
FaMa Test Suite v1.2

Sergio Segura, David Benavides and Antonio Ruiz-Cortés

{sergiosegura,benavides,aruiz}@us.es

Applied Software Engineering Research Group
University of Seville, Spain

March 2010

Technical Report ISA-10-TR-01

This report was prepared by the

Applied Software Engineering Research Group (ISA)
Department of computer languages and systems
Av/ Reina Mercedes S/N, 41012 Seville, Spain
http://www.isa.us.es/

Copyright c©2010 by ISA Research Group.

Permission to reproduce this document and to prepare derivative works from this docu-
ment for internal use is granted, provided the copyright and ’No Warranty’ statements
are included with all reproductions and derivative works.

NO WARRANTY
THIS ISA RESEARCH GROUP MATERIAL IS FURNISHED ON AN ’AS-IS’ BASIS.
ISA RESEARCH GROUP MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIM-
ITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

Use of any trademarks in this report is not intended in any way to infringe on the
rights of the trademark holder

Support: This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project SETI (TIN2009-07366) and
the Andalusian Government project ISABEL (TIC-2533).

List of changes

Version Date Description

1.0 February 2009 First release
1.1 December 2009 Refined evaluation with mutants. New test cases added
1.2 March 2010 Test cases of the operation ValidProduct updated.

3

FaMa Test Suite v1.2

Sergio Segura, David Benavides and Antonio Ruiz-Cortés

Department of Computer Languages and Systems

Av Reina Mercedes S/N, 41012 Seville, Spain

{sergiosegura, benavides, aruiz}@us.es

Abstract: A Feature Model (FM) is a compact representation of all the products of a software product
line. Automated analysis of FMs is rapidly gaining importance: new operations of analysis have been
proposed, new tools have been developed to support those operations and different logical paradigms and
algorithms have been proposed to perform them. Implementing operations is a complex task that easily
leads to errors in analysis solutions. In this context, the lack of specific testing mechanisms is becoming a
major obstacle hindering the development of tools and affecting their quality and reliability. In this paper,
we present FaMa Test Suite, a set of implementation–independent test cases to validate the functionality of
FM analysis tools. This is an efficient and handy mechanism to assist in the development of tools, detecting
faults and improving their quality. In order to show the effectiveness of our proposal, we evaluated the suite
using mutation testing as well as real faults and tools. Our results are promising and directly applicable
in the testing of analysis solutions. We intend this paper to be a first step toward the development of a
widely accepted test suite to support functional testing in the community of automated analysis of feature
models.

Key Words: Test suite, functional testing, feature models, automated analysis, software product lines

1 Introduction

Software Product Line (SPL) engineering is an approach to develop families of related systems

based on the usage of reusable assets as a means to improve software quality while reducing

production costs and time–to–market [1]. Products in software product lines are specified in terms

of features. A feature is defined as an increment in product functionality [2]. Key to SPLs is to

capture commonalities (i.e. common features) and variabilities (i.e. variant features) of the systems

that belong to the product line. To this aim, feature models are commonly used. A feature model

[3, 4] is a compact representation of all the products of a product line in terms of features and

relationships among them (see Figure 1).

The automated analysis of feature models deals with the automated extraction of information

from feature models. Typical operations of analysis allow determining whether a feature model is

void (i.e. it represents no products), whether it contains errors (e.g. features that cannot be part of

any product) or what is the number of products of the SPL represented by the model. Catalogues

with up to 30 different analysis operations on feature models have been reported in the literature

[5, 6]. Analysis solutions can be categorized in those using propositional logic [7, 8, 9, 10, 11, 12, 13],

constraint programming [14, 15, 16], description logic [17, 18] and ad-hoc algorithms and techniques

[19, 20, 21]. There are also a number of tools supporting these analysis capabilities such as AHEAD

Tool Suite [22], FaMa Framework [23], Feature Model Plug-in [24] and pure::variants [25].

The implementation of analysis operations is a hard task involving complex data structures and

algorithms. This makes the development of analysis tools far from trivial and easily leads to errors

increasing development time and reducing their reliability. Gaining confidence in the absence of

defects in these tools is essential since the information extracted from feature models is used to

support decisions all along the SPL development process [2]. However, the lack of specific testing

mechanisms in this context appears as a major obstacle for engineers when trying to assess the

functionality and quality of their programs. Hence, it is known that software testing accounts for

about 50% of the total cost of software development [26].

Software testing intends to reveal faults in the software under test [27, 28]. This is mainly done

by checking the behaviour of the program with set of input-output combinations (i.e. test cases).

The main challenge when testing is to find a balance between the number of test cases and their

1

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

effectiveness [28]. Hence, trying to be exhaustive when testing software tools may easily increase the

number of test cases to an unmanageable level. Similarly, using a reduced number of input-output

combinations may result in a weak effectiveness.

In this paper, we present a set of implementation–independent test cases to validate the func-

tionality of feature model analysis tools. Through the implementation of our test cases, faults can

be rapidly detected assisting in the development of feature model analysis tools and improving

their reliability and quality. For its design and evaluation, we used popular techniques from the

software testing community to assist us on the creation of a representative set of input-output com-

binations. These test cases can be used either in isolation or as a suitable complement for further

testing methods such as white–box testing techniques [27, 29] or automated test data generators

[30]. As suggested by the testing literature, each test case was designed to reveal a single type of

fault. This allows users to identify clearly the source of a fault once it has been detected. Briefly,

we next describe the main characteristics of our suite:

– Operations tested. Current version of our suite, called FaMa Test Suite, addresses 7 out of

30 analysis operations on feature models identified in the literature [5]. These were selected for

their extended use in the community of automated analysis and their heterogeneous nature.

– Testing techniques. Four black-box testing techniques were used to design test cases, namely:

equivalence partitioning, boundary-value analysis, pairwise testing and error guessing. A pre-

liminary evaluation of the testing techniques to be used in our approach was presented in

[31].

– Test cases. The suite is composed by 192 test cases. Each test case is designed in terms of the

inputs (i.e. feature models and some other parameters) and expected outputs of the analysis

operations under test.

– Adequacy. We evaluated the effectiveness of our suite using mutation testing and real faults

as follows. Firstly, we generated hundreds of faulty versions (so-called mutants) of three open

source analysis tools integrated into the FaMa framework. Then, we executed our suite against

those faulty tools and check how many faults were detected by our test cases. As a result, the

suite identified 96.1% of the faults showing the feasibility of our proposal. We then refined our

suite until obtaining a score of 100%. Our refined suite also showed to be effective in detecting

motivating faults found in the literature and in a recent release of the FaMa framework.

The remainder of the paper is structured as follows: Section 2 presents feature models, their

analyses and black-box testing techniques in a nutshell. A detailed description of how we designed

our test cases is presented in Section 3. Section 4 describes the adequacy evaluation and refinement

of the suite. A summary of the refined suite and a brief discussion is presented in Section 5. Finally,

we summarize our main conclusions and describe our future work in Section 6.

2 Preliminaries

This section provides an overview of feature models, their analysis and the black–box testing

techniques used in our approach.

2.1 Feature models

A feature model [3, 4] represents all the products of an SPL in a single model in terms of features

and relationships among them. It is organized hierarchically and is graphically depicted as a feature

diagram. Figure 1 shows a simplified example of a feature model representing an e-commerce SPL.

The model illustrates how features are used to specify the commonalities and variabilities of the

on-line shopping systems that belong to the product line. The root feature (i.e. E-Shop) identifies

2

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

E-Shop

Search

Basic Advanced

Catalogue

Info

Image Price

Description

Security

MediumHigh

Payment

PCBank DraftOffers Mobile

GUI

Credit Card

Visa American Express

Mandatory

Optional

Alternative

Or

Requires

Excludes

Banners

Figure 1: A sample feature model

the SPL. The relationships between a parent feature and its child features can be mainly divided

into:

Mandatory. A child feature has a mandatory relationship with its parent when the child is in-

cluded in all products in which its parent feature appears. For instance, every on-line shopping

system in our example must implement a catalogue of products.

Optional. A child feature has an optional relationship with its parent when the child can be

optionally included in all products in which its parent feature appears. For instance, banners is

defined as an optional feature.

Alternative. A set of child features have an alternative relationship with their parent when only

one feature of the children can be selected when its parent feature is part of the product. In our

SPL, a shopping system may implement high or medium security policy but not both in the same

product.

Or-Relation. A set of child features have an or-relationship with their parent when one or more

of them can be included in the products in which its parent feature appears. A shopping system

can implement several payment modules: bank draft, credit card or both of them.

Notice that a child feature can only appear in a product if its parent feature does. The root

feature is a part of all the products within the SPL. In addition to the parental relationships be-

tween features, a feature model can also contain cross-tree constraints between features. These are

typically of the form:

Requires. If a feature A requires a feature B, the inclusion of A in a product implies the inclusion

of B in such product. On-line shopping systems accepting payments with credit card must imple-

ment a high security policy.

Excludes. If a feature A excludes a feature B, both features cannot be part of the same product.

Shopping systems implementing a mobile GUI cannot include support for banners.

Feature models were first introduced as a part of the FODA (Feature-Oriented Domain Analy-

sis) method back in 1990 [4]. Since then, feature modelling has been widely adopted by the software

product line community and a number of extensions have been proposed in attempts to improve

properties such as succinctness and naturalness. We refer the reader to [6] for a detailed survey on

3

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

the different feature modelling languages.

2.2 Automated analyses of feature models

The automated analysis of feature models deals with the computer–aided extraction of informa-

tion from feature models [5]. From the information obtained, marketing strategies and technical

decisions can be derived [32]. The analysis of a feature model is generally performed in two steps:

i) First, the model is translated into a specific logic representation such as a satisfiability problem

[7, 8, 9, 10, 11, 12, 13], a constraint satisfaction problem [14, 15, 16] or a knowledge base using

description logic [17, 18], ii) Then, off-the-shelf solvers are used to automatically perform a variety

of operations on the logic representation of the model. Catalogues with up to 30 different analysis

operations on feature models have been reported in the literature [5, 6]. Following, we summarize

some of the analysis operations we will refer through the rest of the paper.

Determining if a feature model is void. This operation takes a feature model as input and

returns a value informing whether such feature model is void or not [6, 7, 8, 9, 10, 11, 12, 13, 14,

17, 18, 19, 20, 33]. A feature model is void if it represents no products.

Finding out if a product is valid. This operation checks whether an input product (i.e.

set of features) belongs to the set of products represented by a given feature model or not

[6, 7, 8, 9, 10, 14, 16, 18, 33]. As an example, P={E-Shop, Catalogue, Info, Description, Secu-

rity, Medium, GUI, PC} is not a valid product of the product line represented by the model in

Figure 1 because it does not include the mandatory feature Payment.

Obtaining all products. This operation takes a feature model as input and returns all the prod-

ucts represented by the model [7, 9, 10, 14, 19, 20, 33].

Calculating the number of products. This operation returns the number of products repre-

sented by a feature model [8, 10, 14, 19, 20, 21, 33]. The model in Figure 1 represents 2016 different

products.

Calculating variability. This operation takes a feature model as input and returns the ratio be-

tween the number of products and 2n − 1 where n is the number of features in the model [14, 33].

This operation may be used to measure the flexibility of the product line. For instance, a small

factor means that the number of combinations of features is very limited compared to the total

number of potential products. In Figure 1, Variability = 0.00048.

Calculating commonality. This operation takes a feature model and a feature as inputs and re-

turns a value representing the proportion of valid products in which the feature appears [14, 21, 33].

This operation may be used to prioritize the order in which the features are to be developed and

can also be used to detect dead features [15]. In Figure 1, Commonality(Banners) = 25%.

Dead features detection. This operation takes a feature model as input and returns a set of

dead features (if any) [2, 8, 11, 15, 33, 20, 13]. A dead feature is a feature that never appears in any

of the products represented by the feature model [15]. These are caused by cross-tree constraints.

Some common cases of dead feature are presented in Figure 4 (Section 3.2.1).

Some commercial and open source tools supporting the analysis of feature models are the

AHEAD Tool Suite [22], FaMa Framework [23], Feature Model Plug-in [24] and pure::variants

[25].

4

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

2.3 Black-box testing techniques

Software testing is performed by means of test cases. A test case is a set of test inputs and ex-

pected outputs developed to verify compliance with a specific requirement [29, 27]. Test cases

may be grouped into so-called test suites. A variety of testing techniques has been reported to

assist on the design of effective test cases, i.e. those that will find more faults with less effort and

time [26, 27, 29]. In this paper, we will focus on the so called black-box testing techniques. These

techniques focus on checking whether a program does what it is supposed to do based on its spec-

ification [27]. No knowledge about the internal structure or implementation of the software under

test is assumed. We will refer to four of these techniques along the paper. Briefly, these are:

Equivalence partitioning. This technique is used to reduce the number of test cases to be de-

veloped while still maintaining a reasonable test coverage (i.e. the degree to which the test cases

verifies the test requirements) [27, 29]. In this technique, the input domain of the program is di-

vided into partitions (also called equivalence classes) in which the program is expected to process

the set of data input in a similar (i.e. equivalent) way. According to this testing approach, only

one or a few test cases of each partition are needed to evaluate the behaviour of the program for

the corresponding partition. Thus, selecting a subset of test cases from each partition is enough to

test the program effectively while keeping a manageable number of test cases.

Boundary value analysis. This technique is used to guide the tester when selecting inputs from

equivalence classes [27, 29]. According to this technique, programmers usually make mistakes with

the inputs values located on the boundaries of the equivalence classes. This method guides the

tester to select those inputs located on the “edges” of the equivalence partitions.

Pairwise testing (also called 2-wise testing). This is a combinatorial software testing method

focusing on testing all possible discrete combinations of two input parameters [29, 34]. According

to the hypothesis behind this technique, most common errors involve one input parameter. The

next most common category of errors consists of those dependent on interactions between pairs

of parameters and so on. Thus, the main goal of this technique is to address the second most

common cases of errors (those involving two parameters) while keeping the number of test cases

in a manageable level.

Error guessing. This is a software testing technique based on the ability of the tester to predict

where faults are located according to its experience on the domain [29]. Using this technique, test

cases are specifically designed to exercise typical error-prone points related to the type of system

under test.

3 Test suite design

In this section, we describe how we designed the test cases that compose our suite. These mainly are

input-output combinations specifically created to reveal failures in the implementations of analysis

operations on feature models.

Creating test cases for every possible permutation of a program is impractical and very often

impossible; there are simply too many input-output combinations [27]. Thus, as recalled by Press-

man [28], the objective when testing is to “design tests that have the highest likelihood of finding

most errors with a minimum amount of time and effort”. To assist us in the process, we evaluated

a number of techniques reported in the literature [27, 29]. We focused on black-box techniques

since we want our test cases to rely on the specification of the analysis operations rather than on

specific implementations. In particular, we found the four techniques described in Section 2.3 to

be effective and generic enough to be applicable to our domain.

5

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

For the design of the suite we followed four steps, namely: i) identification of the inputs and

outputs of the analysis operations, ii) selection of representative instances of each type of input, iii)

combination of previous instances in those operations receiving more than one input parameter,

and iv) test cases report. Following, we detail how we carried out these steps.

3.1 Identification of inputs and outputs

The current version of our suite addresses 7 out of 30 analysis operations on feature models identi-

fied in the literature [5] (detailed in Section 2.2). We selected these operations for its extended use

in the community of automated analysis and their heterogeneous nature. In order to identify the

type of the input/output parameters of the operations and avoid misunderstandings when inter-

preting their semantics, we used the formal definition of the operations proposed by Benavides [32].

Table 1 summarizes the operations in terms of their inputs and outputs. For the sake of simplicity,

we assign an identificator to each operation to refer them along the paper. As illustrated, inputs

are composed of feature models, products and features. Outputs mainly comprise collections of

products and features together with numeric and boolean values.

ID operation Operation Inputs Output

VoidFM Void FM FM Boolean value

ValidProduct Valid product FM, Product Boolean value

Products Products FM Collection of products

#Products Number of products FM Numeric value

Variability Variability FM Numeric value

Commonality Commonality FM, Feature Numeric value

DeadFeatures Dead features FM Collection of features

Table 1: Analysis operations addressed in the suite

The feature modelling notation used in our suite corresponds to one showed in Section 2.1

(hereinafter referred as basic feature models). We selected this notation for its simplicity and

extended use in current feature model analysis tools and literature.

3.2 Inputs selection

In this section, we explain how we selected the inputs to be used in our test cases. For each type of

input (i.e. feature models, products and features), we next describe the techniques used and how

we applied them.

3.2.1 Feature models

We found two testing techniques to be helpful for the selection of a suitable set of input feature

models, namely: equivalence partitioning and error guessing. We applied them as follows:

Equivalence partitioning. The potential number of input feature models is limitless. To select

a representative set of these, we propose dividing input feature models into equivalence classes

according to the different types of relationships and constraints among features, i.e. mandatory,

optional, or, alternative, requires and excludes. This is a natural partition intuitively used in

most proposals when defining the mapping from a feature model to a specific logic paradigm (e.g.

constraint satisfaction problem) [7, 9, 10, 13, 14, 15, 18, 32]. Therefore, according to this technique,

if a feature model with a single mandatory relationship is correctly managed by an operation, we

could assume that those with more than one mandatory relationship would also be processed

successfully.

6

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

A

B

A

B

A

B

A

B C

A

B CC

A

B C

A

B

D E

C

F G

A

B C

A

B C

A

B C

A

B

D

A

B C

A

B C

A

B C

A

B C

a) Feature models with a single relationship or constraint c) Feature models including all different types of
relationships and constraints

b) Feature models including two different types of relationships or constraints.

C

E

A

D E

H I

A

B

E F

C D

G

A

B

E F

C D

G

A

B

E F

C D

G

A

B

E F

C D

G

B C

F G

Figure 2: Equivalence partitions on feature models

To keep equivalence classes in a manageable level, we propose dividing the input domain into

three groups of partitions as follows:

1. Feature models including a single type of relationship or constraint. Inputs from these partitions

would help us to reveal failures when processing isolated relationships and constraints. For basic

feature models, 6 partitions are created: feature models including mandatory relationships,

optional, or, alternative, requires and excludes. Figure 2 (a) depicts the inputs we selected from

each equivalence class using this criterion. Note that feature models with requires and excludes

constraints also include an additional relationship (e.g. optional) to make them syntactically

correct, i.e. sharing a common parent feature.

2. Feature models combining two different types of relationships or constraints. We propose test-

ing how analysis tools process feature model with multiple relationships by designing all the

possible combinations of two of these, i.e. mandatory-optional, mandatory-or, etc. Following

this criterion with basic feature models, we created a second group of 13 partitions. Figure

2 (b) presents the input models we took from each one of them. In general terms, feature

relationships may appear in two main forms, child and sibling relationships (see Figure 3).

According to our experience, inputs combining both types of relationships (highlighted in Fig-

ure 3) usually result in more complex constraints and therefore in more effective test cases.

Thus, we selected inputs models from each partition randomly but making sure these included

both types of relationships, child and sibling relationships. For those input models including

cross–tree constraints, we gave priority to simplicity and used sibling relationships exclusively.

3. Feature models including three or more different types of relationships or constraints. We finally

propose creating a last partition including all those feature models not included in previous

equivalence classes. Although this partition could be easily divided into smaller ones we did

not find any evidence that justify such an increment in the number of test cases. Figure 2 (c)

illustrates the random input feature model we took from this partition.

As a result of the application of this technique we got 20 feature models representing the whole

input domain of basic feature models (see Figure 2). These were used as input in all the operations

included in our suite with the exception of the operation DeadFeatures in which models derived

7

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

A

B

C

A

B

C

A

B C

A

B C

D E

Figure 3: Some possible combinations of mandatory and optional relationships

from error–guessing were used.

Error guessing. Some common errors on feature models have been reported in the literature

[15, 32]. As an example, Trinidad et al. [15] present some common problematic situations in which

dead features appear (Figure 4). Following the guidelines of error guessing, we propose using these

models as suitable inputs to check whether dead features are correctly detected by the tools under

test (i.e. operation for the detection of dead features). This way, we kept the number of input

models for this operation in a reasonable level while still having a fair confidence in the ability of

our tests to reveal failures.

A

B C

D E

A

B C

D E

A

B C

D E

A

B C

A

B C

A

B C

A

B

A

B C

Figure 4: Input feature models with dead features (grey features are dead)

3.2.2 Products

Products are used in the operation ValidProduct to determine whether a given product (i.e. set of

features) is included in those represented by a feature model. For the selection of these inputs, we

propose applying equivalence partitioning and boundary analysis as follows.

Firstly, we propose dividing input products into two equivalent partitions: valid and non-valid

products. For each of these equivalence classes, inputs should be treated in the same way by

the program under test and should produce the same answer. Then, we propose using boundary

analysis for the systematic selection of input products from each partition. In particular, we suggest

quantifying products according to the number of features they include. Then, we propose selecting

those products on the “edges” of the partitions.

Figure 5 depicts an example of how we applied equivalence partitioning and boundary analysis

for the selection of input products. As input feature models, we used those presented in previous

section created using equivalence partitioning (Figure 2). For each input feature model, four inputs

products were selected, two valid and two non-valid, as follows:

– V Pmin : valid product with the minimum number of features. This product could be helpful

to reveal failures caused by spare of erroneous constraints when processing minimal solutions

of the problem. For instance, a failure using V Pmin = {A, B, D, E} may suggest that any of

the other features (i.e. C,F or G) are erroneously treated as core features. A core feature is a

feature that is part of all the products [33].

8

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

– V Pmax: valid product with the maximum number of features. This product would allow testers

to detect overconstrained representations of the model using large valid combination of fea-

tures. As an example, a failure using V Pmax = {A, B, C, E, G} may suggest that some spare

constraint forcing the selection of D or F is not being fulfilled. Note that V Pmin would still

be helpful to detect, for example, whether non core features are erroneously included in all

products.

– NV Pmin: non-valid product with one less feature than V Pmin. This product would be helpful

to reveal failures caused by omitted or insufficiently constrained representations of the models.

In the example, NV Pmin = {A, B, D} could help us to check whether the parent feature of an

alternative relationship (B) can be erroneously included in a product without including any of

its child features (E or F).

– NV Pmax: non-valid product with one more feature than V Pmax. This product would help

us to check broken constraint caused by the selection of too many features. For instance,

NV Pmax = {A, B, C, D, E, G} may reveal failures derived from including in a product more

than one alternative subfeature (C and D). Once again, we would still need NV Pmin to make

sure that underconstrained solutions are detected.

VPmax={A,B,C,E,G}VPmin={A,B,D,E}

NVPmin={A,B,D}

Valid products

Non-valid products

NVPmax={A,B,C,D,E,G}

A

B

E F

C D

G

Figure 5: Input products selection using partition equivalence and boundary analysis

We identified two special causes making a product to be non-valid, namely: i) not including

the root feature (e.g. product {B,D,E} for the model in Figure 5), and ii) including non-existent

features (e.g. product {A,B,D,E,H} for the model in Figure 5). These causes are applicable to all

products independently of the characteristics of the input feature model. Therefore, we did not

consider these situations for products NV Pmin and NV Pmax. Instead of this, we checked these

problems in two separated test cases to be as accurate as possible when informing about failures.

3.2.3 Features

Given a feature model, Commonality operation informs us about the percentage of products in

which an input feature appears. For the selection of these input features, we propose applying

equivalence partitioning and boundary analysis as follows.

To apply equivalence partitioning we suggest focusing on the result space of the commonality

operation. More specifically, we propose considering a single output partition: from 0% to 100%

of commonality. Then, we propose applying boundary analysis and selecting those input features

returning a value situated on the edges of the output partition. Figure 6 depicts an example

of our proposal. For each input feature model, two input features are used, one with minimum

commonality (G=40%) and another one with maximum commonality (C=80%). We intentionally

exclude the root feature whose commonality is trivial (100%). We also included an additional test

case to check the behaviour of the operation when receiving a non-existent feature as input (e.g.

feature H for model of Figure 6).

9

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

0%

Output partition

100%40% 80%

Fmin = G Fmax = C

A

B

E F

C D

G

Figure 6: Input features selection using partition equivalence and boundary analysis

3.3 Inputs combination

Combination strategies define ways to combine input values in those programs receiving more than

one input parameter [34]. This is the case of two of the operations included in our suite: ValidProduct

(it receives a feature model and a product) and Commonality (it receives a feature model and a

feature). To create effective test cases for these operations, we used a pairwise combination strategy

(see Section 2.3). That is, we created a test case for each possible combination of the two input

parameters. Hence, our suite satisfies 2-wise coverage being 2 the maximum number of input

received by the operations included on it.

As an example, consider the operation ValidProduct which receives two inputs: a feature model

and a product. In previous section, we studied these inputs in isolation and selected representative

values for them resulting in 20 feature models (see Figure 2) and 4 products (i.e. V Pmin, V Pmax,

NV Pmin and NV Pmax). Using pairwise testing, we created a test case for each possible combination

of them (i.e. 20*4 potential test cases). Note that some combination were not applicable (e.g. feature

models without non–valid products) reducing the number of test cases for this operation to 60.

3.4 Test cases report

To conclude the design of our suite, we organized the selected inputs and their expected outputs

into test cases; 180 in total. For their specification, we followed the guidelines of the IEEE Standard

for Software Testing Documentation [35]. As an example, Table 9 depicts three of the test cases

included in the suite. For each test case, an ID, description, inputs, expected outputs and intercase

dependencies (if any) are presented. Intercase dependencies refer to the identifiers of test cases that

must be executed prior to a given test case. As an example, test case P-9 tries to reveals failures

when obtaining the products of feature models including mandatory and alternative relationships.

Note that test cases P-1 (test of mandatory relationship in isolation) and P-4 (test of alternative

relationship in isolation) should be executed beforehand. Test case C-28 exercises the interaction

between requires and excludes constraints when calculating commonality. Finally, test case VP-

37 is designed to reveal failures when checking whether an input product is included in those

represented by a feature model including or- and alternative relationships. For a complete list of

the test cases included in the suite we refer the reader to Appendix A.

4 Test suite evaluation and refinement

In this section, we first detail the results obtained when using mutation testing to evaluate and

refine our suite. Then, we show the efficacy of our tests in detecting some real faults found in the

literature and a recent release of the FaMa Framework.

4.1 Evaluation using mutation testing

In order to measure the effectiveness of our proposal, we evaluated the ability of our test suite

to detect faults in the software under test (i.e. so-called fault-based adequacy criterion). To that

10

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Expected Output Deps

P-9

Check whether the interaction between

mandatory and alternative relationships is

correctly processed.

A

B

E F

C D

G

{A,B,D,F},

{A,B,D,E},

{A,B,C,F,G},

{A,B,C,E,G}

P-1

P-4

C-28

Check whether the interaction between “re-

quires” and “excludes” constraints is correctly

processed. Input feature has minimum com-

monality.

A

B C

Feature=B

0%

C-2

C-5

C-6

C-7

VP-37

Check whether valid products (with a maxi-

mum set of features) are correctly identified

in feature models containing or- and alterna-

tive relationships.

A

D E

H I

B C

F G

P={A,B,D,E,F,G,H}

Valid

VP-5

VP-6

VP-7

VP-8

VP-9

VP-10

Table 2: Three of the test cases included in the suite

purpose, we applied mutation testing on an open source framework for the analysis of feature

models.

Mutation testing [36] is a common fault-based testing technique that measures the effectiveness

of test cases. Briefly, the method works as follows. First, simple faults are introduced in a program

creating a collection of faulty versions, called mutants. The mutants are created from the original

program by applying syntactic changes to its source code (e.g. i++ -> i--). Each syntactic change

is determined by a so-called mutation operator. Test cases are then used to check whether the

mutants and the original program produce different responses. If a test case distinguishes the

original program from a mutant we say the mutant has been killed and the test case has proved to

be effective at finding faults in the program. Otherwise, the mutant remains alive. Mutants that

keep the program’s semantics unchanged and thus cannot be detected are referred to as equivalent.

Detection of equivalent mutants is an undecidable problem in general. The percentage of killed

mutants with respect to the total number of them (discarding equivalent mutants) provides an

adequacy measurement of the test suite called mutation score.

4.1.1 Experimental setup

We selected FaMa Framework as a good candidate to be mutated. FaMa is an open source frame-

work integrating different analysis components (so-called reasoners) for the automated analysis of

feature models. It is integrated into the feature modelling tool MOSKitt [37] and it is currently

being integrated into the commercial tool pure::variants1 [25] . Also, our familiarity with the tool

made it feasible to use it for the mutations. In particular, we selected three of the reasoners in-

tegrated into the framework, namely: Sat4jReasoner v0.9.2 (using propositional logic by means of

Sat4j solver [38]), JavaBDDReasoner v0.9.2 (using binary decision diagrams by means of JavaBDD

solver [39]) and JaCoPReasoner v0.8.3 (using constraint programming by means of JaCoP solver

[40]). Each one of these reasoners uses a different paradigm to perform the analyses and was coded

by different developers, providing the required heterogeneity for the evaluation of our approach.

For each reasoner, the seven analysis operations presented in Section 2.2 were tested.

1 In the context of the DiVA European project (http://www.ict-diva.eu/)

11

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

For the mutations, we selected the key classes from each reasoner extending the framework

and implementing the analysis capabilities. Table 3 shows size statistics of the subject programs

including the number of classes selected from each reasoner, the total number of lines of code

(LoC2) and the average number of methods and attributes per class. The size of the 28 subject

classes included in our study ranged between 35 and 220 LoC.

Reasoner LoC Classes Av Methods Av Attributes

Sat4jReasoner 743 9 6.5 1.8

JavaBDDReasoner 625 9 6.3 2.1

JaCoPReasoner 791 10 6.3 2.3

Total 2159 28 6.4 2.1

Table 3: Size statistics of the three subject reasoners

To automate the mutation process, we used MuClipse Eclipse plug-in v1.3 [41]. MuClipse is a

Java visual tool for object–oriented mutation testing. It supports a wide variety of operators and

can be used for both generating mutants and executing them in separated steps. For the evaluation

of the suite using MuClipse, we followed three steps, namely:

1. Reasoners testing. Prior to their analysis, we made sure the original reasoners passed all the

test cases in our suite.

2. Mutants generation. We applied all the traditional mutation operators available in MuClipse, a

total of 15. These mainly mutate common programming languages features such as arithmetic

(e.g. ++,--) and relational operators (e.g. ==,!=). Specific mutation operators for object–

oriented code were discarded to keep the number of mutants manageable. Once generated, we

manually discarded those mutants affection portions of the code not related to the analysis

of feature models and therefore not addressed by our test suite (e.g. exception handling). For

details about the mutation operators used in our evaluation we refer the reader to [42].

3. Mutants execution. For each mutant, we ran our test cases using JUnit [43] and tried to kill

it. We may remark that the functionality of each operation was scattered in several classes.

Some of these were reusable being used in more than one operation. Mutants on these reusable

classes were evaluated separately with the test data of each operation using them for more

accurate mutation scores, i.e. some mutants were executed more than once. As a result, the

number of executed mutants was higher than the number of generated mutants. Equivalent

mutants were manually identified and discarded after each execution.

4.1.2 Analysis of results

Table 4 shows information about the number of generated mutants. Out of the 749 generated

mutants, 101 of them (i.e. 13.4%) were identified as semantically equivalent. In addition to these,

we manually discarded 87 mutants (i.e. 11.6%) affecting other aspects of the program not related

to the analysis of feature models and therefore not considered in our test suite. These were mainly

related to the computation of statistics (e.g. execution time) and exception handling.

Table 5 depicts the results obtained when using our test suite to kill the mutants in the FaMa

reasoners. For each operation and reasoner, the total number of mutants executed, number of

alive mutants and mutation score are presented. The detection of dead features was tested only

in JaCoPReasoner since this was the only reasoner implementing it. As illustrated, the operations

2 LoC is any line within the Java code that is not blank or a comment.

12

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

Reasoner Mutants Equivalent Discarded

Sat4jReasoner 262 27 47

JavaBDDReasoner 302 28 37

JaCoPReasoner 185 46 3

Total 749 101 87

Table 4: Mutants generation results

VoidFM and ValidProduct produced the lowest scores and higher number of alive mutants. We

found that mutants on these operations required input models to have a very specific pattern in

order to be killed and therefore were harder to detect than mutants in the rest of operations.

Average mutation scores in the three reasoners ranged between 94.4% and 100%. In total, our test

suite was able to kill 1390 (96.1%) out of the 1445 mutants executed showing the effectiveness of

the suite.

Operation
Sat4jReasoner JavaBDDReasoner JaCoPReasoner

Mutants Alive Score Mutants Alive Score Mutants Alive Score

VoidFM 55 20 63.6 75 12 84.0 8 0 100

ValidProduct 109 4 96.3 129 7 94.6 61 0 100

Products 86 1 98.8 130 2 98.5 37 0 100

#Products 57 1 98.2 77 2 97.4 13 0 100

Variability 82 1 98.8 104 2 98.1 36 0 100

Commonality 109 1 99.1 131 2 98.5 66 0 100

DeadFeatures - - - - - - 80 0 100

Total 498 28 94.4 646 27 95.8 301 0 100

Table 5: Mutants execution results

4.1.3 Refinement

As shown in previous sections, mutation testing is an effective means to measure the effectiveness

of a test suite. However, information provided by mutation testing can also be used to guide the

creation of new test cases that kill the remaining alive mutants and strengthen the final test suite

[41]. Following this approach, we designed a number of test cases to kill remaining undetected

mutants until obtaining a score of 100% in the three FaMa reasoners. A total of 27 new test cases

were created and executed. For instance, alive mutants guided us to the creation of a couple test

cases to ensure that alternative relationships are not processed as or-relationships and vice–versa

(e.g. test cases VM-21 and VM-22 in Appendix A). Out of the 27 test cases created, we selected

those test cases that showed to be effective in killing mutants in at least two of the three subject

reasoners and added them to our suite. As a result, 10 test cases were added to the initial test

suite increasing the number of these until 190.

4.2 Evaluation using real faults

For a further evaluation of our approach, we checked the effectiveness of our tool in detecting real

faults. In particular, we first studied a motivating fault found in the literature. Then, we used our

test suite to test the release 1.0 alpha of the FaMa framework, detecting one defect. These results

are next reported.

13

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

4.2.1 Motivating fault found in the literature

Consider the work of Batory in SPLC’05 [7], one of the seminal papers in the community of

automated analysis of feature models. The paper included a bug (later fixed3) in the mapping

of a feature model to a propositional formula. We implemented this wrong mapping into a mock

reasoner for FaMa and checked the effectiveness of our approach in detecting the fault.

Figure 7 illustrates an example of the wrong output caused by the fault. This manifests itself

in alternative relationships whose parent feature is not mandatory making reasoners to consider

as valid product those including multiple alternative subfeatures and excluding the parent feature

(P3). As a result, the set of products returned by the tool is erroneously larger than the actual

one. For instance, the number of products returned by our faulty tool when using the model in

Figure 1 as input is 3,584 (instead of the actual 2,016). Note that this is a motivating fault since

it can easily remain undetected even when using an input with the problematic pattern. Hence,

in the previous example (either with “security” feature as mandatory or optional), the mock tool

correctly identifies the model as non void (i.e. it represents at least one product), and so the fault

remains latent.

Security

MediumHigh

P1={Security,High}
P2={Security,Medium}
P3={High,Medium}

Figure 7: Wrong set of products obtained with the faulty reasoner

We implemented our test cases using JUnit and tested our faulty tool. The fault was detected

by our test suite in the operations VoidFM, Product, #Products, Variability and Commonality

remaining latent in the operations ValidProduct and DeadFeatures. These two operations required

a very specific pattern to reveal the fault not included in the inputs of our test suite. This gives

an idea of the complexity of testing in this domain. We found this fault sufficiently motivating to

extend our suite with test cases that detect it in all the operations. Thus, we designed two new

test cases to detect the fault in the operation ValidProduct and DeadFeatures and added them to

our test suite resulting in a total of 192 test cases.

4.2.2 FaMa v1.0 alpha

Finally, we evaluated our tool by trying to detect faults in a recent release of the FaMa Framework,

FaMa v1.0 alpha. We executed the 192 test cases of our refined test suite. Tests revealed one defect.

The fault affected the operations ValidProduct and Commonality in Sat4jReasoner. The source of

the problem was a bug in the creation of propositional clauses in the so-called staged configurations,

a new feature of the tool.

5 Test suite summary and discussion

Table 6 summarizes the general aspects of the refined test suite using the common terms of the

IEEE Standard for Software Testing Documentation [35]. For each operation, the number of test

cases and the testing techniques used are presented. Global inputs constraints specify constraints

that must be true for every input in the set of associated test cases. For the sake of simplicity,

3 ftp://ftp.cs.utexas.edu/pub/predator/splc05.pdf

14

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

two main input constraints were imposed, namely: i) input feature models must be syntactically

correct (e.g. checking models for conformance to a metamodel), and ii) all input parameters of the

analysis operations must be provided. An operation is said to pass the test (so-called pass criteria)

when all the test cases associated to that operation are successful.

Trying to be exhaustive when testing feature model analyses tools can easily increase the

number of test cases to an unmanageable level. To keep a reasonable balance between number

of test cases and test coverage, we kept in mind a number of generic recommendations from the

testing literature, namely: i) we gave priority to those decisions reducing the number of test cases,

ii) we avoided redundancies by designing each test case to reveal a single type of fault, and iii) we

designed simple test cases whose output could be worked out manually to avoid test themselves to

become error-prone.

We remark that the potential users of the suite are every tool supporting the analysis of feature

model. This can be automated by simply implementing the test cases in the desired platform and

executing them. A complete list of the test cases that compose the suite is reported in Appendix

A. To facilitate its implementation, input models used in the test cases are also available in XML

format in the FaMa Tool Suite Web site4.

Test suite identifier: FaMa Test Suite (v1.2)

Operations tested Test cases Techniques used

Void FM 24 EP, PT

Valid product 63 EP, PT, BVA

Products 21 EP, PT

Number of products 21 EP, PT

Variability 21 EP, PT

Commonality 33 EP, PT, BVA

Dead features 9 EG

Total 192

Global input constraints:

- Input FMs must be syntactically correct

- All input parameters are required

Operation pass criteria:

- Pass 100% of associated test cases

Table 6: General overview of the FaMa Test Suite (EP: Equivalence Partitioning, PT: Pairwise

Testing, BVA: Boundary-Value Analysis, EG: Error Guessing)

6 Conclusions and future work

In this paper, we present a set of implementation–independent test cases to validate the function-

ality of tools supporting the analysis of feature models. Through the implementation of our test

cases, faults can be rapidly detected assisting in the development of feature model analysis tools

and improving their reliability and quality. These can be used either in isolation or as a suitable

complement for further testing methods such as white–box testing techniques or automated test

data generators. For its design, we used popular techniques from the software testing community

to assist us on the creation of a representative set of input–output combinations. To evaluate its

effectiveness, we applied mutation testing on three open source feature model analysis tools inte-

grated into the FaMa framework. These tools use different underlying paradigms and were coded

by different developers what provides the necessary heterogeneity for the evaluation. We initially

obtained an average mutation score of 96.1% and refined our suite progressively until getting 100%.

4 http://www.isa.us.es/fama/?FaMa Test Suite

15

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

Once refined, our suite also showed to be effective in detecting real faults found in the literature

and in a recent release of FaMa. Both, the test suite documentation and the inputs models used in

the test cases are ready–to–use and available at the Web Site of the FaMa Tool Suite. We intend

this paper to be a first effort toward the development of a widely accepted test suite to support

functional testing in the community of automated analysis of feature models.

Several challenges remain for our future work in two main directions, namely:

– We intend to extend our suite with new operations and testing techniques. We also plan to

evaluate our suite with other tools and in development scenarios using FaMa and report our

experiences to the community.

– We also plan to explore the benefits obtained when combining our suite with other automated

testing methods. In a previous work [30], we presented an automated test data generator for

the analysis of feature models with promising results. It generates random follow–up test cases

based on the relations between inputs feature models and theirs expected outputs (so-called

metamorphic testing). However, it is known that metamorphic testing produce better results

when combined with other test case selection strategies that generate the initial set of test

cases. We intend to use our suite to guide the generation of test cases in our automated test

data generator and study the gains in efficiency and efficacy.

Material

The tools, mutants, and test cases used in our evaluation are available at http://www.lsi.us.

es/~segura/files/material/fts_1_2/

Acknowledgments

We would like to thank the reviewers of the paper as well as Don Batory and Robert M. Hierons

whose comments and suggestions helped us to improve the paper substantially. We also thank Jose

Galindo for his technical support during the evaluation of our approach.

References

1. Clements P, Northrop L. Software Product Lines: Practices and Patterns. SEI Series in Software
Engineering. Addison–Wesley; 2001.

2. Batory D, Benavides D, Ruiz-Cortés A. Automated Analysis of Feature Models: Challenges Ahead.
Communications of the ACM. 2006;December:45–47.

3. Czarnecki K, Eisenecker UW. Generative Programming: Methods, Techniques, and Applications.
Addison–Wesley; may 2000. ISBN 0–201–30977–7.

4. Kang K, Cohen S, Hess J, Novak W, Peterson S. Feature–Oriented Domain Analysis (FODA) Feasi-
bility Study. SEI; 1990. CMU/SEI-90-TR-21.

5. Benavides D, Segura S, Ruiz-Cortés A. Automated Analysis of Feature Models 20 Years Later: A
Literature Review. Information Systems. 2010;In press.

6. Schobbens P, P Heymans JCT, Bontemps Y. Generic semantics of feature diagrams. Computer
Networks. 2007 Feb;51(2):456–479.

7. Batory D. Feature Models, Grammars, and Propositional Formulas. In: Software Product Lines
Conference, LNCS 3714; 2005. p. 7–20.

8. Czarnecki K, Kim P. Cardinality-Based Feature Modeling and Constraints: A Progress Report. In:
Proceedings of the International Workshop on Software Factories At OOPSLA 2005; 2005. .

9. Gheyi R, Massoni T, Borba P. A Theory for Feature Models in Alloy. In: Proceedings of the ACM
SIGSOFY First Alloy Workshop. Portland, United States; 2006. p. 71–80. Available from: http:
//alloy.mit.edu/workshop/programme.html.

10. Mannion M, Camara J. Theorem Proving for Product Line Model Verification. In: Software Product-
Family Engineering (PFE). vol. 3014 of Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg; 2003. p. 211–224. Available from: http://www.springerlink.com/content/m0k40djlmmxx8vtp/.

11. Mendonça M, Wasowski A, Czarnecki K. SAT–based analysis of feature models is easy. In: Proceedings
of the Sofware Product Line Conference; 2009. .

16

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

12. van der Storm T. Generic Feature-Based Software Composition. In: Software Composition. vol. 4829
of LNCS. Springer; 2007. p. 66–80.

13. Zhang W, Mei H, Zhao H. Feature-driven requirement dependency analysis and high-level soft-
ware design. Requirements Engineering. 2006 June;11(3):205–220. Available from: http://www.
springerlink.com/content/v1648q73m788q71x/.

14. Benavides D, Ruiz-Cortés A, Trinidad P. Automated Reasoning on Feature Models. LNCS, Advanced
Information Systems Engineering: 17th International Conference, CAiSE 2005. 2005;3520:491–503.

15. Trinidad P, Benavides D, Durán A, Ruiz-Cortés A, Toro M. Automated Error Analysis for the Ag-
ilization of Feature Modeling. Journal of Systems and Software. 2008;81(6):883–896.

16. White J, Schmidt D, Trinidad DBP, Ruiz-Cortés. Automated Diagnosis of Product-line Configuration
Errors in Feature Models. In: Proceedings of the 12th Sofware Product Line Conference (SPLC’08).
Limerick, Ireland; 2008. .

17. Fan S, Zhang N. Feature Model Based on Description Logics. In: Knowledge-Based Intelligent Infor-
mation and Engineering Systems; 2006. Available from: http://dx.doi.org/10.1007/11893004_145.

18. Wang H, Li YF, un J, Zhang H, Pan J. Verifying Feature Models using OWL. Journal of Web
Semantics. 2007 June;5:117–129. Available from: http://dx.doi.org/10.1016/j.websem.2006.11.
006.

19. van Deursen A, Klint P. Domain–Specific Language Design Requires Feature Descriptions. Journal of
Computing and Information Technology. 2002;10(1):1–17.

20. van den Broek P, Galvao I. Analysis of Feature Models using Generalised Feature Trees. In:
Third International Workshop on Variability Modelling of Software-intensive Systems. No. 29 in ICB-
Research Report. Essen, Germany: Universität Duisburg-Essen; 2009. p. 29–35. Available from:
http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf.

21. Fernandez-Amoros D, Heradio R, Cerrada J. Inferring Information from Feature Diagrams to Product
Line Economic Models. In: Proceedings of the Sofware Product Line Conference; 2009. .

22. AHEAD Tool Suite. http://www.cs.utexas.edu/users/schwartz/ATS.html;. Accessed November
2009.

23. Benavides D, Trinidad P, Segura S, Ruiz-Cortés A. FaMa Framework. http://www.isa.us.es/fama/;.
24. Feature Modeling Plug-in. http://gp.uwaterloo.ca/fmp/;. Accessed November 2009.
25. pure::variants. http://www.pure-systems.com/;. Accessed November 2009.
26. Beizer B. Software testing techniques (2nd ed.). New York, NY, USA: Van Nostrand Reinhold Co.;

1990.
27. Myers GJ, Sandler C. The Art of Software Testing. John Wiley & Sons; 2004.
28. Pressman RS. Software Engineering: A Practitioner’s Approach. 5th ed. McGrap-Hill; 2001.
29. Copeland L. A Practitioner’s Guide to Software Test Design. Norwood, MA, USA: Artech House,

Inc.; 2003.
30. Segura S, Hierons RM, Benavides D, Ruiz-Cortés A. Automated Test Data Generation on the Anal-

yses of Feature Models: A Metamorphic Testing Approach. In: International Conference on Software
Testing, Verification and Validation. Paris, France: IEEE press; 2010. In press.

31. Segura S, Benavides D, Ruiz-Cortés A. Functional Testing of Feature Model Analysis Tools. A First
Step. In: 5th Software Product Lines Testing Workshop (SPLiT 2008). SPLC’08. Limerick, Ireland;
2008. .

32. Benavides D. On the Automated Analyisis of Software Product Lines using Feature Models. A Frame-
work for Developing Automated Tool Support. University of Seville; 2007.

33. Trinidad P, Ruiz-Cortés A. Abductive Reasoning and Automated Analysis of Feature Models:
How are they connected? In: Third International Workshop on Variability Modelling of Software-
Intensive Systems. Proceedings; 2009. p. 145–153. Available from: http://www.vamos-workshop.net/
proceedings/VaMoS_2009_Proceedings.pdf.

34. Grindal M, Offutt J, Andler SF. Combination testing strategies: a survey. Software Testing, Verifica-
tion and Reliability. 2005;15(3):167–199. Available from: http://dx.doi.org/10.1002/stvr.319.

35. Draft IEEE Standard for software and system test documentation (Revision of IEEE 829-1998); 2007.
Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4432350.

36. DeMillo RA, Lipton RJ, Sayward FG. Hints on Test Data Selection: Help for the Practicing Program-
mer. IEEE Computer. 1978;11(4):34–41.

37. Cetina C, Fons J, Pelechano V. Moskitt Feature Modeler. http://www.pros.upv.es/mfm;. Accessed
November 2009.

38. Sat4j. http://www.sat4j.org/;. Accessed November 2009.
39. JavaBDD. http://javabdd.sourceforge.net/;. Accessed November 2009.
40. JaCoP. http://jacop.osolpro.com/;. Accessed November 2009.
41. Smith BH, Williams L. On guiding the augmentation of an automated test suite via mutation analysis.

Empirical Software Engineering. 2009;14(3):341–369.
42. Ma YS, Offutt J. Description of Method-level Mutation Operators for Java, http://cs.gmu.edu/

~offutt/mujava/mutopsMethod.pdf; 2005. Accessed 2/10/2009.
43. JUnit. http://www.junit.org/;. Accessed November 2009.

17

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

A Test cases

In this appendix, we present the test cases included in the current version of the FAMA Test Suite.

For each operation, associated test cases are detailed.

A.1 Operation Void Feature Model

ID Description Input Exp. Output Deps.

VM-1
Check whether mandatory relationships are

correctly managed by the operation.

A

B

Non void

VM-2
Check whether optional relationships are cor-

rectly managed by the operation.

A

B

Non void

VM-3
Check whether or–relationships are correctly

managed by the operation.

A

B C

Non void

VM-4
Check whether alternative relationships are

correctly managed by the operation.

A

B C

Non void

VM-5
Check whether ‘requires’ constraints are cor-

rectly managed by the operation.

A

B C

Non void VM-2

VM-6
Check whether ‘excludes’ constraints are cor-

rectly managed by the operation.

A

B C

Non void VM-2

18

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VM-7

Check whether the interaction between

mandatory and optional relationships is cor-

rectly processed.

A

B

D

C

E

Non void
VM-1

VM-2

VM-8

Check whether the interaction between

mandatory and or-relationships is correctly

processed.

A

B

E F

C D

G

Non void
VM-1

VM-3

VM-9

Check whether the interaction between

mandatory and alternative relationships is

correctly processed.

A

B

E F

C D

G

Non void
VM-1

VM-4

VM-10

Check whether the interaction between

mandatory relationships and ‘requires’ con-

straints is correctly processed.

A

B C

Non void
VM-1

VM-5

VM-11

Check whether the interaction between

mandatory relationships and ‘excludes’ con-

straints is correctly processed.

A

B C

Void
VM-1

VM-6

VM-12

Check whether the interaction between op-

tional and or-relationships is correctly pro-

cessed.

A

B

E F

C D

G

Non void
VM-2

VM-3

VM-13

Check whether the interaction between op-

tional and alternative relationships is correctly

processed.

A

B

E F

C D

G

Non void
VM-2

VM-4

19

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VM-14

Check whether the interaction between or-

and alternative relationships is correctly pro-

cessed.

A

D E

H I

B C

F G

Non void
VM-3

VM-4

VM-15

Check whether the interaction between or-

relationships and ‘requires’ constraints is cor-

rectly processed.

A

B C
Non void

VM-3

VM-5

VM-16

Check whether the interaction between or-

relationships and ‘excludes’ constraints is cor-

rectly processed.

A

B C
Non void

VM-3

VM-6

VM-17

Check whether the interaction between alter-

native relationships and ‘requires’ constraints

is correctly processed.

A

B C
Non void

VM-4

VM-5

VM-18

Check whether the interaction between alter-

native relationships and ‘excludes’ constraints

is correctly processed.

A

B C
Non void

VM-4

VM-6

VM-19

Check whether the interaction between ‘re-

quires’ and ‘excludes’ constraints is correctly

processed.

A

B C

Non void

VM-2

VM-5

VM-6

VM-20

Check whether the interaction among three or

more different types of relationships and con-

straints is correctly processed.

A

B

D E

C

F G

Non void

VM-1,

...,

VM-19

20

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VM-21
Check whether alternative relationships are

erroneously implemented as or-relationships

B

C D

A

E
Void

VM-1

VM-4

VM-9

VM-10

VM-17

VM-22

Check whether or-relationships are erro-

neously implemented as alternative relation-

ships

B

C D

A

E
Non void

VM-1

VM-3

VM-8

VM-10

VM-15

VM-23

Check whether alternative subfeatures can be

part of a product without including its parent

feature

B

C D

A

E Void

VM-1

VM-2

VM-4

VM-5

VM-6

VM-7

VM-9

VM-10

VM-11

VM-13

VM-17

VM-18

VM-24
Check whether a product can erroneously in-

clude more than one alternative features

B

D

G

A

H

C

F

E

Void

VM-1

VM-4

VM-9

VM-10

VM-17

Table 7: Operation voidFM. Test cases

A.2 Operation Valid Product

21

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VP-1

Check whether valid products are correctly

identified in feature models with mandatory

relationships.

A

B

P={A,B}

Valid

VP-2

Check whether non-valid products are cor-

rectly identified in feature models with

mandatory relationships.

A

B

P={A}

Non-valid

VP-3

Check whether valid products (with a mini-

mum set of features) are correctly identified

in feature models with optional relationships.

A

B

P={A}

Valid

VP-4

Check whether valid products (with a maxi-

mum set of features) are correctly identified

in feature models with optional relationships.

A

B

P={A,B}

Valid

VP-5

Check whether valid products (with a mini-

mum set of features) are correctly identified

in feature models with or-relationships.

A

B C

P={A,B}

Valid

VP-6

Check whether valid products (with a maxi-

mum set of features) are correctly identified

in feature models with or-relationships.

A

B C

P={A,B,C}

Valid

22

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VP-7

Check whether non-valid products are cor-

rectly identified in feature models with or-

relationships.

A

B C

P={A}

Non-valid

VP-8

Check whether valid products are correctly

identified in feature models with alternative

relationships.

A

B C

P={A,B}

Valid

VP-9

Check whether non-valid products (with a low

number of features) are correctly identified in

feature models with alternative relationships.

A

B C

P={A}

Non-valid

VP-10

Check whether non-valid products (with a

high number of features) are correctly iden-

tified in feature models with alternative rela-

tionships.

A

B C

P={A,B,C}

Non-valid

VP-11

Check whether valid products (with a mini-

mum set of features) are correctly identified

in feature models with ‘requires’ constraints.

A

B C

P={A}

Valid
VP-3

VP-4

VP-12

Check whether valid products (with a maxi-

mum set of features) are correctly identified

in feature models with ‘requires’ constraints.

A

B C

P={A,B,C}

Valid
VP-3

VP-4

23

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VP-13

Check whether valid products (with a mini-

mum set of features) are correctly identified

in feature models with ‘excludes’ constraints.

A

B C

P={A}

Valid
VP-3

VP-4

VP-14

Check whether valid products (with a maxi-

mum set of features) are correctly identified

in feature models with ‘excludes’ constraints.

A

B C

P={A,C}

Valid
VP-3

VP-4

VP-15

Check whether non-valid products are cor-

rectly identified in feature models with ‘ex-

cludes’ constraints.

A

B C

P={A,B,C}

Non-valid
VP-3

VP-4

VP-16

Check whether valid products (with a mini-

mum set of features) are correctly identified

in feature models containing mandatory and

optional relationships.

A

B

D

C

E

P={A,B}

Valid

VP-1

VP-2

VP-3

VP-4

VP-17

Check whether valid products (with a maxi-

mum set of features) are correctly identified

in feature models containing mandatory and

optional relationships.

A

B

D

C

E

P={A,B,C,D, E}

Valid

VP-1

VP-2

VP-3

VP-4

VP-18

Check whether non-valid products (with a low

number of features) are correctly identified in

feature models containing mandatory and op-

tional relationships.

A

B

D

C

E

P={A}

Non-valid

VP-1

VP-2

VP-3

VP-4

24

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VP-19

Check whether valid products (with a mini-

mum set of features) are correctly identified

in feature models containing mandatory and

or-relationships.

A

B

E F

C D

G

P={A,B,C,F}

Valid

VP-1

VP-2

VP-5

VP-6

VP-7

VP-20

Check whether valid products (with a maxi-

mum set of features) are correctly identified

in feature models containing mandatory and

or-relationships.

A

B

E F

C D

G

P={A,B,C,D,

E,F,G}

Valid

VP-1

VP-2

VP-5

VP-6

VP-7

VP-21

Check whether non-valid products (with a low

number of features) are correctly identified in

feature models containing mandatory and or-

relationships.

A

B

E F

C D

G

P={A,B,C}

Non-valid

VP-1

VP-2

VP-5

VP-6

VP-7

VP-22

Check whether valid products (with a mini-

mum set of features) are correctly identified

in feature models containing mandatory and

alternative relationships.

A

B

E F

C D

G

P={A,B,D,E}

Valid

VP-1

VP-2

VP-8

VP-9

VP-10

VP-23

Check whether valid products (with a maxi-

mum set of features) are correctly identified

in feature models containing mandatory and

alternative relationships.

A

B

E F

C D

G

P={A,B,C,E, G}

Valid

VP-1

VP-2

VP-8

VP-9

VP-10

25

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VP-24

Check whether non-valid products (with a low

number of features) are correctly identified in

feature models containing mandatory and al-

ternative relationships.

A

B

E F

C D

G

P={A,B,F}

Non-valid

VP-1

VP-2

VP-8

VP-9

VP-10

VP-25

Check whether non-valid products (with a

high number of features) are correctly iden-

tified in feature models containing mandatory

and alternative relationships.

A

B

E F

C D

G

P={A,B,C,D,

E,G}

Non-valid

VP-1

VP-2

VP-8

VP-9

VP-10

VP-26

Check whether valid products are correctly

identified in feature models containing manda-

tory relationships and ‘requires’ constraints.

A

B C

P={A,B,C}

Valid

VP-1

VP-2

VP-11

VP-12

VP-27

Check whether non-valid products (with a low

number of features) are correctly identified in

feature models containing mandatory relation-

ships and ‘requires’ constraints.

A

B C

P={A,B}

Non-valid

VP-1

VP-2

VP-11

VP-12

VP-28

Check whether non-valid products are cor-

rectly identified in feature models containing

mandatory relationships and ‘excludes’ con-

straints.

A

B C

P={A}

Non-valid

VP-1

VP-2

VP-13

VP-14

VP-15

26

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VP-29

Check whether valid products (with a mini-

mum set of features) are correctly identified

in feature models containing optional and or-

relationships.

A

B

E F

C D

G

P={A,C}

Valid

VP-3

VP-4

VP-5

VP-6

VP-7

VP-30

Check whether valid products (with a maxi-

mum set of features) are correctly identified

in feature models containing optional and or-

relationships.

A

B

E F

C D

G

P={A,B,C,D,

E,F,G}

Valid

VP-3

VP-4

VP-5

VP-6

VP-7

VP-31

Check whether non-valid products (with a low

number of features) are correctly identified

in feature models containing optional and or-

relationships.

A

B

E F

C D

G

P={A}

Non-valid

VP-3

VP-4

VP-5

VP-6

VP-7

VP-32

Check whether valid products (with a mini-

mum set of features) are correctly identified

in feature models containing optional and al-

ternative relationships.

A

B

E F

C D

G

P={A,C}

Valid

VP-3

VP-4

VP-8

VP-9

VP-10

VP-33

Check whether valid products (with a maxi-

mum set of features) are correctly identified

in feature models containing optional and al-

ternative relationships.

A

B

E F

C D

G

P={A,B,D,F, G}

Valid

VP-3

VP-4

VP-8

VP-9

VP-10

27

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VP-34

Check whether non-valid products (with a low

number of features) are correctly identified in

feature models containing optional and alter-

native relationships.

A

B

E F

C D

G

P={A}

Non-valid

VP-3

VP-4

VP-8

VP-9

VP-10

VP-35

Check whether non-valid products (with a

high number of features) are correctly identi-

fied in feature models containing optional and

alternative relationships.

A

B

E F

C D

G

P={A,B,D,F, E,G}

Non-valid

VP-3

VP-4

VP-8

VP-9

VP-10

VP-36

Check whether valid products (with a mini-

mum set of features) are correctly identified

in feature models containing or- and alterna-

tive relationships.

A

D E

H I

B C

F G

P={A,C,D}

Valid

VP-5

VP-6

VP-7

VP-8

VP-9

VP-10

VP-37

Check whether valid products (with a maxi-

mum set of features) are correctly identified

in feature models containing or- and alterna-

tive relationships.

A

D E

H I

B C

F G

P={A,B,D,E,

F,G,H}

Valid

VP-5

VP-6

VP-7

VP-8

VP-9

VP-10

VP-38

Check whether non-valid products (with a low

number of features) are correctly identified in

feature models containing or- and alternative

relationships.

A

D E

H I

B C

F G

P={A,C}

Non-valid

VP-5

VP-6

VP-7

VP-8

VP-9

VP-10

VP-39

Check whether non-valid products (with a

high number of features) are correctly iden-

tified in feature models containing or- and al-

ternative relationships.

A

D E

H I

B C

F G

P={A,B,D,E,

F,G,H,I}

Non-valid

VP-5

VP-6

VP-7

VP-8

VP-9

VP-10

28

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VP-40

Check whether valid products (with a mini-

mum set of features) are correctly identified

in feature models containing or-relationships

and ‘requires’ constraints.

A

B C

P={A,C}

Valid

VP-5

VP-6

VP-7

VP-11

VP-12

VP-41

Check whether valid products (with a maxi-

mum set of features) are correctly identified

in feature models containing or-relationships

and ‘requires’ constraints.

A

B C

P={A,B,C}

Valid

VP-5

VP-6

VP-7

VP-11

VP-12

VP-42

Check whether non-valid products (with a low

number of features) are correctly identified in

feature models containing or-relationships and

‘requires’ constraints.

A

B C

P={A}

Non-valid

VP-5

VP-6

VP-7

VP-11

VP-12

VP-43

Check whether valid products are correctly

identified in feature models containing or-

relationships and ‘excludes’ constraints.

A

B C

P={A,B}

Valid

VP-5

VP-6

VP-7

VP-13

VP-14

VP-15

VP-44

Check whether non-valid products (with a low

number of features) are correctly identified in

feature models containing or-relationships and

‘excludes’ constraints.

A

B C

P={A}

Non-valid

VP-5

VP-6

VP-7

VP-13

VP-14

VP-15

29

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VP-45

Check whether non-valid products (with

a high number of features) are correctly

identified in feature models containing or-

relationships and ‘excludes’ constraints.

A

B C

P={A,B,C}

Non-valid

VP-5

VP-6

VP-7

VP-13

VP-14

VP-15

VP-46

Check whether valid products are correctly

identified in feature models containing alter-

native relationships and ‘requires’ constraints.

A

B C

P={A,C}

Valid

VP-8

VP-9

VP-10

VP-11

VP-12

VP-47

Check whether non-valid products (with a low

number of features) are correctly identified in

feature models containing alternative relation-

ships and ‘requires’ constraints.

A

B C

P={A}

Non-valid

VP-8

VP-9

VP-10

VP-11

VP-12

VP-48

Check whether non-valid products (with a

high number of features) are correctly iden-

tified in feature models containing alternative

relationships and ‘requires’ constraints.

A

B C

P={A,B,C}

Non-valid

VP-8

VP-9

VP-10

VP-11

VP-12

VP-49

Check whether valid products are correctly

identified in feature models containing al-

ternative relationships and ‘excludes’ con-

straints.

A

B C

P={A,B}

Valid

VP-8

VP-9

VP-10

VP-13

VP-14

VP-15

30

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VP-50

Check whether non-valid products (with a low

number of features) are correctly identified in

feature models containing alternative relation-

ships and ‘excludes’ constraints.

A

B C

P={A}

Non-valid

VP-8

VP-9

VP-10

VP-13

VP-14

VP-15

VP-51

Check whether non-valid products (with a

high number of features) are correctly iden-

tified in feature models containing alternative

relationships and ‘excludes’ constraints.

A

B C

P={A,B,C}

Non-valid

VP-8

VP-9

VP-10

VP-13

VP-14

VP-15

VP-52

Check whether valid products (with a mini-

mum set of features) are correctly identified in

feature models containing ‘requires’ and ‘ex-

cludes’ constraints.

A

B C

P={A}

Valid

VP-3

VP-4

VP-11

VP-12

VP-13

VP-14

VP-15

VP-53

Check whether valid products (with a maxi-

mum set of features) are correctly identified in

feature models containing ‘requires’ and ‘ex-

cludes’ constraints.

A

B C

P={A,C}

Valid

VP-3

VP-4

VP-11

VP-12

VP-13

VP-14

VP-15

VP-54

Check whether non-valid products (with a

high number of features) are correctly iden-

tified in feature models containing ‘requires’

and ‘excludes’ constraints.

A

B C

P={A,B,C}

Non-valid

VP-3

VP-4

VP-11

VP-12

VP-13

VP-14

VP-15

31

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VP-55

Check whether valid products (with a mini-

mum set of features) are correctly identified

in feature models containing three or more dif-

ferent types of relationships and constraints.

A

B

D E

C

F G

P={A,B,D}

Valid

VP-1,

...,

VP-54

VP-56

Check whether valid products (with a max-

imum set of features) are correctly identified

in feature models containing three or more dif-

ferent types of relationships and constraints.

A

B

D E

C

F G

P={A,B,C,E, F,G}

Valid

VP-1,

...,

VP-54

VP-57

Check whether non-valid products (with a low

number of features) are correctly identified in

feature models containing three or more dif-

ferent types of relationships and constraints.

A

B

D E

C

F G

P={A,B}

Non-valid

VP-1,

...,

VP-54

VP-58

Check whether non-valid products (with a

high number of features) are correctly iden-

tified in feature models containing three or

more different types of relationships and con-

straints.

A

B

D E

C

F G

P={A,B,C,D,

E,F,G}

Non-valid

VP-1,

...,

VP-54

VP-59
Check whether non-valid products excluding

the root feature are correctly identified.

A

B

P={B}

Non-valid
VP-3

VP-4

32

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

VP-60

Check whether non-valid products including

non-existent features are correctly processed

by the operation.

A

B

P={A,H}

Non-valid
VP-3

VP-4

VP-61

Check whether child features in an alterna-

tive relationships can erroneously be part of a

product without their parent feature.

B

C D

A

E

P={A,D,E}

Non Valid

VP-1

...

VP-4

VP-8

...

VP-18

VP-22

...

VP-28

VP-32

...

VP-35

VP-46

...

VP-51

VP-62
Check whether a product can erroneously in-

clude more than one alternative features

B

D

G

A

H

C

F

E

P={A,B,E,G,H}

Non Valid

VP-1

VP-2

VP-8

VP-9

VP-10

VP-22

...

VP-27

VP-46

VP-47

VP-48

VP-63

Check whether multiple alternative features

can be erroneously part of a product when not

including their non-mandatory parent feature

A

B

C D

P={A,C,D}

Non Valid

VP-3

VP-4

VP-8

VP-9

VP-10

VP-32

VP-33

VP-34

VP-35

Table 8: Operation ValidProduct. Test cases

A.3 Operation All Products

33

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

P-1
Check whether mandatory relationships are

correctly managed by the operation.

A

B

{A,B}

P-2
Check whether optional relationships are cor-

rectly managed by the operation.

A

B

{A}, {A,B}

P-3
Check whether or–relationships are correctly

managed by the operation.

A

B C

{A,B}, {A,C},

{A,B.C}

P-4
Check whether alternative relationships are

correctly managed by the operation.

A

B C

{A,B}, {A,C}

P-5
Check whether ‘requires’ constraints are cor-

rectly managed by the operation.

A

B C

{A}, {A,C},

{A,B,C}
P-2

P-6
Check whether ‘excludes’ constraints are cor-

rectly managed by the operation.

A

B C

{A}, {A,B},

{A,C}
P-2

P-7

Check whether the interaction between

mandatory and optional relationships is cor-

rectly processed.

A

B

D

C

E

{A,B}, {A,B,D},

{A,B,C,E},

{A,B,C,D,E}

P-1

P-2

34

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

P-8

Check whether the interaction between

mandatory and or-relationships is correctly

processed.

A

B

E F

C D

G

{A,B,C,E},

{A,B,C,F},

{A,B,C,E,F},

{A,B,D,E,G},

{A,B,C,D,E,G},

{A,B,D,F,G},

{A,B,C,D,F,G},

{A,B,D,E,F,G},

{A,B,C,D,E,F,G}

P-1

P-3

P-9

Check whether the interaction between

mandatory and alternative relationships is

correctly processed.

A

B

E F

C D

G

{A,B,D,F},

{A,B,D,E},

{A,B,C,F,G},

{A,B,C,E,G}

P-1

P-4

P-10

Check whether the interaction between

mandatory relationships and ‘requires’ con-

straints is correctly processed.

A

B C
{A,B,C}

P-1

P-5

P-11

Check whether the interaction between

mandatory relationships and ‘excludes’ con-

straints is correctly processed.

A

B C
None

P-1

P-6

35

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

P-12

Check whether the interaction between op-

tional and or-relationships is correctly pro-

cessed.

A

B

E F

C D

G

{A,D}, {A,C},

{A,C,D},

{A,C,G},

{A,B,D,F},

{A,B,D,E},

{A,C,D,G},

{A,B,C,F},

{A,B,C,E},

{A,B,D,E,F},

{A,B,C,F,G},

{A,B,C,E,G},

{A,B,C,D,F},

{A,B,C,D,E},

{A,B,C,F,E},

{A,B,C,D,F,G},

{A,B,C,D,E,G},

{A,B,C,E,F,G},

{A,B,C,D,E,F},

{A,B,C,D,E,F,G}

P-2

P-3

P-13

Check whether the interaction between op-

tional and alternative relationships is correctly

processed.

A

B

E F

C D

G

{A,C}, {A,D},

{A,D,G},

{A,B,C,E},

{A,B,C,F},

{A,B,D,E},

{A,B,D,F},

{A,B,D,E,G},

{A,B,D,F,G}

P-2

P-4

36

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

P-14

Check whether the interaction between or-

and alternative relationships is correctly pro-

cessed.

A

D E

H I

B C

F G

{A,D,C},

{A,C,E,H},

{A,C,E,I},

{A,B,D,G},

{A,B,D,F},

{A,C,D,E,H},

{A,C,D,E,I},

{A,B,D,F,G},

{A,B,E,G,H},

{A,B,E,F,H},

{A,B,E,G,I},

{A,B,E,F,I},

{A,B,D,E,G,H},

{A,B,E,F,G,H},

{A,B,D,E,F,H},

{A,B,D,E,G,I},

{A,B,E,F,G,I},

{A,B,D,E,F,I},

{A,B,D,E,F,G,H},

{A,B,D,E,F,G,I}

P-3

P-4

P-15

Check whether the interaction between or-

relationships and ‘requires’ constraints is cor-

rectly processed.

A

B C
{A,C}, {A,B,C}

P-3

P-5

P-16

Check whether the interaction between or-

relationships and ‘excludes’ constraints is cor-

rectly processed.

A

B C
{A,B}, {A,C}

P-3

P-6

P-17

Check whether the interaction between alter-

native relationships and ‘requires’ constraints

is correctly processed.

A

B C
{A,C}

P-4

P-5

P-18

Check whether the interaction between alter-

native relationships and ‘excludes’ constraints

is correctly processed.

A

B C
{A,B}, {A,C}

P-4

P-6

37

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

P-19

Check whether the interaction between ‘re-

quires’ and ‘excludes’ constraints is correctly

processed.

A

B C
{A}, {A,C}

P-2

P-5

P-6

P-20

Check whether the interaction among three or

more different types of relationships and con-

straints is correctly processed.

A

B

D E

C

F G

{A,B,D},

{A,B,C,D,F},

{A,B,C,E,F},

{A,B,C,E,F,G}

P-1,

...,

P-19

P-21
Check whether a product can erroneously in-

clude more than one alternative features.

B

D

G

A

H

C

F

E

None

P-1

P-4

P-9

P-10

P-17

Table 9: Operation Products. Test cases

A.4 Operation Number of Products

ID Description Input Exp. Output Deps.

NP-1
Check whether mandatory relationships are

correctly managed by the operation.

A

B

1

NP-2
Check whether optional relationships are cor-

rectly managed by the operation.

A

B

2

NP-3
Check whether or–relationships are correctly

managed by the operation.

A

B C

3

38

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

NP-4
Check whether alternative relationships are

correctly managed by the operation.

A

B C

2

NP-5
Check whether ‘requires’ constraints are cor-

rectly managed by the operation.

A

B C

3 NP-2

NP-6
Check whether ‘excludes’ constraints are cor-

rectly managed by the operation.

A

B C

3 NP-2

NP-7

Check whether the interaction between

mandatory and optional relationships is cor-

rectly processed.

A

B

D

C

E

4
NP-1

NP-2

NP-8

Check whether the interaction between

mandatory and or-relationships is correctly

processed.

A

B

E F

C D

G

9
NP-1

NP-3

NP-9

Check whether the interaction between

mandatory and alternative relationships is

correctly processed.

A

B

E F

C D

G

4
NP-1

NP-4

NP-10

Check whether the interaction between

mandatory relationships and ‘requires’ con-

straints is correctly processed.

A

B C

1
NP-1

NP-5

39

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

NP-11

Check whether the interaction between

mandatory relationships and ‘excludes’ con-

straints is correctly processed.

A

B C

0
NP-1,

NP-6

NP-12

Check whether the interaction between op-

tional and or-relationships is correctly pro-

cessed.

A

B

E F

C D

G

20
NP-2

NP-3

NP-13

Check whether the interaction between op-

tional and alternative relationships is correctly

processed.

A

B

E F

C D

G

9
NP-2

NP-4

NP-14

Check whether the interaction between or-

and alternative relationships is correctly pro-

cessed.

A

D E

H I

B C

F G

20
NP-3

NP-4

NP-15

Check whether the interaction between or-

relationships and ‘requires’ constraints is cor-

rectly processed.

A

B C
2

NP-3

NP-5

NP-16

Check whether the interaction between or-

relationships and ‘excludes’ constraints is cor-

rectly processed.

A

B C
2

NP-3

NP-6

NP-17

Check whether the interaction between alter-

native relationships and ‘requires’ constraints

is correctly processed.

A

B C
1

NP-4

NP-5

40

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

NP-18

Check whether the interaction between alter-

native relationships and ‘excludes’ constraints

is correctly processed.

A

B C
2

NP-4

NP-6

NP-19

Check whether the interaction between ‘re-

quires’ and ‘excludes’ constraints is correctly

processed.

A

B C

2

NP-2

NP-5

NP-6

NP-20

Check whether the interaction among three or

more different types of relationships and con-

straints is correctly processed.

A

B

D E

C

F G

4

NP-1,

...,

NP-19

NP-21
Check whether a product can erroneously in-

clude more than one alternative feature.

B

D

G

A

H

C

F

E

0

NP-1

NP-4

NP-9

NP-10

NP-17

Table 10: Operation Number of Products. Test cases

A.5 Operation Variability

ID Description Input Exp. Output Deps.

V-1
Check whether mandatory relationships are

correctly managed by the operation.

A

B

0,33

V-2
Check whether optional relationships are cor-

rectly managed by the operation.

A

B

0,66

41

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

V-3
Check whether or–relationships are correctly

managed by the operation.

A

B C

0,42

V-4
Check whether alternative relationships are

correctly managed by the operation.

A

B C

0,28

V-5
Check whether ‘requires’ constraints are cor-

rectly managed by the operation.

A

B C

0,42 V-2

V-6
Check whether ‘excludes’ constraints are cor-

rectly managed by the operation.

A

B C

0,42 V-2

V-7

Check whether the interaction between

mandatory and optional relationships is cor-

rectly processed.

A

B

D

C

E

0.12
V-1

V-2

V-8

Check whether the interaction between

mandatory and or-relationships is correctly

processed.

A

B

E F

C D

G

0.07
V-1

V-3

V-9

Check whether the interaction between

mandatory and alternative relationships is

correctly processed.

A

B

E F

C D

G

0,03
V-1

V-4

42

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

V-10

Check whether the interaction between

mandatory and ‘requires’ constraints is cor-

rectly processed.

A

B C

0,14
V-1

V-5

V-11

Check whether the interaction between

mandatory and ‘excludes’ constraints is cor-

rectly processed.

A

B C

0
V-1

V-6

V-12

Check whether the interaction between op-

tional and or-relationships is correctly pro-

cessed.

A

B

E F

C D

G

0,15
V-2

V-3

V-13

Check whether the interaction between op-

tional and alternative relationships is correctly

processed.

A

B

E F

C D

G

0,07
V-2

V-4

V-14

Check whether the interaction between or-

and alternative relationships is correctly pro-

cessed.

A

D E

H I

B C

F G

0,03
V-3

V-4

V-15

Check whether the interaction between or-

relationships and ‘requires’ constraints is cor-

rectly processed.

A

B C

0,28
V-3

V-5

V-16

Check whether the interaction between or-

relationships and ‘excludes’ constraints is cor-

rectly processed.

A

B C
0,28

V-3

V-6

43

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

V-17

Check whether the interaction between alter-

native relationships and ‘requires’ constraints

is correctly processed.

A

B C
0,14

V-4

V-5

V-18

Check whether the interaction between alter-

native relationships and ‘excludes’ constraints

is correctly processed.

A

B C
0,28

V-4

V-6

V-19

Check whether the interaction between ‘re-

quires’ and ‘excludes’ constraints is correctly

processed.

A

B C

0,28

V-2

V-5

V-6

V-20

Check whether the interaction among three or

more different types of relationships and con-

straints is correctly processed.

A

B

D E

C

F G

0,03

V-1,

...,

V-19

V-21
Check whether a product can erroneously in-

clude more than one alternative feature.

B

D

G

A

H

C

F

E

0

V-1

V-4

V-9

V-10

V-17

Table 11: Operation Variability. Test cases

A.6 Operation Commonality

ID Description Input Exp. Output Deps.

C-1
Check whether mandatory relationships are

correctly managed by the operation.

A

B

Feature=B

100%

44

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

C-2
Check whether optional relationships are cor-

rectly managed by the operation.

A

B

Feature=B

50%

C-3
Check whether or–relationships are correctly

managed by the operation.

A

B C

Feature=B

66%

C-4
Check whether alternative relationships are

correctly managed by the operation.

A

B C

Feature=B

50%

C-5

Check whether ‘requires’ constraints are cor-

rectly managed by the operation. Input fea-

ture has minimum commonality.

A

B C

Feature=B

33% C-2

C-6

Check whether ‘requires’ constraints are cor-

rectly managed by the operation. Input fea-

ture has maximum commonality.

A

B C

Feature=C

66% C-2

C-7
Check whether ‘excludes’ constraints are cor-

rectly managed by the operation.

A

B C

Feature=B

33% C-2

45

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

C-8

Check whether the interaction between

mandatory and optional relationships is cor-

rectly processed. Input feature has minimum

commonality.

A

B

D

C

E

Feature=E

50%
C-1

C-2

C-9

Check whether the interaction between

mandatory and optional relationships is cor-

rectly processed. Input feature has maximum

commonality.

A

B

D

C

E

Feature=B

100%
C-1

C-2

C-10

Check whether the interaction between

mandatory and or-relationships is correctly

processed. Input feature has minimum com-

monality.

A

B

E F

C D

G

Feature=F

66%
C-1

C-3

C-11

Check whether the interaction between

mandatory and or-relationships is correctly

processed. Input feature has maximum com-

monality.

A

B

E F

C D

G

Feature=B

100%
C-1

C-3

C-12

Check whether the interaction between

mandatory and alternative relationships is

correctly processed. Input feature has mini-

mum commonality.

A

B

E F

C D

G

Feature=G

50%
C-1

C-4

46

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

C-13

Check whether the interaction between

mandatory and alternative relationships is

correctly processed. Input feature has maxi-

mum commonality.

A

B

E F

C D

G

Feature=B

100%
C-1

C-4

C-14

Check whether the interaction between

mandatory relationships and ‘requires’ con-

straints is correctly processed.

A

B C

Feature=B

100%

C-1

C-5

C-6

C-15

Check whether the interaction between

mandatory relationships and ‘excludes’ con-

straints is correctly processed.

A

B C

Feature=B

0%
C-1

C-7

C-16

Check whether the interaction between op-

tional and or-relationships is correctly pro-

cessed. Input feature has minimum common-

ality.

A

B

E F

C D

G

Feature=G

40%
C-2

C-3

C-17

Check whether the interaction between op-

tional and or-relationships is correctly pro-

cessed. Input feature has maximum common-

ality.

A

B

E F

C D

G

Feature=C

80%
C-2

C-3

47

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

C-18

Check whether the interaction between op-

tional and alternative relationships is correctly

processed. Input feature has minimum com-

monality.

A

B

E F

C D

G

Feature=E

33%
C-2

C-4

C-19

Check whether the interaction between op-

tional and alternative relationships is correctly

processed. Input feature has maximum com-

monality.

A

B

E F

C D

G

Feature=D

66%
C-2

C-4

C-20

Check whether the interaction between or-

and alternative relationships is correctly pro-

cessed. Input feature has minimum common-

ality.

A

D E

H I

B C

F G

Feature=C

25%
C-3

C-4

C-21

Check whether the interaction between or-

and alternative relationships is correctly pro-

cessed. Input feature has maximum common-

ality.

A

D E

H I

B C

F G

Feature=E

80%
C-3

C-4

C-22

Check whether the interaction between or-

relationships and ‘requires’ constraints is cor-

rectly processed. Input feature has minimum

commonality.

A

B C

Feature=B

50%

C-3

C-5

C-6

C-23

Check whether the interaction between or-

relationships and ‘requires’ constraints is cor-

rectly processed. Input feature has maximum

commonality.

A

B C

Feature=C

100%

C-3

C-5

C-6

48

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

C-24

Check whether the interaction between or-

relationships and ‘excludes’ constraints is cor-

rectly processed.

A

B C

Feature=C

50%
C-3

C-7

C-25

Check whether the interaction between alter-

native relationships and ‘requires’ constraints

is correctly processed. Input feature has min-

imum commonality.

A

B C

Feature=B

0%

C-4

C-5

C-6

C-26

Check whether the interaction between alter-

native relationships and ‘requires’ constraints

is correctly processed. Input feature has max-

imum commonality.

A

B C

Feature=C

100%

C-4

C-5

C-6

C-27

Check whether the interaction between alter-

native relationships and ‘excludes’ constraints

is correctly processed.

A

B C

Feature=B

50%
C-4

C-7

C-28

Check whether the interaction between ‘re-

quires’ and ‘excludes’ constraints is correctly

processed. Input feature has minimum com-

monality.

A

B C

Feature=B

0%

C-2

C-5

C-6

C-7

49

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

C-29

Check whether the interaction between ‘re-

quires’ and ‘excludes’ constraints is correctly

processed. Input feature has maximum com-

monality.

A

B C

Feature=C

50%

C-2

C-5

C-6

C-7

C-30

Check whether the interaction among three or

more different types of relationships and con-

straints is correctly processed. Input feature

has minimum commonality.

A

B

D E

C

F G

Feature=G

25%

C-1,

...,

C-29

C-31

Check whether the interaction among three or

more different types of relationships and con-

straints is correctly processed. Input feature

has maximum commonality.

A

B

D E

C

F G

Feature=B

100%

C-1,

...,

C-29

C-32
Check whether non-existent features are cor-

rectly managed.

A

B

Feature=C

0% C-2

C-33
Check whether a product can erroneously in-

clude more than one alternative feature.

B

D

G

A

H

C

F

E

0%

C-1

C-4

C-12

C-13

C-14

C-25

C-26

Table 12: Operation Commonality. Test cases

A.7 Operation Dead Features

50

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

DF-1

Check whether dead features caused by an ‘ex-

cludes’ constraints between a mandatory fea-

ture and an alternative child feature are cor-

rectly detected.

A

B C

D E

D

DF-2

Check whether dead features caused by the

a ‘requires’ constraints between a mandatory

feature and an alternative child feature are

correctly detected. The parent feature in the

alternative relationship is mandatory.

A

B C

D E

E

DF-3

Check whether dead features caused by an ‘ex-

cludes’ constraints between a mandatory fea-

ture and one of the child features of an or-

relationship are correctly detected.

A

B C

D E

D

DF-4

Check whether dead features caused by an ‘ex-

cludes’ constraint between a mandatory and

an optional feature are correctly detected.

A

B C

C

DF-5

Check whether dead features caused by an ‘ex-

cludes’ constraint between two mandatory fea-

tures are correctly detected.

A

B C

A,B,C

DF-6

Check whether dead features caused by a

‘requires’ constraint between two alternative

child features are correctly detected.

A

B C

B

51

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

ID Description Input Exp. Output Deps.

DF-7

Check whether dead features caused by an ‘ex-

cludes’ constraint between a parent and its

child feature are correctly detected.

A

B

A,B

DF-8

Check whether dead features caused by an ‘ex-

cludes’ and a ‘requires’ constraints between

two optional features are correctly detected.

A

B C
B

DF-9

Check whether dead features caused by the

a ‘requires’ constraints between a mandatory

feature and an alternative child feature are

correctly detected. The parent feature in the

alternative relationship is optional.

A

B C

D E

E

Table 13: Operation DeadFeatures. Test cases

52

FaMa Test Suite v1.2 ISA Technical Report ISA-10-TR-01

