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“The most merciful thing in the world, I think, is the inability of the human

mind to correlate all its contents... some day the piecing together of dissociated

knowledge will open up such terrifying vistas of reality, and of our frightful

position therein, that we shall either go mad from the revelation or flee from

the light into the peace and safety of a new dark age.”

-H.P. Lovecraft [11]
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1 Abstract

Nucleation is a non-equilibrium process through which a system evolves from an old ther-

modynamic phase to a new (energetically stable) one in what we call a first-order phase

transition. This process is widely spread in natural phenomena like condensation, sublima-

tion, evaporation or crystal growth, and it is also of technological relevance [1].

In this work, the main theories behind nucleation developed throughout the last century

by researchers like Gibbs, Zeldovich and Kashchiev will be reviewed. We will start with the

study of the Van der Waals equation (VDWE), as it provides a general insight of the main

conditions required for a phase transition to occur. Next, the Classical Nucleation Theory

(CNT), the core of this work, with its central paradigm of well-defined clusters is introduced.

With the aid of the capillary model and the assumption of large spherical clusters, a first

approach to estimate the minimum work required for a cluster to form (also known as the

potential or nucleation barrier) is obtained, with a general description of how the cluster

grows depending on its initial size. Moreover, the CNT also provides a dynamical theory of

cluster formation based on the attachment and detachment of n-mers (clusters formed by ’n’

molecules), which leads to Fokker-Planck, Langevin, Kramers-Moyal and Master equations,

due to the stochastic nature of the time-dependent concentration of n-mers in the system.

With the help of the BDT (Becker-Döring-Tunitskii) model and the Zeldovich’s ideas, an

analytical expression for the nucleation rate is derived, which constitutes the main quantity

that allows to corroborate the theoretical predictions experimentally.

With this framework, we will focus on the study of homogeneous nucleation of water droplets

in condensate vapor phases, with the goal of obtaining the cluster size equilibrium distribu-

tion functions and the performance of a comparison between the theoretical and experimental

nucleation rates measured in diffusion cloud chambers. This procedure will allow us to study

the limitations and validity of the classical theory, and its study will conclude with a section

where an oversight of its main controversies and deficiencies is provided.

Finally, following this, we will make a brief introduction presenting the framework and some

fundamental approximations of the modern paradigm of the Density Functional Theory,

which is based on variational calculus. This theory provides a completely new framework

that improves the classical theory and opens the door to new models that, in concordance

with the experiments, allows us to deepen in this field of study, helping us to uncover the

mysteries of phase transitions and matter itself.
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2 First-Order Phase Transitions

Let us consider a macroscopic system whose properties and time evolution will be studied.

This system might have different thermodynamic phases. We define a phase as a spatial

region of the system whose macroscopic properties remain homogeneous for a given set of

variables, due to particular arrangements of its atoms and molecules and their interactions.

Many instances of systems showing different phases are found in Nature. A most typical case

is water, which can be found in three different phases (liquid, solid or gas) depending on the

temperature and pressure. Other examples are ferromagnetic materials, which can present

spontaneous magnetisation depending on its temperature, or crystalline solids, whose atoms

may be arranged in different lattices depending again on the external parameters. A phase

transition, from a thermodynamic point of view, is defined then as the process through which

the system changes its macroscopic properties from the ones corresponding to the old phase

to the new ones [1].

The first classification of possible types of phase transitions was proposed initially by Paul

Ehrenfest (1933) [1]. According to Ehrenfest’s proposal, phase transitions are classified de-

pending on the behaviour of the Gibbs free energy at the transition point. It is said that

we have an n-order phase transition if the n-th derivative of the Gibbs free energy at the

transition point presents a discontinuity. Further experiments and investigations carried out

by Onsager (1944), Gebhardt (1980) and others [1] showed that this classification does not

include all possible cases. Here, we will focus on the study of first-order phase transitions,

characterised by discontinuities of the internal energy U, the entropy S and the volume V

of the system.

In order to illustrate the physical nature of first-order phase transitions, it is worth to

analyze the behavior of a Van der Waals (VDW) fluid, as we do next.

2.1 Van der Waals Fluid

A VDW homogeneous fluid is characterised by the following equation of state(
p+

N2a′

V 2

)
(V −Nb′) = NkBT, (2.1)

where p is the pressure, V the volume, N the number of particles, T the absolute tem-

perature, kB the Boltzmann’s constant, and a’ and b’ are constants that account for the

attraction between particles and their effective volume respectively. They depend on the

material under study [1]. It is interesting to outline that this equation can be derived

2



from statistical-mechanical considerations, assuming a Hamiltonian including a dominant

hard-sphere potential and a Lennard-Jones potential which is treated as a thermodynamic

perturbation [6]. This allows us to visualize the connection between the material constants

and the microscopic interactions between molecules. Moreover, these constants may be ex-

pressed in terms of the critical coordinates, which are obtained from the definition of a saddle

point as (
∂p

∂V

)
Tc

=

(
∂2p

∂V 2

)
Tc

= 0.

These equations lead to

pc =
a′

27b′2
, Vc = 3Nb′, Tc =

8a′

27kBb′
.

By substituting the reduced coordinates p′ = p/pc, V
′ = V/Vc and T ′ = T/Tc into Eq.(2.1)

we obtain the reduced VDW equation(
p′ +

3

V ′2

)
(3V ′ − 1) = 8T ′. (2.2)

This last expression is universal as it does not depend on any particular material constants.

Let us now discuss the thermodynamic potentials governing the behaviour of our fluid.

Considering that our system is placed within a thermal bath of temperature TB and constant

pressure pB, the fluid will be in stable thermodynamic equilibrium (TDE) when it occupies

a volume for which the Gibbs free energy G = F − pBV is minimum [7]. Knowing that the

differential expression for the Helmholtz free energy F is given by dF = −SdT − pdV , we

can obtain the conditions for obtaining a minimum of the Gibbs free energy,(
∂G

∂V

)
T

=

(
∂F

∂V

)
T

+ pB = −p+ pB = 0 → p = pB,

(
∂2G

∂V 2

)
T

=

(
∂2F

∂V 2

)
T

= −
(
∂p

∂V

)
T

> 0 →
(
∂p

∂V

)
T

< 0.

On one hand, the first condition assures us that we can reach the stable TDE if our system’s

pressure is equal to the external pressure. This result makes physical sense, because a dif-

ference (gradient) of pressures would result in a force which would try to expand or contract

our system until this difference vanishes. On the other hand, the second condition assures

that the pressure of the fluid decreases if we expand its volume, a well known fact to be true

for the majority of common fluids.
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(a) 1a (b) 1b

Figure 1: Reduced p-V diagrams for VDW fluid. Fig.(1a) shows the critical isotherm (black)

and a T’= 0.85 isotherm with p′B= 0.505 [1], where both blue regions have the same area,

according to Maxwell’s construction. Fig.(1b) [10] shows several isotherms in order to vi-

sualize the binodal (continuous line joining a, c and C points) and spinodal (dashed line

joining d, e and C points).

Figure 1 shows two similar reduced p-V diagrams for different isotherms. On one hand,

isotherms of temperature greater than the critical one Tc are known as supercriticals, where

there is no distinction anymore between the liquid or gas phases of the fluid. Moreover, for

even greater temperatures, the VDW fluid can be regarded as an ideal gas. On the other

hand, those isotherms whose temperature is lower than the critical one are known as sub-

criticals. We will be interested in those isotherms, where there is a clear distinction between

the liquid and gas phases of the fluid and thus, we can talk about a phase transition between

them.

There are two key concepts that emerge by applying the TDE conditions for a subcriti-

cal isotherm [1]:

• Spinodal Curve: As it can be noticed in both graphs from Figure 1, for a subcritical

isotherm, there is a region between the p’(V’) local minimum and local maximum

where the second stability condition breaks down. Namely, the region is unstable.

As we increase the temperature, this region shrinks until the maximum and minimum

coincide at the critical point. The curve obtained by joining local extremes for different

subcritical isotherms is called spinodal.

4



• Binodal Curve: For a given external pressure p′B at a subcritical temperature,

Eq.(2.2) presents three solutions for the volume V, two of which are of physical in-

terest while the third one lies within the spinodal region, which is unstable. They

correspond to a liquid or gas in stable TDE. When both solutions correspond to the

same minimum of the Gibbs free energy, then the liquid and gas are in phase equilib-

rium, that is, both phases coexist as separate phases at what is called the equilibrium

pressure p′B = p′E
1 of the fluid. By joining the coexistence points for different subcriti-

cal temperatures, the binodal curve is obtained. Its maximum is located at the critical

point, where both phases coexist, but their boundaries vanish, so there is no distinction

anymore between both phases and then we have what is known as a supercritical fluid.

Now, the most interesting case of this section lies when we have an external pressure p′B 6= p′E,

and between the p’(V’) local maximum and minimum pressures. In this case, both liquid

and gas phases would be in TDE, but corresponding to minima of the Gibbs free energy of

different depth, that is, since the deepest one it is said to be in truly stable TDE, the sec-

ond one corresponds to a metastable TDE. The metastable states lie within the two regions

(metastable liquid and metastable gas) between the binodal and spinodal curves, and the

transition from a metastable state to the truly stable state corresponds to a first-order phase

transition. The process through which this transition takes place is the nucleation of the old

(metastable) phase into the new (truly stable) one [1].

It is important to outline that the phase transition depends on the difference between the

corresponding truly stable and metastable free energies ∆g [1], or more explicit, the quotient

S = p′B/p
′
E

2[2]. Both quantities, for the case of nucleation of liquid droplets in condensed

gas phases, are related by means of the Kelvin formula [1]

∆g = −kBT
v0

logS, (2.3)

where v0 is the volume of a molecule from the system. The quantity S is known as the

thermodynamic driving force or supersaturation. Physically, it represents the gain in free

energy per particle associated with the transition from the old to the new phase, and it

establishes both the direction and the strength of the transition. For ∆g = 0 (or p′B/p
′
E =

1), there exists no preferred direction nor driving force for the transition, and hence, for

1The equilibrium pressure p′E may be obtained by applying Maxwell’s rule; the pressure for which the

blue areas on Figure 1a have the same area. These areas represent the excess heat gained and transferred by

the system in its metastable states, and whose balance must be null, so the total amount of heat involved

in the transition is p′E(V ′
f − V ′

i ) [7].
2For sufficient diluted (weak) solutions and ideal gases, this ratio is approximately equal to the ratio of

densities of the two states (metastable and truly stable), that is: p′B/p
′
E ≈ ρmet/ρE [2]
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nucleation, and then the old phase is said to be saturated, while for ∆g > 0, the transition is

not possible in the desired direction. In this case the old phase is said to be undersaturated

[1].

2.2 Thermodynamic Fluctuations

We have determined the necessary conditions for a phase transition to occur, but our analysis

does not include the time needed for the transition to happen. Indeed, the supersaturated

phase will remain a certain time on its metastable state due to the fact that there is an en-

ergy barrier between both TDE states. Moreover, this energy barrier will have a maximum

of different heights depending on the path followed during the transition. Then our next

problem would consist in determining the path through which the energy cost is minimized.

One could think of a path corresponding to the uniform change of density from the old phase

to the new one as the desired one. However, this path is not actually followed due to its

high energy cost.

Another possibility proposed by Kashchiev [1], energetically much cheaper, consists in a

non-uniform change of density due to themodynamic fluctuations on the density. In this

case, the energy barrier would be much lower due to the fact that in this case the number

of particles involved in the transition is much less than in the uniform case, where all the

particles would participate in the process. This approach can describe multiple everyday

phenomena such as rains and snowfalls, where droplets and flakes are just the manifesta-

tion of density fluctuations. By following this path, nucleation can be defined, according to

Kashchiev, as the process of random generation of nanoscopically small formations of the

new phase that have the ability for irreversible overgrowth to macroscopic sizes. [1]

From Einstein’s theory of thermal fluctuation [7], the probability of occurrence of those

density fluctuations is exponentially proportional to the minimum work required for the

process to occur,

P ∝ exp

(
−Wmin

kBT

)
, (2.4)

where T is the absolute temperature and kB is the Boltzmann’s constant. The estimation of

the minimum work Wmin is one of the main goals of both the Classical Nucleation Theory,

developed mainly by Gibbs, and of the Density Functional Theory, based on variational

calculus. This goal, together with the proposal of a kinetic model to describe the generation

and time evolution of clusters, constitutes the core of every nucleation theory.
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3 Classical Nucleation Theory

If we want to go further into the issue of nucleation, one has to start from Gibbs treatment

of phase transitions. His work consisted mainly in the study of the reversible (near equi-

librium) work required for creating a small formation of the new phase within the old one,

commonly known as a cluster. By considering spherical symmetry, thermodynamic assump-

tions, and with the aid of the capillary model, Gibbs derives a formula that mainly depends

on a negative volume and positive surface contributions, whose main consequence is that

there exists a minimum work (which implies a minimum size) for a cluster to form and grow

up. Otherwise it will shrink until it vanishes.

Furthermore, in order to get a first insight into the nucleation kinetics, one has to take into

account Szilard’s ideas, developed by Farkas [2], which are based on the assumption that a

cluster is formed by the attachment and detachment of single particles or subsets of particles.

With these ideas, a master equation of nucleation is formulated, and from there, by apply-

ing the Becker-Döring-Tunitskii model and the Zeldovich equilibrium approach, stochastic

equations (such as Fokker-Planck and Kramers-Moyal ones) for describing the kinetics are

obtained. Combining them with the thermodynamic assumptions, one can formulate an

expression for the nucleation rate, the key magnitude of this theory. The combination of all

of these ideas constitutes what it is known as the Classical Nucleation Theory (CNT) [2].

3.1 Thermodynamics of Nucleation

In what follows we shall discuss the energy requirements for a set of molecules from a system

in a metastable state to form a cluster in a small spatial region due to thermal fluctuations.

This cluster will have a random size, and its time evolution will depend mainly on its initial

size. The cluster will grow when its size is greater than a critical size, and it will shrink when

it is not. Thus, this critical size is directly related to the minimum work for cluster formation.

Let us consider a homogeneous macroscopic system of volume V in a thermal and particle

bath of temperature T and chemical potential µ. The thermodynamic potential governing

the behaviour of the system in equilibrium corresponds to the Gibbs free energy [6], whose

differential equation is given by

dG = −SdT −Ndµ−
∑
k

YkdXk, (3.1)

where S is the entropy, and Yk is the conjugate force (intensive variable) associated to

the degree of freedom (extensive variable) Xk. For instance; the pairs pressure-volume,
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magnetization-magnetic field, surface tension-area.

Let us consider that initially our system has an average density given by

ρav =
〈N〉
V

> ρE(T ) → ρav
ρE

> 1, (3.2)

where 〈N〉 = N =
(
∂G
∂µ

)
T,Xk

according to the thermodynamic description [2, 6]. Due to the

fact that the ratio of densities is greater than one, we are in a situation of supersaturation,

that is, the transition from this metastable state to the truly stable one will take place.

Considering that our system will only expand or contract its volume (not other extensive

variables Xk are considered), and knowing that it is homogeneous (the chemical potential

will remain constant), the Gibbs free energy of the initial state can be rewritten as follows

Gi = g(ρav, T )V = −pV, (3.3)

where the sub index i denotes the initial state, and g(ρav, T ) constitutes the Gibbs free

energy per unit volume at constant temperature [1].3 Sooner or later, a cluster of volume V’

and density ρcl will spontaneously form within the old phase, as it is shown in Figure 2.

(a) INITIAL STATE (b) FINAL STATE

Figure 2: Illustrations of the thermodynamic system under study in its old phase before (a)

and after (b) an homogeneous isotropic cluster is spontaneously formed [1].

The minimum work required for the cluster to form, at thermal and chemical equilibrium,

is given by the change of Gibbs free energy ∆G between the initial and final state [7]. At this

point, in order to compute the free energy of the final state, one of the main assumptions

of the CNT is introduced. The clusters are well defined, that is, there is a dividing surface

3With this notation, we do not intend to display the density as one of the intensive variables of the

free energy, but as an additional parameter in order to make a distinction between the old and new phases

through the transition.
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between the cluster and the old phase with its own energy contribution. This surface is

introduced as a mathematical device4. There is a difference between the cluster pressure

and the pressure of the surrounding old phase, due to the density profile, preventing the

system to reach equilibrium. This surface isolates the cluster from the environment by

adding an excess energy [1], and due to this, the pressure will be the same for both the

cluster and the old phase, and thus, the equilibrium conditions are fulfilled. This energy

excess is given by the conjugate-pair contribution

GS = αstA, (3.4)

where αst is the surface tension (extensive variable), which generally depends on the surface

area of the cluster, and A is the area of the dividing surface. With this assumption, the free

energy of the final state will be given by

Gf = g(ρav, T )(V − V ′) + g(ρcl, T )V ′ + αstA. (3.5)

Here the subindex f denotes the final state. Then, the required minimum work will be

Wmin = ∆G = Gf −Gi = (g(ρcl, T )− g(ρav, T ))V ′ + αstA. (3.6)

This last equation applies for any geometrical form that the cluster may adopt. But in order

to obtain an analytical expression to work with, we are going to consider the clusters small

enough so the gravitation effects that may deform their surfaces are neglected. Thus they

will be regarded as spherical as a first approximation. Then V ′ = 4π
3
R3 and A = 4πR2, so

Eq.(3.6) can be rewritten as

Wmin = −4π

3
|∆g|R3 + 4παst(R)R2, (3.7)

where ∆g = g(ρcl, T ) − g(ρav, T ). This quantity is negative according to the definition of

metastable and truly stable states. The first term of Eq.(3.7) is known as the volume term,

while the second one as the surface term.

3.1.1 The Capillary Model

Eq.(3.7) provides a general insight of the required minimum work for a spherical cluster to

form. However, the lack of knowledge of the quantities quantities ρcl and αst(R) does not

allow us to continue our path. Within the CNT, the most important approximation is now

introduced; the capillary approximation or capillary model, which is based on the following

assumptions [1, 2]:

4There are many possibilities of choosing the position of this surface. The most convenient one for

analysing the thermodynamics of homogeneous nucleation is the equimolar dividing surface (EDS), which

satisfies the condition that the number of particles before and after the cluster appearance is conserved. [1]
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• The properties of the cluster are size independent, so in the end each cluster has the

same properties as the resulting new phase, which implies that ρcl = ρnew, where ρnew

is known from experimental measurements.

• The profile density function is given by the following piecewise function

ρ(r) =

ρnew r ≤ R

ρav r > R
(3.8)

• The surface tension is the same as the one for a planar interface between the new and

old phases, that is, the clusters have a sharp boundary. Mathematically, this implies

that αst(R) = αst(R→∞) = α∞, which is size independent and thus constant.

(a) Generic Density Function (b) Capillary Model

Figure 3: Representations of the local changes in the density profile due to the formation

of a cluster as a function of the radius (in spherical coordinates) from its center [2], r, from

a general approach (a) and from the capillary approximation (b). In both figures, the EDS

establishes a distinction between the cluster (new phase) and the mother (old) phase. Within

the capillary model, a sharp boundary at R = REDS separates both phases.

3.1.2 Work for Cluster Formation

With the assumptions presented in the capillary model, one can compute an analytical

expression for the minimum work by rewriting Eq.(3.7) as follows

Wmin = −4π

3
|∆g|R3 + 4πα∞R

2, (3.9)

where, in this case, ∆g = g(ρnew, T ) − g(ρav, T ) < 0. Figure 4 represents an illustration of

the required minimum work as a function of the cluster radius. As it can be noticed, the
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Figure 4: Representation of the required minimum work for a spherical cluster to form,

within the approach of the capillary model, and described by Eq.(3.9) [2]. The volume

term, the surface term, the maximum height Wmin(R∗) and its associated radius R∗ are

represented.

energy barrier arises due to the energy compensation between the volume and surface terms.

Moreover, Eq.(3.9) allows us to compute the critical radius R∗

dWmin

dR
= 0 ←→ R∗ =

2α∞
|∆g|

, (3.10)

which results in an energy barrier of height

Wmin(R∗) = W ∗ =
16πα3

∞
3(∆g)2

. (3.11)

It is interesting to mention that a cluster of radius R∗ would be in unstable equilibrium with

the old phase. This fact can be verified noticing in Eq.(3.10) that the equilibrium condition

(∆g = 0) is only satisfied when R tends to infinity, that is, when the new phase is finally

formed.

lim
R→∞

∆g = lim
R→∞

−2α∞
R

= 0.

Due to the fact that this size is unstable, the cluster will tend to grow or shrink depending

on its initial size (actually, thermal fluctuations may enlarge this critical size into a critical

unstable region |Wmin(R)−W ∗| ≤ kBT [2]). On one hand, if it is smaller than the critical size,
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its volume will not sustain the surface pressure and the cluster will collapse until it vanishes.

On the other hand, if this size is greater than the critical size, the inner pressure will be

enough to expand the clusters volume till infinity. Due to the nature of this phenomenon,

Wmin(R) can be understood as a potential energy, because the cluster size will tend (for a

given initial size) to the state that minimizes this function [2]. Then one can also talk about

a driving force which will contract or expand the cluster depending on the initial state. This

force would be given by

F (R) = −dWmin

dR
= 4πR (|∆g|R− 2α∞) . (3.12)

Now that the energy barrier has been obtained with Eq.(3.11), the probability for density

fluctuations to occur will be of the form

P ∝ exp

(
−β 16πα3

∞
3(∆g)2

)
. (3.13)

We can rewrite the expression for the nucleation barrier in terms of the Kelvin formula

(Eq.(2.3)),

W ∗ =
16πv2

0α
3
∞

3(kBT )2(logS)2
, (3.14)

and thus, the probability for density fluctuations,

P ∝ exp

(
−β 16πv2

0α
3
∞

3(kBT )2(logS)2

)
, (3.15)

so we can study their dependencies on the supersaturation S. On one hand, we observe

that for high supersaturations (S → ∞), the nucleation barrier tends to vanish, while the

probability tends to the unity. In this case, the system has reached the spinodal region,

where no energy is required in order to evolve into the state of equilibrium, for the process

is almost spontaneous, and thus, the probability for the density fluctuation to occur will

be maximum. On the other hand, for low supersaturations (S → 1), the nucleation barrier

tends to infinity, while at the same time the probability tends to cero. In this case the system

is reaching the equilibrium state, where the two different phases coexist, and thus there is

no such driving force that leads the direction of the process. However, this results in an

unreal physical situation. What we actually have is a finite nucleation barrier, high enough

to allow the coexistence between both phases, but that can be easily overcome if the system

absorbs/emits enough amount of external heat. Indeed, this amount of heat is what we all

know from thermodynamics as the latent heat [7].
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With these results, the thermodynamics of nucleation developed by Gibbs has been com-

pletely discussed. Its main goal consisted in obtaining the maximum work the system would

need in order to create a critical nuclei, which we derived to be the maximum height of the

energy barrier, also known as nucleation barrier. It reflects that the energy balance of the

cluster within the old phase depends mainly on two terms; the volume term, which is the

energy cost of forming an spatially small new phase of different density within the initial

phase, and the surface term, which takes into account the energy cost for creating a dividing

surface between the cluster and the old phase.

In the following section we will obtain a kinetic constant that, together with the proba-

bility exponential provided by Eq.(3.13), allows us to formulate an analytical expression for

the nucleation rate, which constitutes the second most important quantity to study on this

work.

3.2 Kinetic Theory of Nucleation

Up to this point, we have discussed the energies involving the formation of a cluster with

similar properties as the new, truly stable, phase within the old metastable one. However,

now we must ask ourselves how actually this formation process takes place, that is, the

nucleation dynamics. In the context of the CNT, we will follow what is known as the

Szilard-Farkas model, which is based on the following assumptions [1]:

• Clusters are well defined entities formed by an arbitrary number of molecules n. This

number constitutes the ’size’ of the cluster. It fully characterizes the nucleation process.

Then we say that this model is based on a single order parameter theory. A cluster

containing n molecules is known as a n-mer. Thus, an unitary cluster would be a

monomer, a cluster containing 2 molecules a dimer, then trimer and so on.

• Clusters grow or shrink by the attachment or detachment of m-mers. This growing

or decaying process is characterized by the transition frequencies fnm(t), that take

into account the number of transitions n → m per unit time. Due to the fact that

the clusters are fully determined by its size n, there is no need to describe molecular

exchange between clusters of the same size.

With these assumptions, we define Cn(t) as the concentration of n-mers at a given instant t

[2]. The time evolution of this quantity will depend on the possible outgoing and incoming

transitions. We will call fnm(t)Cn(t) the number of n → m transitions per unit time and
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volume. Thus, at a given instant of time t, Cn(t) will increase at the rate∑
m6=n

fmn(t)Cm(t), (3.16)

while it will decrease with rate ∑
m 6=n

fnm(t)Cn(t), (3.17)

It is then clear that the time evolution of Cn(t) will be given by

dCn(t)

dt
=
∑
m 6=n

[fmn(t)Cm(t)− fnm(t)Cn(t)] , (3.18)

which is known as the Master Equation of Nucleation (MEN) [2]. Actually, instead of a

single equation, the MEN describes in principle, an infinite set of ordinary differential equa-

tions (ODEs). However, for practical and physical reasons, one typically sets a maximum

size in order to get a finite set of ODEs. Eq.(3.18) is called the MEN because of the similari-

ties with the master equations derived from Chapman-Kolmogorov equations in the discrete

theory for Jump Markovian Processes [3]. However, this name is not completely well em-

ployed since the transition frequencies fnm(t) generally depend on the concentration Cn(t)

of n-mers, making Eq.(3.18) a non-linear equation [2].

It is also interesting to develop a continuity equation from the MEN, which will be use-

ful in the following sections. This can be carried out by defining the flux of clusters that

grow from an arbitrary size m′ ≤ n up to a size m > n, which can be expressed as

jn,m(t) =
n∑

m′=1

[fm′m(t)Cm′(t)− fmm′(t)Cm(t)] . (3.19)

The net flux of clusters passing through the size n will be jn(t) =
∑

m≥n+1 jn,m(t), that is,

the addition of all the possible m fluxes. With these definitions, the MEN can be rewritten as

dCn(t)

dt
= −(jn(t)− jn−1(t)) = −∆njn(t), (3.20)

which has the form of a discrete continuity equation. Until now we have derived several

expressions that imply summations over finite differences, due to the fact that the cluster

size is defined as an integer number, for it represents the number of molecules in the cluster.

However, in the context of the capillary model presented in the previous section, the order

parameter employed was the cluster radius (considering spherical clusters, of course), which,

in the end, is directly related to the cluster size n. In order to simplify the mathematics,
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Zeldovich [1, 2] proposed that, if the radius is presented as a continuous variable, then the

cluster size could be considered as a continuous variable too, so Eq.(3.18), (3.19) and (3.20)

can be rewritten in terms of integrals as follows

dC(n, t)

dt
=

∫ M

1

dm[f(m,n; t)C(m; t)− f(n,m; t)C(n; t)], (3.21)

j(n, t) =

∫ M

n

dm

∫ M ′

1

dm′[f(m′,m; t)C(m′; t)− f(m,m′; t)C(m; t)], (3.22)

dC(n, t)

dt
= −∂j(n; t)

∂n
. (3.23)

The later expressions are only valid for large cluster sizes, for which the change between next

neighbours clusters may be considered small enough.

3.2.1 Nucleation Stage and the BDT Model

The MEN provides a general insight of how clusters evolve through time depending on the

attachment and detachment rates of m-mers. However, Eq.(3.18) and Eq.(3.20) imply the

solution of ordinary differential equations with finite series and integrals with unknown coef-

ficients and functions fnm(t) and f(n,m; t) respectively. Further approximations are required

in order to continue.

By taking into account that we are concerned with the initial processes occurring during

the early stage of the phase transition, that is, the nucleation stage, then it is highly unlikely

for clusters greater than monomers (m = 2, 3... molecules) to play a significant role as their

concentration is still low. Together with the fact that the chance of emitting dimers, trimers,

etc. is also low, this means that the kinetics of nucleation may be governed mainly by the

attachment and detachment of monomers as a first approximation [1]. Mathematically, this

is given by the restriction

fnm(t) = 0, ∀n,m : |n−m| > 1, (3.24)

Now, by imposing the above restriction into Eq.(3.18), we obtain the following equation

dCn(t)

dt
= fn−1,n(t)Cn−1(t)− (fn,n−1(t) + fn,n+1(t))Cn(t) + fn+1,n(t)Cn+1(t), (3.25)

which basically means that the concentration of n-mers depends exclusively on the attach-

ment and detachment of monomers. Or, in other words, it depends on the next-neighbour
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interactions. Introducing the notation k+
n ≡ fn,n+1 and k−n ≡ fn,n−1 [2], and assuming that

the transition frequencies are time independent, we arrive to the following expression

dCn(t)

dt
= k+

n−1Cn−1(t)− (k−n + k+
n )Cn(t) + k−n+1Cn+1(t), (3.26)

which is the core of the well known Becker-Döring-Tunitskii Model (BDT Model) [1, 2].

With the above equation, the flux of clusters defined in the previous subsection will be given

by

jn(t) = k+
nCn(t)− k−n+1Cn+1(t). (3.27)

Once Eq.(3.26) is obtained, we will focus on developing a similar equation for the case of

treating the cluster size as a continuous variable. To do so, we will perform truncated Taylor

expansions of the terms k+
n−1Cn−1(t) and k−n+1Cn+1(t) around the n-size

k+
n−1Cn−1(t) = k+

nCn(t)− ε
(
∂(k+

nCn(t))

∂n

)
+

1

2
ε2
(
∂2(k+

nCn(t))

∂n2

)
+O(ε3), (3.28)

k−n+1Cn+1(t) = k−nCn(t) + ε

(
∂(k−nCn(t))

∂n

)
+

1

2
ε2
(
∂2(k−nCn(t))

∂n2

)
+O(ε3), (3.29)

where ε is a formal ordering parameter. Inserting these expressions into Eq.(3.26), setting

ε = 1 and dropping the ε3 and higher contributions of both expansions we arrive to the

equation
∂C(n, t)

∂t
= − ∂

∂n

(
D(1)(n, t)C(n, t)− 1

2

∂

∂n

[
D(2)(n, t)C(n, t)

])
, (3.30)

with,

D(1)(n, t) = k+(n, t)− k−(n, t),

D(2)(n, t) = k+(n, t) + k−(n, t).

Equation (3.30) is known as the Tunitskii Equation [2], and it has the similar form as the

one for a general Generation-Recombination process (GR) 5 [2]. We may identify D(1)(n, t)

as the drift current of clusters along the size axis and D(2)(n, t) as the diffusion current or

white noise associated to the growth velocity and randomness. It is interesting to see where

this nomenclature comes from; On one hand, if we neglect the second term from Eq.(3.30), a

continuity-like equation is derived, for which D(1)(n, t) represents the drift current, while on

the other hand, if we neglect the first term, then the equation takes the form of a diffusion-

like equation. However, the latter expression would only apply if C(n, t) was a probability

function. Thus, we define then the probability of observing a n-mer as follows

P (n, t) =
n(n, t)∑
n′ n(n′, t)

=
n(n, t)

Nc(t)
, (3.31)

5A common example for this kind of processes are the creation and destruction of electron-hole pairs

between the valence and conduction bands within a semiconductor material.
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where n(n, t) is the number of n-mers and Nc(t) the total number of clusters. Thus, C(n, t) =
n(n,t)
V

= Ctot(t)P (n, t), with Ctot(t) = Nc(t)
V

. If the total number of molecules is constant

during the transition, that is, Nc and thus Ctot are constant, then Eq.(3.30) turns into

∂P (n, t)

∂t
= − ∂

∂n

(
D(1)(n, t)P (n, t)− 1

2

∂

∂n

[
D(2)(n, t)P (n, t)

])
. (3.32)

This equation has the form of a Fokker-Planck Equation (FPE). The cluster size n is then

considered a stochastic markovian process, whose first and second Markov moments are

D(1)(n, t) and D(2)(n, t). Thus, the differential equation that n must satisfy will have the

form of a Langevin Equation [3]

n(t+ dt) = n(t) +D(1)(n, t)dt+N(0, 1)
√
D(2)(n, t)dt, (3.33)

where N (0,1) corresponds to a random number from the normal distribution. Although

we have employed several approximations, Eq.(3.32) reflects the stochastic nature of of the

concentration of clusters, and thus the phase transition itself. For small clusters, the de-

rived Fokker-Planck equation does not describe the same phenomenon as the BDT equation,

Eq.(3.26), because higher order Markov moments become significant. In that case, by tak-

ing into account the whole Taylor expansions from Eq.(3.28) and Eq.(3.29), we arrive to the

following expansion

∂P (n, t)

∂t
=
∞∑
j=1

(−1)j

j!

∂j

∂nj
[
D(j)(n, t)P (n, t)

]
, (3.34)

with the Markov moments

D(j)(n, t) = εj
[
k+(n, t) + (−1)jk−(n, t)

]
. (3.35)

This equation constitutes a Kramers-Moyal Equation (KME) [3], which is a generalisation

of the master equation for continuous variables. Despite being formally exact, the KME

contains an infinite number of Markov moments, for which its numerical solution becomes

even more difficult, and then truncation methods are required [3]. It is also interesting to

outline that we can recover the FPE by considering from the KME just the first two moments

of the expansion.

3.2.2 Equilibrium Approach

The KME and FPE allow us to compute the time evolution of the probability of finding a

n-mer (and thus, concentration of n-mers) at any time, with the assumption of large clusters.

Thus, we can use the tools of mathematical analysis and continuous calculus. However, in

order to obtain P (n, t), the statistical moments associated to the Markov process and thus
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the attachment and detachment rates are required. On the one hand, the attachment rate

will depend mainly on the mechanism governing the transport of particles within the old

phase, that is, a mass transport problem [2], while on the other hand, the detachment rate

depends on the physical properties of the cluster, which remain unknown.

Zeldovich proposed an idea in order to establish a relation between the monomer attach-

ment and detachment frequencies [1, 2]. This relation comes from demanding that the flux

of clusters defined by Eq.(3.27) to be zero under equilibrium conditions, that is, when the

system is undersaturated. Mathematically, this demand is given by the condition

jeqn (t) = k+
nC

eq
n (t)− k−n+1C

eq
n+1(t) = 0, (3.36)

where the superindex eq denotes the equilibrium conditions. This hypothesis is known as

detailed balance or constrained equilibrium condition [2]. At quasi-equilibrium conditions, we

can also consider the concentration of clusters being governed by a time-dependent Boltz-

mann distribution [1, 2], namely

Ceq
n (t) ∝ exp(−β∆Gn(t)), (3.37)

where ∆Gn(t) is the Gibbs free energy of the system containing an n-mer. For the sake

of simplicity, we will consider that the temperature will remain constant throughout the

process, so that β will be then time-independent. This assumption is known as the isothermal

condition [1, 7]. By substituting this on Eq.(3.36) we obtain the following relation

k−n+1(t) = k+
n exp [β(∆Gn(t)−∆Gn+1(t))] , (3.38)

which is the core of the Zeldovich approach. However, as we already mentioned, the detailed

balance only holds for equilibrium conditions, so applying it for a nonequilibrium situa-

tion such as nucleation itself constitutes a huge assumption that we will discuss on further

sections. Now, by expanding Eq.(3.38) in its continuous form, we obtain

k−(n, t) = k+(n− 1, t) exp [β(∆G(n, t)−∆G(n− 1, t))]

≈
(
k+(n, t)− ε∂k

+(n, t)

∂n

)(
1 + εβ

∂G(n, t)

∂n

)
= k+(n, t)− ε∂k

+(n, t)

∂n
+ εβk+(n, t)

∂G(n, t)

∂n
,

(3.39)

where we have just considered the first-order terms of each expansion. By substituting

the above expansion into the FPE equation provided by Eq.(3.32), we obtain the following

expression

∂P (n, t)

∂t
=

∂

∂n

[
k+(n, t)β

∂G(n, t)

∂n
P (n, t) + k+(n, t)

∂P (n, t)

∂n

]
, (3.40)
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which is known as the Zeldovich Equation (ZE) for the probability distribution function [2].

It will allow us to compute analytical estimations for both the cluster size distribution and

the nucleation rate. We must discuss the following aspects regarding the ZE equation:

• Cluster Size Limitations: In order to derive Eq.(3.40) we have employed several

assumptions. On one hand, we have neglected the ∂k+(n,t)
∂n

contribution by considering

that the attachment rate changes very little for large clusters, while on the other hand,

we have just taken into consideration the first term of the expansion of the exponential

in Eq.(3.39), which is only justified for ∂G(n,t)
∂n

� 1. Namely, we are limiting ourselves

within the vicinity of the critical cluster, for which the Gibbs free energy reaches its

maximum.

• Equilibrium Solution: We can impose the equilibrium situation by demanding a

zero probability flux in the ZE [2, 7]

β
dG(n)

dn
Peq(n) +

dPeq(n)

dn
= 0. (3.41)

By solving the above ordinary differential equation, we obtain

Peq(n) = A exp(−β∆G(n)) → Ceq(n) ∝ exp(−β∆G(n)), (3.42)

where the constant A is fixed by the normalization of the probability distribution

function Peq(n). This last expression is useful in order to check the canonical form of

the equilibrium distribution [2], as we firstly assumed with Eq.(3.37).

• Stationary Solution: The physical situation underlying this solution is that the

system reaches a steady state where the cluster production is constant. If a cluster

reaches the supercritical size, it will grow indefinitely, so it will no longer be considered

a stochastic process. In order to impose a stationary flux Js, we can remove those

clusters greater than the supercritical size (n+ > n∗) and reintroduce them in the form

of monomers [2]. Mathematically, the restricted stationary flux is given by

Js = −
[
k+(n)β

∂G(n)

∂n
Ps(n) + k+(n)

∂Ps(n)

∂n

]
; Ps(n+) = 0. (3.43)

Solving the ordinary differential equation given by the above equation and applying

the given initial condition, we obtain the stationary probability distribution function

[2]

Ps(n) = Js exp(−β∆G(n))

∫ n+

n

dx

k+(x) exp(−β∆G(x))
, (3.44)

which will play a key role in the calculation of the nucleation rate.
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3.2.3 Nucleation Rate in CNT

At this point, we have developed the theoretical background and all the mathematical tools

that will allow us to compute an analytical value for the most important magnitude un-

derlying the CNT; the nucleation rate, which measures the production of new clusters per

unit volume. Its importance lies within the fact that the nucleation rate can be measured

experimentally, thus establishing a first connection between the theory and the real world.

It also allows us to check the validity of all the presented ideas by comparing them with the

experimental results.

By taking into account that only supercritical clusters will take part in the nucleation pro-

cess, the nucleation rate is defined by [2]

J(t) =
dCn>n∗(t)

dt
, (3.45)

where Cn>n∗(t) is the concentration of supercritical clusters, that is, those clusters whose

sizes are greater than the critical one. Within the continuous approach, Cn>n∗(t) is given by

Cn>n∗(t) =

∫ ∞
n∗

C(n, t)dn =

∫ ∞
n∗

Nc(t)

V
P (n, t)dn, (3.46)

with

Nc(t) =

∫ ∞
1

n(n, t)dn, (3.47)

being the total number of clusters [1, 2]. Now, by inserting Eq.(3.46) into Eq.(3.45), we

obtain

J(t) =
1

V

dNc(t)

dt

∫ ∞
n∗

P (n, t)dn+
Nc(t)

V

∫ ∞
n∗

∂P (n, t)

∂t
dn. (3.48)

Using the Zeldovich Equation in the second term and imposing the steady state condition,

we arrive to the following expression

J = −Nc

V

[
k+(n)β

∂G(n)

∂n
Ps(n) + k+(n)

∂Ps(n)

∂n

]
=
Nc

V
Js, (3.49)

which basically means that the nucleation rate depends mainly on the artificially imposed

stationary flux Js from the previous subsection. In order to go further, we need to develop an

analytical expression for Js. Zeldovich proposed a boundary condition in order to solve this

problem [2]; monomers are indeed particles from the old phase, so their steady concentration

must be equal to the initial average density

Cs(n = 1) = ρav. (3.50)

20



Following this idea, the steady probability of finding monomers will be given by

Ps(1) =
Cs(1)

Ctot
=
ρavV

Nc

, (3.51)

and thus, by substituting this into Eq.(3.43), we arrive to

Js =
ρavV

Nc

(
e−β∆G(1)

∫ n+

1

dx

k+(x) exp(−β∆G(x))

)−1

. (3.52)

The first exponential term comes from the fact that the system does not need to spend energy

in forming monomers, as they already belong to the old phase. Now we will approximate

the above integral by means of the Lagrange saddle-point method [8]. Knowing that the

exponential term exp(β∆G(n)) must show a sharp maximum at the critical size n∗, we can

use the following first order asymptotic expansion [1, 2]∫
Ix

exp(β∆G(x))

k+(x)
dx ≈ exp(β∆G(n∗))

k+(n∗)

(
− β

2π

∂2∆G(n)

∂n2

)− 1
2

n=n∗
+O(β−1). (3.53)

Finally, by applying these expressions on Eq.(3.49), we arrive to an analytical expression for

the nucleation rate within the CNT context

JCNT ≈ zdk
+(n∗)ρav exp

(
− W ∗

kBT

)
, (3.54)

where W ∗ is the minimum work required for a critical cluster to form, and

zd =

(
− β

2π

∂2∆G(n)

∂n2

)− 1
2

n=n∗
, (3.55)

is the Zeldovich factor [2], which can be also expressed by means of the simplified formula

zd =

(
βW ∗

3π(n∗)2

) 1
2

. (3.56)

However, in our analysis we have not considered that the condition given by Eq.(3.50)

implies that monomers already belonged to the old phase before the transition, so they do

not contribute to the energy barrier W ∗. In order to take this into account, we must redefine

the energy barrier as

W ∗
SCCT = W ∗ −W (n = 1). (3.57)

The sub-index SCCT comes from the Self Consistent Classical Theory, which provides an

expression for the nucleation rate given by

JSCCT ≈ zdk
+(n∗)ρav exp

(
−W

∗
SCCT

kBT

)
. (3.58)
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Let us briefly discuss the physical meaning underlying both Eq.(3.54) and Eq.(3.58). First,

we must notice that this expression contains the same exponential term as the one we

initially derived in previous sections from the thermodynamic approach. It is related to the

probability for a critical cluster to form. Also, the initial average density ρav is related to the

physical properties of the system in its old phase. In addition, we have the Zeldovich factor,

which is directly related to the nucleation barrier, and the attachment constant k+(n), which

provides us information about the mass transport phenomenon that is taking place in the

system [1]. However, the dominant term of the expression is the exponential one, which tells

us that, in the end, the nucleation rate is primarily governed by the nucleation barrier. This

fact is corroborated by the theorem developed by Kashchiev [1] within the context of the

CNT, known as the Nucleation Theorem, which relates the dependency of the nucleation

rate with the supersaturation by means of the nucleation barrier and the critical nucleus.

Mathematically, it is expressed by

∂ log J

∂ logS
≈ − ∂βW

∗

∂ logS
= n∗, (3.59)

where J relates to the nucleation rate (in both the CNT and SCCT) and S is the super-

saturation. Its importance lies in the fact that, given that the nucleation rate, the amount

that allows us to make a connection between theory and experiments, it depends mostly on

the physics behind the nucleation barrier, so a good step to begin in order to improve the

classical theory would be to consider a new paradigm of nucleation from which corrections

can be made to this barrier, and with this, the density functional theory would come into play.

In conclusion, the nucleation rate depends mainly on the nucleation barrier, and secon-

darily on the properties of the system before the transition occurs and the phenomenon

through which particles within the system can diffuse and collide.

3.3 Homogeneous Nucleation of Water

Once we have developed the theoretical framework that allows a classical description of the

nucleation process, we will use its main results in order to investigate the case of time-

independent homogeneous nucleation of water droplets in the vapor phase. We have chosen

water due to its importance in atmospheric processes, which play a key role in the develop-

ment of life on Earth.

In this section we will study the equilibrium probability functions from both the thermody-

namic and stochastic approaches, and we will compare them by means of the nucleus critical

size. Also, we will obtain the nucleation rates of water droplets for different supersaturations

22



and temperatures, and we will compare them with experimental measurements carried out

by Viisanen, Strey and Reiss in diffusion cloud chambers [4].

3.3.1 Equilibrium Distribution and Critical Cluster

In section 3.1 we derived the nucleation barrier and the critical radius of spherical clusters

by computing the change of Gibbs free energy of the system before and after the cluster

appearance, within the thermodynamic approach. However, it is expressed in terms of the

critical radius R. As in the kinetic theory we worked with the nucleus size n as the stochastic

variable, we can relate both quantities with the formula

n =
4πR3

3v0

. (3.60)

Including this formula onto Eq.(3.9) results in a new expression for the Work for cluster

formation (and thus the Gibbs free energy),

W (n) = −|∆g|v0n+ cv
2/3
0 α∞n

2/3, (3.61)

where c = (36π)1/3. By following the same procedure as in section 3.1, we arrive at the

critical nucleus size

n∗ =
32πα3

∞
3|∆g|3v0

. (3.62)

With the data provided by Table 1, a critical nucleus of n∗ = 3.4372 · 108 molecules is

obtained.

α∞(N/m) T (K) S m0 (kg) v0 (m3) p′E (kPa) γ1

0.072 233 1.01 3·10−26 3·10−29 120 0.175

Table 1: Values of various quantities used for calculations regarding the nucleation of water

droplets in vapours [1, 4]. α∞ is the surface tension, T the nucleation temperature, S the

supersaturation, m0 and v0 are the mass and volume of a monomer, and γ1 is the sticking

coefficient of monomers onto the nucleus surface in vapours.

Now, from the kinetic theory, we will solve the Langevin Equation given by Eq.(3.33). But

first, we need an analytical form for the monomer attachment frequencies k+(n). For the

case of homogeneous nucleation in condensed vapours, according to the kinetic theory of

gases [1], these frequencies are given by the expression

k+(n) =
γ1cv

2/3
0 Sp′E√

2πm0kBT
n2/3 = γ1Icv

2/3
0 n2/3, (3.63)
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where γ1 corresponds to the sticking coefficient of monomers onto the nucleus surface, which

is given by the factor cv
2/3
0 n2/3 (or 4πR2), and I = Sp′E/

√
2πm0kBT is the Hertz-Knudsen

impingement rate for an ideal gas [1]. Eq.(3.58) , together with Eq.(3.56) and the Zeldovich

equilibrium approach, they allow us to obtain an analytical expression for the monomer

detachment frequencies k−(n), given by Eq.(3.36) with ε = 1,

k−(n) ≈ k+(n)− ∂k+(n)

∂n
+ βk+(n)

∂G(n)

∂n

= γ1Icv
2/3
0 n2/3

[
1− 2

3n
− β|∆g|v0 +

2

3
βcv

2/3
0 α∞n

−1/3

]
,

(3.64)

and with this, both Markov moments D(1)(n) and D(2)(n) will be given by

D(1)(n) = k+(n)− k−(n)

≈ γ1Icv
2/3
0 n2/3

[
2

3n
+ β|∆g|v0 −

2

3
βcv

2/3
0 α∞n

−1/3

]
,

D(2)(n) = k+(n) + k−(n)

≈ γ1Icv
2/3
0 n2/3

[
2− 2

3n
− β|∆g|v0 +

2

3
βcv

2/3
0 α∞n

−1/3

]
.

(3.65)

Now we can solve numerically the Langevin Equation with time-independent Markov

moments. For that, we will employ what is known as the Euler-Maruyama approximation

[3]: We will solve the Langevin Equation over a time interval of length T, which will be

divided in M partitions of length ∆t = T/M . Considering the initial condition X(0), the

time evolution of the stochastic variable X(t) can be approximated by the equation

X(t+ ∆t) = X(t) +D(1)(X)∆t+N(0, 1)
√
D(2)(X)∆t, (3.66)

where N (0,1) corresponds to a random number from the normal distribution. This equation

allows us to obtain stochastic trajectories of the Markov process X(t). In Figure 5 the results

of such calculation are shown. There, we can notice that the equilibrium distribution func-

tion obtained through the Euler-Maruyama algorithm coincides with the one derived from

the thermodynamic approach. In fact, the critical size derived previously coincides with the

maximum associated to the distribution function presented in Figure (5a).

However, despite this apparent success in our results, we must not forget the limitations

under which we have worked with. We have assumed very low supersaturations and initial

conditions of the cluster size near the critical size in order to perform our calculations. This

is mainly due to two reasons:

• First of all, all of our assumptions are completely valid for equilibrium situations,

despite we have being applying them for dynamical processes. Low supersaturations
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(a) 5a (b) 5b

Figure 5: Equilibrium distribution functions for the nucleus size. Fig.(5a) shows the his-

togram obtained by solving the Langevin Equation with the Euler-Maruyama method with

parameters: Time interval T = 100000, Number of partitions M = 100000, and initial con-

dition X(0) = 3.49 · 108. Fig.(5b) shows a general distribution obtained with the function

P (x) = exp(G(x)), where G(x) = −A · x + B · x2/3 has the form of the Gibbs free energy

presented in Eq.(3.61), with the parameters A = 1, B = 15, in order to compare its form

with the one obtained with the algorithm.

imply situations nearer the equilibrium than higher ones, where the nucleation barrier

tends to the minimum, and thus the probability of forming a cluster increases. In

practical terms, with higher supersaturations, the nucleation process requires less time

for occurring, that is, it is faster than for lower supersaturations, where the process

takes a bigger amount of time, and thus it can be approximated to a quasi-static

process.

• Also, for low supersaturations, the critical nucleus size increases, and so does the nuclei

found in the vicinity. This allows us to regard the nucleus size as a continuous variable,

and thus the FPE may be applied. Moreover, In order to remain in the vicinity of the

critical nucleus, the attachment frequencies k+(n) must be some orders of magnitude

smaller than the range of nucleus sizes we are working with (for the case of our concern,

k+(n) ∼ 105), otherwise, due to the diffusion term, our stochastic process would have

abandoned the vicinity zone and thus our FPE would not be valid anymore.
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3.3.2 The Cloud Chamber and Temperature Dependencies

We will continue our study of homogeneous nucleation of water by making a comparison

between the theoretical predictions provided by the CNT with recent experimental measure-

ments of the nucleation rate at different temperatures carried out in diffusion cloud chambers.

A diffusion cloud chamber is a device that allows nucleation studies in the steady state.

It consists of a hot bottom and a cold top plates separated by a circular ring. The lower

plate is covered by a thin film of water, while the rest of the volume is fulfilled with an inert

carrier gas, with all the aerosol particles being removed. Vapor evaporates from the lower

plate, diffuses through the carrier gas and condenses on the top plate. Since, as a first approx-

imation, one can consider the temperature of the partial pressure of the vapor to decrease

linearly with increasing height from the lower plate, while the equilibrium pressure varies

exponentially with temperature, a supersaturated state appears within the chamber, whose

maximum value is reached at about 2/3 of the distance from the lower to the higher plate [5].

With this apparatus, Viisanen, Strey and Reiss studied the formation of water droplets

in supersaturated vapours at different temperatures and supersaturations with Ar as their

carrier gas [4]. The analytical expression they employed for the nucleation rate can be ob-

tained with the formulas we derived in previous sections. Let us start with the Zeldovich

factor zd that appeared in the expression of the nucleation, and that it is given by Eq.(3.56).

Substituting the minimum work W ∗ provided by Eq.(3.61) and the monomer attachment

frequencies k+(n) given by Eq.(3.63) into Eq.(3.58), we obtain the expression

J ≈ zdk
+(n∗)ρav exp

(
−W

∗
SCCT

kBT

)
=

(√
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1
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)(
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(3.67)

where we have employed that

exp

(
W (1)

kBT

)
= exp

(
−kBT logS + cv

2/3
0 α∞

kBT

)
=

1

S
exp

(
cv

2/3
0 α∞
kBT

)
.

As it can be noticed, J presents a double dependence on the supersaturation S ; a linear,

and an exponential ones. It is obvious then to believe that the exponential will domain

over the rest of the terms, as we pointed out in previous sections when we talked about the

Nucleation Theorem [1].
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Figure 6: Comparison between the experimental measurements of the nucleation rate of

water droplets in condensed vapour phases carried out in diffusion cloud chambers at different

temperatures and the theoretical curves predicted from the CNT. The full lines correspond

to the theoretical curves associated to the black dots, while the dashed ones correspond to

the white dots. Both black and white dots correspond to experimental data [4].

Figure 6 shows both the experimental and theoretical nucleation rates for different tem-

peratures. We can notice that there is a strong dependency on both the temperature and

the supersaturation. However, since for low temperatures we find that the predictions of the

CNT do not deviate too much from the experimental results, for higher temperatures we find

deviations of even more than one order of magnitude, which leads to great relative errors

in the measurements and thus, the general failure of the model. Apart from non-classical

effect that may have played a role, there are two main aspects to outline that may explain

the discrepancies between the theory and reality:

• First, the curves presented in Figure 6 are given for high values of the supersaturation S.

As we commented on the previous subsection, higher supersaturations imply situations

more dynamical, that is, situations way far from the equilibrium or quasi-equilibrium

situations. This is again related to the fact that we developed our entire framework

based on equilibrium (the thermodynamical approach) and quasi-equilibrium (detailed

balance) assumptions, which are too coarse approximations for the non-equilibrium

situation that we are trying to describe.

• Secondly, we should mention that the temperature is the key factor for this discrepancy.

If we remember Figure 4 (Section 3.1.2), we mentioned that there was a critical unstable
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region, temperature-dependent, from which clusters may play a role in the nucleation

process. For high temperatures, this region may extend enough so smaller clusters may

take part on the process, which is undesirable, because one of the main assumptions

in both the thermodynamical and stochastical approaches of the CNT was to consider

only large clusters. The description of the nucleation theory by means of small clusters

is out of the scope of the classical theory [2].

Apart from these deficiencies, we must outline that, despite the limitations presented on

the initial conditions that we had when we solved the Langevin Equation, we did not found

actually any restrains in those theoretical curves that did corroborate the experimental data.

Furthermore, those curves are given between way higher values than the one we used in order

to perform our simulation. This paradox reflects once more the need to develop a consistent

kinetic theory of nucleation that allows to erase these inconsistencies that emerge from the

CNT.

3.4 Deficiencies of the CNT

In the previous sections we have managed to develop the entire theoretical framework under

which the CNT is built, leading to the derivation of the nucleation rate, which is the main

bridge between reality and theory, and we have applied the obtained results to the particular

case of the homogeneous nucleation of water droplets in condensed vapour. However, as it

has been commented, we have used numerous assumptions that limit the range of validity of

the results and expressions obtained, not to mention, some of those that give rise to unreal

physical situations. Despite this, the CNT constitutes a solid base on which new theories

can be developed with more realistic corrections. Therefore, in order to conclude with the

study of Classical Nucleation Theory, we will briefly comment on its main defects [2].

• The Capillary Model: One of the most important assumptions we employed through

the development of the CNT was indeed the capillary model, not only because it allows

us to formulate in a simple way the work required for cluster formation from a thermo-

dynamic approach, but also because it defines the cluster. In order to understand this,

we must recover the density profile presented in Eq.(3.8) by means of the Heaviside

function Θ(x)

ρcap(r) = ρnewΘ(R− r) + ρavΘ(r −R). (3.68)

With this approach, we can clearly make a distinction between two regions: The cluster

(r < R), for which we also imposed that it must have the same properties as the new

phase (that is, ρcl = ρnew), and the surrounding environment (r > R), which constitutes

the old phase, due to the fact that there is a sharp interface between these two regions.
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Despite being a simple model, it does not represent a real physical situation. In order

to improve the model, we shall introduce what are known as n-parameter theories [2],

for which clusters are completely defined by a set of n different parameters (the radius,

width of surface, etc), and thus, the density profile adopts a more realistic form, such

as in Figure 3(a). Another more sophisticated possibility that we will discuss in further

sections is the Density Functional Theory (DFT), which will allow us to obtain the

density profile by means of calculus of variations [1]. The only difficulty that arises

from those approaches is that we would need to reformulate the entire kinetic theory

of nucleation, because it is based mainly on the assumption of well defined clusters

that provides the capillary model.

• Large Clusters Assumption: The thermodynamic approach introduced in section

3.1 in order to develop an expression for the nucleation barrier are only valid for a large

number of molecules compounding the cluster, that is, in the thermodynamic limit [7].

Also, in order to derive the Fokker – Planck and Krammers – Moyal equations, we

considered that the cluster size was large enough so it may be treated as a continuous

variable. Indeed, together with the restriction imposed by the equilibrium approach,

for which the range of validity of the nucleation rate lies within the vicinity of the

critical size, it is though true to confirm that the description and contribution of small

clusters to the nucleation process is outside the scope of the CNT. A self-consistent

theory of nucleation must be able to describe both kinetics and energy balance of

clusters within the old phase no matter their size [2].

• Equilibrium Approach: With the Zeldovich approach we were able to solve the

problem of the detachment rate of clusters by imposing equilibrium conditions on the

undersaturated system, resulting in an expression that relates this detachment rate

with the attachment rate, which is a more suitable magnitude to compute. However,

this argument leads to unphysical situations, because we are imposing that the new

phase is in equilibrium with the old metastable phase during the transition, where

actually the nucleation itself consists in a non-equilibrium process [1]. Moreover, the

derived equilibrium probability distribution functions are only normalizable when the

system is undersaturated [2], which, again, it is a nonphysical situation in our case.

• Lack of Covariance: In previous sections we used two different parameters for the

description of the clusters size: the number n of molecules and the radius R of the asso-

ciated spherical cluster. Although both descriptions are unequivocal, the interchange

is not symmetric when we are dealing with the equilibrium probability distribution

functions P(n) and P(R) respectively [2].
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On one hand, with the Zeldovich approach, under equilibrium conditions, we derived

a distribution function proportional to the Boltzmann factor

P (n) ∝ exp(−β∆G(n)). (3.69)

While on the other hand, within the framework of the thermodynamic approach, we

also derived an expression for the minimum work required for a cluster to form, which

is directly related to the amount of Gibbs free energy required for the process to occur.

The problem arises when we want to switch between distribution functions, because

they are actually related by the transformation relation

P (n)dn = P (R)dR, (3.70)

which means basically that the probability of finding clusters with a certain size must

not depend on the chosen variable for its description. Using the above equations, we

can estimate the probability distribution function for the spherical radius

P (R) ∝ exp

(
−β
(

∆G(R) + kBT ln
dn(R)

dR

))
, (3.71)

which is similar to the ones used in previous sections but for the Jacobian term. For

large clusters, this contribution can be neglected in comparison with the volume and

surface terms, but again, we are limiting ourselves to a certain range of validity for the

cluster size.

4 Density Functional Theory

In the previous section we developed the Classical Nucleation Theory, which is fundamen-

tally based on the definition of a cluster as a portion of the new phase formed within the

old one during the phase transition. This cluster will grow or sink through the attachment

and detachment of monomers, depending mainly on its initial size. With these ideas, all

the theoretical background underlying the theory was developed. However, as it was al-

ready discussed, some physical issues emerge from the main assumptions employed in the

development of our theory, one of the most important ones being the definition of a cluster.

Within the context of the Capillary Model the answer is simple; all the molecules belonging

to the region lower than the equimolar dividing surface form a cluster, while the rest of them

conform the environment, that is, the old phase, as depicted in Figure 3b. However, we

already pointed out the abruptness and simplicity of this model. A more realistic density

profile for the cluster corresponds to the one shown in Figure 3a, where the change in density
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is continuous. Thus, the density will depend on the spatial coordinates, that is, ρ = ρ(r). A

completely new theoretical approach is then necessary in order to obtain better estimations

for the nucleation barrier.

Limiting our considerations to one-component homogeneous nucleation under isothermal

and isobaric conditions, we introduce the Density Functional Theory (DFT) of nucleation,

based entirely on the density functional approach [1].

4.1 Density Functional and Variational Approach

As it can be seen in Figure 3a, instead of a dividing surface between the molecules of

the new and old phases, we have a continuous change of the molecular density through a

transition region known as the surface layer [1]. Let ρ(r) be the molecular density at point

r = (x, y, z) in cartesian coordinates. This density is related to the average density ρav

through the expression [2]

ρav =
1

V

∫
V

ρ(r)dr. (4.1)

Due to the fact that ρ(r) is non-homogeneous, other quantities related to it will present

dependence with spatial coordinates too. Such is the case of the Helmholtz free energy

per molecule f , which becomes a function of r, ρ and its derivatives. That is the main

reason why thermodynamics, which operates with homogeneous quantities, is not adequate

for determining the nucleation work W ∗. Hence, we must reformulate the Gibbs free energy

for both initial and final states of the system (Figure 2) as a function of the molecular density

function. We will define the total free energy as a functional of the density given by

G[ρ] =

∫
V

g(ρ(r), T )dr =

∫
V

(f(ρ(r))− µρ(r))dr, (4.2)

where g(ρ(r)) constitutes the Gibbs free energy per unit volume at constant temperature

and µ is the chemical potential. According to the definition presented in previous sections,

the minimum work for a density fluctuation within the old phase will be given by

W [ρ] = ∆G[ρ] = Gf [ρ]−Gi[ρ] =

∫
V

((f(ρ(r))− µρ(r)) + p) dr, (4.3)

where we have taken into account that Gi[ρ] = −
∫
V
pdr, approaching Eq.(3.3) in the ther-

modynamic limit. The resulting expression is valid for any arbitrary density profile. Similar

to how we proceeded with the thermodynamic approach, we will focus our attention into the

critical fluctuation (so called nucleus [2]), that is, the one required for triggering the phase
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transition. It can be defined as a saddle point in functional space. To obtain the density

profile ρ∗(r) characterizing the critical fluctuation, we must solve the following variational

problem

(δW [ρ])ρ=ρ∗ ≡ δ

(∫
V

((f(ρ(r))− µρ(r)) + p) dr

)
ρ=ρ∗

= 0, (4.4)

whose solution will allow us to determine the nucleation barrier

W ∗ ≡ W [ρ∗(r)]. (4.5)

The procedure presented above allowed us to obtain the variational equations required for

the nucleation barrier without the need of introducing neither a dividing surface nor a cap-

illary model in order to distinguish between the nucleus (cluster) and the old phase. In

this case, the first stage of nucleation is treated as a density fluctuation of the old phase.

This is in contrast with our previous analysis, where the cluster formed within the old phase

already presented the same properties as the new phase and it was treated as a macroscopic

independent system.

The only problem regarding Eq.(4.4) is that we need the exact form of f(ρ(r)) in order

to obtain a solution for the density profile. However, even without having this information,

we can derive a partial differential equation from this equation by considering the Helmholtz

free energy as an exclusive function of ρ and ∇ρ. In that case, the condition of extremal

W [ρ] only applies if the Euler-Lagrange equation is satisfied [1, 2](
∂

∂ρ
(f(ρ,∇ρ)− µρ)−

3∑
i=1

∂2

∂xi∂ρxi
(f(ρ,∇ρ)− µρ)

)
ρ=ρ∗

= 0. (4.6)

Here xi are the cartesian coordinates, components of r, and ρxi = (∇ρ)xi . We can transform

the obtained equation into the following one(
∂

∂ρ
f(ρ,∇ρ)−

3∑
i=1

∂2

∂xi∂ρxi
f(ρ,∇ρ)

)
ρ=ρ∗

= µ, (4.7)

which can be interpreted as the chemical equilibrium between the fluctuation and the old

phase [2]. The equation corresponds to a second order differential equation. Its physically

acceptable solution must fulfill certain boundary conditions at the surface of the volume V

of the system. In the case of spherical symmetry, it is interesting to outline the following

boundary conditions commonly employed

lim
r→∞

ρ∗(r) = ρav,
dρ∗(r)

dr

∣∣∣∣
r=0

= 0, (4.8)

which apply for the two density profiles showed in Figure 3. Once we have the exact solution

(or a good approximation) for the Helmholtz free energy, the determination of the critical

fluctuation ρ∗(r) and the nucleation barrier W ∗ are guaranteed.
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4.2 Approximations for the Free Energy

We have seen previously that the equations describing the critical fluctuation depend mainly

on the modelling of the Helmholtz free energy. This modelling must take into account the

non-local effects; the interaction between molecules at r and r’ respectively. One way of

doing that is considering f not only as a function of the unary density (i.e ρ(1) ≡ ρ), but also

the binary ρ(2), ternary ρ(3), etc [1]6. However, this procedure implies several mathematical

difficulties due to its complexity, so it is necessary to apply certain approximations.

In this work we will focus our attention on two approximations; the Gradient Approximation

(GA) and the Hard-Sphere Model (HSM), which, despite their simplicity, they will allow us

to recover results from previous sections regarding the CNT and the VDW fluid.

4.2.1 Gradient Approximation

This first approximation consists in considering the free energy as an exclusive function of ρ

and its first derivatives. Its general form is given by

f(r) = fu[ρ(r)] +K[ρ(r)](∇ρ)2, K[ρ(r)] > 0, (4.9)

which corresponds to a truncated expansion of f(r) in terms of the density gradient ∇ρ. In

the above equation, fu would correspond to the zeroth order term of the expansion, which

is the global Helmholtz free energy per molecule, namely, the one the system would have if

local effects were not involved, while the second term would correspond to the second order

term of the expansion, accounting on the interactions between molecules at r and the rest of

the environment, making f(r) a non local function of r [2]. The dependence of the functions

fu and K on ρ(r) can be determined by means of the regular solution theory of mixtures, as

pointed out by Kashchiev [1].

By substituting Eq.(4.9) into Eq.(4.7), we are led to the Cahn-Hilliard Equation (CHE)(
∂

∂ρ
(fu(ρ))− (∇ρ)2 ∂

∂ρ
(K(ρ))− 2K(ρ)(∇2ρ)

)
ρ=ρ∗

= µ. (4.10)

This last equation can be simplified for the case of a spherical nucleus, as the critical fluctu-

ation will only depend on the radial distance r, ρ∗(r) = ρ∗(r). Considering that in spherical

coordinates the following expressions apply

(∇ρ)2 =

(
dρ

dr

)2

, ∇2ρ =
d2ρ

dr2
+

2

r

dρ

dr
, (4.11)

6It is defined the n-density ρ(n)(r(n)) as the density that takes into account the effect of an n-wise potential

over the system. In case that n = 1, we recover the density for an ideal solution [6]
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the CHE adopts the following form(
d

dρ
(fu(ρ))− 2K(ρ)

d2ρ

dr2
− 4K(ρ)

r

dρ

dr
−
(
dρ

dr

)2
d

dρ
(K(ρ))

)
ρ=ρ∗

= µ, (4.12)

By applying the boundary conditions presented in Eq.(4.8) to the above expression, the crit-

ical fluctuation can be computed numerically, and thus, the nucleation barrier can also be

determined by solving Eq.(4.3), considering that dr = 4πr2dr due to the spherical symmetry.

It is interesting to outline three results coming from the numerical simulations carried out

by Cahn and Hilliard [1] using this model for low supersaturations:

• The density at the centre of the nucleus (ρ∗(0)) approaches the one characterising the

new phase (ρnew).

• The specific surface energy associated to the surface layer of the nucleus reaches the

planar surface one.

• The appropriately defined mean radius approaches the one defined by the equimolar

dividing surface.

Summarising, these aspects confirm the validity of the model for low supersaturations, as it

leads to the same results as those predicted within the context of the CNT. However, the

behaviour of both theories differs significantly for high supersaturations.

4.2.2 Hard-Sphere Model

This model was first introduced in order to avoid the GA, which is only valid for smooth

variations of the density profile [1]. The HSM is based mainly on the proposal of an expression

for the free energy analogous to the one derived for the VDW fluid within the thermodynamic

context

fV DW = f0 + kBT ln

(
b′ρu

1− b′ρu

)
− a′ρu, (4.13)

where f0 and ρu are reference energy and density respectively, and a’ and b’ are the same

material constants presented in Eq.(2.1). b’ accounts for the harsh short-range repulsion

between molecules when they are closer than a radial distance d0, and a’ considers the weak

long-range attraction between them, and it is generally given by the expression

a′ = −2π

∫ ∞
d0

r2u(r)dr, (4.14)

34



where u(r) is the pairwise interaction potential [1]. For our case, a non-homogeneous density

profile ρ(r), the VDW-like expression for the Helmholtz free energy will be given by

f(r) = fHS[ρ(r)] +
1

2

∫
V ′
ρ(r’)u(|r− r’|)dr’, (4.15)

where the first term corresponds to the free energy associated to a hard-sphere potential,

while the second one accounts for the attraction between molecules at the point r with the

rest of the molecules of the system. By substituting the above expression in Eq.(4.7), we

obtain the following equation(
µHS[ρ(r)] +

∫
V ′
ρ(r’)u(|r− r’|)dr’

)
ρ=ρ∗

= µ, (4.16)

where µHS[ρ(r)] = ∂
∂ρ

(fHS(ρ)). Solving this equation with the previous boundary conditions,

the critical fluctuation and the nucleation barrier can be computed. But in order to compute

such quantities, we need a concrete form of the mean field pairwise potential u(|r− r’|), like

the Yukawa or Lennard-Jones potentials [1]. In comparison with Eq.(4.12), Eq.(4.16) is an

integral equation that does not include ∇ρ, but it allows us to obtain nearly-step solutions

for the density profile, so that comparisons with the capillary model already presented with

the CNT may be carried out.

4.3 N-Parameter Theories

In previous sections we have obtained differential equations that allow us to compute the

critical density profile that minimizes the nucleation barrier, depending on the physical situa-

tion we are dealing with, for which we must specify different functions such as the Helmholtz

free energy or the chemical potential. However, despite its usefulness, in most cases only

numerical results will be obtained, while it is more suitable for physicists to work with an-

alytical functions. These functions, provided by theoretical models, will depend on a set of

parameters that will be adjustable in order to fit the experimental measurements.

We will assume that the density profile has already a certain analytical form, which de-

pends on a set of n parameters X = X1, X2, ...Xn such as follows,

ρ = ρ(r,X) = ρ(r, X1, X2, ..., Xn). (4.17)

In this case, due to the fact that we already set a model density function, our goal now

consists in determining the critical parameters X’ = X ′1, X
′
2, ...X

′
n that minimize the nucle-

ation barrier, and then it can be proved that the variational problem presented in Eq.(4.4)

transforms into

(∇XW (X))X=X’ = 0, (4.18)
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where we have used the notation ∇X =
∑

i ui∂X [2]. This method is widely used because of

the reduction of the computational cost needed to perform numerical calculations. The ana-

lytical models for nucleation based on this methodology are known as n-parameter theories.

We have already studied an example of this kind of model; the capillary model consti-

tutes itself a clear example of an one-parameter theory, for it assumes a density profile that

only depends on the radius of the spherical cluster. Thus, the radius R of the cluster con-

stitutes the order parameter of the model7. With this, the nucleation barrier was obtained

with Eq.(3.10), which is analogous to Eq.(4.18). Furthermore, the entire CNT constitutes

an one-parameter theory, due to the fact that we assumed that the clusters are completely

determined by one parameter; the nucleus size (or the radius for spherical nuclei). Another

example of these models is given by the piecewise density profile

ρ(r) =


ρnew r ≤ R− w

ρnew + (ρnew − ρav) r−(R−w)
w

R− w ≤ r ≤ R

ρav r ≥ R

(4.19)

which takes into account a gradual linear variation of the density through the surface of the

spherical cluster, which has a width w. In this case, both the spherical radius R and the

surface width w would be order parameters, and thus we would encounter a two-parameter

theory.

5 Conclusion

Finally, we have arrived to the end of our journey. In this last section we will summarize

the aspects that we have developed throughout this work, pointing out the main ideas and

results.

We first started with the basis of first-order phase transitions. We used the Van Der Waals

fluid as our key example in order to understand vapor-liquid transitions, and with this,

the equilibrium conditions needed for the coexistence between phases, and the concepts of

metastability, spinodal and binodal curves and supersaturation were introduced. Gathering

all of these with a brief introduction to thermal fluctuations, we arrived to the definition of

7Despite that the density profile given by Eq.(3.8) also depends on the parameters ρnew and ρav, these

parameters do not count as order parameters, for they are initial conditions that can be obtained experi-

mentally, and are, in principle, independent from the nucleation process.
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the nucleation process itself.

From here, we focused our analysis into the Classical Nucleation Theory. Starting with

Gibbs ideas, we defined a cluster as a thermodynamic system surrounded by a greater one,

and with the help of the capillary model and the assumption of spherical clusters, we de-

rived an expression for the nucleation barrier, and thus also for the probability for a density

fluctuation to occur.

Then we studied the kinetic model provided by the CNT. Starting with the definition of

the cluster and the transition frequencies, we arrived to the Master Equation of Nucleation.

From here, with the aid of the BDT Model and Zeldovich’s ideas, we derived Fokker-PLanck,

Languevin and Kramers-Moyal equations that allow a stochastical description of the nucle-

ation process. Following this, considering the steady state, we arrived to an analytical

expression for the nucleation rate, a quantity that can be measured experimentally, and

thus, it links the theory and reality. In order to apply the previous results, we analysed

the homogeneous nucleation of water droplets in condensed vapours. We first solved the

Langevin Equation with the aid of the Euler-Maruyama approximation, leading to the equi-

librium histograms. Then, we compared the theoretical nucleation rates with experimental

ones measured in diffusion cloud chambers, leading to several inconsistencies of the theory.

All of this analysis was useful for us to link with a last section of the CNT where its main

deficiencies were commented.

Following the CNT, the Density Functional Theory was introduced as an alternative paradigm

for the determination of the nucleation barrier and the definition of clusters themselves. Vari-

ational principles were used for deriving the nucleation barrier, and two approximations for

the free energy as a functional of the density were introduced. These approximations also

allowed us to recover previous aspects provided by the CNT and the VDW fluid. Finally, the

concept of n-parameter theory was introduced as an analytical alternative to the numerical

calculation, which allowed to present theoretical models depending on the process under

study.

In conclusion, the field of nucleation is still an open field to study, where there are many

unanswered questions yet, and which still holds many mysteries of matter and the world it-

self. The classical theory is the cornerstone from which we start, while the functional density

paradigm is the current path that researchers travel in their eagerness to unravel reality.
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