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Abstract. Topology plays an important role in computer vision by cap-
turing the structure of the objects. Nevertheless, its potential applications
have not been sufficiently developed yet. In this paper, we combine the
topological properties of an image with hierarchical approaches to build a
topology preserving irregular image pyramid (TIIP). The TIIP algorithm
uses combinatorial maps as data structure which implicitly capture the
structure of the image in terms of the critical points. Thus, we can achieve
a compact representation of an image, preserving the structure and topol-
ogy of its critical points (maxima, the minima and the saddles). The par-
allel algorithmic complexity of building the pyramid is O(log d) where d is
the diameter of the largest object. We achieve promising results for image
reconstruction using only a few color values and the structure of the image,
although preserving fine details including the texture of the image.

1 Introduction

Critical points and curves connecting them are an effective means of commu-
nicating topological information, which governs the structure of an image. An
image compact representation can be achieved by using a surface topology based
data structure as mentioned in [11]. For example, Nackman in [17] represented
a surface in form of graphs of critical points, subdividing the surface into slope
districts. Other approaches include: Reeb graphs [21], hierarchical decomposition
of Morse-Smale complexes into piecewise linear 2-manifolds [9].

Compact representation has become necessary with the increase of digital
data, resulting in down-sampling for compactness and up-sampling for sur-
face reconstruction/approximation. Gaussian and Laplacian pyramids [6] are the
most basic regular image pyramid methods. Irregular sampling and image pyra-
mids are an excellent tool for topological representation. Cerman et al., in [7],
developed a topology-based image segmentation algorithm. In [18], Maia et al.
use hierarchical watershed for image segmentation. The most common method
for topology simplification using graph representation is by repeated applica-
tion of the fundamental operation edge contraction [12]. Simplification of data
is broadly divided into two major types: the topological simplification and the
geometric simplification. Persistence measure is the most famous technique used
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in 2D to decide the priority for simplification [4,10]. For example, in [28], an effi-
cient image down-sampling and up-sampling technique based on interpolation is
developed. Other approaches include [8] and [13]. Besides down-sampling, up-
sampling is equally important for applications like image super-resolution, image
enhancement and denoising. In [22], the anchored neighborhood regression for
learning-based super-resolution is used. Other related researches related to image
super-resolution using simple functions are [25] and [26].

Motivation and Contribution: In this paper, we propose a Topology-
preserving Irregular Image Pyramid (TIIP) algorithm and a hierarchical method
to build an irregular image pyramid that preserves the critical points and their
connections. For a surface, the topology of its contours changes at the function
values of its critical points. For example, the surface contours will collapse to a
point at a non-degenerated extremum and multiple contours will intersect at a
saddle point. Therefore, we preserve the critical points and their function values
to preserve the topology of an image. The algorithm operates on combinatorial
maps [5] which implicitly encode the structure of the image on the higher level
of the pyramid with a compact representation. The use of combinatorial maps
supports parallel processing [23] with time complexity of O(log(d)), where d is
the diameter of the longest object in the image. The approach is reinforced by a
concrete theory of cellular decomposition into cells called slope regions1 [2,15].
The TIIP algorithm is explained in two distinct algorithms: (a) the bottom-
up construction of the pyramid (REDUCE) and (b) the top-down expansion of
the higher level of the pyramid (EXPAND), terminologies as introduced in [6].
The TIIP algorithm achieved a perceptually superior reconstruction especially
in the focused region and preserved the texture information maintaining struc-
ture and features similar to the original image. Thus an image can be efficiently
reconstructed by its structure and a few colors.

This paper is organized as follows: Sect. 2 introduces the basic definitions and
terminologies required together with the proposed TIIP algorithm. In Sect. 3, we
show results for image reconstruction and its comparison with other algorithms.
In Sect. 4, we end with some conclusions and future work.

2 Reduce and Expand Operations in the TIIP Algorithm

We introduce now a method to efficiently build an irregular image pyramid which
preserves structural and topological information. We first explain the bottom-
up REDUCE operation (TIIP Algorithm 1) for building the topology preserving
image pyramid. Later, the top-down EXPAND operation is explained, depending
on the application: (1) image segmentation and (2) image recovery.

A discrete 2D image P where the gray value of a pixel p is denoted by g(p),
can be represented as a 4-neighborhood graph G0(V,E). The labels of a segmen-
tation are often stored in form of a label image where each region has a distinct

1 Slope regions are the surfaces in which every pair of points can be connected by a
monotonic curve.
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label. The adjacencies of the regions are described by the region adjacency graph
(RAG) G = (V,E). Taking every pixel of the image as a (smallest) region, the
neighborhood graph can also be interpreted as a RAG. Every pixel p in the
image P corresponds to a vertex v ∈ V with gray value g(v) := g(p). Vertex v is
connected to its adjacent vertices2 by edges of G, being the degree of v, denoted
by degree(v), the number of edges incident to v. An edge e ∈ E is a boundary
edge if e is in the border of the unbounded face. The endpoints of a boundary
edge are boundary vertices. The orientation of an edge e = (v, w) ∈ E is directed
from vertex v ∈ V to vertex w ∈ V iff g(v) > g(w). When g(v) = g(w), the
edge e is not oriented. The weight of edge e is its contrast g(v) − g(w). A con-
nected subgraph of G having the same gray value for all the vertices is referred
to as a plateau region where every pair of vertices v, w ∈ V of the subgraph
satisfies g(v) = g(w). A path π(v1, v2, . . . , vr) = (Vπ, Eπ) is a non empty sub-
graph of G, where Vπ = {v1, v2, . . . , vr} ⊆ V and Eπ = {(v1, v2), (v2, v3), . . . ,
(vr−1, vr)} ⊆ E. The path π is monotonic if all the oriented edges of Eπ have
the same orientation, e.g. from v1 to vr or from vr to v1. The path π is a level
curve if g(vi) = g(vi+1) for all i. A level curve can be a part of monotonic paths.
A face is a slope region if the edges in its border can be divided in two disjoint
sets forming two monotonic paths with same orientation.

The orientation of edges can be used to categorize a vertex v ∈ V into
critical (maximum, minimum, saddle), or non-critical (slope). A vertex v ∈ V
is a local maximum (2-max) if all the edges incident to v are oriented outwards.
Analogously, a boundary vertex v ∈ V is a local boundary maximum (1-max)
if the two boundary edges incident to v are oriented outwards. A vertex v ∈ V
is a local minimum (2-min) if all the edges incident to v are oriented inwards.
Analogously, a boundary vertex v ∈ V is a local boundary minimum (1-min)
if the two boundary edges incident to v are oriented inwards. A vertex v ∈ V
is a degenerated critical vertex if all the edges incident to v are non-oriented. A
non-boundary vertex v ∈ V is a slope vertex if there are exactly two changes
in the orientation of edges incident to v, when traversed circularly (clockwise
or counter-clockwise direction). In this case, a slope vertex is a singular slope
vertex if all the oriented edges incident to v have the same orientation except
one. Otherwise, it is a regular slope vertex. Observe that degenerated critical
vertices always belong to plateau regions. A boundary vertex that is neither a
local boundary maximum nor a local boundary minimum is considered a singular
slope vertex. A vertex v ∈ V is a saddle vertex if it is not a local maximum, nor
a local minimum, neither a plateau nor a slope vertex.

REDUCE Operation. It basically comprises edge contraction [14] and edge
removal operations on the graph G0, forming a graph pyramid. Significance of
steps in Algorithm 1 (the enumerations are correlated to the algorithm step
numbers).

2 N (v) denotes the set of vertices adjacent to v.
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Algorithm 1. Topology preserving Irregular Image Pyramid
1: Input: A digital image P .
2: Initialize: Generate the 4-connected neighborhood graph G0.
3: Insertion of hidden saddle vertices.
4: Contraction of level curves connecting boundary vertices.
5: Contraction of plateau regions.
6: Categorising the vertices into critical and non-critical.
7: Replicating regular slope vertices.
8: while #non-critical vertices > 0 do
9: if #regular slope vertices > 0 then

10: replicate regular slope vertices.
11: end if
12: I. Select contraction kernel giving priority to edges with lowest weight.

II. Decide surviving vertices for edges connecting:
(a) non-critical - non-critical vertices.
(b) critical - non-critical vertices.

13: Edge contraction
14: Reduction function: Recomputing the edge weights.
15: Simplification: Edge removal such that the resulting region is a slope region.
16: end while
17: Contraction of edges connecting critical vertices (if required).
18: end

Fig. 1. Inserting a hidden saddle.

3. Insertion of Hidden Saddle Vertices:
If π = (Vπ, Eπ) being Vπ = {a, b, c, d} and
Eπ = {(a, b), (b, c), (c, d), (d, a)}, is a closed
path of G0, satisfying that g(a) < g(b), g(a) <
g(d), g(c) < g(b) and g(c) < g(d), then a new
vertex r called hidden saddle vertex together
with edges (r, a), (r, b), (r, c), (r, d) are added
to the RAG (see Fig. 1) with a new gray value
max(g(a), g(c)) < g(r) < min(g(b), g(d)) (see [7,16]).

4. Contraction of Level Curves Connecting Boundary Vertices:

(a) original (b) desirable (c) undesirable

Fig. 2. A plateau region and two contractions of it.

The shaded region in
Fig. 2.a exhibits a plateau
region. It connects two
disconnected parts of the
image boundary. In such
cases, contracting the plat-
eau region will result into
partitioning the image into
two regions connected through a single cut vertex as shown in Fig. 2.c. This result
is undesirable because the connections of all the vertices through the plateau
region is now concentrated in a single vertex and then the disconnected parts of
the image boundary are now connected. To avoid such undesirable occurrences,
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we first contract the level curves on the boundary and then proceed by contract-
ing the plateau region not allowing any two remaining vertices on the boundary
to be contracted. The resulting level, curve showed in Fig. 2.b, preserves the
connection through the plateau region.

5. Contraction of Plateau Regions: In this step (which is similar to the
superpixel hierarchy), we cluster the vertices with the same attribute (gray value)
and represent them by a single vertex. Details of the contraction of plateau
regions spread across the image are explained in [3, Section 2.1]. In the case of
binary images and segmented images, this step usually contains the maximum
number of edge contractions and will result in a connected component labelling.

6. Categorising the Vertices into Critical and Non-critical: To preserve
the topological properties, it is important to categorize the vertices into critical
(local maximum, local minimum, saddle) and non-critical (slope) vertices. This
step is executed after the contraction of plateau regions so that we avoid the
misclassification of the degenerated critical vertices. We use the orientation of
the edges incident to a vertex to categorize it as mentioned in Sect. 2.

7. Replicating the Regular Slope Vertices: The replication operation of a
regular slope vertex v consists of an edge de-contraction [23], i.e., replacing v by
an edge e with endpoints x and y having the same gray value than v (the edges
incident to v being now incident to one of the two endpoints of e) followed by the
removal of e. After the replication operation of v, the two vertices x and y are
also slope vertices with lower degrees. The process is repeated until all regular
slope vertices become singular slopes vertices.

12. I. Select the Contraction Kernel: With combinatorial maps as the data
structure, we can contract multiple edges in parallel, as a result of which we can
have larger contraction kernels consequently lowering the height of the pyramid.
The constraints for computation of the contraction kernels is application depen-
dent. For the contraction process, this paper gives priority to the edges with the
lower edge weight. This constraint can be included in the computation of the
contraction kernel. Contraction of edges with lower weights preserves the high
frequency components of the data preserving sharp edges and contours.

12. II. Decide Surviving Vertices: Below are the few aspects which we take
into account before the edge contraction operation:

(a) To guarantee that critical vertices are preserved and that the vertices do
not change from critical to non-critical or vice-versa, an edge is selected for
contraction if it is incident to a singular slope vertex v and have a different
orientation than the rest of the edges incident to v.

(b) Before contraction of an edge connecting a critical and a non-critical vertex,
we mark the critical vertex as the surviving vertex and the non-critical vertex
as the non-surviving vertex.

(c) Before contraction of an edge connecting two non-critical vertices, decision
of the surviving and the non-surviving vertex is rather application depen-
dent. For example, in the case of Connected Component Labelling (CCL) of
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a binary image, it is not significant to categorize the surviving and non-
surviving vertices. In contrast, for visualization and analysis, the vertex
closer to the centroid (visual center for concave polygon) would be the surviv-
ing vertex. As a result the vertex corresponding to the centroid will represent
the segment.

13. Edge Contraction: In this step, we contract the edges selected in step 12
of Algorithm 1. Given an edge e connecting two vertices s, n of a RAG Gk =
(Vk, Ek), the contraction of e will result in merging the survivor vertex s and the
non-survivor vertex n (see [14]). After the contraction of e, all the edges, except
e, previously incident to vertex n will now be incident to vertex s in graph Gk+1.

14. Reduction Function: It computes the weights of the edges previously
connected to the non-surviving vertices. While contracting an edge e = (s, n),
where s is a surviving vertex and n is a non-surviving vertex, if s is critical, we
preserve the gray value of s; if s is non-critical, we compute the gray value of s
by g(s): max{g(n) ≤ g(s)|n ∈ N (s)} ≤ g(s) < min{g(n) > g(s)|n ∈ N (s)}.

15. Simplification: The simplification operation removes the redundant edges
(merging the two respective faces sharing the same edge) which leads to an
increase in the degree of the faces in the RAG. The empty self-loops3 are always
removed. In [3], a more generalized version of of this step is shown. Edge removal
simplifies the graph for visualization and also eliminates the redundant informa-
tion. We do not remove boundary edges to preserve the image boundary.

17. Contraction of Edges Connecting Critical Vertices: Unlike edge con-
traction mentioned in steps 4, 5 and 13 of Algorithm 1, in this step we contract
the edges connecting the critical vertices. It is usually observed in a natural
image that approximately 30% of the total vertices at the base level of the
image pyramid are critical. For further reduction in information, we need to
contract edges connecting critical vertices, and this may affect the topology of
the data. The selection criteria for the contraction kernel depends on the applica-
tion. For example: if the given image is noiseless and smooth and the application
is segmentation, then the contraction of edges with lower weight is preferred. In
contrary, if the input is a natural image with salt and pepper noise, then the
edges with higher weight are preferred. Topological persistence can be used for
the selection process [10].

Fig. 3. Base and top level of a pyramid.

Graph of Critical Vertices Only: All
the faces in a RAG are slope regions.
Besides, faces after edge contraction,
edge removal and vertex replication con-
tinue to be slope regions. At the end
of the process, only critical vertices sur-
vive as the following result states. See the
naive example showed in Fig. 3.

3 An empty self-loop is a self-loop that does not encapsulate a subgraph inside.
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Theorem 1. Algorithm 1 (without step 17) computes a graph pyramid with the
property that all the vertices on the top are critical and the number of critical
vertices is constant along the pyramid after plateaus are contracted.

Proof. Let us prove that critical vertices are preserved in the all pyramid. Basi-
cally, there are three steps applied recursively to compute the graph pyramid,
namely, regular slope vertices replication, edge contraction (step 13) and simplifi-
cation. Let us see that these operations do not modify the critical vertices. With
edge contraction, the number of slope vertices is reduced, and hence, critical
vertices are not modified. With simplification, which is an edge removal between
two vertices which are not both critical, the degree of the two endpoints of the
removed edge decreases, with the possibility that such vertices change their cat-
egory to singular slope vertices and they can be removed in the next step in the
contraction process. With the replication process, which is applied on regular
slope vertices only and it does not modify critical vertices, a regular slope vertex
is divided in two slope vertices. It increases the number of slope vertices but
reduces their degrees (recall that the incident edges connected to the regular
slope vertex before the replication process are later distributed between the two
new slope vertices). Therefore a new singular slope can show up and be removed
in the next contraction step. Observe that given a regular slope vertex v, if n
edges incident to v are oriented inwards and m edges incident to v are oriented
outwards with n < m, then the replicating process can be applied n−1 times to
obtain n singular slope vertices that are contracted in the next step. Let Fk be
the number of edges of Gk with at least one endpoint being non-critical. Observe
that to obtain Gk+1, the replication process does not increase Fk whereas the
contraction process reduces Fk to one unit for each singular slope vertex. There-
fore, Fk+1 < Fk and the process finishes when there are no edges in the graph
with at least one endpoint being non-critical, then the graph has only critical
vertices and they are the original critical vertices because the applied operations
did not modify them during all the process. �
EXPAND Operation: In contrast to the REDUCE operation, in the EXPAND
operation, we project the information from the higher level to the lower level
of the pyramid. After eliminating the inserted hidden saddles (introduced in
step 3 of Algorithm 1), the RAG can be reconverted into a reconstructed image.
For the purpose of image reconstruction, we aim to reconstruct a perceptually
superior image with a high structural similarity as compared to the original
image. For the EXPAND operation, we define edge de-contraction and insertion
[7] which are the inverse operations for edge contraction and removal used in
the REDUCE operation. The top level of the pyramid conceives all the critical
vertices (as proved in Theorem 1) and the monotonic paths connecting critical
vertices. Knowing the fact that the monotonic paths are bounded by the critical
vertices, the monotonic path connecting two critical vertices can be interpolated
between the intensity range of the two critical vertices for promising recon-
structed images. To further reduce the error, the weights of the contracted edges
can be stored externally for a perfect reconstruction of an image as explained



372 D. Batavia et al.

in Burt’s Laplacian pyramid [6]. Certainly there is a trade-off between accuracy
and required memory.

3 Experiments and Results

In this section we analyse the performance of our TIIP algorithm for image
reconstruction and compare it with the state-of-art CNN models for image super-
resolution. Since super resolution algorithms are tested by first down-scaling the
image through the regular pyramids and then up-scaling, it was closest to the
application of image reconstruction mention in this paper. Hence the TIIP algo-
rithm is compared with the super resolution algorithms. The methods for com-
parison include RCAN [29], DRLN+ [1], A+ANR [22], and EnhanceNet [20]. For
evaluations of a (regular grid based) down-scaling factor of 3× was adopted and
the parameters used in [1,22] are untouched. For TIIP algorithm, the irregular
pyramid was constructed until the surviving vertices were approximately 33%
of the total number of pixels in the original image. In this paper we have cho-
sen minimal contrast as the criteria for selection of the contraction kernels. The
chosen reduction function preserves the contrast between the endpoints of the
surviving edges. This choice preserves the critical vertices and the topology of
the image. The image was reconstructed by implementing the EXPAND oper-
ation on the reduced graph and the pixel intensity (RGB) information of the
surviving vertices only.

The algorithms were tested on all the 100 images of BSD100 - Berkeley
segmentation data set [19] which is widely used publicly available data set for
various image processing and computer vision tasks. For quality assessments,
we used Structural Similarity Index Measure (SSIM) [24] and Feature Similarity
Index Measure (FSIM) [27] which are perceptual metric based on the visible
structures in the image. In contrast to these assessment, to measure the global
degradation of image, we calculated Peak Signal to Noise Ratio (PSNR). Table 1
is showed to communicate the advantages of preserving the structural properties
through irregular pyramids over regular pyramids4.

Table 1. Quality assessment of reconstructed images on BSD100 (3×).

Quality measure\
method

A+ANR [22] EnchanceNet [20] RCAN [29] DRLN+ [1] TIIP

SSIM 0.75 0.73 0.811 0.812 0.92

FSIM 0.86 0.84 – – 0.93

PSNR 26.64 27.50 29.3 29.4 36.26

The example Leopard and Horses in Fig. 4 clearly shows that TIIP success-
fully preserves the high frequency texture information, such as the thin lines
4 Quality measures of RCAN and DRLN+ algorithms are not given because the code

did not compile. The FSIM measures are not mentioned in [1,29].
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Original image A+ANR[22] EnhancedNet[20] TIIP (ours)
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Fig. 4. For each image, original (from BSD 100) and reconstructed images from
A+ANR [22], EnhanceNet [20] and TIIP algorithms with their zoom visuals.

due to hairs and the fencing. While, in the example of Penguin there appears
pastelized especially in the smooth areas where the focus is lower. The results
are also reflected in the Table 1 which shows that TIIP algorithm successfully
preserves the structure and the features of the image.

Observations from the Experiments: 1. Irregular pyramids are more suitable to
preserve and analyse the structural information of the image compared to regular
pyramids. In contrary, low resolution images cannot be displayed properly since
a non-grid graph is used to represent the image. 2. The TIIP algorithm performs
better on images (or patch of image) with high texture, because they contain
a higher number of critical points which are preserved by TIIP. In contrary,
there is a considerable amount of perceptual inconsistencies in smooth regions
of images which are out of focus. The inconsistent regions are usually comprised
of the background and homogeneous regions of an image.

4 Conclusions and Future Work

The most important steps, controlling the hierarchy in the proposed algorithm,
are the selection of the contraction kernels and the choice of the reduction func-
tion. In this paper, we have chosen minimal contrast for selecting the contrac-
tion kernels. The chosen reduction function preserves the contrast between the
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endpoints of the surviving edges. This choice allows us to preserve the criti-
cal vertices and the topology of the image. As a result, the algorithm generates
superior results by reconstructing the fine details and the high frequency texture
information of the image, which is typically lost after smoothing. Thus an image
is equivalent to the combination of its structure and few colors. The hierarchy
provides a (multi-resolution) structural overview of the image.

Future work includes speeding up the algorithm by implementing it on a
GPU. We also plan to derive application-specific constraints and combine them
with the TIIP algorithm to achieve better results for image segmentation, con-
nected component labelling, etc. By merging machine learning with the TIIP
algorithm, we anticipate learning the edge weights corresponding to the edges
and derive a promising contraction and removal kernel, thereby achieving even
better application-specific results.
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