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a b s t r a c t

In solar parabolic-trough plants, the use of Model Predictive Control (MPC) increases the output thermal
power. However, MPC has the disadvantage of a high computational demand that hinders its application
to some processes. This work proposes using artificial neural networks to approximate the optimal flow
rate given by an MPC controller to decrease the computational load drastically to a 3% of the MPC
computation time. The neural networks have been trained using a 30-day synthetic dataset of a collector
field controlled by MPC. The use of a different number of measurements as inputs to the network has
been analyzed. The results show that the neural network controllers provide practically the same mean
power as the MPC controller with differences under 0.02 kW for most neural networks, less abrupt
changes at the output and slight violations of the constraints. Moreover, the proposed neural networks
perform well, even using a low number of sensors and predictions, decreasing the number of neural
network inputs to 10% of the original size.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, renewable energy sources (hydropower, bioenergy,
wind power and solar energy) are unseating the fossil fuel [1].
Among them, solar energy is the most ancient and abundant [2], as
it takes advantage of solar radiation. The different solar power
generation technologies can be divided into two main groups ac-
cording to themethod of producing energy: converting the sunlight
directly into electricity with Photovoltaic Cells (PV) or producing
steam to drive turbine generators in Concentrating Solar Power
(CSP) systems. CSP technology can include Thermal Energy Storage
(TES), which gives them an advantage over PV. The main types of
CSP are parabolic troughs, Fresnel collectors, tower plants and dish
collectors [3]. This paper focuses on the control of parabolic-trough
collectors.

Many control algorithms have been proposed for parabolic-
trough collector fields, gathered in Refs. [4,5]. Among them,
Model Predictive Control (MPC) [6] is widely used in the literature
because it can deal with nonlinear behaviors and constraints, and
the use of receding horizon allows it to take into account future
oreno), jdominguez3@us.es
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outputs. More details of the control techniques applied to these
types of plants can be found in section 2.3.

The main drawback of MPC is the high computational cost
required to solve an optimization problem every few minutes or
seconds. This paper proposes the use of Artificial Neural Networks
(ANN) to overcome this drawback.

There are two main approaches to the application of neural
networks to control systems:

C The most commonly used approach consists of using the
ANN to model the behavior of the plant [7]. gathers a list of
applications to renewable energy systems and, more specif-
ically, some applications to parabolic trough collectors are
the following. In Ref. [8], a Nonlinear Autoregressive Exoge-
nous (NARX) neural network is applied to obtain a non-linear
model of the plant [9]. use an Elman neural network to tune
offline switching PIDs and in Ref. [10], an MPC controller is
applied using a state-space neural network as a model. In
Ref. [11] a neural network is used to estimate the optimal
operating point in a real-time optimization scheme for
renewable energy sources power.

C The second approach is to calculate the control signal
directly. To the best of our knowledge, it has not been applied
to solar thermal plants, but there are some applications in
other fields [12]. approximate the output of a receding
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Parameters and variables description.

Symbol Description Units

t Time s
DT Simulation time step s
Dl Segment length m
C Specific heat capacity J/(kg ◦C)
r Density kg/m3

A Cross-sectional Area m2

T Temperature ◦C
hcol Collector efficiency e

G Collector aperture m
I Direct solar irradiance W/m2

Dm Outside diameter of the pipe m
Df Inside diameter of the pipe m
Ht Metal-fluid heat transmission coefficient (m2 ◦C)
Hl Thermal loss coefficient W/(m2 ◦C)
q Flow rate 1/s

S. Ruiz-Moreno, J.R.D. Frejo and E.F. Camacho Renewable Energy 180 (2021) 193e202
horizon controller using feedforward neural networks
applied to control the trajectory of a robot [13]. use a neural
network to solve the optimization problem inMPC [14]. learn
to approximate the output of an MPC controller applied to an
energy management system in a smart building.

The main contribution of this work is to apply neural networks
to directly approximate the output of a nonlinearMPC controller for
the control of parabolic trough collector fields. The proposed
method provides control signals that approach the strengths of
MPC esuch as optimality and compliance with constraintse, but
with much faster implementation times. In most controllers, one of
the control objectives is to smooth the control signal and reduce the
slew rate, which increases the pump durability, lowers high-
frequency noise and reduces failures in electronic systems. A mi-
nor contribution is to obtain less abrupt changes in the control
signal.

Thewhole process can be divided into threemain steps: First, an
MPC controller is implemented to generate a dataset. Then, several
artificial neural networks are trained offline to learn its outputs.
Finally, the proposed NN controller is tested by simulation for the
ACUREX plant, which was located at the Plataforma Solar de
Almería (PSA).

This paper organizes as follows. Section 2 describes themodel of
a parabolic-trough collector and briefly summarizes its main con-
trol algorithms. Section 3 explains artificial neural networks and
the training process. The problem formulation is presented in
section 4, where the MPC algorithm and the neural network
controller are explained. Section 5 shows the design of the selected
ANN and the simulation results for ACUREX. Finally, some conclu-
sions are given in section 6.

2. Parabolic-trough plant description

This section describes the parabolic-trough collector (PTC) field,
which consists of a set of mirrors that concentrate the Direct
Normal Irradiance (DNI) onto a tube that contains the Heat Transfer
Fluid (HTF), usually synthetic oil or water. This oil is heated to
produce steam, which is fed to a turbine moving a generator that
produces electricity. One of the main characteristics of this type of
plant is the capacity for energy storage by means of a Thermal
Energy Storage (TES) system.

First, a brief description of the model used is given, together
with its parameters and variables. Then, the required constraints
and boundary equations are described. These are needed to take
into account when controlling the plant. Finally, this section sum-
marizes the main control approaches used for controlling
parabolic-trough collector plants.

2.1. Model of the plant

This section gives a brief description of the mathematical model
used, which is the distributed-parameter model, and the parame-
ters and variables. Fig. 1 shows a scheme of one loop of collectors,
which is divided into several segments of size Dl. Then, Table 1
contains the notation used for describing the system, where the
Fig. 1. Schematic of one loop of the collector field. Tin(k) and Tout(k) are the inlet and outl
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superscripts f, m and a refer to fluid, metal and ambient.
The system dynamics can be described by equations (1)e(3) [4]:

� The energy balance for the metal tube on segment i from instant
(k � 1)DT to kDT:

Tmi ðkÞ¼Tm
i ðk�1Þþ DT

rmCmAm

�
hcoli GiIiðkÞ�pDmHl

iðk�1Þ
�
Tmi ðk�1Þ�TaðkÞ�þ�pDfHt

i ðk�1Þ
�
Tmi ðk�1Þ�T1f

i ðk�1Þ
��
(1)
� The energy balance on the HTF for segment i:

T fi ðkÞ¼ T fi ðk�1Þþ pDfHt
i ðk�1ÞDT

rfi ðk�1ÞCf
i ðk�1ÞAf

�
Tmi ðk�1Þ�T1fi ðk�1Þ

�
(2)
� An auxiliary temperature, which allows incorporating the
temperature of the adjacent segment in the energy balance:

T1fi ðkÞ ¼ T1fi ðk�1Þ � qðkÞDT
Af

�
T fi ðkÞ � T fi�1ðkÞ

�
(3)

In solar fields, the Direct Normal Irradiance (DNI) Ii(k) cannot be
manipulated, so it acts as a disturbance that has to be estimated
along the prediction horizon. More details about this model can be
found in Refs. [15,16].
2.2. Constraints and boundary equations

A boundary equation is defined for the temperature of the first
segment of the loop, where Tin(k) is the inlet temperature, which
acts as a disturbance that must be measured or estimated:
et temperatures, T f
i ðkÞ is the fluid temperature in segment i and q(k) is the flow rate.



S. Ruiz-Moreno, J.R.D. Frejo and E.F. Camacho Renewable Energy 180 (2021) 193e202
T f1ðkÞ ¼ T inðkÞ (4)

Also, other two constraints must be considered:

C Constraints on the flow rate based on theminimumReynolds
number required to guarantee turbulent flow in the pipes
and the maximum pressure drop, where qmin is the
maximum flow rate and qmax is the minimum flow rate:

qmin � qðkÞ � qmax (5)
C Constraints on the outlet temperature, where Tf, min is the
minimum temperature of the HTF and Tf, max is the
maximum:

T f ; min � T f
NðkÞ � T f ; max (6)
2.3. Main controllers

Many control architectures, described by Ref. [17], have been
used in parabolic trough collectors with the general purpose of
controlling the flow rate and the HTF temperature: Feedforward
(FF), Proportional-Integral-Derivative (PID), Cascade Control (CC),
Adaptive Control (AC), Gain Scheduling (GS), Internal Model Con-
trol (IMC), Time Delay Compensation (TDC), Optimal Control (OC),
Robust Control (RC), Non-linear Contol (NC), Model Predictive
Control (MPC), Fuzzy Logic Control (FLC) and Neural Network
Controllers (NNC). One of the most important is Model Predictive
Control.

Among the recent works on this subject, the following articles
Fig. 2. Diagram of a Multilayer Perceptron with one hidden layer. zðlÞi is the output of node
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should be noted [18]. propose an observer-based MPC, apply it to
ACUREX and compare it to a Gain Scheduling Generalized Predic-
tive Control (GS-GPC) and PID [19]. control the outlet temperature
of the solar collector field using Filtered Dynamic Matrix Control
(FDMC) [20]. apply MPC to the ACUREX plant manipulating the oil
temperature and analyze the difference between manipulating
each valve individually and the total oil flow [21]. present a strategy
tomanipulate the flow on the loops and obtain a thermal balance of
the field [15]. compare different MPC approaches: local, distributed
and centralized; and also compare different objectives: power
maximization, temperature maximization, temperature minimi-
zation and no-valves situation [16]. control the plant with coali-
tional model predictive control [22]. take into consideration the
effect of degraded collectors and their nonuniformity and propose
using an improved thermal-hydraulic model of the field and an
optimization strategy. In Ref. [23], an adaptive control method is
implemented by solving two consecutive QP (Quadratic Program-
ming) problems: the first one for establishing a momentaneous
model and the second one for solving MPC. More economical ap-
proaches are [24], where the return of investment (ROI) is maxi-
mized, and [25], where the operation is optimized using a three-
layer hierarchical control strategy to reduce the operating costs.
3. Artificial neural networks

Artificial Neural Networks (ANN) are models designed to
emulate the human brain. Its origin takes back to 1943, when [26]
modeled a neural network using electrical circuits. They have been
widely used for modeling relationships between data and finding
patterns. Its applications are categorized in regression, classifica-
tion and data processing, many of them described by Ref. [27].

An Artificial Neural Network is a function fNN(,) formed by
weighted sums of functions g(,) (called activation functions) that
i and layer l, wðlÞ
ji is the weight vector betwen neurons j and j, and bðlÞi is the bias unit.
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are inspired by the functioning of the human brain. It is formed by
neurons (also called nodes), each of them with inputs emulating
the dendrites and an output emulating the axon. Each neuron
computes a linear regression problem and the activation function
translates it to an active or non-active state. The use of several
nodes gives rise to more complex functions. Neural networks are
distributed in three types of layers: input layers, output layers and
hidden layers (all layers between the input and the output, whose
information is not directly related to the known data). According to
the number of layers, neural networks can be shallow ethey have
only one hidden layere or deep ethey have two or more hidden
layers.

TheMultilayer Perceptron (MLP) is one of themost useful neural
networks in function approximation. It is a feedforward neural
network, which means that all neurons in a layer are connected to
the neurons in the layer before and there are not cycles between
them [28]. Each neuron of the network computes equation (7),

giving zðlÞi as output. The superscript (l) indicates the layer, which is

composed of n(l) neurons. wðl�1Þ
ji is the kernel between neurons j

and i of layer l� 1 and bðl�1Þ
i is the bias unit of neuron i in layer l� 1.

The activation functions are usually the same for each layer.

zðlÞi ¼ gðlÞ
0
@Xnðl�1Þ

j¼1

wðl�1Þ
ji zðl�1Þ

j þ bðl�1Þ
i

1
A (7)

The general scheme of an MLP is shown in Fig. 2, where there is
only one hidden layer (colored in yellow). The input layer is colored
in red, and it has as many nodes as input variables. The output layer
(in green) has as many nodes as the outputs of the neural network.

The activation function [29] defines the output of a node and
allows the constraints in a certain range. The original activation
functionwas a relay, but it is preferred to use other analog functions
with smooth gradients, which prevents them from jumps in the
output. Different types of activation functions allow multi-output
and facilitate the learning process. Fig. 3 shows the most com-
mon activation functions. Non-linear activation functions allow
creating non-linear regressionwhen usingmultiple layers, whereas
linear activation functions create simple linear combinations of
linear functions, which produces linear regression. These functions
are generally used in the output layer, as there is no need to satu-
rate the output data. Also, the hyperbolic tangent function is zero-
centered and has a steeper derivative than the sigmoid function,
making it more efficient.

The parameters of the neural network are determined with an
iterative process. First, they need to be initialized. Then, the output
error is calculated and the weights are adjusted until fulfilling a
given criterium.When a network has hidden layers, the errorsmust
be calculated indirectly, starting from the output error. This is
accomplished with an algorithm called back-propagation [30].
Fig. 3. Most known ac
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Different learning rules can be used according to this method. One
of the most efficient back-propagation algorithms for medium-size
neural networks is the Levenberg-Marquardt [31,32], which uses a
sum of squared errors as a loss function.

The equations of neural networks solve a fitting problem.
Consequently, any MLP can approximate continuous functions
when having sufficient nodes. This is determined after a trial-and-
error process: it starts with a few layers and neurons, a neural
network is trained and the number of nodes is increased until
founding a correct fitting.

The training process is composed of different steps, as follows:

C Pre-processing the data: Normalizing input and output var-
iables leads to faster learning. The input data is usually scaled
between �1 and 1 or between 0 and 1.

C Defining the subsets: The data is divided into training set
eused for adjusting the parameterse, validation seteused to
validate the behavior of the network and adjust some
parameterse and test set eused for estimating the func-
tioning of the network when fed with new data.

C Specifying the architecture and parameters of the network:
This step must be repeated until finding a network that
performs well.

C Learning: The weights are calculated.
C Evaluating the network: The Pearson correlation coefficient

(R) and theMean Squared Error (MCE) are calculated for each
subset. If these values are not good enough, the process must
be repeated from the third step.
4. Problem formulation

This section poses the formulation of the problem. First, the
control strategy is described, including the cost function and cal-
culations made to obtain it. Then, the use of the neural network to
substitute the MPC controller is explained.

4.1. Model predictive control strategy

Model Predictive Control (MPC) [6] is a control method that uses
a dynamic model of the system to predict the future outputs. Based
on this model, an optimization problem is solved to obtain the best
future control signals by minimizing a cost function. MPC has been
successfully applied to this plant on several occasions [15,16,33]. In
this work, we implement an MPC controller, whose inputs and
outputs will serve to train an artificial neural network. The MPC
strategy applied in this paper is analogous to the strategies applied
in Refs. [15,16], but applied to only one loop. More details about the
problem formulation can be found in the referred articles.

In this work, the control variable is the flow-rate circulating
through the pipes. Regarding the objective function, commercial
tivation functions.
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plants usually operate at the maximum temperature to increase the
efficiency of the power cycle. This also implies an increase in the
thermal losses of the field, affecting the overall efficiency as indi-
cated by Ref. [25]. The main control objective in this work is then to
maximize the net thermal power provided by the plant while
fullfilling the constraints and minimizing the control effort.

The cost function J(kc) is given by equation (8) for a certain time
t ¼ kcDTc, where kc is the controller time-step and DTc is the
controller step size. It includes a term for the minimization of the
thermal powerW(kc), a second term to limit the outlet temperature
using soft constraints and a third term that penalizes the flow-rate
variation. j and ε are tuning parameters.

JðkcÞ¼
0
@�WðkcÞþjmax

 
T fNðkcÞ�T f ;max

T f ;max
;
T f ;min�T fNðkcÞ

T f ;max
;0

!2

þ εðqðkcÞ�qðkc�1ÞÞ2
1
A

(8)

The net thermal power is computed by the difference between
the output and input thermal powers for the collector field,Wout(kc)
and Win(kc), which can be approximated by the net power of the
loop using equation (9).

WðkcÞ ¼ WoutðkcÞ �W inðkcÞzWout
loopðkcÞ �W in

loopðkcÞ (9)

where Wout(kc) and Win(kc) are the output and input thermal

powers for the field andWout
loopðkcÞ andW in

loopðkcÞ are the output and
input thermal powers of the control loop, being:

Wout
loopðkcÞ ¼ rfNðkcÞCf

NðkcÞqðkcÞT f
NðkcÞ (10)

W in
loopðkcÞ ¼ rf1ðkcÞCf

1ðkcÞqðkcÞT f1ðkcÞ (11)

The optimal solution is given by the flow-rate values that
maximize the thermal power for a given DNI profile. This is
accomplished by optimizing the cost function in equation (8) along
the prediction horizon, as in equation (12).

minqtðkcÞ
PkcþNp

k¼kc
JðkÞ

s:t: qmin < qðkcÞ< qmax c kc

(12)

where qt(kc) ¼ [q(kc), q(kc þ 1), …, q(kc þ Nu � 1)] and contains the
flow-rate values throughout the control horizon, Np is the predic-
tion horizon, and Nu is the control horizon.

This problem has been solved using Sequential Quadratic Pro-
gramming (SQP). As in Ref. [15], four initial points have been taken:
the profile of the previous time step shifted, the lower and upper
bounds and one random point.

The main problem of MPC is its computational requirements. It
needs a long time to calculate the optimal solution, which makes it
complicated to implement it in real-time on large solar plants and
with long control horizons. To solve this problem, this work pro-
poses in section 4.2 to use artificial neural networks that learn
offline the output of the controller and apply it in real-time.
4.2. Neural network controller

This section aims to describe the implementation of the neural
network controller based on MPC. The ultimate goal is to use the
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neural network to substitute the MPC controller in real-time
operation. To do this, it will be trained using the inputs and out-
puts of the MPC controller.

The MPC controller obtains, for each time-step, a value for the
flow-rate given some inputs: the flow rate in the previous time-
step, the inlet temperature, the outlet temperature, the ambient
temperature, the fluid temperature on each segment, the metal
temperature on each segment and the predicted irradiance on each
segment along the prediction horizon. This can be expressed as a
function f(,) (equation (13)). The aim of this work is to find a
function that approximates the output of the MPC controller
obtaining a similar controller without its computational re-
quirements (i.e. without the need to solve an optimization in real-
time).

qðkÞ ¼ f
�
qðk�1Þ; T inðkÞ; ToutðkÞ; TaðkÞ; T f

i ðkÞ; Tmi ðkÞ; IiðkÞ;…;

IiðkþNp �1Þ
�

(13)

The inputs to the function in equation (13) can be collected in a

vector and used as input to the neural network zð1Þ1 ðkÞ ¼ ½qðk � 1Þ;
T inðkÞ; ToutðkÞ; TaðkÞ; T f

i ðkÞ; Tmi ðkÞ; IiðkÞ; …; Iiðk þ Np � 1Þ�. The
objective is to find the neural network whose output best matches
the output of the MPC controller (equation (14)).

q̂ðkÞ ¼ fNN
�
zð1Þ1 ðkÞ

�
(14)

This work is composed of two stages. First, an offline training of
the ANN (Fig. 4) is done using the outputs of an MPC controller
applied to a simulator of the plant with a dataset of radiations and
ambient temperature. As the MPC controller calculates a series of
future outputs along the control horizon, only the first one is used
to feed the neural network ethe one corresponding to the conse-
quent instant. On the other hand, the entire set of inputs is used to
fed to the neural network. Once trained, the network is imple-
mented online to substitute the MPC controller in real-time (Fig. 5).
5. Results

5.1. Case study

The considered collector field was ACUREX, located at the Pla-
taforma Solar de Almería (PSA), Spain. As aforementioned, this
plant has been widely used in the literature. In particular, the
different experiments of this work are carried out by simulating
one loop of the plant.

The field is composed of East-West aligned single axis parabolic-
trough collectors. Each loop is 174 m long and is discretized into
N ¼ 174 segments of Dl ¼ 1. The loop has 12 collectors in series,
being segments 37, 42, 79, 96 and 133, 138 passive parts. The active
part is the one that receives solar irradiance and is 144 m long,
whereas the passive part is 30 m long.

The HTF used is Therminol VP-1, with density rfi ðkÞ and specific

heat capacity Cf
i ðkÞ for each time instant are computed for each

segment i using equations (15) and (16).

rfi ðkÞ ¼ 903� 0:672T f
i ðkÞ (15)

Cf
i ðkÞ ¼ 1820� 3:478T fi ðkÞ (16)

The coefficient of transmission metal-fluid and the coefficient of
thermal losses are also computed according to equations (17) and



Fig. 4. Offline training of the control algorithm with the notation given by Table 1.

Fig. 5. Online implementation of the control algorithm with the notation given by Table 1.
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(18).

Ht
i ðkÞ ¼ q0:8k

�
2:17,106 � 5:01,104T fi ðkÞ þ 4:53,102T fi ðkÞ2

� 1:64T fi ðkÞ3 þ 2:1,10�3T fi ðkÞ4
�

(17)

Hl
iðkÞ ¼ 0:00249

�
T fi ðkÞ � TaðkÞ

�
� 0:06133 (18)

The rest of the values are shown in Table 2, as well as the
operational constraints. Later in this document, it will be shown
that small violations of the outlet temperature constraints are
possible with the proposed method. Although these occur in just a
few moments, they could be avoided by augmenting the lower
bound.

In solar collectors, the disturbances are the ambient tempera-
ture and the effective DNI. The ambient temperature is considered
constant and equal to 25 �C. A 30-days DNI profile has been used, in
which different synthetic clouds have been included to obtain a
heterogeneous dataset. Fig. 6 shows the first day of the DNI used for
training. Another one-day profile was used for validation, repre-
sented in Fig. 7.

The inlet temperature can be expressed as a first order system
Table 2
Parameters and constraints of ACUREX.

Symbol Value Units

DT 0.5 s
rm 7800 kg/m3

Cm 550 J/(kg �C)
Dm 0.031 m
Df 0.0254 m
Am 2.48 , 10�4 m2

Af 7.55 , 10�4 m2

qmin 0.2 l/s
qmax 1.5 l/s
Tf, min 220 �C
Tf, max 300 �C
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with a time constant of 10 min as in equation (19), where T̂
outðsÞ ¼

ToutðsÞ � 90 to take into account the temperature fall in the steam
generator.

T inðsÞ
T̂
outðsÞ

¼ 1
600sþ 1

(19)

The discretization of this equation leads to equation (20). A
discretization time of 0.5 s was used, which is the simulation time
step, also used by Refs. [15,16,34].

T inðkÞ ¼ 0:999167T inðk�1Þ þ 0:000833
�
Toutðk�1Þ � 90

�
(20)

The last measured value of the outlet temperature Tout(kc) is
used for all the prediction horizon and the parameters of the MPC
controller are given by Table 3. To speed up the computation time,
although the simulation model considers a length of the segments
is Dl ¼ 1 m and the discretization time of the model is DT ¼ 0.5 s,
the MPC controller uses a length Dlc¼ 6m and a discretization time
DTm, c ¼ 3 s.
Fig. 6. First day of the DNI profile used for training.



Fig. 7. DNI profile used for validation.

Table 3
Parameters of the MPC controller.

Symbol Value Units

DTc 60 s
DTm, c 3 s
Dlc 6 m
Np 12 e

Nu 10 e

j 45 e

ε 3 e
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5.2. Neural network design

This section is dedicated to explaining the design and training of
the neural network. On the one hand, a description of the data and
its processing is given. On the other hand, the architecture and
inputs of the neural network are explained.

The 30-days dataset has been divided into a training set (70%), a
validation set (15%) and a test set (15%), randomly selected. The
total number of samples is 16867. Afterward, the data is scaled in
the range [�1, 1]. This is done to avoid inappropriate saturations
caused by the use of the activation functions. With high input
values, the weight vectors would have to be very small reducing
gradients excessively and slowing down the training [7,35].

Several neural networks have been trained using different
numbers and sizes of hidden layers. The training was stopped once
the neural network achieved a mean squared error under 10�9. The
activation functions used are hyperbolic tangent for all layers
except for the last one (the output layer), where a linear function
was used. The parameters are given by Table 4.

Different choices have been used for the selection of the seg-
ments in which measurements of temperatures and irradiation are
taken and for the number of predictions used. According to this,
eight different cases have been investigated:

1. Temperatures and irradiance every six segments.
2. Irradiance every six segments and temperatures at the center of

each collector.
3. Irradiance every six segments, predictions at instants 1,4,8 and

12, and temperatures at the center of each collector.
4. Irradiance every six segments, predictions at instants 1 and 12,

and temperatures at the center of each collector.
Table 4
Training parameters of the neural networks.

Range Transfer function m m increase ratio m decrease ratio

[-1,1] tansig pureling 10e3 10e1 10
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5. Irradiance every six segments, prediction horizon of 6, and
temperatures at the center of each collector.

6. Irradiance every six segments, prediction horizon of 3, and
temperatures at the center of each collector

7. Irradiance every six segments, prediction horizon of 1, and
temperatures at the center of each collector.

8. Temperature and irradiance in the first collector, without inlet
and outlet temperatures, and prediction horizon of 1.
5.3. Simulation results

This section presents the results obtained with the different
neural networks applied to the plant. First, different neural net-
works are trained using temperatures and irradiance every six
segments and one architecture is selected to be trained with the
rest of the options. Then, the neural networks are tested with a
validation profile.

Table 5 gathers the results of the neural networks used for case 1
(temperatures and irradiance every six segments and the entire
prediction horizon). The Pearson correlation coefficient R has been
calculated in open loop for the three subsets. After that, the neural
networks have been used to control the plant and the mean power
obtained is represented in the table. One advantage of neural net-
works is the obtaining of a smooth output to the detriment of slight
violations of the constraints. For that reason, the table includes the
accumulated absolute difference between the value of the flow rate
in an instant and the next one, which we define as Accumulated
Absolute Control Increment (AACI) in equation (21), and the Mean
Squared Constraint Violation (MSCV), a measurement of the dif-
ferences between Tout and its limit when constraint violations occur
between the hours 8:00 and 19:00 etimes between power on and
off are not considerede, defined in equation (22), where ns is the
number of samples between those instants.

AACI ¼
X
k

jqðkÞ � qðk�1Þj (21)

MSCV¼ 1
ns

XkDT¼19

kDT¼8

�
max

�
T f ;min�ToutðkÞ;ToutðkÞ�T f ;max;0

�2�

(22)

From the table, it can be extracted that either a shallow network
or deep networks with three hidden layers obtain smoother out-
puts than MPC. Although the network with only one layer obtains
more power esurpassing even the MPC controllere, it is due to the
violations of the constraints. For that reason, the selected neural
network for the next experiments is the third one (two hidden
layers, with 15 neurons in the first one and 10 neurons in the
second one), with lower violations of the constraints.

Fig. 8 compares the performance of the selected neural network
and the MPC controller throughout the daylight hours of one of the
days used for training. It should be noted that the curves corre-
sponding to the artificial neural networks are much smoother than
those obtained with MPC.

Regarding the calculation times of both controllers, Fig. 9 shows
that the MPC controller is much slower than the neural network at
Max m Max epochs Min gradient Max validation checks

1010 103 10e9 6



Table 5
Results of the controllers used for case 1 (temperatures and irradiance every six segments and the entire prediction horizon) with the first day of the training data.

Neurons R (train) R (validation) R (test) Mean power AACI MSCV

MPC e e e 65.6607 kW 7.9309 l/s 0.0445
15 0.99720 0.99690 0.99651 65.6638 kW 2.8189 l/s 0.4706
15e5 0.99793 0.99678 0.99647 65.6515 kW 2.7983 l/s 0.1016
15e10 0.99791 0.99636 0.99679 65.6580 kW 2.9247 l/s 0.0740
20e10 0.99778 0.99664 0.99621 65.6508 kW 2.9479 l/s 0.1760
15-10-5 0.99771 0.99699 0.99686 65.6557 kW 2.8435 l/s 0.5388
15-10-10 0.99739 0.99685 0.99685 65.6619 kW 2.9479 l/s 0.5182

Fig. 8. Evolution of the flow rate, the outlet temperature and the thermal power for
one day of the profile used for training.

S. Ruiz-Moreno, J.R.D. Frejo and E.F. Camacho Renewable Energy 180 (2021) 193e202
all times. The mean time for the MPC controller is 2.3929 s with a
standard deviation of 1.1418 s. In the case of the neural network, the
mean time is 0.07 s and the standard deviation is 0.0087 s.

Subsequently, different neural networks have been trained for
the rest of the cases, using for each one a lower number of inputs.
All of them are designed using the same architecture �2 hidden
layers, with 15 neurons in the first one and 10 in the second onee
and the same parameters as in the first case. Fig. 10 shows the ar-
chitecture of the selected neural network with the number of in-
puts indicated in each layer. The only difference with the neural
networks of the rest of the cases is the size of the input layer.

Table 6 shows the results obtained for the neural networks
trained for cases 2 to 8 (explained in section 5.2) using the 15-10
neural network. It also shows the Pearson correlation coefficient for
the training, validation and test subsets, the mean power obtained
in a one-day simulation, the accumulated absolute difference be-
tween the value of the flow rate in two consecutive instants and the
MSCV. It can be extracted that, even eliminating some sensors and
predictions, the artificial neural networks are capable of learning by
Fig. 9. Calculation times of MPC and the ANN with the first day of the profile used for
training.

200
themselves thanks to the great behavior of the MPC controller used
for training, which takes into account future predictions and esti-
mations of the entire loop. The last two cases, in which no pre-
dictions are used, are the ones that obtain the worst performance,
with great violations of the constraints. Even though, the mean
power is near the one obtained with the MPC controller
(65.6607 kW) and the flow rate remains smoother, which is
desirable in these kinds of systems restricted by the physical ca-
pabilities of the valves.

To visualize how the neural network responds to different
prediction horizons, Fig. 11 shows the MSCV and the q differences
between two instants and their evolution when the prediction
horizon decreases. It is worth noting that the neural networks are
capable of replicating the behavior of MPC despite the decrease in
the number of inputs, except for the case with only one prediction
step. A slight decrease in the AACI is also visible as the prediction
horizon decreases.

For validation, a new DNI profile is used, obtaining the results of
Table 7. In all cases, the constraint violations increase, providing a
slight increment in the mean power. For case 8, the neural network
is unable to control the system, which is destabilized from hour
10:50. Note that this neural network has only five inputs and no
predictions are made.

The overall performance for the first case is good and the AACI
reduction is maintained, as it can be seen in Fig. 12. To visualize the
ability of the neural networks to learn the prediction and estima-
tions, Fig. 13 represents the results obtained for case 7 in validation.
This is the worst neural network (not taking into account case 8), as
the prediction horizon has been set to 1.
6. Conclusion

The use of MPC to control solar plants allows the maximization
of thermal power while satisfying certain constraints and consid-
ering future solar radiation values. The drawback of MPC is the
computational cost required to solve optimization problems in
non-linear systems. This paper proposes using artificial neural
networks to approximate the output of the model predictive
controller.

In this work, a model of the ACUREX collector field has been
used, together with two different DNI profiles. A dataset has been
created out of a 30-days simulation of the plant controlled by MPC
and another 1-day profile of irradiation has been used for validation
purposes. These data have been used to train different architectures
of neural networks and several tests have been carried out elimi-
nating some inputs (from 410 inputs in case 1 to 41 inputs in case 7
or 5 inputs in case 8). From those tests, the following conclusions
can be extracted:

C The value of the mean power obtained is similar using MPC
and neural networks.

C The neural networks obtain much smoother values of the
flow rate.



Fig. 10. Diagram of the selected artificial neural network for case 1 (temperatures and irradiance every six segments and the entire prediction horizon).

Table 6
Results of the controllers used for cases 2 to 8 with the first day of the training data (15-10 neurons).

Case R (train) R (validation) R (test) Mean power AACI Tout MSCV

2 0.99760 0.99719 0.99671 65.6581 kW 2.9096 l/s 0.1561
3 0.99768 0.99708 0.99704 65.6535 kW 2.9483 l/s 0.2810
4 0.99748 0.99647 0.99692 65.6629 kW 2.7363 l/s 0.7317
5 0.99772 0.99668 0.99677 65.6548 kW 2.7612 l/s 0.2239
6 0.99694 0.99663 0.99670 65.6599 kW 2.8096 l/s 0.0767
7 0.99686 0.99575 0.99649 65.6707 kW 2.7097 l/s 1.3840
8 0.99547 0.99542 0.99426 65.5358 kW 2.7726 l/s 26.0222

Fig. 11. Evolution of the MSCV and AACI with different prediction horizons for the first
day of the profile used for training.

Table 7
Results of the controllers used for cases 2 to 7 with the validation profile (15-10
neurons).

Neurons Mean power AACI MSCV

MPC 64.0417 kW 9.9777 l/s 0.0033
case 1 64.0517 kW 3.8315 l/s 0.1490
case 2 64.0504 kW 3.5275 l/s 0.3651
case 3 64.0481 kW 3.2928 l/s 0.5636
case 4 64.0515 kW 3.0231 l/s 1.6368
case 5 64.0474 kW 3.4924 l/s 0.0393
case 6 64.0538 kW 3.2521 l/s 0.1317
case 7 64.0615 kW 2.9464 l/s 3.2281

Fig. 12. Evolution of the flow rate, the outlet temperature and the thermal power for
the profile used for validating case 1 (temperatures and irradiance every six segments
and the entire prediction horizon).
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C It is possible to find neural networks with very low violations
in Tout constraints.

C The use of neural networks reduces the computation time
significantly.

The reduction of computation times allows an implementation
of the controller in real-time, as not only are they more constants,
but also they are much lower than the sampling time of the
controller and the computation times of the MPC controller. This
also allows the application of these neural networks to plants with
a great number of loops, where the implementation of MPC in real-
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time is much complicated. In this work, only one loop is considered
and the time needed for calculating theMPC controller is around 3 s
(even 7 or 9 s at some instants), whereas using the neural network,
it is around 0.1 s. Scaling the plant to the real size, with 10 loops in
the case of ACUREX or more than 100 in commercial plants, it
would not be possible to obtain the optimal solution in real-time
with MPC.

One limitation encountered when using neural networks is the
violation of the constraints, as they are not directly taken into ac-
count. Although the total error of these violations is relatively small,
it can be reduced by imposing harder constraints to the MPC
controller with a smaller temperature range.

Future research will be the application of this methodology to a
larger plant, other implementations combining the artificial neural
networks with distributed MPC and coalitional control and the use
of different types of learning techniques, such as non-supervised
learning.
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