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Abstract

Gait recognition is an important biometric technique for video
surveillance tasks, due to the advantage of using it at distance. In
this paper, we present a persistent homology-based method to extract
topological features (the so-called topological gait signature) from the
the body silhouettes of a gait sequence. It has been used before in sev-
eral conference papers of the same authors for human identification,
gender classification, carried object detection and monitoring human
activities at distance. The novelty of this paper is the study of the sta-
bility of the topological gait signature under small perturbations and
the number of gait cycles contained in a gait sequence. In other words,
we show that the topological gait signature is robust to the presence
of noise in the body silhouettes and to the number of gait cycles con-
tained in a given gait sequence. We also show that computing our
topological gait signature of only the lowest fourth part of the body
silhouette, we avoid the upper body movements that are unrelated to
the natural dynamic of the gait, caused for example by carrying a bag
or wearing a coat.
Keywords: Feature extraction, Gait recognition, Video sequences, Per-
sistent Homology,

1 Introduction

Persons recognition at distance, without the subject cooperation, is an im-
portant task in video surveillance. Very few biometric techniques can be
used in these scenarios. Gait recognition is a technique with special po-
tential under these circumstances due to its advantages, since the features
can be extracted from any viewpoint and at bigger distances than other
biometric approaches.

∗Partially supported by MINECO/FEDER-UE under grant MTM2015-67072-P. Gen-
eral acknowledgments should be placed at the end of the article.
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Currently, there are good results in the state of the art for persons walk-
ing under natural conditions (without carrying a bag or wearing a coat).
See, for example, [17, 11, 10]. However, it is not common for people to
walk without carrying a bag or anything that changes the natural gait.
Moreover, people usually perform movements with the upper body part un-
related to the natural dynamic of the gait. Up to now, the most successful
approaches in gait recognition use silhouettes to get the features. Among
the silhouette-based techniques, the best results have been obtained from
the methods based in Gait Energy Images (GEI) [18, 17, 11, 14, 16]. Be-
sides, the GEI methods have been used to eliminate the effects of carrying a
bag or wearing a coat in [1, 11, 17]. Generally, these strategies are affected
by a small number of silhouettes (one gait cycle or less). Moreover, the
temporal order in which silhouettes appear is not captured in those repre-
sentations, loosing the relative relations of the movements in time. Besides,
the features extracted by these methods are highly correlated with errors in
the segmentation of the silhouettes [3] and these errors frequently appear in
the existing algorithms for background segmentation. This implies that GEI
methods are influenced by the shape of the silhouette instead of the relative
positions among the parts of the body while walking. The accuracy in gait
recognition for persons carrying bag or using coat can be consulted in [17]
for the CASIA-B gait dataset1. The authors in [17] used features from the
full body but the results were not satisfactory. For instance, the best result
for persons walking with coats was 32.7% using lateral view, while the worst
result was 24.6%, using frontal view. Besides, for persons carrying a bag,
the best result was 80.2% using frontal view and the worst 52.0%, using
lateral view.

In our conference papers [10, 9, 6, 7], we concentrated our effort in
overcoming most of the difficulties explained above, which took us to get
promising results. In those works, the gait was modeled using a persistent-
homology-based representation (called topological signature of the gait se-
quence), since it gives features of the objects that are invariant to deforma-
tion. The topological signature of the gait sequence was used for human
identification in [10], gender classification in [9], carried object detection in
[6] and monitoring human activities at distance in [7]. Later, in [8], we
applied our persistent-homology-based gait recognition method using only
the lower part of the body, i.e., the legs (see Fig. 1), avoiding many of the
effects arising from the variability in the upper body part.

In this paper, we first recall our persistent-homology-based method for
gait recognition in order to be self-contained. The input of the procedure is
a sequence of human silhouettes obtained from a video. A simplicial com-
plex ∂K(I) which represents the human gait is then constructed (see Section
2). Sixteen persistence barcodes (a known tool in the Theory of Persistent

1http://www.cbsr.ia.ac.cn/GaitDatasetB-silh.zip
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Figure 1: Lowest four part of the body occluded by a bag.

Homology) are then computed (see Section 3) considering, respectively, the
distance to eight fixed planes (2 horizontal, 2 vertical, 2 oblique and 2 depth
planes) in order to completely capture the movement in the gait sequence.
More concretely, for each plane π, we compute two persistence barcodes:
one to detect the variation of connected components and the other to detect
the variation of tunnels when we go through ∂K(I) in a direction perpen-
dicular to the plane π. Putting together all this information, we construct
a vector (called topological signature) associated to each gait sequence. To
compare two topological signatures, we use the angle between both vectors.
To decrease the negative effects of variations unrelated to the gait in the
upper body part, we can only select the lowest fourth part of the body sil-
houette (legs-silhouette) (as we did in [8]). As a contribution of this paper,
we study the stability of the topological signature in Section 4. We prove,
in terms of probabilities, that small perturbations in the input body silhou-
ettes provoke small perturbations in the resulting topological signature. We
also show that the direction of the topological signature (which is a vector)
of a gait sequence remains the same independently on the number of gait
cycles it contains. To compare two topological signatures, we use the angle
between the corresponding vectors, then the previous assertion implies that
the topological signature is independent on the number of gait cycles the
gait sequence contains. Experimental results are showed in Section 5 and
are analyzed in Section 6. Conclusions are finally given in Section 7.

2 Topological model of the gait: Simplicial Com-
plexes

In this section we introduce the construction of the simplicial complex ∂K(I)
which represents the input human gait sequence.

We start the procedure with a sequence of silhouettes obtained from a
gait sequence. With the intention of a fair comparison, we get the sequences
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from the background segmentation provided in CASIA-B dataset2. See Fig.
2.Left.

Figure 2: Left: Sequence of gait silhouettes. Right: Simplicial complex
∂K(I).

We then build a 3D binary image I = (Z3, B) by stacking k consecutive
silhouettes. Recall that a 3D binary image is a pair I = (Z3, B), where
B (called the foreground) is a finite subset of Z3 and Bc = Z3\B is the
background. Later, I = (Z3, B) is used to derive a cubical complexQ(I). The
cubical complex Q(I) is a combinatorial structure constituted by a set of unit
cubes with faces parallel to the coordinate planes and vertices in Z3, together
with all its faces. The 0−faces of a cube c are its 8 corners (vertices), its
1−faces are its 12 edges, its 2−faces are its 6 squares and, finally, its 3−face
is the cube itself. Then, a cube with vertices V = {(i, j, k), (i+1, j, k), (i, j+
1, k), (i, j, k+1), (i+1, j+1, k), (i+1, j, k+1), (i, j+1, k+1), (i+1, j+1, k+1)},
with (i, j, k) ∈ Z3, is added to Q(I) together with all its faces if and only
if V ⊆ B. Finally, the squares that are faces of exactly one cube in Q(I)
are divided into two triangles. These triangles together with their faces
(vertices and edges) form the simplicial complex ∂K(I). See Fig. 2.Right.
The formal definition of a simplicial complex K is as follows [13, p. 7]:
A simplicial complex K is a collection of simplices3 in Rn such that: (1)
every face of a simplex of K is in K; and (2) the intersection of any two
simplices of K is a face of each of them. Notice that the height of each
silhouette is set to 1 and the width changes accordingly to preserve the
original proportion between height and width. z−Coordinates represents
the amount of silhouettes in the stack which is not fixed (see Fig. 2.Right).

To decrease the negative effects of variations unrelated to the gait in
the upper body part (related, for example, to hand gestures like talking on
cell), in [8] we selected the lowest fourth part of the body silhouette (legs-
silhouette) (see Fig. 3). This selection is endorsed by the result given in
[1], which shows that this part of the body provides most of the necessary
information for classification.

2http://www.cbsr.ia.ac.cn/GaitDatasetB-silh.zip
3The simplices considered in this paper are 0−simplices (i.e. vertices), 1−simplices

(i.e. edges) and 2−simplices (i.e. triangles).
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Finally, notice that, in [8] and this paper, not only the height but also
the depth is set to 1. This way, from now on in this paper, x−, y− and
z−coordinates of the vertices in ∂K(I) have their values in the interval [0, 1]
(see Fig. 3.Right).

Figure 3: Left: Sequence of legs-silhouettes. Right: Simplicial complex
∂K(I) of a legs-silhouette sequence.

2.1 Filtration of the Simplicial Complex ∂K(I)

The next step in our process is to sort the simplices of ∂K(I) in order to
obtain a filtration.

A filtration is a partial ordering of the simplices of ∂K(I) dictated by
a filter function f : ∂K(I) → R, satisfying that if a simplex σ is a face of
another simplex σ′ in ∂K(I) then f(σ) ≤ f(σ′) (i.e., σ appears before or at
the same time that σ′ in the ordering).

Figure 4: From left to right: The eight planes used for computing the eight
filtrations for ∂K(I): two vertical planes, two horizontal planes and four
oblique planes.

In our work, we use eight filtrations obtained from eight planes (see Fig.
4). For each plane π, we define the filter function fπ : ∂K(I) → R which
assigns to each vertex of ∂K(I) its distance to the plane π, and to any other
simplex of ∂K(I), the biggest distance of its vertices to π. Ordering the
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simplices of ∂K(I) according to the values of fπ, we obtain the filtration
∂Kπ for ∂K(I) associated to the plane π.

Notice that, in [10, 9, 6, 7], the filtration associated to each plane π is
obtained in a different way: By adding one simplex at each time (i.e., a
total ordering of the simplices is constructed). Nevertheless, the filtration
presented in [8] and in this paper, is constructed by adding a bunch of
simplices at each time (all the simplices of ∂K(I) with same distance to the
reference plane π). This way, different times represent sets of simplices with
possibly different cardinalities, which makes the method robust to variation
in the amount of simplices of the simplicial complex and therefore, robust
to noise. Besides, the difficulties we had previously in [10, 9, 6, 7] with the
stability of the sorting algorithm disappear in [8] and in this paper, since
each set of simplices in the filtration contains all the simplices with the same
distance to a reference plane, and these sets are sorted according to their
associated distances.

3 Persistent homology and topological signature

The final step in our process to obtain the topological signature of a gait
sequence is to compute the persistent homology of each filtration.

Persistent homology is an algebraic tool for measuring topological fea-
tures of shapes and functions. It is built on top of homology, which is a
topological invariant that captures the amount of connected components,
tunnels, cavities and higher-dimensional counterparts of a shape. Small size
features in persistent homology are often categorized as noise, while large
size features describe topological properties of shapes [4].

Formally, let K be a simplicial complex. A p−chain on K is a formal
sum of p−simplices of K. The group of p−chains is denoted by Cp(K).
Let us define the homomorphism: ∂p : Cp(K) → Cp−1(K) called boundary
operator such that for each p−simplex σ of K, ∂p(σ) is the sum of its faces.
For example, if σ is a triangle, ∂2(σ) is the sum of its edges. The kernel of
∂p is called the group of p−cycles in Cp(K) and the image of ∂p+1 is called
the group of p−boundaries in Cp(K). The p−homology Hp(K) of K is the
quotient group of p−cycles relative to p−boundaries (see [13, Chapter 5]).
Then, 0−homology classes (i.e. the classes in H0(K)) represent the con-
nected components of K, 1−homology classes its tunnels and 2−homology
classes its cavities.

Now, consider a filtration F for a simplicial complex K obtained from a
given filter function f : K → R. To simplify the explanation, suppose that
the simplices of the filtration are totally ordered (i.e., exactly one simplex is
added each time). Let F = (σ1, σ2, . . . , σm). If σi completes a p−cycle (p
being the dimension of σi) when σi is added to Fi−1 = (σ1, . . . , σi−1), then
a p−homology class α is born at time f(σi); otherwise, a (p− 1)−homology
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Figure 5: An example of a persistence barcode obtained from a simplicial
complex.

class dies at time f(σi). The difference between the birth and death times of
a homology class γ is called its persistence, which quantifies the significance
of a topological attribute. If α never dies, we set its persistence to infinity.

For a p−homology class that is born at time f(σi) and dies at time
f(σj), we draw a bar [f(σi), f(σj)) with endpoints f(σi) and f(σj). The
set of bars {[f(σi), f(σj))} representing birth and death times of homology
classes is called the persistence barcode B(F ) of the filtration F . See, for
example, Fig. 6. Analogously, the set of points {(f(σi), f(σj)) ∈ R2} is
called the persistence diagram dgm(F ) of the filtration F . See, for example,
Fig. 8.

For example, in Fig. 5, bars corresponding to the persistence of 0−homology
classes (i.e. the persistence of connected components) are colored in blue
and bars corresponding to the persistence of 1−homology classes (i.e., the
persistence of tunnels) are colored in red. The filtration F = { b, c ,bc ,e,
be, ec, a, ab, ac, abc, d, bd, de, bde, f , ef , cf , cef} which, in this case, is a
total ordering, can also be read on the x axis of the diagram. Observe that
only two bars survive until the end (the one corresponding to the connected
component and the other corresponding to the tunnel).

For a detailed introduction on the theoretical concepts introduced above
see, for example, [4, 5].

As an example, the persistence barcodes for the video sequences 001-
nm-01-090 and 002-nm-01-090 in the CAISA-B dataset are shown in Fig.
6. The red bars represent the persistence of 0−homology classes while the
blue ones represent the persistence of 1−homology classes. For computing
these barcodes, we used the leftmost plane of Fig. 4. Notice the green circle
showing topological features that born and die at the same time.

7



Figure 6: Persistence barcodes for the sequences 001-nm-01-090 and 002-
nm-01-090 of CAISA-B dataset. Horizontal axis represents the distance to
the reference plane, normalized to [0.1].

3.1 Topological Signature for a Gait Sequence

Now, the topological signature is computed from the persistence barcodes
obtained for ∂Kπ for each plane π shown in Fig. 4. Observe that fixed
a reference plane π, the length of each interval in the persistence barcode
obtained for ∂Kπ is: (a) less or equal than 1 if π is an horizontal o vertical
plane, and (b) less or equal than

√
2 if π is an oblique plane.

For computing the topological signature we only consider bars in the
persistence barcode with length strictly greater than 0. This way, we do not
take into account any topological event e that is born and dies at the same
distance to the reference plane. This is not a problem, since that event e
will be capture using a different reference plane.

Now, for computing the topological signature, for each plane π, the 0−-
persistence barcode (i.e., the lifetime of connected components) and the
1−persistence barcode (i.e., the lifetime of tunnels) of the filtration ∂Kπ

are explored according to a uniform sampling. More concretely, given a
positive integer n (being n = 24 in our experimental results, obtained by
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cross validation), we compute the value h = k
n , which represents the width of

the “window” we use to analyze the persistence barcode, being k the biggest
distance of a vertex in ∂K(I) to the given plane π. Since the distance to the
plane has been normalized in order to compute the topological signature,

then k ≤
√

2, so h ≤
√
2

24 . Then, a vector V0π (resp. V1π) of 2n entries is then
constructed as follows:

Procedure 1 For s = 0, . . . , n− 1,

(a) entry 2s contains the number of 0− (resp. 1−) homology classes that
are born before s · h;

(b) entry 2s + 1 contains the number of 0− (resp. 1−) homology classes
that are born in s · h or later and before (s+ 1) · h.

Observe that dividing the entries in two categories (a) and (b), small
details in the object are highlighted, which is crucial for distinguishing
two different gaits. For example, let us suppose an scenario in which m
0−homology classes are born in [s · h, (s + 1) · h) and persist or die at the
end of [(s+ 1) · h, (s+ 2) · h) and not any other 0−homology class is born,
persists or dies in these intervals. Then, we put 0 in entries 2s and 2s + 3
of V0π, and m in entries 2s+ 1 and 2s+ 2 of V0π. On the other hand, let us
suppose that m 0−homology classes are born and die in [s · h, (s + 1) · h)
and in [(s+ 1) · h, (s+ 2) · h) and not any other 0−homology class is born,
persists or dies in these intervals. Then, we put 0 in entries 2s and 2s+ 2 of
V0π and m in entries 2s+ 1 and 2s+ 3 of V0π. Observe that only considering
(a) and (b) separately, we can distinguish both scenarios.

This way, fixed a plane π, we obtain two 2n−dimensional vectors for
∂Kπ, one for the 0−persistence barcode and the other for the 1−persistence
barcode associated to the filtration ∂Kπ. Since we have eight planes, {π1, . . . π8},
and two vectors per plane, {V0πi ,V

1
πi} : i = 1, . . . , 8, we have a total of six-

teen 2n−dimensional vectors which form the topological signature for a gait
sequence.

Finally, for comparing the topological signatures of two gait sequences,
we add up the angle between each pair of the corresponding vectors conform-
ing the topological signatures. Since a signature consists of sixteen vectors,
the best comparison for two sequences is obtained when the total sum is
zero and the worst is 90 · 16 = 1440. Observe that in our previous papers
[10, 9, 6, 7], we used the cosine distance to compare two given topological
signatures. We have noticed that using the angle instead of the cosine, the
efficiency (accuracy) increases by 5%. This comparison is made in Table 5
in Section 5.
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4 Stability of the topological signature for a gait
sequence

Once we have defined the topological signature for a gait sequence, our aim
in this section is to prove its stability under small perturbations on the gait
sequence and/or on the number of gait cycles contained in the gait sequence.

First, we introduce some theoretical concepts needed to prove the state-
ments above. The bottleneck distance (see [4, page 229]) is classically used
to compare the persistence diagrams of two different filtrations. Concretely,
let F and F ′ be two filtrations of, respectively, two finite simplicial com-
plexes K and K ′. Since K and K ′ are finite then dgm(F ) and dgm(F ′)
are finite. Let dgm(F ) = {a1, . . . , ak} and dgm(F ′) = {a′1, . . . , a′k′} be the
persistence diagrams of F and F ′, respectively. Then

db(dgm(F ), dgm(F ′)) = min
γ
{max

a
{||a− γ(a)||∞}}

is the bottleneck distance between dgm(F ) and dgm(F ′) where, for points
a = (x, y) ∈ F ∪D and γ(a) = (x′, y′) ∈ F ′ ∪D (being D the set of points
{(x, x)} ⊂ R2), ||a − γ(a)||∞ = max{|x − x′|, |y − y′|} and γ is a bijection
that can associate a point off the diagonal with another point on or off the
diagonal. Here, diagonal is the set D. Table 2 shows bottleneck distance
between the persistence diagrams shown in Fig. 8.

The following definitions are taken from [2]. Let W and W ′ be the vertex
set of, respectively, K and K ′. A correspondence C : W ⇒ W ′ from W to
W ′ is a subset C of W × W ′ satisfying that for any v ∈ W there exists
v′ ∈ W ′ such that (v, v′) ∈ C and, conversely, for any v′ ∈ W ′ there exists
v ∈W such that (v, v′) ∈ C.

Besides, for a subset σ of W , C(σ) is the subset of W ′ satisfying that
a vertex v′ is in C(σ) if and only if there exists a vertex v ∈ σ such that
(v, v′) ∈ C.

Now, given filter functions f : K → R and f ′ : K ′ → R, and the
corresponding filtrations F and F ′, we say that C : W ⇒W ′ is ε−simplicial
from F to F ′ if for any t ∈ R and simplex σ such that f(σ) ≤ t, every
simplex µ ∈ K ′ with vertices in C(σ) satisfies that f ′(µ) ≤ t+ ε.

Proposition 1 If the correspondence C : W ⇒ W ′ is ε−simplicial from F
to F ′, then db(dgm(F ), dgm(F ′)) ≤ ε.

Proof. The statement is a direct consequence of Th. 2.3 and Prop. 4.2 in
[2]. �

Proposition 2 Let I (resp. I ′) be a 3D binary image. Let ∂Kπ (resp.
∂K ′π) be the filtrations for ∂K(I) (resp. ∂K(I ′)) associated to a given plane
π. If C : W ⇒ W ′ is a correspondence from the vertex set W of ∂K(I)
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to the vertex set W ′ of ∂K(I ′) satisfying that fπ(v′) ≤ fπ(v) + ε for every
(v, v′) ∈ C, then

C : W ⇒W ′ is ε−simplicial from ∂Kπ to ∂K ′π.

Proof. Let t ∈ R and σ ∈ ∂K(I) such that fπ(σ) ≤ t. Then, every simplex
µ ∈ K ′ with vertices in C(σ) satisfies that fπ(µ) ≤ t+ε. Then, C : W ⇒W ′

is ε−simplicial from ∂Kπ to ∂K ′π. �
The following is the main result of the paper showing, in terms of prob-

abilities, that the topological gait signature is stable under small perturba-
tions on the input data (i.e., the input gait sequence).

Theorem 1 Let I (resp. I ′) be a 3D binary image. Let ∂Kπ (resp. ∂K ′π)
be the filtration for ∂K(I) (resp. ∂K(I ′)), associated to a given plane π.
Let V0π,V1π (resp. W0

π,W1
π) be the two vectors obtained after applying Proc.

1 to the persistence barcodes of ∂Kπ (resp. ∂K ′π). Suppose that mi = m
Kpi
i

is less or equal than m
K′π
i , where mKπ

i (resp. m
K′π
i ) is the number of bars in

the i−persistence barcodes (for i = 0, 1) of the filtrations ∂Kπ (resp. ∂K ′π).
If C : W ⇒ W ′ is a correspondence from the vertex set W of ∂K(I) to the
vertex set W ′ of ∂K(I ′) satisfying that fπ(v′) ≤ fπ(v) + ε then

V iπ =W i
π with probability greater or equal than

(
1− 2(n−1)ε

k

)mi
where:

• k is the maximum distance of a point in ∂Kπ to the plane π;

• n is the number of subintervals (“windows”) in which the interval [0, k]
is divided (recall that we set n = 24 in our experiments);

In general, ||V iπ −W i
π||1 ≤ m with probability greater or equal than

P =
m∑
j=0

(
mi

j

)(
2(n− 1)ε

k

)j (
1− 2(n− 1)ε

k

)mi−j
.

Observe that the result above only makes sense when ε is small enough.
Concretely, ε ≤ k

2n since k
2n is half of the “window” size. Besides m can

take integer values between 0 and mi. Observe that if m = 0 then P =(
1− 2(n−1)ε

k

)mi
and if m = mi then P = 1.

Proof. By Prop. 2, we have that C : W ⇒ W ′ is ε−simplicial from ∂Kπ

to ∂K ′π. By Prop. 1, we have that db(dgm(∂Kπ), dgm(∂K ′π)) ≤ ε.
Let γ : dgm(∂Kπ) ∪ {(x, x)} → dgm(∂K ′π) ∪ {(x, x)} be the bijection such
that {maxa{||a − γ(a)||∞}} = db(dgm(∂Kπ), dgm(∂K ′π)) ≤ ε. If a = (x, y)
and γ(a) = (x′, y′), we have that |x− x′| ≤ ε and |y − y′| ≤ ε.
Now, observe that V iπ can be different from W i

π if there exists a point a =

11



(x, y) in dgm(∂Kπ) satisfying that x ∈ (sh− ε, sh+ ε) for h = b knc and some

s = 1, . . . , n − 1. This can occur with probability 2(n−1)ε
k . Then V iπ = W i

π

with probability greater or equal than (1− 2(n−1)ε
k )mi . �

For example, if k = 0.9, n = 24, ε = 0.001, m0 = 50 and m = 3
then 0.7235226992; if m = 4 then P = 0.8732685424 and if m = 5 then
P = 0.9508832893. This means that given two digital images I and I ′ and
a plane π such that there exists a correspondence C between the vertices
of ∂K(I) and ∂K(I ′) satisfying that fπ(v′) ≤ fπ(v) + 0.001 for any pair
of vertices v ∈ ∂K(I) and v′ ∈ partialK(I ′) matched by C, then for the
associated topological signatures V0π and W0

π (for k = 0.9, n = 24 and
m0 = 50) we have that:

• ||V0π −W0
π||1 ≤ 3 with probability greater or equal than 72%.

• ||V0π −W0
π||1 ≤ 4 with probability greater or equal than 87%.

• ||V0π −W0
π||1 ≤ 5 with probability greater or equal than 95%.

The following remark shows that the topological gait signature does not
depend on the number of gait cycles in a gait sequence.

Remark 1 In the case the gait sequence contains more than a gait cycle,
the module of the vectors {V0πi ,V

1
πi}i=1,...,8 can increase with respect to the

gait sequence that contains exactly a gait cycle, but the direction remains the
same.

Figure 7: The silhouette sequences extracted from two gait sequences S1
and S2 of the same person.

For instance, let S1 and S2 be two gait sequences of the same person
from CASIA-B dataset, both S1 and S2 having two gait cycles. Let P c2s1
and P c2s2 be the silhouette sequences of the two gait cycles on S1 and S2,
respectively. Let P c1s1 and P c1s2 be the silhouette sequences of exactly one gait
cycle on S1 and S2, respectively. See Fig. 7.

Then, we use the same reference plane π to obtain the four filtrations
F c2s1 , F c2s2 , F c1s1 and F c1s2 for the simplicial complexes associated to the 3D bi-
nary images obtained from the silhouette sequences P c2s1 , P c2s2 , P c1s1 and P c1s1 ,
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Figure 8: Top pictures: the two 0−persistence diagrams dgm(F c1s1 ) and
dgm(F c1s2 ) obtained from two gait sequences of the same person contain-
ing exactly one gait cycle. Bottom pictures: the 0−persistence diagrams
dgm(F c2s1 ) and dgm(F c2s2 ) obtained from two gait sequences of the same per-
son containing two gait cycles.

respectively. The 0−persistence diagrams dgm(F c2s1 ), dgm(F c2s2 ), dgm(F c1s1 )
and dgm(F c1s2 ) are showed in Fig. 8. We can observe that the diagrams
dgm(F c2s1 ) and dgm(F c2s2 ) have the double of persistent points than the dia-
grams dgm(F c1s1 ) and dgm(F c1s2 ) (look at the area inside of the red circles in
Fig. 8). Since the topological gait signature is computed using “windows” in
the persistence barcode (or equivalent, in the persistence diagram), then the
modules of the gait signature of dgm(F c2s1 ) and dgm(F c2s2 ) is approximately
the double of the modules of the gait signature of dgm(F c1s1 ) and dgm(F c1s2 )
but the direction remains the same.

In Table 1 we show the results of the comparison between the topological
signatures obtained from the diagrams dgm(F c2s1 ), dgm(F c2s2 ), dgm(F c1s1 ) and
dgm(F c1s2 ) using the cosine distance. Observe that, in all cases, the cosine
distance is almost 1 (i.e., all the vectors have almost the same direction),
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which makes sense since all the gait sequences correspond to the same person
and the corresponding filtrations are computed using the same reference
plane.

Table 1: Cosine distance between persistence diagrams according to Fig. 8.
dgm(F c1S2) dgm(F c2S2)

dgm(F c1S1) 0.985 0.987

dgm(F c2S1) 0.981 0.990

Finally, in Table 2 we show that if we consider the classical bottleneck
distance for comparing the different persistence diagrams, we obtain different
results depending on the number of gait cycles we consider to compute
the gait signature. So, the comparison using bottleneck distance does not
provide useful information in this case.

Table 2: Bottleneck distance between persistence diagrams according to Fig.
8.

dgm(F c1S2) dgm(F c2S2)

dgm(F c1S1) 855727 1319872

dgm(F c2S1) 2273559 5446584

We now repeat the experiment for gait sequences obtained from two
different persons and considering only the lowest fourth part of the
body silhouettes. Let 001 − nm1 and 001 − nm2 be two gait sequences
of the person 001 and 008− nm2 a gait sequence of person 008 taken from
CASIA-B dataset.

Let ∂K(Ici001−nm1), ∂K(Ici001−nm2) and ∂K(Ici008−nm2) be the simplicial
complexes associated to the silhouettes sequences of exactly i gait cycles on
001− nm1, 001− nm2 and 008− nm2, for i = 1, 2.

A fixed reference plane π is used to obtain the 0−persistence diagrams
dgm(F ci001−nm1), dgm(F ci001−nm2), dgm(F ci008−nm2) of the simplicial complex
associated to ∂K(Ici001−nm1), ∂K(Ici001−nm2) and ∂K(Ici008−nm2), respectively
(see Fig. 9). Observe in Fig. 9 that the persistence diagrams obtained from
two gait cycles have the double of persistent points than the persistence
diagrams obtained from one gait cycle. This can be noticed in the area
inside of the red circles in Fig. 9.

In Table 3 and Table 4 we show the results for the comparison between
the topological signatures obtained from the previously computed persis-
tence diagrams, using bottleneck and cosine distance, respectively.
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Figure 9: On top, the two 0−persistence diagrams dgm(F c1001−nm1),
dgm(F c1008−nm2). In the middle, the two 0−persistence diagrams
dgm(F c2001−nm1), dgm(F c2008−nm2). On bottom, the two 0−persistence dia-
grams dgm(F c1008−nm1), dgm(F c2008−nm2).

The results show that the value of the bottleneck distance increases with
the number of gait cycles. However, the values are similar when the cosine
distance is used. Furthermore, the comparative between diagrams with two
cycles, which mean more information of the dynamic of gait, could improve
the similarity, i.e, the bottleneck distance decreases and the cosine distance
is closer to one.

The tables show that the cosine distance is more appropriate than bot-
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Table 3: Bottleneck distance between persistence diagrams according to Fig.
8.

dgm(F c1001−nm2) dgm(F c2001−nm2) dgm(F c1008−nm2) dgm(F c2008−nm2)

dgm(F c1001−nm1) 0.013 0.120 0.06 0.128

dgm(F c2001−nm1) 0.125 0.040 0.125 0.059

Table 4: Cosine distance between the persistence diagrams showed in Fig.
9.

dgm(F c1001−nm2) dgm(F c2001−nm2) dgm(F c1008−nm2) dgm(F c2008−nm2)

dgm(F c1001−nm1) 0.944 0.931 0.739 0.886

dgm(F c2001−nm1) 0.929 0.953 0.832 0.905

tleneck distance to compare gait signatures.

5 Experimental Results

In this section we show the accuracy results in two experiments using CASIA-
B dataset. The CASIA-B dataset has 124 persons, and 10 samples for each
of the 11 different angles at which a person is taken. For each angle there are
six samples walking under natural conditions, which means without carrying
a bag or wearing a coat (CASIA-Bnm), there are two samples of persons
carrying some sort of bag (CASIA-Bbg) and the remaining two samples
for persons wearing coat (CASIA-Bcl). CASIA-B dataset provides image
sequences with background segmentation for each person.

In the first experiment we used four sequences by person from CASIA-
Bnm dataset to train. We used the other two sequences by person from
CASIA-Bnm and the sequences from CASIA-Bbg and CASIA-Bcl to test.
Our results for lateral view (90 degrees) are shown in Table 5, where we take
the cross validation average (

(
6
4

)
= 15 combinations) of accuracy at rank 1

from the candidates list. The result of our previous method [10] was also
evaluated using always the lowest fourth part of the body silhouette.

In the second experiment, we followed the protocol used in [1, Sec-
tion 5.3]. This way, we considered a mixture of normal, carrying-bag and
wearing-coat sequences, since it models a more realistic situation where per-
sons do not collaborate while the samples are being taken. Specifically, six
sequences were used to training (four normal sequences, one carrying-bag
sequence and one wearing-coat sequence), the rest was used to test. Table
6 shows the result of the accuracy.
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Table 5: Accuracy (in %) using training sets consisting of samples under
similar covariate conditions (without carrying a bag or wearing a coat).

Methods CASIA-Bbg CASIA-Bcl CASIA-Bnm Average

Tieniu.T [17] 52.0 32.73 97.6 60.8
Khalid.B [1] 78.3 44.0 100 74.1
Singh.S [15] 74.58 77.04 93.44 81.7

Imad.R et al. [14] 81.70 68.80 93.60 81.40
Lishani et al. [12] 76.90 83.30 88.70 83.00

Previous Method [10] 75.8 75.45 90.3 80.5
Our Method

using cosine 80.5 81.7 92.4 84.9
using angle 84.2 87.6 94.1 88.6

Table 6: Accuracy (in %) using training sets consisting of samples under
different covariate conditions (walking-normal, carrying-bag and wearing-
coat).

Methods CASIA-Bbg CASIA-Bcl CASIA-Bnm Average

Khalid.B [1] 55.6 34.7 69.1 53.1
Our Method 92.3 94.3 94.7 93.8

A third experiment was carried out for obtaining Fig. 10. In this case
six sequences were used for training (one with the person carrying a bag,
one with the person wearing a coat and four with the person walking under
natural conditions). Using this training data we generated 123 topological
signatures, one for each person in the database. We used the remaining
sequence of the person carrying a bag and the one wearing a coat for testing.
This gave us 246 sequences for testing: 123 persons times 2 sequences by
person. We must point out that person labeled as 005 in CAISA-B was
removed from the experiment due to poor quality.

Using the obtained topological signatures and testing set we obtained:

(1) The set of all possible comparisons between the obtained signatures
and the signatures of the test sequences, corresponding to the same
person. This set is called True Positive (TP) and contains 246 com-
parison values.

(2) The set of all possible comparisons between the obtained signatures
and the signatures of the test sequences, corresponding to different
persons. This set is called True Negative (TN) and contains 123∗244 =
30012 values.

For obtaining Fig. 10, we first restricted TN to its 246 smallest values,
in order to balance the sets TP and TN. Then we represented in the y axis
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the percent of values in the TP set lower than a threshold as a red curve
and the same for the TN set as a blue curve. The x axis represents all the
considered thresholds. For example, 92.6% of the data in the set TP are
values smaller than 253.8, since the red curve shows that for x = 253.8 we
have that y = 92.6%.

Figure 10: Result of the comparison between the training set and the test
set for the topological signatures of the sequences representing the same
person (in red) and the one between the training set and the test set for
the topological signatures of the sequences representing different persons (in
blue).

More examples and the source code written in Matlab can be obtained
visiting the web page: http://grupo.us.es/cimagroup/.

6 Analysis of the results

In Table 5 we see that the best result of our method was for the set of normal
sequences (CASIA-Bnm) and the worst was for the set of persons carrying
bags. This is due to that bags can affect the accuracy of the method (see the
lowest fourth part of the body silhouette in Fig. 1). Moreover, the weight
of the bag can change the dynamic of the gait. On the other hand, the
features obtained from the lowest fourth part of the body silhouette gave an
accuracy for the normal sequences of 94.1%, which only decreases 3.9% with
respect to our previous paper [10] using the whole body silhouette (98.0%).
This confirms that the highest information in the gait is in the motion of
the legs, which supports the results given in [1].

Nevertheless, as we can see in Tables 5 and 6, our method outperforms
previous methods for gait recognition with or without carrying a bag or
wearing a coat. Furthermore, we show in Table 5 that the changes intro-
duced to obtain our new method derive in an improvement with respect to
our previous solution [10].

Besides, the algorithm explained in [1] decreases considerably the accu-
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racy obtained by training mixing the normal, carrying-bag and wearing-coat
sequences (see Table 6). On the contrary, our algorithm improves the ac-
curacy for the whole test set. Comparing the two tables, we can as well
arrive to the conclusion that training with more heterogeneous data gives
to our method a more powerful representation for the classification step and
in that case, our method outperforms in more that 35% the results given in
[1].

Finally, the results presented in this paper show the power of the Theory
of Persistent Homology to obtain the structural features of the dynamic of
the legs.

7 Conclusion

In this paper we have presented an algorithm for gait recognition, a tech-
nique with special attention in tasks of video surveillance. We have used
persistent homology to model the gait, similar as we did in our previous ap-
proaches, although the algorithm presented here is slightly different to our
previous ones in a way that it is more robust to variations in the amount
of simplices considered and removes as well any dependency with respect
to the stability of the sorting algorithm used for obtaining the filtration.
Besides, the topological features have been tested here using only the lowest
fourth part of the body silhouette. Then, the effects of variations unrelated
to the gait in the upper body part, which are very frequent in real scenar-
ios, decrease considerably. We have proved that our topological signature is
robust to small perturbations in the input data and does not depend on the
number of gait cycles contained in the gait sequence. Finally, the results
presented in the paper improve considerably the accuracy in the state of the
art.

Acknowledgments

This work has been partially supported by IMUS and MINECO/FEDER-
UE under grant MTM2015-67072-P.

References

[1] Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject co-
operation. Pattern Recognition Letters 31(13), 20522060 (2010)

[2] Chazal, F., de Silva, V., Oudot, S.: Persistence stability for geometric
complexes. Geometriae Dedicata 173(1), 193214 (2014)

19



[3] Chen, C., Liang, J., Zhao, H., Hu, H., Tian, J.: Frame dierence energy
image for gait recognition with incomplete silhouettes. Pattern Recog-
nition Letters 30(11), 977984 (2009)

[4] Edelsbrunner, H., Harer, J.: Computational topology: an introduction.
American Mathematical Soc. (2010)

[5] Ghrist, R.: Barcodes: The persistent topology of data. Bull. Amer.
Math. Soc. 45 (2008), 61-75 45, 6175 (2008)

[6] Lamar-Leon, J., Alonso-Baryolo, R., Garcia-Reyes, E., Gonzalez-Diaz,
R.: Gait-based carried object detection using persistent homology. In:
Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications - 19th Iberoamerican Congress, CIARP 2014, Puerto
Vallarta, Mexico, November 2-5, 2014. Proceedings, pp. 836843 (2014)

[7] Lamar-Leon, J., Alonso-Baryolo, R., Garcia-Reyes, E., Gonzalez-Diaz,
R.: Topological features for monitoring human activities at distance.
In: Activity Monitoring by Multiple Distributed Sensing - Second In-
ternational Workshop, AMMDS 2014, Stockholm, Sweden, August 24,
2014, pp. 4051 (2014)

[8] Lamar-Leon, J., Baryolo, R.A., Garcia-Reyes, E., Gonzalez-Diaz, R.:
Persistent homology-based gait recognition robust to upper body varia-
tions. In: 23rd International Conference on Pattern Recognition, ICPR
2016, Cancun, Mexico, December 4-8, 2016, pp. 10831088 (2016)

[9] Lamar-Leon, J., Cerri, A., Garia-Reyes, E., Gonzalez-Diaz, R.: Gait-
based gender classication using persistent homology. In: Progress in
Pattern Recognition, Image Analysis, Computer Vision, and Appli-
cations - 18th Iberoamerican Congress, CIARP 2013, Havana, Cuba,
November 20-23, 2013, Proceedings, Part II, pp. 366373 (2013)

[10] Lamar-Leon, J., Garcia-Reyes, E., Gonzalez-Diaz, R.: Human gait
identication using persistent homology. In: Progress in Pattern Recog-
nition, Image Analysis, Computer Vision, and Applications - 17th
Iberoamerican Congress, CIARP 2012, Buenos Aires, Argentina,
September 3-6, 2012. Proceedings, pp. 244251 (2012)

[11] Lee, C.P., Tan, A.W., Tan, S.C.: Time-sliced averaged motion history
image for gait recognition. Journal of Visual Communication and Image
Representation 25(5), 822 826 (2014)

[12] Lishani, A.O., Boubchir, L., Bouridane, A.: Haralick features for gei-
based human gait recognition. In: Microelectronics (ICM), 2014 26th
International Conference on, pp. 3639. IEEE (2014)

20



[13] Munkres, J.R.: Elements of algebraic topology, vol. 2. Addison-Wesley
Reading (1984)

[14] Rida, I., Almaadeed, S., Bouridane, A.: Gait recognition based on
modied phase-only correlation. Signal, Image and Video Processing
10(3), 463470 (2016)

[15] Singh, S., Biswas, K.: Biometric gait recognition with carrying and
clothing variants. In: Pattern Recognition and Machine Intelligence,
pp. 446451. Springer (2009)

[16] Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive
study on cross-view gait based human identication with deep cnns.
IEEE transactions on pattern analysis and machine intelligence 39(2),
209226 (2017)

[17] Yu, S., Tan, D., Tan, T.: A framework for evaluating the eect of view
angle, clothing and carrying condition on gait recognition. In: Pattern
Recognition, 2006. ICPR 2006. 18th International Conference on, vol.
4, pp. 441444. IEEE (2006)

[18] Zhang, Y., Jiang, S., Yang, Z., Zhao, Y., Guo, T.: A score level fusion
framework for gait-based human recognition. In: Multimedia Signal
Processing (MMSP), 2013 IEEE 15th International Workshop on, pp.
189194. IEEE (2013)

21


	1 Introduction
	2 Topological model of the gait: Simplicial Complexes
	2.1 Filtration of the Simplicial Complex K(I)

	3 Persistent homology and topological signature
	3.1 Topological Signature for a Gait Sequence

	4 Stability of the topological signature for a gait sequence
	5 Experimental Results
	6 Analysis of the results
	7 Conclusion

