
Software Impacts 9 (2021) 100085

f

B

m

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

DirectDebug: A software package for the automated testing and debugging of
eature models

Viet-Man Le a,∗, Alexander Felfernig a, Thi Ngoc Trang Tran a, Müslüm Atas a, Mathias Uta b,
David Benavides c, José Galindo c

a Institute of Software Technology, Graz University of Technology, Graz, Austria
b Siemens, Energy AG, Erlangen, Germany
c Computer Languages and Systems, University of Sevilla, Seville, Spain

A R T I C L E I N F O

Keywords:
Automated testing and debugging
Feature models
Variability models
Diagnosis
Conflict detection

A B S T R A C T

Complex and large-scale feature models can become faulty, i.e., do not represent the expected variability
properties of the underlying software artifact. In this paper, we propose the DirectDebug algorithm that
supports the automated testing and debugging of variability models. Our approach assists software engineers
in identifying an adaptation hint (diagnosis) that makes all test cases consistent with the knowledge base.
We also develop the software package so-called d2bug_eval to evaluate the DirectDebug’s performance. The
software package can be re-produced thoroughly to evaluate consistency-based algorithms.

Code metadata

Current code version v1.1
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2021-45
Permanent link to Reproducible Capsule https://codeocean.com/capsule/5824065/tree/v1
Legal Code License MIT License
Code versioning system used git
Software code languages, tools, and services used Java 8, Maven, IntelliJ IDEA
Compilation requirements, operating environments & dependencies Maven, Betty framework, SXFM library
If available Link to developer documentation/manual https://github.com/AIG-ist-tugraz/DirectDebug/blob/main/README.md
Support email for questions vietman.le@ist.tugraz.at

Software metadata

Current software version v1.1
Permanent link to executables of this version https://github.com/AIG-ist-tugraz/DirectDebug/releases/tag/v1.1
Permanent link to Reproducible Capsule https://codeocean.com/capsule/5824065/tree/v1
Legal Software License MIT License
Computing platforms/Operating Systems Linux, macOS, Microsoft Windows
Installation requirements & dependencies Java 8
If available, link to user manual - if formally published include a reference to the
publication in the reference list

https://github.com/AIG-ist-tugraz/DirectDebug/blob/main/d2bug_eval.jar.md

Support email for questions vietman.le@ist.tugraz.at

1. Introduction

The development of feature models [1,2] has to be pro-actively
supported by intelligent debugging mechanisms that detect unexpected

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: vietman.le@ist.tugraz.at (V.-M. Le), alexander.felfernig@ist.tugraz.at (A. Felfernig), ttrang@ist.tugraz.at (T.N.T. Tran),

uatas@ist.tugraz.at (M. Atas), mathias.uta@siemens.com (M. Uta), benavides@us.es (D. Benavides), jagalindo@us.es (J. Galindo).

behaviors of a feature model knowledge base (e.g., misinterpretations
in domain knowledge communication, modeling errors, or outdated parts of
a knowledge base [3–5]). The existing literature has witnessed a few ap-
proaches supporting such mechanisms [5–7]. For instance, Junker [6]
https://doi.org/10.1016/j.simpa.2021.100085
Received 23 April 2021; Received in revised form 7 May 2021; Accepted 10 May 2021

2665-9638/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.simpa.2021.100085
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2021.100085&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2021-45
https://codeocean.com/capsule/5824065/tree/v1
https://www.isa.us.es/betty/welcome
https://www.isa.us.es/betty/welcome
https://www.isa.us.es/betty/welcome
https://www.isa.us.es/betty/welcome
https://www.isa.us.es/betty/welcome
https://www.isa.us.es/betty/welcome
https://www.isa.us.es/betty/welcome
https://www.isa.us.es/betty/welcome
https://www.isa.us.es/betty/welcome
https://www.isa.us.es/betty/welcome
https://www.isa.us.es/betty/welcome
https://www.isa.us.es/betty/welcome
https://www.isa.us.es/betty/welcome
https://www.isa.us.es/betty/welcome
http://www.splot-research.org
http://www.splot-research.org
http://www.splot-research.org
http://www.splot-research.org
http://www.splot-research.org
http://www.splot-research.org
http://www.splot-research.org
http://www.splot-research.org
http://www.splot-research.org
http://www.splot-research.org
http://www.splot-research.org
https://github.com/AIG-ist-tugraz/DirectDebug/blob/main/README.md
mailto:vietman.le@ist.tugraz.at
https://github.com/AIG-ist-tugraz/DirectDebug/releases/tag/v1.1
https://codeocean.com/capsule/5824065/tree/v1
https://github.com/AIG-ist-tugraz/DirectDebug/blob/main/d2bug_eval.jar.md
mailto:vietman.le@ist.tugraz.at
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:vietman.le@ist.tugraz.at
mailto:alexander.felfernig@ist.tugraz.at
mailto:ttrang@ist.tugraz.at
mailto:muatas@ist.tugraz.at
mailto:mathias.uta@siemens.com
mailto:benavides@us.es
mailto:jagalindo@us.es
https://doi.org/10.1016/j.simpa.2021.100085
http://creativecommons.org/licenses/by-nc-nd/4.0/

V.-M. Le, A. Felfernig, T.N.T. Tran et al. Software Impacts 9 (2021) 100085

i
s
a
d
a
d

i
i

f
D
T
s
i
B
c

Fig. 1. (a) An example of a survey software feature model and (b) generated constraints from the model.

ntroduces an algorithm to identify conflicts in a knowledge base re-
ponsible for inconsistencies. Conflicts are the basis for follow-up di-
gnosis operations that help to resolve these conflicts [4,8–10]. A
iagnosis entails a set of elements of a knowledge base that have to be
dapted/deleted to restore consistency. To improve the performance of
iagnosis approaches, the idea of direct diagnosis was proposed [11],

which supports diagnosis calculation without predetermining conflicts.
In this paper, we propose the DirectDebug algorithm extending the direct
diagnosis approach for supporting the automated testing and debugging
of variability models [11]. Our approach considers a set of test cases at
the same time, i.e., a diagnosis represents an adaptation proposal that
makes all of the given test cases consistent with the knowledge base.

2. Working example

To illustrate our approach, we use an example of a presumably
faulty feature model from the domain of software services supporting the
creation and management of surveys (see Fig. 1a). A corresponding CSP1-
based representation of a feature model configuration task (𝐹 ,𝐷, 𝐶 =
𝐶𝐹 ∪ 𝐶𝑅) can be generated [12], where 𝐹 is the set of features and
each feature has a specified domain 𝑑𝑖 = {(𝑡)𝑟𝑢𝑒, (𝑓)𝑎𝑙𝑠𝑒} (𝑑𝑖 ∈ 𝐷), 𝐶𝐹
consists of constraints of the feature model (see Fig. 1b), and 𝐶𝑅 refers
to user requirements.

3. Automated debugging

Test cases are used to induce conflicts in the feature model. There
are two types of test cases [9]. (1) Positive test cases (𝑡𝑖 ∈ 𝑇𝜋) specify
ntended behaviors of a knowledge base, i.e., at least one configuration
s consistent with 𝑡𝑖. (2) Negative test cases (𝑡𝑖 ∈ 𝑇𝛩) specify unintended

behaviors of a knowledge base, i.e., there should not exist any configu-
ration consistent with 𝑡𝑖. These test cases are integrated in negated form
into the background knowledge. For details of the test case generation,
we refer to [13].

A diagnosis (𝛥) includes constraints responsible for the faulty behav-
ior of a feature model (see [13]). Such constraints have to be deleted or
adapted to make the feature model consistent with 𝑇𝜋 . Table 2 shows
two options of deleting/adapting the constraints in 𝐶𝐹 such that the
consistency between the feature model (Fig. 1a) and test cases {𝑡1..𝑡4}
(Table 1) is restored.

DirectDebug (see Algorithm 1) is activated with the diagnosis can-
didates 𝐶 ⊆ 𝐶𝐹 ⧵ {𝑐0} and the background knowledge 𝐵 = 𝐶𝐹 ⧵ 𝐶 ∪
{𝑐0}∪𝑇 −

𝛩 . 𝑇 −
𝛩 represents a conjunction of negative test cases (in negated

orm) which are assumed to be consistent with 𝐶 ∪ 𝐵. 𝑇𝜋 , in the first
irectDebug call, represents test cases that are inconsistent with 𝐶 ∪𝐵.
he algorithm returns an 𝑀𝑆𝑆 - 𝛤 (Maximum Satisfiable Subset —
ee Definition 3 in [13]), a corresponding diagnosis is 𝐶 ⧵ 𝛤 . If 𝐶𝐹
s diagnosed as a whole, then 𝐶 = 𝐶𝐹 ⧵ {𝑐0} and 𝐵 = {𝑐0} ∪ 𝑇 −.
efore starting DirectDebug, all 𝑡𝑖 in 𝑇𝜋 and 𝑇𝛩 have to be checked for
onsistency with 𝐶 ∪ 𝐵. IsConsistent checks if the constraints in 𝐶 ∪ 𝐵

1 CSP — Constraint Satisfaction Problem.

Table 1
Example positive test cases 𝑇𝜋 = {𝑡1 ..𝑡4} and corresponding conflicts identified by
QuickXPlain [6]. Without losing generality, we assume negative test cases 𝑇𝛩 = ∅.

ID Test case (Constraint) Corresponding conflicts

𝑡1 𝑛𝑜𝑙𝑖𝑐𝑒𝑛𝑠𝑒 = 𝑡 {𝑐2 , 𝑐8}
𝑡2 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 = 𝑡 ∧ 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 = 𝑓 {𝑐2 , 𝑐7}
𝑡3 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑓 {𝑐1}
𝑡4 𝑠𝑖𝑛𝑔𝑙𝑒𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑓 ∅

Table 2
Example diagnoses 𝛥1 = {𝑐1 , 𝑐2} and 𝛥2 = {𝑐1 , 𝑐7 , 𝑐8}.

Diagnosis 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8
𝛥1 × × – − – − – –
𝛥2 × – − – − – × ×

are consistent with the individual test cases in 𝑇𝜋 . This function returns
true if every test case in 𝑇𝜋 is consistent with 𝐶 ∪ 𝐵. Only test cases
inducing an inconsistency with 𝐶 ∪𝐵 are returned in 𝑇 ′

𝜋 (the remaining
inconsistent positive test cases). A consistency check is only activated if
𝛿 ≠ ∅ (𝛿 = ∅ indicates that 𝐶 has already been checked for consistency
with 𝐵).
Algorithm 1 DirectDebug(𝛿, 𝐶 = {𝑐1..𝑐𝑛}, 𝐵, 𝑇𝜋) ∶ 𝛤

1: 𝑇 ′
𝜋 ← 𝑇𝜋

2: if 𝛿 ≠ ∅ ∧ IsConsistent(𝐶 ∪ 𝐵, 𝑇𝜋 , 𝑇 ′
𝜋) then

3: return(𝐶)
4: end if
5: if |𝐶| = 1 then
6: return(∅)
7: end if
8: 𝑘 = ⌊

𝑛
2 ⌋

9: 𝐶1 ← 𝑐1...𝑐𝑘; 𝐶2 ← 𝑐𝑘+1...𝑐𝑛;
10: 𝛤2 ← DirectDebug(𝐶1, 𝐶1, 𝐵, 𝑇 ′

𝜋);
11: 𝛤1 ← DirectDebug(𝐶1 − 𝛤2, 𝐶2, 𝐵 ∪ 𝛤2, 𝑇 ′

𝜋);
12: return(𝛤1 ∪ 𝛤2)

An execution trace of DirectDebug is shown in Fig. 2. DirectDebug
follows a divide & conquer approach. In each recursive call, it searches
for positive test cases that are inconsistent with 𝐶 ∪ 𝐵. If there is only
one constraint 𝑐𝑖 in the consideration set 𝐶 (|𝐶| = 1) and at least one
test case 𝑡𝑗 where inconsistent({𝑡𝑗} ∪𝐶 ∪𝐵), then 𝑐𝑖 is considered a part
of a diagnosis 𝛥. If consistent({𝑡𝑖}∪𝐶∪𝐵), ∀{𝑡𝑖} ∈ 𝑇𝜋 , then 𝐶 is returned
since no diagnosis elements can be found in 𝐶. DirectDebug returns a
MSS (𝛤 = {𝑐2..𝑐6}). The corresponding minimal diagnosis 𝛥 is 𝐶 ⧵ 𝛤
(𝛥 = {𝑐1, 𝑐7, 𝑐8}).

4. Software features

We developed a Java-based software package so-called
d2bug_eval to evaluate the performance of DirectDebug and to sup-
port the reproducibility of the DirectDebug evaluation process.
2

V.-M. Le, A. Felfernig, T.N.T. Tran et al. Software Impacts 9 (2021) 100085

I
(

Fig. 2. DirectDebug execution trace for 𝐶 = {𝑐1 ..𝑐8}, 𝐵 = {𝑐0}, and 𝑇𝜋 = {𝑡1 ..𝑡3}.

Fig. 3. The flowchart of d2bug_eval where five steps of the DirectDebug evaluation process are performed.

Table 3
An example of the run-time performance (in msec) of DirectDebug after three iterations.
n each |𝐶𝐹 | variant, we generated 3 feature models. In total, there were 378
3feature models × 6 |𝐶𝐹 | × 7 |𝑇𝜋 | × 3) selected test-case scenarios.
|𝑇𝜋 | |𝐶𝐹 |

10 20 50 100 500 1000

5 0.1 0.4 1.1 2.4 24.8 114.0
10 0.2 0.5 1.8 4.3 35.4 170.4
25 0.6 1.3 4.3 11.7 108.1 375.5
50 1.0 2.3 7.9 22.7 241.6 695.5
100 1.9 4.5 14.7 38.8 449.0 1251.5
250 6.6 11.2 32.4 90.4 1191.3 2877.9
500 20.3 24.2 60.3 158.2 2338.1 5680.1

d2bug_eval can be easily integrated into external projects and com-
patible with different platforms (e.g., Windows, Linux, and macOS).
Moreover, it is self-contained, which performs five steps of the Di-
rectDebug evaluation process (see Fig. 3). In Step 1, feature models
are generated randomly using BeTTy [14] and then translated into
constraints in Choco Solver [15]. Step 2 generates a test suite for each
feature model consisting of five types of test cases: dead features, false
optional, full mandatory, false mandatory, and partial configuration.
In Step 3, test cases of each test suite are classified into violated and
non-violated test cases. In Step 4, the program selects test-case scenarios
where the ratio of violated test cases to non-violated test cases is a
specific number predetermined by the user . The number of scenarios
is selected depending on the combination of the number of constraints
|𝐶𝐹 | and the number of test cases |𝑇𝜋 |. For each combination, the
average run-time will be calculated (in Step 5) when a specific number
of iterations (|𝑖𝑡𝑒𝑟|) is reached. Finally, in Step 5, the program calculates
the average run-time of DirectDebug, shown in each cell of Table 3.

In addition to the reproducibity and the self-contained ability,
d2bug_eval shows also the parametricity that provides a wide range
of parameters (e.g., |𝐶𝐹 |, |𝑇𝜋 |, |𝑖𝑡𝑒𝑟|, %𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑∕𝑛𝑜𝑛-𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑) in order
to facilitate the customization of the evaluation process.

Structurally, d2bug_eval consists of three sub-packages: Fea-
ture Model, MBDiagLib, and Debugging. Feature Model reads

feature model files and supports feature model generation and feature
model statistics. MBDiagLib provides (1) an abstract model to hold
variables and constraints, (2) an abstract consistency checker for under-
lying solvers, (3) a Choco consistency checker using Choco Solver [15],
and (4) functions to measure the performance of algorithms in terms
of run-time or the number of solver calls. Debugging provides com-
ponents w.r.t. test-cases management, the DirectDebug implementation,
a debugging model with test-cases integration, and debugging-related
applications (e.g., test suite generation, test cases classification, and test
case selection).

5. Impact overview

DirectDebug [13] is a practical approach to assist software engineers
in pro-actively identifying minimal sets of faulty constraints responsible
for unintended behaviors of a feature model. This way, this approach
helps to accelerate feature model development and evolution processes.

Our software package d2bug_eval implements and evaluates the
performance of DirectDebug. This software can be extended to eval-
uate other consistency-based algorithms, such as conflict detection al-
gorithms and diagnosis identification algorithms. Basic versions of the
software have been applied in the OpenReq project2 in the context of
release planning scenarios [16]. Besides, they have also been adopted
by one international configuration provider and by SelectionArts3 in
constraint-based recommender solutions.

6. Limitation

One limitation of d2bug_eval is related to the support of fea-
ture model formats and used solvers (only the SXFM format [17]
and the Choco Solver [15] are supported in the current version of
d2bug_eval). However, the software can be totally extended to in-
clude further formats and solvers. Another limitation lies in the ability
of the software to be integrated into well-known feature model support
tools, such as FeatureIDE [18]. This integration is essential to increase
the utility of the DirectDebug algorithm as well as its evaluation process.

2 openreq.eu.
3 www.selectionarts.com.
3

https://openreq.eu
http://www.selectionarts.com

V.-M. Le, A. Felfernig, T.N.T. Tran et al. Software Impacts 9 (2021) 100085

M

R

7. Conclusion

In this paper, we proposed a feature model testing and debug-
ging approach that pro-actively supports feature model designers and
accelerate feature model development and evolution processes. We
developed the software package d2bug_eval that can be exploited
by the research community to fully reproduce our work. Future work
includes developing techniques for the automated test case generation
considering different coverage metrics. Besides, we will include feature
model quality metrics to better predict the most relevant diagnoses. Fi-
nally, the software package can be reinforced by integrating additional
functionalities, e.g., new test case generation and other off-the-shelf
solvers supporting other representations of satisfaction problems.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work has been partially funded by the Austrian Research Pro-
motion Agency ParXCel project (880657), and the EU FEDER program

INECO project Ophelia (RTI2018-101204-B-C22).

eferences

[1] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated analysis of feature models
20 years later: A literature review, Inf. Syst. 35 (6) (2010) 615–636, http:
//dx.doi.org/10.1016/j.is.2010.01.001.

[2] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-Oriented Domain
Analysis (FODA) Feasibility Study, Tech. Rep. CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1990.

[3] D. Benavides, A. Felfernig, J.A. Galindo, F. Reinfrank, Automated analysis in
feature modelling and product configuration, in: J. Favaro, M. Morisio (Eds.),
Safe and Secure Software Reuse, Springer Berlin Heidelberg, Berlin, Heidelberg,
2013, pp. 160–175.

[4] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, M. Toro, Automated
error analysis for the agilization of feature modeling, J. Syst. Softw. 81 (6)
(2008) 883–896, http://dx.doi.org/10.1016/j.jss.2007.10.030, Agile Product Line
Engineering.

[5] A. Zeller, Automated debugging: Are we close, IEEE Ann. Hist. Comput. 34 (11)
(2001) 26–31.

[6] U. Junker, QuickXPlain: Preferred explanations and relaxations for over-
constrained problems, in: Proceedings of the 19th National Conference on
Artifical Intelligence, in: AAAI’04, AAAI Press, 2004, pp. 167–172.

[7] J. White, D. Benavides, D. Schmidt, P. Trinidad, B. Dougherty, A. Ruiz-Cortes,
Automated diagnosis of feature model configurations, J. Syst. Softw. 83 (7)
(2010) 1094–1107, http://dx.doi.org/10.1016/j.jss.2010.02.017, SPLC 2008.

[8] R.R. Bakker, F. Dikker, F. Tempelman, P.M. Wogmim, Diagnosing and solving
over-determined constraint satisfaction problems, in: Proceedings of the 13th
International Joint Conference on Artifical Intelligence - Volume 1, in: IJCAI’93,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993, pp. 276–281.

[9] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, Consistency-based diagnosis
of configuration knowledge bases, Artificial Intelligence 152 (2) (2004) 213–234,
http://dx.doi.org/10.1016/S0004-3702(03)00117-6.

[10] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32
(1) (1987) 57–95, http://dx.doi.org/10.1016/0004-3702(87)90062-2.

[11] A. Felfernig, M. Schubert, C. Zehentner, An efficient diagnosis algorithm for
inconsistent constraint sets, Artif. Intell. Eng. Des. Anal. Manuf. 26 (1) (2012)
53–62, http://dx.doi.org/10.1017/S0890060411000011.

[12] L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon, C. Bagley, K. Wolter, Chapter 6
- Configuration knowledge representation and reasoning, in: A. Felfernig, L. Hotz,
C. Bagley, J. Tiihonen (Eds.), Knowledge-Based Configuration, Morgan Kauf-
mann, Boston, 2014, pp. 41–72, http://dx.doi.org/10.1016/B978-0-12-415817-
7.00006-2.

[13] V.-M. Le, A. Felfernig, M. Uta, D. Benavides, J. Galindo, T.N.T. Tran, Direct-
Debug: Automated testing and debugging of feature models, in: Proceedings of
IEEE/ACM 43rd International Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER), in: ICSE-NIER ’21, Association for Computing
Machinery, New York, NY, USA, 2021, pp. 81–85, http://dx.doi.org/10.1109/
ICSE-NIER52604.2021.00025.

[14] S. Segura, J.A. Galindo, D. Benavides, J.A. Parejo, A. Ruiz-Cortés, BeTTy: Bench-
marking and testing on the automated analysis of feature models, in: Proceedings
of the Sixth International Workshop on Variability Modeling of Software-
Intensive Systems, in: VaMoS ’12, Association for Computing Machinery, New
York, NY, USA, 2012, pp. 63–71, http://dx.doi.org/10.1145/2110147.2110155.

[15] C. Prud’homme, J.-G. Fages, X. Lorca, Choco Solver Documentation, TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2016, URL http://www.choco-
solver.org.

[16] A. Felfernig, M. Stetinger, A. Falkner, M. Atas, J. Franch Gutiérrez, C. Palo-
mares Bonache, Openreq: recommender systems in requirements engineering,
in: Proceedings of the Workshop Papers of I-Know 2017: Co-Located with
International Conference on Knowledge Technologies and Data-Driven Business
2017 (I-Know 2017): Graz, Austria, October 11-12, 2017, CEUR-WS. org, 2017,
pp. 1–4.

[17] M. Mendonca, M. Branco, D. Cowan, S.P.L.O.T.: Software product lines online
tools, in: Proceedings of the 24th ACM SIGPLAN Conference Companion on
Object Oriented Programming Systems Languages and Applications, in: OOPSLA
’09, ACM, New York, NY, USA, 2009, pp. 761–762, http://dx.doi.org/10.1145/
1639950.1640002.

[18] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, T. Leich, FeatureIDE:
An extensible framework for feature-oriented software development, Sci. Comput.
Program. 79 (2014) 70–85, http://dx.doi.org/10.1016/j.scico.2012.06.002.
4

http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb2
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb2
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb2
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb2
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb2
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb3
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb3
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb3
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb3
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb3
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb3
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb3
http://dx.doi.org/10.1016/j.jss.2007.10.030
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb5
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb5
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb5
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb6
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb6
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb6
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb6
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb6
http://dx.doi.org/10.1016/j.jss.2010.02.017
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb8
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb8
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb8
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb8
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb8
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb8
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb8
http://dx.doi.org/10.1016/S0004-3702(03)00117-6
http://dx.doi.org/10.1016/0004-3702(87)90062-2
http://dx.doi.org/10.1017/S0890060411000011
http://dx.doi.org/10.1016/B978-0-12-415817-7.00006-2
http://dx.doi.org/10.1016/B978-0-12-415817-7.00006-2
http://dx.doi.org/10.1016/B978-0-12-415817-7.00006-2
http://dx.doi.org/10.1109/ICSE-NIER52604.2021.00025
http://dx.doi.org/10.1109/ICSE-NIER52604.2021.00025
http://dx.doi.org/10.1109/ICSE-NIER52604.2021.00025
http://dx.doi.org/10.1145/2110147.2110155
http://www.choco-solver.org
http://www.choco-solver.org
http://www.choco-solver.org
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb16
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb16
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb16
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb16
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb16
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb16
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb16
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb16
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb16
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb16
http://refhub.elsevier.com/S2665-9638(21)00030-0/sb16
http://dx.doi.org/10.1145/1639950.1640002
http://dx.doi.org/10.1145/1639950.1640002
http://dx.doi.org/10.1145/1639950.1640002
http://dx.doi.org/10.1016/j.scico.2012.06.002

	DirectDebug: A software package for the automated testing and debugging of feature models
	Introduction
	Working example
	Automated debugging
	Software features
	Impact overview
	Limitation
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

