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Abstract: This paper deals with the problem of estimating the distributed states of a plant using a set
of interconnected agents. Each of these agents must perform a real-time monitoring of the plant state,
counting on the measurements of local plant outputs and on the exchange of information with the rest
of the network. These inter-agent communications take place within a multi-hop network. Therefore,
the transmitted information suffers a delay that depends on the position of the sender and receiver in
a communication graph. Without loss of generality, it is considered that the transmission rate and
the plant sampling rate are both identical. The paper presents a novel data-fusion-based observer
structure based on subspace decomposition, and addresses two main subproblems: the observer
design to stabilize the estimation error, and an optimal observer design to minimize the estimation
uncertainties when plant disturbances and measurements noises come into play. The performance of
the proposed design is tested in simulation.
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1. Introduction

In the last decade, the development of intelligent sensors and actuators, endowed with
communication and computational capabilities, has fostered their integration in a variety of large-scale
plants, especially in cyber-physical systems and cyber-physical systems of systems [1]. These intelligent
devices are entangled with physical systems and interact in real-time with them, receiving
measurements, making calculations, and taking decisions in a continuous manner. To perform these
tasks, the sensors need to exchange measurements of the system outputs, which are very often
geographically distributed and are only a small subset or linear combination of the whole system state.
This exchange of information makes it possible to reconstruct the complete state distributedly using
the so-called distributed estimation algorithms, which have recently attracted much attention from the
control community.

Although distributed estimation architectures offer several advantages, such as scalability,
flexibility, fault tolerance, and robustness [2], it is also true that the complexity associated with
these problems makes them harder to solve. This is due to the fact that none of the nodes manage
all the state measurements of the plant and thus they require an exchange of some state information,
sometimes experiencing delays and communication dropouts that complicate the maintenance of
the observer’s stability. Consequently, a remarkable research effort has been made in this field and
important contributions to the topic can be found in the literature adapted to different considerations,
for example the system modeling or the communication setup. Attending to the former feature,
several approaches have been published for the case of noiseless/unperturbed models, where typically
the main objective is the asymptotic stabilization of the estimation errors. For instance, in [3,4],
reduced-order observers are designed based on coordinate transformations. However, although
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both observers can run distributedly, their designs need to be carried out in a centralized way.
Following the same line, in [5], different matrix transformations are introduced to divide the observable
and unobservable subspaces of each agent, resulting on an observer design that can be carried out
distributedly. However, the design method does not allow tuning of the convergence rate and the
distributed design requires a huge amount of information to be exchanged. Furthermore, in [6],
a distributed observer whose design can be tackled in a distributed way is presented. Nevertheless,
its performance relies on some parameters whose tuning remains unclear.

When considering perturbed or noisy scenarios, the observer design must guarantee, to some
extent, the stability of the estimation error under the perturbed scenario and, typically, optimize
some metric of the estimation uncertainties. Maybe one of the most well known approaches for this
kind of problem is the distributed Kalman filter (DKF), first presented in [7,8]. Within this approach,
Gaussian disturbances and noises are both considered, and the observer is designed with the aim of
minimizing the error covariance of the estimates taking into account measured outputs and information
received from neighboring nodes. The interested reader can find more details of this approach in [9],
an experimental performance evaluation. Another approach to the same problem can be found in [10],
where the authors relay a state decomposition in order to minimize the information exchange during
the estimation phase. However, the huge amount of required information complicates the distributed
design. Other approaches to this problem are based on distributed consensus techniques, for which
the interested reader is referred to [11], or distributed guaranteed estimation, in which noises and
disturbances are assumed to belong to bounded sets and the concept of error covariation replaces that
of error covariance in the Gaussian approach [12].

Finally, a productive research field with straightforward applications to the estimation problem is
data fusion. Data fusion is the process of integrating multiple data sources to produce more consistent,
accurate, and useful information than that provided by any singular data source [13]. Data fusion
strategies have been implemented widely in a broad variety of applications, such as body sensor
networks [14], optical and radar remote sensing [15], and greenhouse monitoring [16]. Most of the
approaches found in the literature implement data fusion strategies in which the information flows
through the network fast enough to be available everywhere in one sample time. More precisely,
the information taken by all the agents is collected at every sample step. In that way, the main
problem tackled is to present conditions under which the observer reaches consensus among the
agents, not diverging in their decisions (see for instance [17] or [18]).

This paper deals with the problem of estimating the state of a perturbed plant by a network
of agents executing a distributed data-fusion-based algorithm. Each agent knows the model of the
plant and can measure some system outputs affected by noise. The rest of the necessary outputs are
obtained through the exchange of information with neighboring agents. Different from the approaches
mentioned before, this paper considers that the agents communicate through a multi-hop network,
where data transmitted may take several sampling instants to reach its final destination. In other
words, the communications are affected by graph-induced delays. Conversely to other approaches
such as [19], we are not considering signal transmission delays or signal processing delays in the
agents. The proposed observer structure decouples the state-space into several subspaces according to
the observable modes considering the information received at each sample time. This exploits the idea
that was previously presented by the authors in [20], where the number of agents was limited to two,
and in [21], where a generalization to an arbitrary number of agents was adopted. However, neither of
those papers considered the data-fusion scheme nor the disturbances and noises. The observer gains
are designed in order to guarantee the stability of the distributed observer in spite of the presence of
delays. Finally, a method to design the observer gains that minimizes the expected estimation error is
presented. The main contributions of the paper are listed next:

• The introduction of a novel data-fusion-based observer structure able to be designed in a
distributed fashion.
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• Unlike the conventional data fusion approaches [17] or [18], the information is not required
to spread through the network in a single sample time, thereby relaxing the requirements of
the network.

• The observer design reduces the exchange of information with respect to other data fusion
algorithms, due to the fact that the agents are not required to collect the information of every
agent to reconstruct the whole state.

• In case of duplicated information, the proposed subspace decomposition allows the observer to
be selective when deciding the agents who will be the source of the required data.

The paper is organized as follows. In Section 2, the problem is formally stated, together with some
definitions and assumptions. Section 3 presents the observer structure. In Section 4 some properties
useful for the consequent developments are introduced. Sections 5 and 6 present methods to design the
observer in order to guarantee the stability in the estimations and to minimize the expected estimation
error when the system and the measurements made by the agents are affected by noise, respectively.
In Section 7 some simulations examples are exposed. Finally, conclusions are drawn in Section 8.

Notation 1. A graph is a pair G = (V , E) comprising a set V = {1, 2, . . . , p} of vertices or agents, and a set
E ⊂ V × V of edges or links. A directed graph is a graph in which edges have directions, so that if (j, i) ∈ E ,
then agent i obtains information from agent j. A directed path from node i1 to node ik is a sequence of edges such
as (i1, i2), (i2, i3), . . ., (ik−1, ik) in a directed graph. The neighborhood of i, Ni := {j : (j, i) ∈ E}, is defined
as the set of nodes with edges incoming to node i. Given ρ ∈ Z+, the ρ-hop reachable set of i, Ni,ρ, is defined
as the set of nodes with a direct path to i involving ρ edges. Loosely speaking, the ρ-hop reachable set of agent
i is comprised of those agents whose transmitted information takes ρ hops, or sampling instants, to reach to
agent i. Note that the 1-hop reachable set of i corresponds to the neighborhood of i and the 0-hop reachable set of i
matches with i. The operator col(·, ·) stacks subsequent matrices into a column vector, e.g., for A ∈ Rm1×n and
B ∈ Rm2×n, col(A, B) = [A> B>]> ∈ R(m1+m2)×n. Let In be the identity matrix of dimension n. Let E{·}
denotes the expected value.

2. Problem Formulation

Consider a set of agents V = {1, 2, . . . , p} connected according to a given graph G = (V ,E),
and intended to distributedly estimate the state of the following discrete-time linear time-invariant system:

x(k + 1) = Ax(k) + w(k), (1)

yi(k) = Cix(k) + ni(k), (2)

where x ∈ Rn is the state vector, A ∈ Rn×n is the system matrix, yi ∈ Rmi is the output locally
measured by each agent i, Ci ∈ Rmi×n is the corresponding output matrix and w ∈ Rn and ni ∈ Rmi

are mutually independent Gaussian state and measurements noises, respectively, with covariance
matrices M ∈ Rn×n and Ri ∈ Rmi×mi .

We assume that the information flows slowly through the network, consuming one sample time
to get from any agent to its neighbors. This is the case, for instance, of networks set up based on
Zigbee [22].

The observation structure proposed in the next section relies on system transformations to the
observability staircase form (see for instance Theorem 16.2 in [23]). Prior to introducing this structure,
the following definitions are needed.

Definition 1. The ρ-hop output matrix of agent i, Ci,ρ, is a matrix that stacks the (ρ− 1)-hop output matrix of
agent i and the (ρ− 1)-hop output matrices of its neighborhood, Ni. That is:

Ci,ρ :=

[
Ci,ρ−1

col(Cj,ρ−1)j∈Ni

]
, ∀ρ ≥ 1,
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where Ci,0 := Ci.

Intuitively speaking, the ρ-hop output matrix of agent i, Ci,ρ, is composed by its output matrix Ci
and the output matrices of all the agents j with a direct path to i involving ρ or less edges.

Definition 2. System (1) is locally detectable from agent i if pair (Ci, A) is detectable. System (1) is collectively
detectable if every agent is able to detect the whole system with the information provided by the network. This is,
for each agent i ∈ V , there exists a finite number of hops `i ∈ Z+ such that pair

(
Ci,`i

, A
)

is detectable.

Assumption 1. We assume that system (1) is collectively detectable.

There always exists a coordinate transformation matrix
[
V̄i,ρ Vi,ρ

]
∈ Rn×n according to pair

(Ci,ρ, A) such that the change of variable ξi,ρ := [V̄i,ρ Vi,ρ]
>x ∈ Rn transforms the original state-space

representation into the observability staircase form. Note that V̄i,ρ ∈ Rn×nō
i,ρ is composed by nō

i,ρ
column vectors in Rn that form an orthogonal basis of the unobservable subspace of pair (Ci,ρ, A).

Correspondingly, Vi,ρ ∈ Rn×no
i,ρ is an orthogonal basis of its orthogonal complement.

Definition 3. The ρ-hop unobservable subspace from agent i, denoted Ōi,ρ, is composed of all system modes that
cannot be observed from the output locally measured by agent i and those measured by all the agents belonging
to the s-hop reachable set of i, ∀s ∈ {0, . . . , ρ}. Equivalently, the ρ-hop unobservable subspace from agent i is
the unobservable subspace related to pair (Ci,ρ, A) using the above coordinate transformation: Ōi,ρ := Im(V̄i,ρ).
The orthogonal complement of Ōi,ρ, with some abuse of notation, is denoted ρ-hop observable subspace from
agent i, Oi,ρ := Im(Vi,ρ). We denote no

i,ρ = dim(Oi,ρ).

According to Definition 3, it is clear that:

Oi,ρ−1 ⊆ Oi,ρ, ∀i ∈ V , ρ ≥ 0. (3)

where we considerOi,−1 = ∅. Then, the vectors of the “innovation” basis that generatesOi,ρ ∩ (Oi,ρ−1)
⊥

can be stacked into a matrix Wi,ρ ∈ Rn×ni,ρ , where ni,ρ = no
i,ρ − no

i,ρ−1, in such a way that:

Im(Wi,ρ) := Oi,ρ ∩ (Oi,ρ−1)
⊥, ρ ≥ 0, (4)

Let us, to be selected later, define `i ∈ Z>0 as an arbitrary number of hops. From these definitions
it is clear that for all ρ ∈ {0, . . . , `i} and all i ∈ V , it holds that

Im(Vi,ρ) = Im
([

Wi,ρ Vi,ρ−1

])
, (5)

Im(V̄i,ρ−1) = Im
([

Wi,ρ V̄i,ρ

])
, (6)

with V̄i,−1 := In.
It is worth pointing out that Im(Wi,ρ) corresponds to the innovation introduced by the ρ-hop

reachable setNi,ρ of agent i, that is, the observable modes for agent i at hop ρ that are not observable at
hop ρ− 1. Accordingly, the transformation matrix Ti, defined as Ti = [V̄i,`i

Vi,`i
], can be divided using

the innovations at each hop:

Ti :=
[
︸ ︷︷ ︸

V̄i,ρ

V̄i,`i
Wi,`i

· · · Wi,ρ+1 ︸ ︷︷ ︸
Vi,ρ

Wi,ρ · · · Wi,0

]
∈ Rn×n, (7)

for all ρ ∈ {0, . . . , `i}, where it is easy to identify the observable and unobservable subspaces of the
system by agent i at hop ρ.
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The following lemma, previously presented in [21], introduces some important properties that
are central for the subsequent derivations.

Lemma 1. For any agent i ∈ V , the next properties hold, ∀ρ, ρ′ ∈ {1, . . . , `i} such that ρ 6= ρ′:

(i) W>i,ρWi,ρ′ = 0,
(ii) Im(Wj,ρ−1) ⊆ Im(Vi,ρ), ∀j ∈ Ni,

(iii) Im(Wi,ρ) ⊆
⊕

j∈Ni

Im(Wj,ρ−1),

(iv) Im(AV̄i,ρ) ⊆ Im(V̄i,ρ).

Remark 1. The subspace decomposition can be altered willfully in the case that one agent does not want to
consider some measurements (see for instance the example in Figure 1).

Figure 1. Assume that agent 1 does not want to consider y3. Then, it can design W1,1 to only include
the basis vector of y2 and W1,2 to include the corresponding basis of y3.

Once the above lemma has been introduced, the following proposition can be established.
This proposition is key for the observer to be presented in the next section.

Proposition 1. For each agent i, the orthogonal similarity transformation given by Ti in (7) transforms the
system matrix A into a block upper-triangular matrix in the form [21]:

T>i ATi =



V̄>i,`i
AV̄i,`i

V̄>i,`i
AWi,`i

. . . V̄>i,`i
AWi,1 V̄>i,`i

AWi,0

0 W>i,`i
AWi,`i

. . . W>i,`i
AWi,1 W>i,`i

AWi,0
...

...
. . .

...
...

0 0 . . . W>i,1 AWi,1 W>i,1 AWi,0

0 0 . . . 0 W>i,0 AWi,0

 (8)

The following lemma introduces an important property to be considered.

Lemma 2. For any i ∈ V and any j ∈ Ni,ρ, it holds CjWi,r = 0, with ρ, r ∈ {0, . . . , `i} and r > ρ.

Proof. From Definition 1 it is easy to see that Im(C>j ) ⊆ Im(C>i,ρ) for all j ∈ Ni,ρ. By using Definition 3,

we have that pair (Ci,ρ, A) generates the subspace Oi,ρ which directly implies that Im(C>i,ρ) belongs

to Im(Vi,ρ) and consequently Im(C>j ) ⊆ Im(Vi,ρ). Finally, considering the orthogonality between Vi,ρ
and Wi,r for every r > ρ the Lemma is proved.
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3. Observer Structure and Design Goal

This section presents the observer structure that makes use of the notions previously introduced:

x̂i(k + 1) = Ax̂i(k)︸ ︷︷ ︸
(a)

+
`i

∑
ρ=0

Wi,ρNi,ρ(k)W>i,ρ ∑
j∈Ni,ρ

C>j
(
yj(k− ρ)− Cj x̂i(k− ρ)

)
︸ ︷︷ ︸

(b)

, (9)

where ρ is the distance from agent i to the agent that constitutes the source of information,
and Ni,ρ ∈ Rni,ρ×ni,ρ are a set of gains to be designed. Recall that, since we are assuming slow
communication networks in which the information consumes one sample time to get from one agent
to its neighbors, this information reaches the destination agent with a fixed delay of ρ sample times
(The fixed delay for the communication from agent j to agent i depends on their relative position in
the graph. Therefore we could have written ρi,j instead of ρ. For the sake of simplicity on the notation,
we have kept the second option.). In other words, there exists a match between the total delay the
packet suffers between sender and receiver, and the hop at which the information affects (It is trivially
easy to modify the delay for the communications to other values higher than one. However, this would
make the notation harder.).

The observer structure proposed in (9) decomposes the observer dynamics in two different terms:

(a) The first term is the classical model-based open-loop prediction term.
(b) The second one is a correction term. The agents belonging to the ρ− hop reachable set of i, Ni,ρ,

communicate the measurements made to agent i. Since transmitted measurements flow through
the graph at a rate of 1 hop per sampling time, any agent i receives the measurements from its
ρ-hop reachable set with a constant delay of ρ sampling times. The correction made with these
measurements is projected into Im(Wi,ρ) and multiplied by the gain matrix Ni,ρ(k). The result is
used as weights to perform linear combinations of Wi,ρ. Thus, these corrections only affect the
observable subspace generated by the innovations of the neighborhood of agent i at hop ρ.

Remark 2. It is worth pointing out that if `i = 0, pair (Ci, A) is observable and consequently Wi,0 is a full
rank matrix. Thus, Equation (9) can be rewritten as:

x̂i(k + 1) = Ax̂i(k) + Li(k)(yi(k)− Ci x̂i(k)),

where Li(k) = Wi,0Ni,0(k)W>i,0C>i . Note that above expression is clearly the well-known Luenberger observer structure.

For each agent i ∈ V , let us define the estimation error as ei := x − x̂i, and similarly,
the transformed estimation error as εi := ξi − ξ̂i = T>i ei, which can be decomposed in the transformed
estimation error of agent i at each hop ρ:

εi =


εi,`i+1

εi,`i
...

εi,1
εi,0

 =



V̄>i,`i

W>i,`i
...

W>i,1
W>i,0

 ei, (10)

and thus, due to the fact that Ti is an orthogonal matrix (and therefore T>i Ti = In), the expression of
the estimation error in εi,ρ coordinates yields:

ei = V̄i,`i
εi,`i+1 +

`i

∑
r=0

Wi,rεi,r. (11)
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The goal of this paper is to design the gain matrices Ni,ρ(k) in structure (9) for every agent i and
every hop ρ ∈ {0, . . . , `i} to solve the following problems:

Problem 1. (Distributed data fusion) In the absence of plant and measurement noises, i.e., w(k) = 0 and
ni(k) = 0, given plant (1) and (2), and the interconnection graph G = (V , E), design gains Ni,ρ(k) in (9) such
that all the estimates x̂i asymptotically converge to the actual plant state x.

Problem 2. (Distributed optimal filtering) Given plant (1) and (2) and the interconnection graph G = (V , E),
design gains Ni,ρ(k) in (9) in order to minimize E{||εi,ρ(k + 1)||2}.

The solutions for Problems 1 and 2 are introduced in Sections 5 and 6, respectively. However,
prior to that, it is necessary to introduce some properties on which subsequent developments are
supported. Additionally, the setup procedure of the distributed observer is presented next.

Distributed Observer Setup

It is worth mentioning that observer structure (9) needs some neighboring information before
starting the estimation phase. That is, the construction of matrices Wi,ρ for every ρ ∈ {0, . . . , `i} and
the value of `i for every agent i ∈ V it is needed before starting the estimation procedure.

This section presents an algorithm to design the matrices and parameters aforementioned.
Note that although gain matrices Ni,ρ(k) are also required before the estimation phase, this design is
tackled in the following sections. The pseudocode of the setup algorithm is given in Algorithm 1.

Algorithm 1: Distributed Observer Setup Algorithm

1 For every agent i do:
2 Set ρ = 0.
3 Perform the two steps:
4 Exchange matrices Ci,ρ with the neighborhood Ni.
5 Compute Ci,ρ+1 and matrix Wi,ρ. Include the path in the routing tables of the

interconnection nodes.
6 If pair (Ci,ρ+1, A) is detectable, then stop and fix `i = ρ+ 1. Otherwise increment ρ and go to 3.

The routing tables of the interconnection nodes includes the information that the agents must
know in order to route the information from one source agent to the destination agent in a direct path.

After this initialization phase, that finishes after a finite number of steps, the agents are ready to
execute their estimation of the state in a distributed way.

Remark 3. By letting this algorithm be executed successive times, and not just at the initialization phase,
the agents can detect changes in the topology and, then, redesign their observer gains. Hence, the proposed
observer can be made resilient to time-varying topologies.

Remark 4. Consider a situation in which the destination agent i is selective with the agent who will act as a
source of information to reconstruct some part of the state, as was introduced in the Remark 1. In this situation,
agent i must take this fact under consideration in step 5 of the setup algorithm, modifying matrices Ci,ρ and
consequently matrices Wi,ρ (which denote the innovation basis of agent i of the observable subspace at hop ρ).

4. Estimation Error Dynamics

This section presents the evolution of the transformed estimation error, εi,ρ(k). After introducing
these dynamics, it will become clear that new delayed versions of this error will need to be defined,
together with their associate dynamics.
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Proposition 2. Consider the network of agents described by the graph G = (V , E), where every agent i
implements the observer structure (9) to estimate the state of the system (1). Then, the transformed estimation
error dynamics at every hop ρ is given by the following equation:

εi,ρ(k + 1) = W>i,ρ A
ρ

∑
r=0

Wi,rεi,r(k) + W>i,ρw(k) (12)

− Ni,ρ(k)W>i,ρ ∑
j∈Ni,ρ

C>j

(
Cj

ρ

∑
r=0

Wi,rεi,r(k− ρ) + nj(k− ρ)

)
,

for all ρ = {0, . . . , `i}.

Proof. Let us write first the evolution of the estimation error dynamics for system (1) under the
observation structure in (9):

ei(k + 1) = x(k + 1)− x̂i(k + 1)

= Aei(k)−
`i

∑
ρ=0

Wi,ρNi,ρ(k)W>i,ρ ∑
j∈Ni,ρ

C>j
(
Cjei(k− ρ) + nj(k− ρ)

)
+ w(k).

Using (10), we can write the transformed estimation error dynamics for agent i at hop ρ:

εi,ρ(k + 1) = W>i,ρei(k + 1)

= W>i,ρ Aei(k)− Ni,ρ(k)W>i,ρ ∑
j∈Ni,ρ

C>j
(
Cjei(k− ρ) + nj(k− ρ)

)
+ W>i,ρw(k),

where W>i,ρWi,ρ = Ini,ρ and Lemma 1 (i) has been used. Next, relying on Equation (11), we know the
expression of ei in εi,ρ coordinates, so previous equation can be accordingly modified:

εi,ρ(k + 1) = W>i,ρ A

(
V̄i,`i

εi,`i+1(k) +
`i

∑
r=0

Wi,rεi,r(k)

)
+ W>i,ρw(k)

− Ni,ρ(k)W>i,ρ ∑
j∈Ni,ρ

C>j

(
Cj

(
V̄i,`i

εi,`i+1(k− ρ) +
`i

∑
r=0

Wi,rεi,r(k− ρ)

)
+ nj(k− ρ)

)
.

From Lemma 1 (iv) it holds W>i,ρ A
(

V̄i,`i
εi,`i+1 + ∑`i

r=ρ+1 Wi,rεi,r

)
= 0 so we can rewrite the above

equation as:

εi,ρ(k + 1) = W>i,ρ A
ρ

∑
r=0

Wi,rεi,r(k) + W>i,ρw(k)

− Ni,ρ(k)W>i,ρ ∑
j∈Ni,ρ

C>j

(
CjV̄i,`i

εi,`i+1(k− ρ) + Cj

`i

∑
r=0

Wi,rεi,r(k− ρ) + nj(k− ρ)

)
.

Next, from Lemma 2 we know that CjWi,ρ′ = 0 for all j ∈ Ni,ρ with ρ′ > ρ and therefore

εi,ρ(k + 1) = W>i,ρ A
ρ

∑
r=0

Wi,rεi,r(k) + W>i,ρw(k)

− Ni,ρ(k)W>i,ρ ∑
j∈Ni,ρ

C>j

(
Cj

ρ

∑
r=0

Wi,rεi,r(k− ρ) + nj(k− ρ)

)
,

which is the desired expression.
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Now, let us define the delayed transformed estimation error of agent i at hop ρ, ε̄i,ρ, as the vector
that stacks the transformed estimation error of agent i at hop ρ from time k to k− `i, that is:

ε̄i,ρ(k) :=


εi,ρ(k)

εi,ρ(k− 1)
...

εi,ρ(k− `i)

 , (13)

and let us define ε̄i as the vector that stacks the delayed transformation error of agent i at every hop
ρ ∈ {0, . . . , `i} sorted in decreasing order

ε̄i(k) :=


ε̄i,`i

(k)
ε̄i,`i−1(k)

...
ε̄i,0(k)

 . (14)

Observe that εi,ρ(k) = Si,ρ ε̄i,ρ(k), with Si,ρ =
[

Ini,ρ 0 · · · 0
]
∈ Rni,ρ×(`i+1)ni,ρ . Analogously,

εi,ρ(k) = S̄i,ρ ε̄i(k), with S̄i,ρ = Si,ρ

[
0 · · · 0 I(`i+1)ni,ρ

0 · · · 0
]
∈ Rni,ρ×∑

`i
r=0(`i+1)ni,r .

Based on these error vectors, we can obtain an expression for the dynamics of the delayed
transformed estimation error, ε̄i,ρ, that will be useful later.

Proposition 3. Consider the network of agents described by the graph G = (V , E), where every agent i
implements the observer structure (9) to estimate the state of the system (1). Then, the delayed transformed
estimation error dynamics at hop ρ is given by the following equation:

ε̄i,ρ(k + 1) =
ρ

∑
r=0
4i,(ρ,r)(k)ε̄i,r(k) + S>i,ρW>i,ρw(k)− S>i,ρNi,ρ(k)W>i,ρ ∑

j∈Ni,ρ

C>j nj(k− ρ), (15)

being

4i,(ρ,ρ)(k) =



W>i,ρ AWi,ρ 0 · · · −Ni,ρ(k)W>i,ρ ∑
j∈Ni,ρ

C>j CjWi,ρ · · · 0 0

Ini,ρ 0 · · · 0 · · · 0 0
0 Ini,ρ · · · 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 · · · Ini,ρ 0


∈ R(`i+1)(ni,ρ×ni,ρ), (16)

and

4i,(ρ,r)(k) =



W>i,ρ AWi,r 0 · · · −Ni,ρ(k)W>i,ρ ∑
j∈Ni,ρ

C>j CjWi,r · · · 0 0

0 0 · · · 0 · · · 0 0
0 0 · · · 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 · · · 0 0


∈ R(`i+1)(ni,ρ×ni,r), (17)

for r 6= ρ and r, ρ ∈ {0, . . . , `i} where the terms −Ni,ρ(k)W>i,ρ ∑
j∈Ni,ρ

C>j CjWi,ρ and −Ni,ρ(k)W>i,ρ ∑
j∈Ni,ρ

C>j CjWi,r

are placed in the block component (1, ρ + 1) of the matrices4i,(ρ,ρ) and4i,(ρ,r), respectively.

The proof is immediate by substituting Equation (12) into Equation (13).
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5. Distributed Data Fusion

This section tackles Problem 1. In particular, the section presents necessary and sufficient stability
conditions for the observer structure (9) in absence of perturbations. Moreover, a linear matrix
inequality (LMI) method (see [24] for details) for the design of gain matrices Ni,ρ(k) that guarantees
stability is introduced. This design is independent of time and then, for simplicity in the notation we
will use Ni,ρ = Ni,ρ(k).

Theorem 1. Consider the network of agents described by the graph G = (V , E), where every agent i implements
the observer structure (9) to estimate the state of the system (1). Under the unperturbed scenario, the estimates
of all the agents tend asymptotically to the actual plant state if and only if matrices4i,(ρ,ρ) are Schur for every
ρ ∈ {0, . . . , `i}.

Proof. The dynamics of the delayed transformed estimation error of agent i at hop ρ is given in
Proposition 3. By setting w(k) ≡ ni(k) = 0, ∀i ∈ V , in (15), the following expression can be obtained:

ε̄i,`i
(k + 1)

ε̄i,`i−1(k + 1)
...

ε̄i,0(k + 1)


︸ ︷︷ ︸

ε̄i(k+1)

=


4i,(`i ,`i)

4i,(`i ,`i−1) · · · 4i,(`i ,0)
0 4i,(`i−1,`i−1) · · · 4i,(`i−1,0)
...

...
. . .

...
0 0 · · · 4i,(0,0)




ε̄i,`i
(k)

ε̄i,`i−1(k)
...

ε̄i,0(k)


︸ ︷︷ ︸

ε̄i(k)

. (18)

Please note that (18) reveals a cascade structure in which the delayed transformed estimation
error at each hop ρ depends on the errors at previous hops. Thus, the eigenvalues of the block upper
triangular matrix in (18) are given by the eigenvalues of the corresponding matrices placed in its
diagonal, which are the matrices defined in (16) establishing the proof.

It is worth pointing out that the stability of the distributed observer can be seen as the stability of
several constant time-delay discrete-time systems. Next, a design method for gain matrices Ni,ρ that
met Theorem 1 is presented.

Theorem 2. (Design for stability) If there exist matrices Ri,ρ ∈ Rni,ρ×ni,ρ , X i,ρ ∈ Rni,ρ×ni,ρ and

Y i,ρ =


Y (1,1)

i,ρ · · · Y (1,`i)
i,ρ

...
. . .

...
Y (`i ,1)

i,ρ · · · Y (`i ,`i)
i,ρ

 ∈ R`i(ni,ρ×ni,ρ) such that the LMI
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X i,ρ−Y
(1,1)
i,ρ −Y (1,2)

i,ρ · · · − Y (1,ρ+1)
i,ρ

−Y (2,1)
i,ρ Y (1,1)

i,ρ −Y (2,2)
i,ρ · · · Y (1,ρ)

i,ρ −Y (2,ρ+1)
i,ρ

...
...

...
−Y (ρ+1,1)

i,ρ Y (ρ,1)
i,ρ −Y (ρ+1,2)

i,ρ · · · Y (ρ,ρ)
i,ρ −Y (ρ+1,ρ+1)

i,ρ
...

...
...

−Y (`i ,1)
i,ρ Y (`i−1,1)

i,ρ −Y (`i ,2)
i,ρ · · · Y (`i−1,ρ)

i,ρ −Y (`i ,ρ+1)
i,ρ

0 Y (`i ,1)
i,ρ · · · Y (`i ,ρ)

i,ρ

X i,ρ W>i,ρ AWi,ρ 0 · · · −Ri,ρW>i,ρ ∑
j∈Ni,ρ

C>j CjWi,ρ

· · · − Y (1,`i)
i,ρ 0 W>i,ρ A>Wi,ρ X i,ρ

· · · Y (1,`i−1)
i,ρ −Y (2,`i)

i,ρ Y (1,`i)
i,ρ 0

...
...

...
· · · Y (ρ,`i−1)

i,ρ −Y (ρ+1,`i)
i,ρ Y (ρ,`i)

i,ρ −W>i,ρ ∑
j∈Ni,ρ

C>j CjWi,ρR>i,ρ

...
...

...
· · · Y (`i ,`i−1)

i,ρ −Y (`i ,`i)
i,ρ Y (`i−1,`i)

i,ρ 0

· · · Y (`i ,`i−1)
i,ρ Y (`i ,`i)

i,ρ 0

· · · 0 0 X i,ρ



> 0, (19)

is satisfied, then gain Ni,ρ = Ri,ρX−1
i,ρ stabilizes matrices (16), and therefore the estimates of every agent tends

asymptotically to the actual plant state.

Proof. From Lyapunov theory [24], Theorem 1 is fulfilled if and only if there exists a positive definite
matrix Pi,ρ ∈ R(`i+1)(ni,ρ×ni,ρ) such that:

Pi,ρ > 0,
Pi,ρ −4>i,(ρ,ρ)Pi,ρ4i,(ρ,ρ) > 0.

Now, define Pi,ρ =

[
X i,ρ 0

0 Y i,ρ

]
with X i,ρ ∈ Rni,ρ×ni,ρ and Y i,ρ ∈ R`i(ni,ρ×ni,ρ).
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With some mathematical manipulations, previous conditions can be rewritten as

0 <


X i,ρ 0 · · · 0

0 Y (1,1)
i,ρ · · · Y (1,`i)

i,ρ
...

...
. . .

...

0 Y (`i ,1)
i,ρ · · · Y (`i ,`i)

i,ρ

−

Y (1,1)

i,ρ · · · Y (1,`i)
i,ρ 0

...
. . .

... 0

Y (`i ,1)
i,ρ · · · Y (`i ,`i)

i,ρ 0
0 · · · 0 0



−



W>i,ρ A>Wi,ρ

0
...

−W>i,ρ ∑
j∈Ni,ρ

C>j CjWi,ρN>i,ρ

...
0


X i,ρ

[
W>i,ρ AWi,ρ 0 · · · −Ni,ρW>i,ρ ∑

j∈Ni,ρ

C>j CjWi,ρ · · · 0
]

.

Adding the first two matrices and applying the Schur complement [24], previous inequality is
equivalent to

X i,ρ−Y
(1,1)
i,ρ −Y (1,2)

i,ρ · · · − Y (1,ρ+1)
i,ρ

−Y (2,1)
i,ρ Y (1,1)

i,ρ −Y (2,2)
i,ρ · · · Y (1,ρ)

i,ρ −Y (2,ρ+1)
i,ρ

...
...

...

−Y (ρ+1,1)
i,ρ Y (ρ,1)

i,ρ −Y (ρ+1,2)
i,ρ · · · Y (ρ,ρ)

i,ρ −Y (ρ+1,ρ+1)
i,ρ

...
...

...

−Y (`i ,1)
i,ρ Y (`i−1,1)

i,ρ −Y (`i ,2)
i,ρ · · · Y (`i−1,ρ)

i,ρ −Y (`i ,ρ+1)
i,ρ

0 Y (`i ,1)
i,ρ · · · Y (`i ,ρ)

i,ρ

W>i,ρ AWi,ρ 0 · · · −Ni,ρW>i,ρ ∑
j∈Ni,ρ

C>j CjWi,ρ

· · · − Y (1,`i)
i,ρ 0 W>i,ρ A>Wi,ρ

· · · Y (1,`i−1)
i,ρ −Y (2,`i)

i,ρ Y (1,`i)
i,ρ 0

...
...

...

· · · Y (ρ,`i−1)
i,ρ −Y (ρ+1,`i)

i,ρ Y (ρ,`i)
i,ρ −W>i,ρ ∑

j∈Ni,ρ

C>j CjWi,ρN>i,ρ

...
...

...

· · · Y (`i ,`i−1)
i,ρ −Y (`i ,`i)

i,ρ Y (`i−1,`i)
i,ρ 0

· · · Y (`i ,`i−1)
i,ρ Y (`i ,`i)

i,ρ 0

· · · 0 0 X−1
i,ρ



> 0.

Note that the obtained matrix inequality is not an LMI because there are terms on X i,ρ and
X−1

i,ρ . If the matrix inequality is pre-multiplied and post-multiplied by the symmetric, non-singular

matrix

[
I(`i+1)ni,ρ

0
0 X i,ρ

]
, and by using the change of variables Ri,ρ = Ni,ρ X i,ρ, LMI (19) is obtained,

establishing the proof.

Recall that LMI (19) can be solved locally by every agent, requiring just the information available
after the setup described in Section 3. The choice of a block-diagonal Lyapunov matrix introduces
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conservatism, but it is required to transform the matrix inequality into an LMI. Otherwise, the previous
condition would be necessary and sufficient for stabilization.

6. Distributed Optimal Filtering

This section deals with Problem 2, that is, gains Ni,ρ(k) must be designed in such a way that
the expected value of the norm of the delayed transformed estimation error of agent i at hop ρ,
that is, E{||εi,ρ(k + 1)||2}, is minimized. Note that E{||εi,ρ(k + 1)||2} = E{ε>i,ρ(k + 1)εi,ρ(k + 1)} =

tr(E{εi,ρ(k + 1)ε>i,ρ(k + 1)}) = tr(E{Qi,ρ(k + 1)}), where Qi,ρ is the covariance matrix of the
transformed estimation error of agent i at hop ρ. The dynamics of the covariance matrix will be
studied and, then, it will be possible to present a method to find the gains Ni,ρ(k) to minimize
tr(E{Qi,ρ(k + 1)}).

Let Q̄i,(ρ,r)(k) = E{ε̄i,ρ(k)ε̄>i,r(k)} be the cross covariance matrix of the delayed transformed
estimation error of agent i between hops ρ and r. Thus, it is possible to conform the covariance matrix
of the delayed transformed estimation error of agent i for every hop ρ:

Q̄i(k) = E{ε̄i(k)ε̄i(k)>}

= E




ε̄i,`i

(k)ε̄i,`i
(k)> ε̄i,`i

(k)ε̄i,`i−1(k)> · · · ε̄i,`i
(k)ε̄i,0(k)>

ε̄i,`i−1(k)ε̄i,`i
(k)> ε̄i,`i−1(k)ε̄i,`i−1(k)> · · · ε̄i,`i−1(k)ε̄i,0(k)>

...
...

. . .
...

ε̄i,0(k)ε̄i,`i
(k)> ε̄i,0(k)ε̄i,`i−1(k)> · · · ε̄i,0(k)ε̄i,0(k)>




=


Q̄i,(`i ,`i−1)(k) Q̄i,(`i ,`i)

(k) · · · Q̄i,(`i ,0)(k)
Q̄i,(`i−1,`i−1)(k) Q̄i,(`i−1,`i)

(k) · · · Q̄i,(`i−1,0)(k)
...

...
. . .

...
Q̄i,(0,`i−1)(k) Q̄i,(0,`i)

(k) · · · Q̄i,(0,0)(k)

 .

It is worth pointing out that it is possible to relate the diagonal terms of the covariance
matrix Q̄i(k) through the use of the selection matrices defined in Section 4. Therefore,
Qi,ρ(k) = Si,ρQ̄i,(ρ,ρ)(k)S>i,ρ = S̄i,ρQ̄i(k)S̄>i,ρ.

Note that matrices4i,(ρ,r) and4i,(ρ,ρ) in (16) and (17) for r, ρ ∈ {0, . . . , `i} can be rewritten as:

4i,(ρ,r)(k) = 4̃i,(ρ,r) − S>i,ρNi,ρ(k)Fi,(ρ,r),

where Fi,(ρ,r) =

[
0 0 · · · W>i,ρ ∑

j∈Ni,ρ

C>j CjWi,r · · · 0
]
∈ Rni,ρ×(`i+1)ni,r and

4̃i,(ρ,ρ) =


W>i,ρ AWi,ρ 0 · · · 0 0

Ini,ρ 0 · · · 0 0
...

. . .
...

0 0 · · · Ini,ρ 0

 , 4̃i,(ρ,r) =


W>i,ρ AWi,r 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
0 0 · · · 0 0

 ,

for every r, ρ ∈ {0, . . . , `i} with r 6= ρ. Using this decomposition, the next proposition studies the
dynamics of the complete covariance matrix Q̄i. Its proof requires just some simple mathematical
manipulations and, hence, it is omitted.
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Proposition 4. The evolution of covariance matrix Q̄i is given by:

Q̄i(k + 1) =
(
4̃i − S>i Ni(k)Fi

)
Q̄i(k)

(
4̃i − S>i Ni(k)Fi

)>
+ S>i V>i,`i

MVi,`i
Si (20)

− S>i Ni(k)Di N>i (k)Si,

where Ni(k) = diag
(

Ni,ρ(k)
)

ρ∈{`i ,...,0}
, Di = diag

(
Wi,ρ ∑j∈Ni,ρ

C>j RjCjW>i,ρ
)

ρ∈{`i ,...,0}
, and:

4̃i =


4̃i,(`i ,`i)

4̃i,(`i ,`i−1) · · · 4̃i,(`i ,0)
0 4̃i,(`i−1,`i−1) · · · 4̃i,(`i−1,0)
...

...
. . .

...
0 0 · · · 4̃i,(0,0)

 , Si =


S̄i,`i

S̄i,`i−1
...

S̄i,0

 ,

Fi =


Fi,(`i ,`i)

Fi,(`i ,`i−1) · · · Fi,(`i ,0)
0 Fi,(`i−1,`i−1) · · · Fi,(`i−1,0)
...

...
. . .

...
0 0 · · · Fi,(0,0)

 ,

Based on this proposition we present a design method for gains Ni,ρ(k) that solves the Problem 2.

Theorem 3. The set of matrices Ni,ρ(k) that minimize tr
(
Qi,ρ(k + 1)

)
are the ones that solve the following

system of equations:

Ni,ρ(k)

W>i,ρ ∑
j∈Ni,ρ

C>j RjCjWi,ρ − Fi,(ρ,:)Q̄i(k)F>i,(ρ,:)

 = S̄i,ρ4̃iQ̄i(k)F>i,(ρ,:), (21)

for every ρ ∈ {0, . . . , `i}, where Fi,(ρ,:) = [0 · · · Fi,(ρ,ρ) · · · Fi,(ρ,0)] denotes the row block `i − ρ + 1 of
matrix Fi.

Proof. The proof is divided into several steps. Firstly, the dynamics of matrix Qi,ρ will be obtained
derived from results in Proposition 4. Then, its trace will be derived with respect to Ni,ρ(k) in order to
find the value of the gain that minimizes the trace of Qi,ρ(k).

Observe that Qi,ρ(k) = S̄i,ρQ̄i(k)S̄>i,ρ. Then, it holds:

Qi,ρ(k + 1) =
(

S̄i,ρ4̃i − S̄i,ρS>i Ni(k)Fi

)
Q̄i(k)

(
S̄i,ρ4̃i − S̄i,ρS>i Ni(k)Fi

)>
+ S̄i,ρS>i V>i,`i

MVi,`i
SiS̄>i,ρ − S̄i,ρS>i Ni(k)Di N>i (k)SiS̄>i,ρ.

It is a simple matter to check that S̄i,ρS>i V>i,`i
= W>i,ρ and S̄i,ρS>i Ni(k)Fi = Ni,ρ(k)Fi,(ρ,:), and,

consequently, we can rewrite the above expression as:

Qi,ρ(k + 1) =
(

S̄i,ρ4̃i − Ni,ρ(k)Fi,(ρ,:)

)
Q̄i(k)

(
S̄i,ρ4̃i − Ni,ρ(k)Fi,(ρ,:)

)>
+ W>i,ρ MWi,ρ − Ni,ρ(k)W>i,ρ ∑

j∈Ni,ρ(k)
C>j RjCjWi,ρN>i,ρ(k).
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Now, with the purpose of minimizing the trace of the covariance matrix, tr(Qi,ρ(k+ 1)) is partially
derived with respect to the gain matrix Ni,ρ(k):

∂tr(Qi,ρ(k + 1))
∂Ni,ρ(k)

= −2S̄i,ρ4̃iQ̄i(k)F>i,(ρ,:) + 2Ni,ρ(k)Fi,(ρ,:)Q̄i(k)F>i,(ρ,:)

− 2Ni,ρ(k)W>i,ρ ∑
j∈Ni,ρ

C>j RjCjWi,ρ.

Then, equaling the above expression to zero, we can find that the gain Ni,ρ(k) that minimizes the
trace of Qi,ρ(k + 1) satisfies

S̄i,ρ4̃iQ̄i(k)F>i,(ρ,:) + Ni,ρ(k)Fi,(ρ,:)Q̄i(k)F>i,(ρ,:) = Ni,ρ(k)W>i,ρ ∑
j∈Ni,ρ

C>j RjCjWi,ρ.

After some manipulations, expression (21) is found.

This theorem has proposed a design method for gain matrices Ni,ρ(k) that minimize the expected
value of the estimation error. Additionally, the design method only requires solving a system of
linear equations that depends only on local information of the agent, allowing its resolution in a
distributed way.

The algorithm that every agent i ∈ V must follow to initialize the distributed estimation
procedure and run the estimation phase is summarized in Algorithm 2.

Algorithm 2: Iterative algorithm.

1 Initialization:
2 Run the Distributed observer setup algorithm exposed in Section 3.
3 Initialize covariance matrix Q̄i,ρ.
4 Iterative update:
5 while (1) do
6 Obtain Ni,ρ(k) from Theorem 3 for every ρ ∈ {0, . . . , `i}.
7 Obtain Q̄i(k + 1) from Proposition 4.
8 Exchange the corresponding information with the neighborhood.
9 Obtain x̂i(k + 1) from Equation (9).

10 end

7. Simulations Results

In order to show the effectiveness and optimality of the distributed observer some simulations are
driven in this section. Consider the following system where there is one state with a stable dynamics,
a pair of conjugated imaginary poles and a state with an unstable dynamics:

x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


0.95 0 0 0

0 0.8606 −1.3368 0
0 0.0941 0.9315 0
0 0 0 1.015




x1(k)
x2(k)
x3(k)
x4(k)

 . (22)

The system is being observed by a set of three agents with the network topology depicted in Figure 2.
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Figure 2. Network topology considered.

Example 1. In this example the performance of the observer is tested under the perturbed scenario in which
the system model and the agents measurements are affected by Gaussian noises. Consider the sequel covariance
matrices of the noises terms:

M =


0.02 0 0 0

0 0.05 0 0
0 0 0.06 0
0 0 0 0.01

 , R1 = 0.01, R2 = 0.02, R3 = 0.01.

Figure 3b depicts the evolution of the system state and agent 1 estimates (in dashed lines). It is
shown that the estimate of the stable pole that is locally measured by agent 1 converges the first to the
real value. After it, the estimates of the states 2 and 3, measured by agent 2, reach the actual value.
Finally, the estimator converges to the values of the unstable pole, measured by agent 3 (that belongs
to Ni,2). This simple example makes it clear that the decay rate of the estimator error decreases with ρ.
In Figure 3a the evolution of tr(Qi,ρ) for every i ∈ V are shown.
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Figure 3. Results of Example 1. (a) Evolution of the system state and agent 1 estimates (in dashed
lines); (b) Evolution of tr(Qi,ρ) for every agent.

To conclude this section, it is shown that the gain matrices obtained in this example in steady
state (through the use of Theorem 3), fulfill the LMI stated in Theorem 2 and, consequently, meet the
stability conditions required in Theorem 1. Considering for example agent 1 with the gain matrices
N1,ρ obtained through Theorem 3, it is possible to find a solution for the LMI (19) on the variables X1,ρ

and Y1,ρ, and therefore to guarantee the stability of the estimation errors. The values obtained for N1,ρ,
Xi,ρ, and Y1,ρ are given in Table 1.
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Table 1. Values of X1,ρ, Y1,ρ and N1,ρ obtained in Theorem 3 for agent 1.

Agent 1

X 1,ρ Y1,ρ N1,ρ

ρ = 0 64.846
[

57.643 0
0 41.431

]
0.577

ρ = 1
[

0.801 0.218
0.218 1.090

] 
2.165 0.435 0.671 −0.033
0.435 2.472 −0.289 −0.002
0.671 −0.289 2.405 0.075
−0.033 −0.002 0.075 2.909

 [
0.363 0
−1.274 0

]

ρ = 2 38.425
[

44.862 0
0 51.814

]
0.418

8. Conclusions

In this paper, we present a data-fusion-based algorithm to solve the problem of distributedly
estimating the state of a plant through an interconnected network of agents. Based on a coordinate
transformation matrix, it is possible to transform the original representation of the state estimation of
every agent into the observability staircase form. In this form, the observable modes of each agent at
every hop ρ are distinguished. Relying on this transformation, a novel observer structure is presented
in such a way that the observer gains can be designed distributedly guaranteeing the stability and
minimizing the expected value of the estimation error.

Furthermore, the agents can modify conveniently the construction of the transformation matrix
that allows them to perform the subspace decomposition. Thus, they can be selective with those that
can act as a source of information of a specific portion of the state.

As a further work it will be interesting to explore the performance of the distributed observer
dealing with random events such as packet losses or time-varying delays.
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