
water

Article

Photocatalytic Treatment of Stained Wastewater Coming from
Handicraft Factories. A Case Study at the Pilot Plant Level

Julie Joseane Murcia Mesa 1,* , Jhon Sebastián Hernández Niño 1, Wilson González 1, Hugo Rojas 1 ,
María Carmen Hidalgo 2 and José Antonio Navío 2

����������
�������

Citation: Murcia Mesa, J.J.;

Hernández Niño, J.S.; González, W.;

Rojas, H.; Hidalgo, M.C.; Navío, J.A.

Photocatalytic Treatment of Stained

Wastewater Coming from Handicraft

Factories. A Case Study at the Pilot

Plant Level. Water 2021, 13, 2705.

https://doi.org/10.3390/w13192705

Academic Editors: Changseok Han,

Daphne Hermosilla Redondo,

Hodon Ryu, Woo Hyoung Lee and

Miguel Angel Mueses

Received: 20 July 2021

Accepted: 25 September 2021

Published: 29 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Grupo de Catálisis, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia,
Avenida Central del Norte, Tunja 150003, Boyacá, Colombia; jhon.hernandez01@uptc.edu.co (J.S.H.N.);
wilsong242842@gmail.com (W.G.); hugo.rojas@uptc.edu.co (H.R.)

2 Instituto de Ciencia de Materiales de Sevilla (ICMS), Consejo Superior de Investigaciones Científicas
CSIC—Universidad de Sevilla, Calle Américo Vespucio 49, 41092 Seville, Spain;
carmen.hidalgo@csic.es (M.C.H.); navio@us.es (J.A.N.)

* Correspondence: julie.murcia@uptc.edu.co

Abstract: UV/H2O2 process and TiO2-based photocatalysis were studied in the present work. The
effectiveness of these methods was tested in the treatment of effluents taken from handicraft factories.
Microorganisms, dyes, and different organic pollutants were detected in the industrial effluents.
The experimental procedure for the wastewater treatment was carried out in a patented sunlight
reactor on a pilot plant scale. From this study, UV/H2O2 was found to be the best treatment for dye
elimination. The optimal peroxide dosage for the degradation of dyes and the elimination of bacteria
was 0.07 M. In this case, 70.80% of discoloration was achieved after 7 h of sunlight exposure, under
an average sunlight intensity of 3.42 W/m2. The photocatalytic treatment based on TiO2 achieved
the highest elimination of coliform bacteria and the lowest TOC value; however, the presence of this
material in the reactor had a detrimental effect on the overall elimination of dyes. A combination of
both UV/H2O2 and TiO2 treatments significantly improves the dyes discoloration, the elimination of
bacteria, and the organic compounds degradation. Some of the results of this study were presented
at the 4th Congreso Colombiano de Procesos Avanzados de Oxidación, 4CCPAOx.

Keywords: handicraft factories; effluents; UV/H2O2; TiO2; pilot plant

1. Introduction

Wastewater coming from small-scale industries currently represents an important
source of environmental pollution in Latin American countries. These effluents must be
treated before releasing them into the drain, but in the real context of small industries,
it is not a priority [1]. Many conventional treatments for industrial effluents can be very
expensive [2] and in some cases not effective enough.

Advanced oxidation processes (AOPs) are alternatives to traditional treatments. These
processes can use sunlight as an energy source for oxidant species production, thus reducing
the global economic cost for treatment or recovery of industrial effluents [3]. AOPs include
methods such as UV/O3, UV/H2O2, Fenton, photo-Fenton, non-thermic plasma, sonolysis,
and heterogeneous photocatalysis, among others.

TiO2-based photocatalysts has been evaluated around the world [4]; however, this
heterogeneous process has different disadvantages mainly related to semiconductor re-
covering at the end of the treatments [5]. The potential toxicity of this oxide must also be
considered in its application on a large scale [6]. This high energy gap (3.23 eV) material
needs ultraviolet light to be excited to produce hydroxyl radicals [7], but sunlight only
consists of 5% ultraviolet light [8], resulting in a challenge for using TiO2 under environ-
mental conditions. However, in the present study we selected this oxide only as a reference
material to achieve the removal of heavy metals by photochemical reduction.
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Homogeneous AOPs currently represent a suitable alternative to heterogeneous pro-
cesses. Different authors have evaluated UV/H2O2 for water treatment and degradation of
lab-prepared solutions containing pollutants [9–11].

D.H. Tseng et al. [12] evaluated the effect of the addition of oxygen and/or H2O2
in the photocatalytic degradation of monochlorobenzene in a TiO2 aqueous suspension.
These authors found that a lower H2O2 dosage acted as an electron acceptor to enhance
the degradation efficiency of this molecule. The highest H2O2 content inside the reaction
medium had a detrimental effect on photodegradation, mainly due to the capture of •OH
radicals and the competitive adsorption of peroxide. T. Hirakawa et al. [13] have also
demonstrated the positive effect of peroxide addition over the efficiency of •OH radical
generation on the TiO2 surface.

As widely noted, the electron-hole pair lifetime is very short, and the recombination
process of these species can reduce photocatalytic efficiency [14]. Different alternatives
have been employed to avoid the recombination; for example, oxygen and/or H2O2 can
act as electron collectors, thus improving the electron-hole separation [15]. In addition, new
•OH radicals can be produced by interaction of H2O2 with photoinduced electrons and
oxygen. This results in a better photocatalytic performance, but a suitable concentration of
peroxide should be combined with a semiconductor photocatalyst inside the reactor [16].

AOPs can be very effective in the elimination of bacteria and organic pollutants at the
laboratory scale; however, it is very important to study the effectiveness of these processes
in the treatment of high volumes of industrial effluents [17,18]. Different researchers such
as Mueses et al. [19] have studied the reactor design based on hydrodynamics, molecular
adsorption processes, mass transfer of reactants and oxidants (oxygen, H2O2, O3, etc.),
and other variables. They reported the potential of heterogeneous photocatalysis in the
treatment of wastewater.

On the other hand, researchers around the world have been interested in the design
of solar photocatalytic reactors for water treatment (PWT) since it appears as a logical
extension of solar thermal collectors [20]. It was found that thin film slurries are the most
suitable geometry for the optimum utilization of the incident photons in PWTs. In these
reactors, the TiO2 suspensions were forced into a liquid distribution system and allowed
to freefall through a vertically mounted hollow column. Likewise, the study of PWT has
demonstrated that a misbalance between the radiation field and fluid residence time leads
to inefficient reactors. This is because photocatalytic processes are kinetically slow and
need long periods of time for total pollutant elimination from water samples [21–23]. So, in
order to obtain greater efficiency in water treatment, UV PWT reactors with serpentine-like
geometry have been developed.

In the present study, the effectiveness of UV/H2O2 and TiO2 photocatalysis was
evaluated. The novelty of this research was focused on the use of effluents coming from
small Colombian producers of handicrafts and stained natural fibers. The photocatalytic
treatment of these effluents at the pilot plant scale was carried out under sunlight.

2. Materials and Methods

Wastewater treatment was carried out in a sunlight reactor using a patented design
(Figure 1) with a 120 L capacity [24]. The main operation parameters for this pilot plant
scale reactor are listed as follows: volumetric flow rate 0.50 L/s, length 22.5 m, and a total
residence time of 36 s.

For these assays, 30 L of industrial effluents coming from local handicrafts factories
(Location: Nobsa, Boyacá, Colombia, coordinates 5◦46′11” N, 72◦56′24” O) was used. The
total reaction time was 7 h, which was selected based on the total hours of sunlight per day
available in the study area.
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Figure 1. Sunlight reactor for wastewater treatment. 
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ume of polluted water used an H2O2 concentration that was set to 0.05 and 0.07 M. 

In the case of the photocatalytic tests, 0.50 g/L of commercial TiO2 (Sigma Aldrich, 
assay 99.7%) was used. The main physicochemical properties of this oxide were: 3.23 eV 
as the band gap value and 51 m2/g for the specific surface area; only the anatase phase was 
detected in this material. 

In the search for the best results, combined treatments were evaluated, i.e., TiO2 and 
UV-H2O2 (0.07 M peroxide). 

In order to evaluate the overall effectiveness of the treatments applied, total coliform 
concentration, dyestuff degradation, and total organic carbon (TOC) elimination were 
evaluated every hour. 

Sampling and evaluation of the analytic parameters were carried out by following 
the Standard Methods for the Examination of Water and Wastewater [25]. The bacteria 
content was calculated after taking the initial concentration in UFC for each experiment 
as a reference. The bacterial elimination was calculated using Equation (1): 

Y = (UFC at the end of the reaction)/(UFC Initial) × 100 (1)

where: 
Y = % bacteria content at the end of the reaction. 
Different samples were taken from the reactor every hour for 7 h. The discoloration 

percentage was measured by UV-Vis spectrophotometry in a Thermo Scientific Evolution 
300 spectrophotometer. The wavelengths evaluated were between 300 and 450 nm, where 
the highest absorption of dye was observed. The discoloration percentage was calculated 
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Discoloration (%) = (A − B)/A × 100 (2)

where: 
A = Absorbance value of the initial sample at 450 nm. 
B = Absorbance value of sample after the determined reaction time. 
TOC analysis was performed in a TOC/TNb multi N/C 2100 analyzer, and bacteria 

were identified using the membrane filter technique for the coliform group (9222 method) 
[25]. In order to ensure the reproducibility and reliability of the reported results, all assays 

Figure 1. Sunlight reactor for wastewater treatment.

Firstly, photolysis tests under direct sunlight and without peroxide or titania in the
reaction medium were carried out. Then, the homogeneous treatment combining UV
light and H2O2 (UV/H2O2) was evaluated. For these wastewater treatment tests, the total
volume of polluted water used an H2O2 concentration that was set to 0.05 and 0.07 M.

In the case of the photocatalytic tests, 0.50 g/L of commercial TiO2 (Sigma Aldrich,
assay 99.7%) was used. The main physicochemical properties of this oxide were: 3.23 eV as
the band gap value and 51 m2/g for the specific surface area; only the anatase phase was
detected in this material.

In the search for the best results, combined treatments were evaluated, i.e., TiO2 and
UV-H2O2 (0.07 M peroxide).

In order to evaluate the overall effectiveness of the treatments applied, total coliform
concentration, dyestuff degradation, and total organic carbon (TOC) elimination were
evaluated every hour.

Sampling and evaluation of the analytic parameters were carried out by following
the Standard Methods for the Examination of Water and Wastewater [25]. The bacteria
content was calculated after taking the initial concentration in UFC for each experiment as
a reference. The bacterial elimination was calculated using Equation (1):

Y = (UFC at the end of the reaction)/(UFC Initial) × 100 (1)

where:
Y = % bacteria content at the end of the reaction.
Different samples were taken from the reactor every hour for 7 h. The discoloration

percentage was measured by UV-Vis spectrophotometry in a Thermo Scientific Evolution
300 spectrophotometer. The wavelengths evaluated were between 300 and 450 nm, where
the highest absorption of dye was observed. The discoloration percentage was calculated
by using Equation (2).

Discoloration (%) = (A − B)/A × 100 (2)

where:
A = Absorbance value of the initial sample at 450 nm.
B = Absorbance value of sample after the determined reaction time.
TOC analysis was performed in a TOC/TNb multi N/C 2100 analyzer, and bacteria were

identified using the membrane filter technique for the coliform group (9222 method) [25].
In order to ensure the reproducibility and reliability of the reported results, all assays
and reactions were carried out twice with the arithmetic average and standard deviation
reported in the results.
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3. Results and Discussion
3.1. Bacteria Elimination

Figure 2 represents the bacteria elimination percentage as a function of the reaction
time. From this figure, it is possible to note the bactericidal effect of direct sunlight, where
the total coliform bacteria content decreases almost 20%. It is important to take into account
that under the weather conditions of this study, the average sunlight intensity oscillates
in a day (between 0.60 and 13.70 W/m2). It is also important to note that different tests
were performed on a laboratory scale which had similar results to those observed at the
pilot plant scale. The bactericidal effect of UV light by itself is mainly due to its absorption
by cellular components called intracellular chromophores, such as L–tryptophan. In the
presence of oxygen, UV irradiation contributes to the generation of reactive oxygen species
(ROS), such as •OH, O•−2 , and HO•2 , which induces oxidative stresses that damage the cell
membranes and components leading to the death of the bacteria [26,27].
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Figure 2. Total coliform bacteria percentage in handicraft factory effluents under different AOPs.

On the other hand, when 0.05 M H2O2 was added into the reaction medium, the
bactericidal effect slightly decreased; however, this difference can be inside of the error
percentage of this analysis. After 0.05 M H2O2 addition, peroxide itself contributes to
bacterial damage; in addition, this compound can also contribute to the ROS generation
under illumination, thus leading to a slight improvement in bacteria elimination (Figure 2).

As also seen in Figure 2, heterogeneous photocatalysis induced by TiO2 is the more
effective alternative for reducing bacteria concentration in the effluents. This resulted in
removing 40% of the bacteria after 7 h of treatment. Different authors have reported that
TiO2 photocatalysis promotes the peroxidation of the E. coli membrane phospholipids and
induces major disorders in the cell membrane which could be the main mechanism for
killing bacteria using this treatment [28]. Previous publications showed the destruction of
bacterial cells during photocatalytic treatment using high-resolution microscopy [29,30].
The effectiveness of TiO2 in E. coli inactivation can also be related to different factors such
as the size and shape of these microorganisms (this is because the bacteria are more than
30 times larger than TiO2 particles), concentration of TiO2 and microorganisms, nature, and
intensity of UV irradiation [31].

UV-H2O2 and TiO2 combined processes were also evaluated. In general, it was
observed that the overall effectiveness of the treatment significantly increases, thus leading
to a decrease in the bacteria content of 51%. This could be caused by the addition of
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peroxide, which can contribute to decreasing the electron-hole recombination during
the photocatalytic process on the titania surface. This is the result of photogenerated
charges that are used for the production of •OH radicals as seen in other studies [13,32–34]:
(i) these radicals are formed by the reduction of H2O2 with conduction band electrons; and
(ii) furthermore, H2O2 is oxidized to O2

•− by the valence band hole. These factors lead to
improvement in photocatalytic efficiency in bacteria elimination from the effluents.

It has been reported that after the addition of H2O2, the rate of •OH radical formation
is better for TiO2 in its rutile phase than in the anatase one. A mix of the Anatase:rutile
phases can also improve the radicals formation [13]. In the current study, commercial TiO2
was evaluated, which only presents the anatase phase, so performing further research by
using other materials containing the rutile phase could be interesting.

3.2. Dyestuffs Discoloration

Figure 3 shows selected images of the reactor, before and after UV/H2O2 treatment.
In this figure it is possible to observe the changes in color of the wastewater sample. In
previous studies, the characterization of the wastewater samples coming from handicraft
factories [35] was found to primarily contain azo dyes. The degradation mechanism of
these pollutants mediated by TiO2, under light and by using O2 as oxidant, has been
reported by Zhiyong et al.; these authors have employed methyl orange (MO) as the model
molecule [36]. In general, it has been described that dye photodegradation takes place by
producing a singlet-excited state in which an electron is injected from the excited state of
the adsorbed dyestuff onto the TiO2 conduction band. This leads to the formation of a MO
cation which subsequently decays and the electron in the conduction band is scavenged by
the O2 adsorbed on the TiO2 surface generating the superoxide radical. The (–N=N–) bond
can be oxidized by •OH radicals or can be reduced by electrons on the conduction band.
The breakup of the –N=N– group leads to the discoloration of the dyestuffs. Azoic dye
degradation can also lead to the formation of intermediate compounds such as aromatic
amines, phenolic compounds, and short-chain organic acids. The production of these acids
is due to the opening of the aromatic ring in the dye molecule due to the exposure of
successive oxidations which eventually form CO2 and water [37].
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Figure 3. Sunlight reactor images before (left) and after (right) UV/H2O2 treatment.

Figure 4 shows the wastewater discoloration as a function of the reaction time. As can
be seen in the figure, the addition of peroxide is a good alternative for the degradation of
dyes, eliminating 61.26% of the color in the water after 7 h of illumination by using 0.07 M
of H2O2.
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Figure 4. Stained wastewater discoloration under different AOPs.

On the other hand, by using TiO2 as photocatalyst, the elimination of dyes after 7 h of
illumination slightly decreases (58.63% of discoloration) compared to the results obtained
by using 0.07 M peroxide. This is mainly due to the opacity generated inside the reactor
given by the titania powders employed in the heterogeneous process. These powders cause
a screening effect which reduces overall photonic efficiency [38].

Finally, by combining 0.07 M of H2O2 and TiO2, the highest discoloration (i.e., 70.80%)
was achieved. This is due to the greater production of •OH radicals induced by a reaction
with the peroxide [39].

3.3. Organic Pollutant Mineralization

Taking into account that: (i) dyestuffs can be transformed into new and more danger-
ous intermediary compounds during the photocatalytic processes; and (ii) different dyes
can also absorb light in the same wavelength, TOC analyses were performed to study the
mineralization phenomena of the effluents after treatment.

Figure 5 represents TOC elimination as a function of the treatment time. As seen in
the figure, the highest TOC value was obtained by using the UV/H2O2 treatment. This
behavior can be explained by the potential formation of intermediary organic compounds
resulting from the breakup of the dye molecules.

On the other hand, by using TiO2 photocatalysis, a lower TOC value compared
to UV/H2O2 assays, was observed, thus showing the mineralization of other organic
compounds present in the effluents. The mechanism for organic pollutant degradation
under photocatalysis is based on the interaction between light and semiconductor particles.
This produces ROS strong enough to destroy chemical pollutants in water by oxidation
of the carbon chain mainly given by •OH radicals. As a result, the formation of short
chain organic acids and the subsequent mineralization of them to obtain CO2 and water
occur. A similar mechanism has been reported by Guo et al. by using phenol as a model
molecule [40].

Bearing in mind that the wastewater samples treated in this study were real, more
than 10 different dyes can coexist in the sample. As a result, the behavior observed in
the TOC analyses by using the UV/H2O2 treatment can be explained by the potential
formation of an unknown quantity of intermediate organic compounds caused by dye
molecules breaking.
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Figure 5. TOC evolution as a function of the reaction time under different AOPs.

Furthermore, due to the low availability of sunlight during the UV/H2O2 treatments
(i.e., 3.4 W/m2), it makes possible the generation of intermediate molecules from dyes
in wastewater, which could be mainly due to the catalyzed action of peroxide, not to the
direct action of sunlight. This could explain the discoloration but not mineralization [41,42].
On the contrary, the highest mineralization was obtained by using TiO2, it is due to the
environmental conditions on the day of treatment (high light intensity), thus showing the
mineralization of other organic compounds present in the effluents.

The standard deviation for all the results presented in the manuscript has been at-
tached as Supplementary Material in Tables S1–S3.

Several studies related to E. coli inactivation, dye degradation, and organic pollutant
mineralization have been addressed by studying these water pollutants individually. Most
of these studies include the simulation of environmental conditions at a lab scale by using
bacteria strains and commercial compounds. These studies have been very important to
predict the behavior of the AOPs. However, in order to determine the true effectiveness
of these processes, it is very important to test them using real wastewater sources. These
effluents are usually polluted by a combination of different contaminants at the same time.
This study creates an important bridge to previous studies performed on the applications of
AOPs on a pilot plant scale in the treatment of effluents coming from small local industries.
Thus, further research can be broadened by understanding the primary limitations and
advantages of employing AOPs under real environmental conditions.

The main advantage of employing AOPs for the treatment of wastewater is the
possibility to degrade many pollutants simultaneously in any given effluent. A key thing
to note is that these processes are secondary or tertiary treatments. In order to effectively
employ these methods, it is necessary to select one or more of these AOPs to be combined
with other methods to obtain better results on a larger scale.

4. Conclusions

UV/H2O2 and TiO2 photocatalysis was successfully tested on a pilot plant scale in
the treatment of industrial wastewater, thus showing the potential of AOPs in environmen-
tal remediation.

The individual treatments show different effectiveness depending on the pollutant
to be treated; thus, the greatest discoloration of dyes was achieved by UV/H2O2. In
contrast, the highest elimination of bacteria and decreased TOC value was obtained under
photocatalytic treatment based on TiO2.
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In general, only small differences were observed in the overall effectiveness of the
independent treatments employed for recovering wastewater from handicraft factories.
The combination of UV, H2O2, and TiO2 AOPs significantly improves the final results
obtained, thus leading to an improvement of 70.80% for dye discoloration, a 51% reduction
of bacteria, and the elimination of 87% of organic compounds.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13192705/s1, Table S1: Dyes degradation Standard Deviation, Table S2: Bacteria Removal
Standard deviation, and Table S3: TOC Standard deviation.
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