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Editorial on the Research Topic

The Role of Flower Color in Angiosperm Evolution

Although angiosperms exhibit a wide range of variability in floral traits such as shape and size,
flower color is a hallmark of angiosperm diversity. Since before Darwin’s time, flower color has long
been appreciated for its role in pollinator attraction (Sprengel, 1793; Mendel, 1866; Darwin, 1895;
Faegri and van der Pijl, 1966; Proctor and Yeo, 1973). However, over the past few decades, a growing
body of evidence suggests that flower color can be molded by a diversity of selective pressures. The
rapid accumulation of flower color studies has spurred several thorough reviews (Winkel-Shirley,
2001; Koes et al., 2005; Rausher, 2008; Sobel and Streisfeld, 2013; Narbona et al., 2018; Sapir et al.,
2021), but here we present the largest collection of investigations specifically focused on the role of
flower color in angiosperm evolution.

This Research Topic is composed of 28 studies on the role of flower color in angiosperm
evolution. These contributions include species living on nearly all continents plucked from most
major branches of the angiosperm tree of life (Figure 1). Investigations span traditional scales in
biology, from gene expression and biochemical profiles to pollinator perception and community
assembly. Evolutionarily, studies range from within species flower color polymorphisms to
macroevolutionary patterns of flower color evolution within and among genera. Ecologically,
investigations span a diversity of plant communities including neotropical savannas, temperate
serpentine seeps, subtropical mountains, and tropical dry forests.

Fundamentally, flower color depends on the underlying pigments and recent studies have begun
to decipher the genetic basis of this pigment production. The most prevalent and variable pigments
in flowers are the anthocyanins, which originate from the flavonoid biosynthetic pathway (Tanaka
et al., 2008). Branches of this pathway produce other flavonoid compounds (e.g., flavonols, flavones,
isoflavones, proanthocyanins, and catechins) that protect plants against a variety of environmental
stressors such as pathogens, herbivores, drought, extreme temperatures, ultraviolet (UV) radiation,
etc. (Pollastri and Tattini, 2011; Falcone Ferreyra et al., 2012; Jiang et al., 2016). Thus, certain floral
colors not only affect pollinator attraction (or avoidance), but may also determine resistance to
biotic and abiotic stresses (Strauss and Whittall, 2006; Landi et al., 2015).
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FIGURE 1 | Examples of species included in our Research Topic “The Role of Flower Color in Angiosperm Evolution.” (A) Senna rugosa (Fabaceae) using UV (left) and

conventional photography (right) (Brazil, Mariah di Stasi). (B) Flower color variation in Campanula americana (Campanulaceae, USA, Matthew Koski). (C) Aristolochia

fimbriata (Aristolochiaceae, Colombia, Natalia Pabón-Mora). (D) Jaborosa rotacea (Gesneriaceae, Argentina, Marcela Moré). (E,F) White and pink flowers of Silene

littorea plants (Caryophyllaceae, Spain, Eduardo Narbona). (G,H) Potentilla plattensis and Argentina anserine (Rosaceae, USA, Matthew Koski). (I) Gentiana

flavomaculata (Gentianaceae, Taiwan, Chun-Neng Wang). (J) Caladenia fulva (Orchidadeae, Australia, Ann Lawrie). (K,L) Flower color morphs of Erythranthe discolor

(Phrymaceae, USA, Naomi Fraga and Dena Grossenbacher). (M,N) Flower color morphs of Mandevilla sanderi (Apocynaceae, The Netherlands, Doekele Stavenga).

(O) Meconopsis horridula (Papaveraceae, China, Anke Jenstsch). (P) Caladenia caerula (Orchidaceae, Australia, Mani Shrestha). (Q) Lobelia rhombifolia

(Campanulaceae, Australia, Mani Shrestha). (R) Flower color variation in Tibetia yunnanensis (Leguminosae, China, Klaus Lunau). (S) Plants of Eriophyllum lanatum

(Asteraceae) and Clarkia concinna (Onagraceae) coexisting (USA, Gerardo Arceo-Gómez). (T) Flower color morphs of Lysimachia arvensis coexisting (Primulaceae,

Spain, Montserrat Arista).
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THE GENETICS AND BIOCHEMISTRY OF
ANTHOCYANIN PRODUCTION

The anthocyanin biosynthetic pathway is mostly regulated at
the transcriptional level (Albert et al., 2014). In this volume,
Muñoz-Gómez et al. studied the regulatory gene evolution in the

anthocyanin biosynthetic pathway among the Aristolochiaceae,

a family with a high floral diversity exhibiting elaborate color

patterns. The authors conclude that the anthocyanin biosynthetic

pathway and its regulatory genes are largely conserved across the
family, and color variation is primarily determined by differences
in gene expression. Stavenga et al. studied the pH dependence
of flavonoid absorption spectra of two Papaveraceae species,
Papaver dubium (red) and Meconopsis cambrica (orange), and
white and red varieties of Mandevilla sanderi. The authors
found that the absorption spectrum (i.e. colour) of anthocyanins
can be dependent on the pH of the vacuole, however, not
all flavonoids respond similarly to changes in vacuolar pH.
Color diversity is also remarkably high in Gesnerioideae and
Ogutchen et al. have elegantly shown that this is due to
the expanded use of the anthocyanin biosynthetic pathway.
In this family, the anthocyanin biosynthetic pathway includes
the deoxyanthocyanin branch, which is rarely functional in
angiosperms. Ogutchen et al. also call for a better understanding
of the link between the biochemical basis of flower color
and the visual perception of the primary pollinators. At
the microevolutionary scale, Sánchez-Cabrera et al. identified
several anthocyanin biosynthetic pathway loci likely involved
in the shift in flower color in the orange/blue polymorphic
Lysimachia arvensis. Further, these authors found differential
expression of two genes (F3′5′H and DFR) in the anthocyanin
biosynthetic pathway. The biochemical analysis of color morphs
was consistent with the transcriptome data indicating that the
shift from blue to orange petals is caused by a change from
primarily malvidin to largely pelargonidin forms of anthocyanins
(Sánchez-Cabrera et al.). Authors discuss that both the decreased
expression of F3’5’H in orange petals and the differential
expression of two distinct copies of DFR, which also exhibit
amino acid changes in the color-determining substrate specificity
region, strongly correlate with the blue to orange transition.
Collectively, these studies have revealed the complexity and
nuance of the pigment biochemistry, yet the consistent role
of gene expression changes in the anthocyanin biosynthetic
pathway underlying the diversity of flower colors.

HOW IS COLOR PERCEIVED?

Flower color is in the eye of the beholder. Color perception
depends on the sensory abilities of different groups of pollinators
(van der Kooi et al., 2021). Flower color variation can arise when
pollinators with diverse sensory systems drive fitness differences
between flower color variants (Koski, 2020). Thus, in order to
understand the selective role of pollinators in flower color, it
is necessary to incorporate their color perception. Garcia et al.
shows that experienced pollinators often make correct decisions
about the presence of rewards based on flower color, but this

is not the case for inexperienced pollinators. These authors
concluded that color cannot be considered an inherent trait
because its interpretation by an animal’s brain is frequently
context-dependent.

Although most studies of color perception and foraging
decisions have been traditionally based onApis mellifera’s sensory
system (e.g., Giurfa et al., 1994; Dyer et al., 2008; Rohde et al.,
2013), we are in dire need of experimental studies on the sensory
capabilities of non-Apis bee pollinators. In this volume, Koethe
et al. have carried out a comparative study of food source
selection between two stingless bee species and honeybees. These
three species reacted similarly to color, but the variation among
them could be the result of adaptations to the bees’ respective
habitat and morphological constraints. Thus, habitat traits can
influence color perception by pollinators. In a similar conceptual
framework, Martins et al. studied how seasonal changes in the
leaf-background colouration of Brazilian savanna communities
affect the perception of flower color contrasts by bees. They found
that background coloration affected flower contrasts, favoring
flower conspicuousness to bees according to the season and
providing new insights regarding the temporal patterns of plant–
pollinator interactions.

Dyer et al. reviewed the old concept of the rarity of blue
flowers. They found that short wavelength reflecting blue flowers
are indeed frequent in nature when considering the color vision
of bees and they point out that competition for pollinators may
drive the evolution of blue flowers. Coimbra et al. used the visual
system of bees to test the generalization of the bee-avoidance
hypothesis proposed to explain why bird pollinated flowers tend
to be red. Their results suggest that bee sensory exclusion via
color signals is exclusive to bird flowers, while non-bee, insect
flowers might use other sensory channels to exclude bees. In
another study,Whitney et al. analyzed how flower color variation
within plant populations of bee- and hummingbird-pollinated
plant species is perceived by their specific pollinators. They found
that bees sensed equal color variation within species from the two
pollination systems, but birds perceived more color variation in
bird-pollinated flowers than in bee-pollinated flowers.

FLOWER COLOR VARIATION: A BROAD
SCALE APPROACH

Phylogenetically controlled studies at the community level
have repeatedly found that flower color tends to show
weak phylogenetic signal, reflecting an underlying pattern
of evolutionary divergence (e.g., McEwen and Vamosi, 2010;
Muchhala et al., 2014; Ortiz et al., 2021). For example, Tai et al.
studied flower color signaling in Taiwan and found that although
high altitude floras tend to be phylogenetically clustered, their
flower colors exhibited only weak phylogenetic signal. Thus, they
suggest that flower color signaling was mainly influenced by
color preferences of key bee pollinators. Most studies on the
phylogenetic signal of flower color focus on the predominant
color exhibited by the flowers, although in many species flowers
are not uniform showing contrasting colors (i.e., color patterns)
that are perceived by pollinators (Hempel de Ibarra et al.,
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2015). Some color patterns include reflection of UV light that is
perceived by pollinators that have UV photoreceptors (van der
Kooi et al., 2021). When floral color patterns in the ultraviolet
spectrum (UV patterns) are investigated, contrasting results have
been found. Tunes et al. studied patterns of floral UV reflectance
in plants from a Neotropical savanna. They tested the roles
of phylogenetic relatedness and pollinator mediated selection
on the distribution of UV floral patterns. They confirmed that
phylogenetic relatedness constrains the diversity of floral UV
patterns, however, the distribution of floral UV-features could
not be ascribed to a single ecological or evolutionary factor.
This study calls for a deeper understanding of ecological and
evolutionary processes involved when interpreting floral UV
color diversification. Some flowers of the Potentilleae tribe
(Rosaceae) have petals with UV patterns, whereas others show
human-visible patterns or uniform petal color. Koski investigated
the evolutionary transition between patterned and non-patterned
petals and found that the presence of UV and human-visible
patterns evolved independently from one another. He also found
that the evolution of human-visible patterns was associated with
the evolution of larger flowers, supporting the hypothesis that
nectar or pollen guides are more likely to evolve in larger-
flowered species. In another study, Roguz et al. explored the
evolution of flower color in Iris, a genus displaying a huge
diversity of flower color and color patterns among and within
species. They found that the most recent common ancestor likely
had entomophilous, monochromatic flowers.

The fate of new color variants depends on a diversity of
evolutionary forces. Flower color can affect pollinator attraction
and, when investigated in a community context, flower color
can mediate different types of interactions among co-flowering
species, such as competition, facilitation or mimicry (Ghazoul,
2006; Johnson and Schiestl, 2016; Kemp et al., 2019). The
abundance and species richness of the local habitat may also
influence the type or strength of ecological interactions among
species. Co-flowering species with similar flower colors may
compete for pollinator services; selection could thus favor
differentiation to improve pollinator recognition and fidelity
(Gumbert et al., 1999; McEwen and Vamosi, 2010). Competition
for pollinators would result in a pattern of phylogenetic over-
dispersion of floral color among co-flowering species (Sargent
and Ackerly, 2008). Alternatively, similarity in flower color may
result from selection for standardization of the signals that
improves recognition by pollinators and increases their visitation
rates. LeCroy et al. studied 14 serpentine seep communities in
California differing in species richness and size. In smaller-sized
communities they found that competitive exclusion could be a
dominant process shaping lower species richness, but this process
is less detectable in larger, more speciose communities. Similarly,
Moré et al. explored the potential importance of pollinators
as drivers of floral color diversification in the genus Jaborosa
taking into account the perceptual abilities of their pollinators
(i.e., nocturnal hawkmoths versus diurnal saprophilous flies)
with a geographical perspective. This study found that the
ability of plants that colonized the newly formed environments
during Andean orogeny and the ecological changes that followed
were concomitant with transitions in flower color as perceived

by different pollinator functional groups. Further, this study
suggests that habitat and pollination are linked to the history of a
plant’s lineage.

FLOWER COLOR VARIATION AT THE
MICROEVOLUTIONARY SCALE

From a microevolutionary point of view, intraspecific variation
in floral color is widely distributed (Narbona et al., 2018).
Flower color may vary continuously or discretely, the latter
situation being much rarer. Evolutionary mechanisms explaining
the maintenance of intraspecific flower color variation include
both biotic and abiotic factors, although other processes can also
play an important role (Narbona et al., 2018). Trunschke et al.
reviewed studies addressing selection on continuous flower color
variation in the context of pollinator interactions. They suggest
that evidence for significant pollinator-mediated selection is
surprisingly limited among existing studies. In fact, most of
the current understanding of flower color evolution arises from
variation between discrete color morphs, where selection by
pollinators is usually one of the most important factors involved
in color variation. Selective foraging by pollinators for specific
color morphs is frequently reported (Ortiz et al., 2015). These
studies focus on the most common pollinators such as bees or
birds, while selection by other groups is rarely reported.

Two studies in this volume have investigated
microevolutionary flower color variation in South-African
species pollinated by less-commonly-reported pollinator groups.
Ellis et al. studied patterns of color distribution of discrete
white and orange daisy species pollinated by bombyliids. They
found that the dominant pollinator in orange communities
has strong preferences for orange flowers while the dominant
pollinator in white communities exhibited an innate preference
for white flowers. These findings demonstrate that landscape-
level flower color turnover is likely shaped by a strong qualitative
geographic mosaic of bee-fly pollinators with divergent color
preferences. Similarly, Johnson et al. found that patterns of
color variation in Drosera cistiflora, a species pollinated by
beetles, are associated with different pollinator communities.
Given that these beetle species discriminate among color
forms (von Witt et al., 2020), the authors conclude that
beetle pollinators are a significant factor in the evolution
of D. cistiflora flower color. This is one of the first reports
of flower color selection by beetles (see Streinzer et al.,
2019).

Although direct selection on flower color by pollinators
has been widely explored, indirect selection on correlated
traits is rarely reported (e.g., Gómez, 2000). Other floral traits
can be correlated with flower color and thus, to understand
the role of pollinators as selective agents on flower color
it is necessary to consider such associations. The number
of flowers per plant, a component of floral display, is one
of the most important traits affecting pollinator attraction,
and its association with flower color has been studied in
Silene littorea (Rodríguez-Castañeda et al.) and Medicago sativa
(Brunet et al.). Both studies show significant correlations
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between flower color and floral display and demonstrate
significant directional selection on floral display that indirectly
selects for flower color. These examples of correlational
selection can partly explain flower color evolution in M. sativa
and the maintenance of the flower color polymorphism in
S. littorea.

The synthesis of floral pigments can also have pleiotropic
effects on defensive plant compounds and consequently
herbivores can play a role in flower color variation (Strauss
and Whittall, 2006). Specifically, anthocyanin pigments
in floral tissues can influence herbivore preference and
performance (Irwin et al., 2003; Frey, 2004). In this volume,
Sobral et al. found evidence of transgenerational effects of
herbivory on flower color variation in Raphanus sativus.
Epigenetic modifications due to herbivory influences the
proportion of plants with anthocyanins in the following
generation showing a link between biotic ecological interactions
across generations and plasticity in flower color; with some
exceptions this phenomenon is virtually undescribed in natural
plant populations.

Abiotic factors also play an important role in flower
color variation (Strauss and Whittall, 2006). Water availability,
temperature and solar radiation can select flowers with higher
pigment concentrations either directly or indirectly, giving rise
to geographical patterns of flower color variation (Dalrymple
et al., 2020). The role of abiotic factors on flower color
variation is more frequently reported and, in this volume, it
has been addressed in two monkeyflowers– Erythranthe discolor
and Diplacus mephyticus (Grossenbacher et al.), Campanula
americana (Koski and Galloway), and Drosera cistifolia (Johnson
et al.). Drought stress is one of the most important factors
predicting flower color across geographic ranges (Warren and
Mackenzie, 2001; Arista et al., 2013). Grossenbacher et al.
found a higher frequency of anthocyanin producing morphs in
populations with reduced precipitation for two monkeyflower
species as a consequence of the protective role of anthocyanins.
However, after accounting for phylogeny, there was no evidence
that drought stress leads to a macroevolutionary pattern in
flower color across monkeyflowers. In Campanula americana
local temperature appears to shape the geographical pattern
of flower color intensity, although the genetic population
structure seems to be driven by historical effects, an important
factor rarely considered (Koski and Galloway). Conversely,
other rarely studied, potential abiotic selective agents (such
as soil type) do not seem to be related to the geographic
pattern of color variation in Drosera cistifolia (Johnson et
al.). The role of abiotic factors on flower color variation
has also been reported in this volume. Peach et al. studied
the effect of UV radiation on flower color variation in
Clarkia unguiculata and found that populations growing
in areas of high UV radiation showed higher anthocyanin
concentration, a pattern previously reported (Del Valle et al.,
2015). However, contrary to expectations, UV-absorbing floral
patterns did not have a direct “pollen protection” function,
highlighting the need for research on a wider range of taxa

to understand the role of anthocyanins in flower protection
against UV radiation [see Kay et al. (2020)]. These studies
addressing the role of abiotic factors affecting flower color
variation highlight the protective role of pigments under some
conditions of abiotic stress, but also reveal the multifaceted
evolutionary and ecological complexity underlying natural flower
color variation.

Other less known factors involved in the maintenance
of intraspecific flower color variation are also reported in
this volume. Jiménez-López et al. explored the role of
selfing as a way to maintain the flower color polymorphism
in Lysimachia arvensis. They found that in Mediterranean
populations, both biotic and abiotic factors select against
one of the color morphs, but that increased selfing in
this morph preserves the color variation within populations.
One consequence of this mating system by flower color
interaction is a decrease in genetic variation that could have
macroevolutionary consequences.

Flower color also shows intrafloral variation giving
rise to complex patterns that can attract and guide bee
pollinators. Aguiar et al. studied intrafloral color variation
in Cattleya walkeriana, and found a centripetally increasing
spectral purity within the flowers of this bee pollinated
orchid species. This intrafloral variation was unrelated
to the development of floral structures, suggesting an
important role of pollinator selection in the modularization
of flower color.

Lastly, the importance of taking flower color into account
in conservation strategies is highlighted in this special
topic. Orchidaceae is one of the most threatened plant
families, as it has very large numbers and proportions of
endangered species worldwide. Intraspecific flower color
variability in the endangered orchid Caladonia fulva has
been suggested to be the result of hybridization with C.
reticulata. Genetic and breeding studies by Basist et al. clearly
shows that C. fulva is a flower color polymorphic species and
conservation of the color variants is essential to maintain
genetic diversity.

In this Research Topic, we present a modern synthesis of
flower color studies. Clearly, understanding the evolution
of flower colors in angiosperms requires a diversity of
perspectives across scales, both ecological and evolutionary,
from the molecular, biochemical, physiological, anatomical,
organismal, population, and community levels. These
studies show that flower color in plant populations and
plant communities are often the result of a combination of
biotic and abiotic selective pressures and are highly context
dependent. They clearly indicate the need to incorporate new
approaches and innovative methodologies when studying flower
color evolution.
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