generally higher for CAFE2 compared to CAFE1, but
he same cannot always be said for CAFE3 and CAFE2. Indeed, met-
ics appear to remain stagnant or even decrease when using larger
eighborhoods in some cases. For example, in FB13-A-10 (Fig. 4(a)),
e do not observe a significant increase in effectiveness when using

arger neighborhood subgraphs, which suggests that the most useful

nformation is readily available in the immediate vicinities of the
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Detailed results for all relations. The highest value for a metric in a relation is marked in bold. The highest F1 value for a relation is also highlighted in
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Fig. 5. F1 scores in the WN11-AR-10 dataset.

elevant entities. In the cases of WN11-AR-10 (Fig. 4(c)) and WN18-AR-
0 (Fig. 4(d)), an improvement is observed when using neighborhoods
f size 2, but further expanding the neighborhood size does not seem
o have a significant impact. A possible conclusion for this is that, at a
ertain point, larger neighborhood subgraphs do not provide additional
alue or predictive power over smaller ones. In a worst-case scenario,
he number of features with little to no predictive power would greatly
ncrease by using larger neighborhood sizes, negatively affecting the
esults. This effect actually occurs in the case of the NELL-AR-10
ataset (Fig. 4(b)), where effectiveness decreases when increasing the
ize of the neighborhood subgraphs for which we compute features. A
lausible explanation for this is that it has been noted that NELL is
noisier dataset (Paulheim and Bizer, 2014), and thus taking larger
 o

8

neighborhoods into account significantly increases the amount of noise
that our classification model has to deal with, reducing its effectiveness.

5.4. Limitations and performance considerations

Despite our proposal being generally effective, it has some limita-
tions. CAFE does not work well for relations for which useful predictive
information cannot always be found in the neighborhoods of the enti-
ties in a triple. In this regard, we identify two types of relations: those
that can be predicted using other information present in the KG, and
those for which the entities and relations in their neighborhoods do
not provide useful information, and thus are much harder to predict.
This dichotomy can be observed in the results shown in Table 2, and
it is especially notable in the WN11-AR-10 dataset. For the sake of
visualization, we display the results of applying CAFE to this dataset
in Fig. 5.

This difference is particularly visible in the Similar to and Domain
opic relations, which have low F1 scores. Upon manual inspection, we
ound that Similar to tends to link words that are generally isolated
ithin the KG and share very little common context. Also, Domain topic

s extremely broad, causing the two entities in a triple to have few
r no relevant common elements in their neighborhoods, e.g., (Britain,
omain topic, Surgery).

In other cases, even if some information is present in the neigh-
orhoods under consideration, it may be not successfully captured by
AFE due to the large amount of irrelevant data surrounding it. In
his regard, the NELL-AR-10 dataset shows that larger neighborhood
izes are not always better for predictive purposes, since the amount
f noise they may include can be detrimental for the performance of
AFE. This can be due to some source or target entities being present in
any triples (for example, countries). Therefore, larger neighborhoods
f these entities introduce many other entities that are not relevant to
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Table 3
Time in seconds (average ± standard deviation) needed to compute features for all
training and testing triples in every dataset.

Dataset CAFE1 CAFE2 CAFE3

FB13-A-10 17.21 ± 0.52 67.98 ± 2.87 183.38 ± 7.71
NELL-AR-10 0.56 ± 0.06 2.41 ± 0.23 6.95 ± 0.62
WN11-AR-10 8.69 ± 0.26 50.85 ± 0.83 195.50 ± 16.77
WN18-AR-10 5.70 ± 0.12 18.90 ± 0.29 55.57 ± 0.91

the triple under evaluation. In these cases, it is up to the users to decide
which maximum neighborhood size best caters to their interests.

Additionally, due to the fact that feature instances are obtained
from feature groups by considering all possible combination of the
values of their parameters, as explained in Section 3.2, the number
of individual feature instances associated with every neighborhood
size has a theoretically exponential growth with respect to the num-
ber of relations in the dataset. However, several optimizations can
be leveraged to reduce the amount of time needed to compute the
required features for all triples in a KG. Given that this computation
can be done independently for each triple, our implementation uses
multi-threading to parallelize this task, and could theoretically benefit
from further performance improvements under a distributed computing
architecture. Furthermore, since our features are deterministic and
always return the same value for the same input, we use a caching
strategy to minimize the amount of feature computations needed. To
illustrate this, we display the average CPU times required by CAFE to
transform all triples in a dataset into feature vectors, across 10 different
executions for all datasets and context sizes, in Table 3. It can be noted
that, in all cases, the computation times were quite reasonable, which
suggests that our proposal is suitable to be applied in a real-world
scenario.

6. Conclusions

In this paper, we have introduced CAFE, a proposal that classifies
triples for Knowledge Graph completion by using a feature set based
upon neighborhoods and neural prediction models. This feature set, and
by extension our proposal, is applicable to all KGs, and it is completely
deterministic. Additionally, CAFE does not need any manually supplied
or external information, nor does it need any previous preprocessing of
the KG, and it is able to operate using a KG as its only input.

We have performed a number of experiments to evaluate the ef-
fectiveness of CAFE in four well-known Knowledge Graphs, identifying
candidate triples that should be added to each KG. To provide a more
realistic evaluation scenario, we have performed our experiments using
testing splits that contain a much lower amount of true triples than false
ones. Our results show that applying the proposed feature set yields
an effectiveness that is comparable to state-of-the-art techniques, and
in many cases even higher. CAFE achieves higher average F1 values
in all datasets under study, thus leading to a more trustworthy KG
completion process. We also show that using information present in
the neighborhoods of the two entities in a triple provides satisfactory
results, and thus local information existing around any given entity
appears to be of great value.
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