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A B S T R A C T

Complex and large-scale feature models can become faulty, i.e., do not represent the expected variability
properties of the underlying software artifact. In this paper, we propose the DirectDebug algorithm that
supports the automated testing and debugging of variability models. Our approach assists software engineers
in identifying an adaptation hint (diagnosis) that makes all test cases consistent with the knowledge base.
We also develop the software package so-called d2bug_eval to evaluate the DirectDebug’s performance. The
software package can be re-produced thoroughly to evaluate consistency-based algorithms.
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1. Introduction

The development of feature models [1,2] has to be pro-actively
supported by intelligent debugging mechanisms that detect unexpected
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behaviors of a feature model knowledge base (e.g., misinterpretations
in domain knowledge communication, modeling errors, or outdated parts of
a knowledge base [3–5]). The existing literature has witnessed a few ap-
proaches supporting such mechanisms [5–7]. For instance, Junker [6]
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Fig. 1. (a) An example of a survey software feature model and (b) generated constraints from the model.

ntroduces an algorithm to identify conflicts in a knowledge base re-
ponsible for inconsistencies. Conflicts are the basis for follow-up di-
gnosis operations that help to resolve these conflicts [4,8–10]. A
iagnosis entails a set of elements of a knowledge base that have to be
dapted/deleted to restore consistency. To improve the performance of
iagnosis approaches, the idea of direct diagnosis was proposed [11],

which supports diagnosis calculation without predetermining conflicts.
In this paper, we propose the DirectDebug algorithm extending the direct
diagnosis approach for supporting the automated testing and debugging
of variability models [11]. Our approach considers a set of test cases at
the same time, i.e., a diagnosis represents an adaptation proposal that
makes all of the given test cases consistent with the knowledge base.

2. Working example

To illustrate our approach, we use an example of a presumably
faulty feature model from the domain of software services supporting the
creation and management of surveys (see Fig. 1a). A corresponding CSP1-
based representation of a feature model configuration task (𝐹 ,𝐷, 𝐶 =
𝐶𝐹 ∪ 𝐶𝑅) can be generated [12], where 𝐹 is the set of features and
each feature has a specified domain 𝑑𝑖 = {(𝑡)𝑟𝑢𝑒, (𝑓 )𝑎𝑙𝑠𝑒} (𝑑𝑖 ∈ 𝐷), 𝐶𝐹
consists of constraints of the feature model (see Fig. 1b), and 𝐶𝑅 refers
to user requirements.

3. Automated debugging

Test cases are used to induce conflicts in the feature model. There
are two types of test cases [9]. (1) Positive test cases (𝑡𝑖 ∈ 𝑇𝜋) specify
ntended behaviors of a knowledge base, i.e., at least one configuration
s consistent with 𝑡𝑖. (2) Negative test cases (𝑡𝑖 ∈ 𝑇𝛩) specify unintended

behaviors of a knowledge base, i.e., there should not exist any configu-
ration consistent with 𝑡𝑖. These test cases are integrated in negated form
into the background knowledge. For details of the test case generation,
we refer to [13].

A diagnosis (𝛥) includes constraints responsible for the faulty behav-
ior of a feature model (see [13]). Such constraints have to be deleted or
adapted to make the feature model consistent with 𝑇𝜋 . Table 2 shows
two options of deleting/adapting the constraints in 𝐶𝐹 such that the
consistency between the feature model (Fig. 1a) and test cases {𝑡1..𝑡4}
(Table 1) is restored.

DirectDebug (see Algorithm 1) is activated with the diagnosis can-
didates 𝐶 ⊆ 𝐶𝐹 ⧵ {𝑐0} and the background knowledge 𝐵 = 𝐶𝐹 ⧵ 𝐶 ∪
{𝑐0}∪𝑇 −

𝛩 . 𝑇 −
𝛩 represents a conjunction of negative test cases (in negated

orm) which are assumed to be consistent with 𝐶 ∪ 𝐵. 𝑇𝜋 , in the first
irectDebug call, represents test cases that are inconsistent with 𝐶 ∪𝐵.
he algorithm returns an 𝑀𝑆𝑆 - 𝛤 (Maximum Satisfiable Subset —
ee Definition 3 in [13]), a corresponding diagnosis is 𝐶 ⧵ 𝛤 . If 𝐶𝐹
s diagnosed as a whole, then 𝐶 = 𝐶𝐹 ⧵ {𝑐0} and 𝐵 = {𝑐0} ∪ 𝑇 −.
efore starting DirectDebug, all 𝑡𝑖 in 𝑇𝜋 and 𝑇𝛩 have to be checked for
onsistency with 𝐶 ∪ 𝐵. IsConsistent checks if the constraints in 𝐶 ∪ 𝐵

1 CSP — Constraint Satisfaction Problem.

Table 1
Example positive test cases 𝑇𝜋 = {𝑡1 ..𝑡4} and corresponding conflicts identified by
QuickXPlain [6]. Without losing generality, we assume negative test cases 𝑇𝛩 = ∅.

ID Test case (Constraint) Corresponding conflicts

𝑡1 𝑛𝑜𝑙𝑖𝑐𝑒𝑛𝑠𝑒 = 𝑡 {𝑐2 , 𝑐8}
𝑡2 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 = 𝑡 ∧ 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 = 𝑓 {𝑐2 , 𝑐7}
𝑡3 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑓 {𝑐1}
𝑡4 𝑠𝑖𝑛𝑔𝑙𝑒𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑓 ∅

Table 2
Example diagnoses 𝛥1 = {𝑐1 , 𝑐2} and 𝛥2 = {𝑐1 , 𝑐7 , 𝑐8}.

Diagnosis 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8
𝛥1 × × – − – − – –
𝛥2 × – − – − – × ×

are consistent with the individual test cases in 𝑇𝜋 . This function returns
true if every test case in 𝑇𝜋 is consistent with 𝐶 ∪ 𝐵. Only test cases
inducing an inconsistency with 𝐶 ∪𝐵 are returned in 𝑇 ′

𝜋 (the remaining
inconsistent positive test cases). A consistency check is only activated if
𝛿 ≠ ∅ (𝛿 = ∅ indicates that 𝐶 has already been checked for consistency
with 𝐵).
Algorithm 1 DirectDebug(𝛿, 𝐶 = {𝑐1..𝑐𝑛}, 𝐵, 𝑇𝜋 ) ∶ 𝛤

1: 𝑇 ′
𝜋 ← 𝑇𝜋

2: if 𝛿 ≠ ∅ ∧ IsConsistent(𝐶 ∪ 𝐵, 𝑇𝜋 , 𝑇 ′
𝜋 ) then

3: return(𝐶)
4: end if
5: if |𝐶| = 1 then
6: return(∅)
7: end if
8: 𝑘 = ⌊

𝑛
2 ⌋

9: 𝐶1 ← 𝑐1...𝑐𝑘; 𝐶2 ← 𝑐𝑘+1...𝑐𝑛;
10: 𝛤2 ← DirectDebug(𝐶1, 𝐶1, 𝐵, 𝑇 ′

𝜋 );
11: 𝛤1 ← DirectDebug(𝐶1 − 𝛤2, 𝐶2, 𝐵 ∪ 𝛤2, 𝑇 ′

𝜋 );
12: return(𝛤1 ∪ 𝛤2)

An execution trace of DirectDebug is shown in Fig. 2. DirectDebug
follows a divide & conquer approach. In each recursive call, it searches
for positive test cases that are inconsistent with 𝐶 ∪ 𝐵. If there is only
one constraint 𝑐𝑖 in the consideration set 𝐶 (|𝐶| = 1) and at least one
test case 𝑡𝑗 where inconsistent({𝑡𝑗} ∪𝐶 ∪𝐵), then 𝑐𝑖 is considered a part
of a diagnosis 𝛥. If consistent({𝑡𝑖}∪𝐶∪𝐵), ∀{𝑡𝑖} ∈ 𝑇𝜋 , then 𝐶 is returned
since no diagnosis elements can be found in 𝐶. DirectDebug returns a
MSS (𝛤 = {𝑐2..𝑐6}). The corresponding minimal diagnosis 𝛥 is 𝐶 ⧵ 𝛤
(𝛥 = {𝑐1, 𝑐7, 𝑐8}).

4. Software features

We developed a Java-based software package so-called
d2bug_eval to evaluate the performance of DirectDebug and to sup-
port the reproducibility of the DirectDebug evaluation process.
2
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Fig. 2. DirectDebug execution trace for 𝐶 = {𝑐1 ..𝑐8}, 𝐵 = {𝑐0}, and 𝑇𝜋 = {𝑡1 ..𝑡3}.

Fig. 3. The flowchart of d2bug_eval where five steps of the DirectDebug evaluation process are performed.

Table 3
An example of the run-time performance (in msec) of DirectDebug after three iterations.
n each |𝐶𝐹 | variant, we generated 3 feature models. In total, there were 378
3feature models × 6 |𝐶𝐹 | × 7 |𝑇𝜋 | × 3) selected test-case scenarios.
|𝑇𝜋 | |𝐶𝐹 |

10 20 50 100 500 1000

5 0.1 0.4 1.1 2.4 24.8 114.0
10 0.2 0.5 1.8 4.3 35.4 170.4
25 0.6 1.3 4.3 11.7 108.1 375.5
50 1.0 2.3 7.9 22.7 241.6 695.5
100 1.9 4.5 14.7 38.8 449.0 1251.5
250 6.6 11.2 32.4 90.4 1191.3 2877.9
500 20.3 24.2 60.3 158.2 2338.1 5680.1

d2bug_eval can be easily integrated into external projects and com-
patible with different platforms (e.g., Windows, Linux, and macOS).
Moreover, it is self-contained, which performs five steps of the Di-
rectDebug evaluation process (see Fig. 3). In Step 1, feature models
are generated randomly using BeTTy [14] and then translated into
constraints in Choco Solver [15]. Step 2 generates a test suite for each
feature model consisting of five types of test cases: dead features, false
optional, full mandatory, false mandatory, and partial configuration.
In Step 3, test cases of each test suite are classified into violated and
non-violated test cases. In Step 4, the program selects test-case scenarios
where the ratio of violated test cases to non-violated test cases is a
specific number predetermined by the user . The number of scenarios
is selected depending on the combination of the number of constraints
|𝐶𝐹 | and the number of test cases |𝑇𝜋 |. For each combination, the
average run-time will be calculated (in Step 5) when a specific number
of iterations (|𝑖𝑡𝑒𝑟|) is reached. Finally, in Step 5, the program calculates
the average run-time of DirectDebug, shown in each cell of Table 3.

In addition to the reproducibity and the self-contained ability,
d2bug_eval shows also the parametricity that provides a wide range
of parameters (e.g., |𝐶𝐹 |, |𝑇𝜋 |, |𝑖𝑡𝑒𝑟|, %𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑∕𝑛𝑜𝑛-𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑) in order
to facilitate the customization of the evaluation process.

Structurally, d2bug_eval consists of three sub-packages: Fea-
ture Model, MBDiagLib, and Debugging. Feature Model reads

feature model files and supports feature model generation and feature
model statistics. MBDiagLib provides (1) an abstract model to hold
variables and constraints, (2) an abstract consistency checker for under-
lying solvers, (3) a Choco consistency checker using Choco Solver [15],
and (4) functions to measure the performance of algorithms in terms
of run-time or the number of solver calls. Debugging provides com-
ponents w.r.t. test-cases management, the DirectDebug implementation,
a debugging model with test-cases integration, and debugging-related
applications (e.g., test suite generation, test cases classification, and test
case selection).

5. Impact overview

DirectDebug [13] is a practical approach to assist software engineers
in pro-actively identifying minimal sets of faulty constraints responsible
for unintended behaviors of a feature model. This way, this approach
helps to accelerate feature model development and evolution processes.

Our software package d2bug_eval implements and evaluates the
performance of DirectDebug. This software can be extended to eval-
uate other consistency-based algorithms, such as conflict detection al-
gorithms and diagnosis identification algorithms. Basic versions of the
software have been applied in the OpenReq project2 in the context of
release planning scenarios [16]. Besides, they have also been adopted
by one international configuration provider and by SelectionArts3 in
constraint-based recommender solutions.

6. Limitation

One limitation of d2bug_eval is related to the support of fea-
ture model formats and used solvers (only the SXFM format [17]
and the Choco Solver [15] are supported in the current version of
d2bug_eval). However, the software can be totally extended to in-
clude further formats and solvers. Another limitation lies in the ability
of the software to be integrated into well-known feature model support
tools, such as FeatureIDE [18]. This integration is essential to increase
the utility of the DirectDebug algorithm as well as its evaluation process.

2 openreq.eu.
3 www.selectionarts.com.
3

https://openreq.eu
http://www.selectionarts.com


V.-M. Le, A. Felfernig, T.N.T. Tran et al. Software Impacts 9 (2021) 100085

M

R

7. Conclusion

In this paper, we proposed a feature model testing and debug-
ging approach that pro-actively supports feature model designers and
accelerate feature model development and evolution processes. We
developed the software package d2bug_eval that can be exploited
by the research community to fully reproduce our work. Future work
includes developing techniques for the automated test case generation
considering different coverage metrics. Besides, we will include feature
model quality metrics to better predict the most relevant diagnoses. Fi-
nally, the software package can be reinforced by integrating additional
functionalities, e.g., new test case generation and other off-the-shelf
solvers supporting other representations of satisfaction problems.
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