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Optimization of Wind Farm Turbine Layout
Including Decision Making Under Risk
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Abstract—This paper presents a new contribution to optimal
wind farm design, including the main risk management aspects.
The objective of the algorithm is to optimize the expected profits
of the wind farm by taking into account that the wind data used
to design the wind farm involves some degree of uncertainty that
affects the final return of the project. Net present value (NPV) will
be used as a figure of the profitability in the proposed method.
The maximization of the NPV means the maximization of the
cumulative net cash flows (by maximizing the generation of net
energy) and minimization of the investment. Both terms mainly
depend on the number and type of wind turbines, tower height,
and geographical position, among other factors. Therefore, the
tool developed in this paper is intended to determine the wind
farm configuration most suitable in the presence of risk due to
uncertainty in the wind data.

Index Terms—Expected value, risk

management, utility theory.

genetic algorithm,

I. INTRODUCTION

HE USE OF wind energy to generate electricity is

becoming more and more important in most countries.
Current interest in renewable energy resources, such as wind
power, is mainly due to double support. On the one hand, it
is driven by the economic and political aspects, such as the
upward trend in fossil fuel prices and insecurity of supply. On
the other, there are social and environmental aspects, resulting
from the ever-increasing social awareness about the harmful
impacts of the emission of greenhouse gases responsible for
global climate change.

Wind power installed worldwide by the end of 2010 will
amount to a total of 196.63 GW, of which 85.98 GW corre-
sponds to Europe, and of these, 20.68 GW, to Spain [1]. The
growth rate of total installed capacity in the world was 19%
in 2010. This value has remained relatively constant during
the last few decades, and nothing seems to indicate that much
will change in the coming years.

A wind farm is made by a cluster of wind turbines (WTs),
more or less packed. This configuration offers some economic
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advantages related to the investment, plant operation, and
maintenance costs. However, the WT compactness degree is
limited by spacing constraints due to the wake effects (the
screening effect produced by the rotor of a turbine on those
located behind it, downstream). As a consequence, the layout
of specific individual WT positions determines the overall
efficiency of extraction of wind energy in a wind farm.

The design of a wind plant aimed at generating electricity
and its proper operation, over the facility life span, is a com-
plex and multidisciplinary task that involves many different
areas of expertise, from engineering to other sciences. It is not
only a complex enterprise from a technological standpoint but
also a degree of uncertainty, in terms of return or profitability,
that is higher than desirable. There are many factors that
influence the uncertainty in the returns on investment. Among
these, the main are as follows.

1) Future prices and costs: The future prices of goods, such
as the price of the energy or discount rate, are obviously
unknown. But, in order to estimate the present return
from selling the electricity produced, it is necessary
to know the selling price of the energy and discount
rate, throughout the whole span life of the wind farm
(typically 20 years). This could also include the costs of
various factors that influence the normal development
of the project during construction (such as civil work
or implementation delays), operation (turbine unavail-
ability, losses in the distribution network, wake effect
losses, or maintenance cost), and in the final phase of
decommissioning or possible future regulatory changes
that could affect the economic or financial scenario.

2) Wind: The sale of generated electric energy is the source
of income of the wind farm. Therefore, the random
nature of wind (speed distribution and directions) in-
troduces some degree of uncertainty in annual energy
production. In this sense, it is worth noting that the
optimum positioning of each of the turbines within a
wind farm is one of the major factors that influence
the profitability of the installation. This is due to the
turbine wake effect. Wake effect losses are the result of
interaction of two main factors: the wind (wind rose and
speed, not controllable) and layout of the turbines in the
wind farm (controllable at the project stage).

In this paper, the problem of the optimal design of wind
farms (selection of the turbines location, turbine type, and hub
height), taking into account the uncertainty in the statistical
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Fig. 1. Example of annual variation in the compass rose. Wind rose from
List/Sylt (Germany) for the years 1969 and 1972 [4].
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Fig. 2. Change in Weibull parameters, mean wind speed, and estimated
yearly generation of energy in Hong Kong since 1968 until 1997 [5].

characterization of the wind, is analyzed. The uncertainty from
the wind information, in both wind direction and intensity
(speed), becomes an uncertainty in the estimation of the yearly
generated energy. It is, therefore, the factor that most directly
affects the profitability of the wind farm. But, fortunately,
at the same time, it is the most controllable factor in the
design stage (optimizing the turbine layout). The objective
is to determine the configuration of the wind farm, so that
the uncertainty of the profitability is set to a level of risk
acceptable for investors. Moreover, the study should allow
the investor to know the maximum and minimum levels
of profitability of the project, which is an essential piece
of information in investor decision making when deciding
whether to undertake or reject the project [2], [3].

As an example of uncertainty of wind data, Fig. 1 shows
changes in the wind rose at List/Sylt (Germany), measured
in 1969 and 1972 [4]. Fig. 2 shows the variations in Weibull
distribution parameters (scale, C, and shape, K), mean wind
speed, and estimated annual energy produced along 30 years
in Hong Kong (adapted from [5]).

To date, there are several papers that use a mathematical
model to optimize the solution of the location problem (po-
sitioning or micrositing) of WTs in a wind farm. In [6]-[9],
the authors proposed a rather simple wind farm cost model
because they were mainly interested in demonstrating the
effectiveness of the optimization algorithm. The four papers
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use the same wake decay, simplified cost models, and very
similar objective functions, and they analyze the same cases.
They only differ in the optimization technique. While [6] and
[8] used a genetic algorithm (GA), [7] used a greedy algorithm
and [9] used a Monte Carlo simulation.

A more realistic wind farm cost model is developed in [10]-
[12] using a GA as the optimization algorithm. In relation to
the use of decision methods applied to the planning of wind
farms, the most significant work was done by [13], where the
objective was to determine the most appropriate generation
capacity under uncertainty.

This paper introduces a new approach to the problem of
optimal positioning of turbines in a wind farm, including de-
cision making under risk. As mentioned above, the economic
performance of a wind farm has a high degree of uncertainty.
Therefore, in this paper, a probabilistic optimization methodol-
ogy has been developed by taking into account a set of possible
scenarios and their probability of occurrence. This probabilis-
tic approach allows obtaining solutions with a behavior under
risk better than the performance of configurations obtained by
the deterministic approaches developed to date.

After this introduction, the paper is organized as follows.
Section II describes the problem approach and proposed
methodology. Section III presents the economic model of
the wind farm. Test cases and conclusions are provided in
Sections IV and V, respectively.

II. METHODOLOGY

The proposed tool combines an evolutionary algorithm, as
the optimization technique, with a decision method under
risk (Fig. 3). An initial population with a set of possible
solutions (individuals) is randomly generated by the evolu-
tionary algorithm. This population evolves, generation after
generation, toward the optimum by means of the crossover and
mutation operators. The fitness of each individual is evaluated
by the decision method that assesses the economical suitability
[based on net present value (NPV)] of each of the individuals
composing the population (alternatives) for the set of scenarios
(states of nature).

A. Optimization Algorithm

The complexity of the problem of optimal positioning of
the WTs in a wind farm arises not only from a technical
point of view, due to strong links between its variables,
but also from a purely mathematical point of view. The
problem consists of both discrete and continuous variables,
being, therefore, an integer-mixed type problem. The problem
exhibits manifold optimal solutions (convexity) and cannot be
completely described in an analytical form; some variables
have a range of non-allowed values (solutions space not
simply connected) and others are integers. This fact makes
the problem non-derivable, preventing the use of classical
analytical optimization techniques.

GAs have been used successfully in previous work to
optimize the problem of micro-positioning of the turbines of a
wind farm and demonstrated their suitability to the complexity
of this problem [6], [8], [10]-[12]. GA are robust optimum



This article has been accepted for inclusion in afuture issue of thisjournal. Content isfinal as presented, with the exception of pagination.

GONZALEZ et al.: OPTIMIZATION OF WIND FARM TURBINE LAYOUT INCLUDING DECISION MAKING UNDER RISK 3

! Optimization Algorithm

Risk analysis : ’E\:raluahonr:r
| Characterization =
Fig. 3. Optimization algorithm incorporating uncertainty (risk) scenarios.

search techniques that find the minimum or maximum of a
function based on principles inspired from the natural genetic
and evolution mechanisms observed in the nature [14]-[16].
The type and height of the WTs are discrete variables that are
not easily managed by traditional numerical algorithms due to
the nondifferentiable nature of the problem. Therefore, integer
codification has been used in the algorithm implementation,
which has been also applied to the locations of the WTs.

The integer codification used represents every possible solu-
tion of the problem by means of a matrix, where the columns
refer to the turbines of an individual and every row codifies the
characteristics for each turbine: position of the wind generator
in Cartesian coordinates (X;,Y;), type of wind generator (7;),
and tower height (H;). The type of turbine is codified with a
number, which will be the index in the generator database that
uses the algorithm as an input. The aforementioned database
contains all the necessary information of the wind generators
that could be installed in the wind farm (i.e., maximum
and minimum height of the towers, turbine and tower costs,
foundation cost, and power-wind speed curve). Therefore,
these matrices have a variable number of columns, depending
on the number of generators required by the codified individual
solution [17]-[19].

GA mainly makes use of two kinds of operators to generate
new individuals (potential solutions): crossover and mutation.
The crossover operator is applied on two selected individuals,
called parents, to generate new individuals, called sons, with
a mix of chromosomes (characteristics) from the parents. The
selection method used is known as roulette wheel, where the
individuals with highest fitness (objective function) are more
likely to be selected. Five special types of crossover operators
have been developed to improve the algorithm performance
[17]-[19]. The mutation operator is applied on one individ-
ual to generate another by randomly changing one or more
chromosomes. When the population is confined in a local
maximum, this operator leads to the creation of individuals
out of this zone of local attraction. This way the algorithm
can evolve toward the global maximum. The optimization
algorithm manages several kinds of constraints that makes

TABLE I
RESULTS MATRIX: NPV FOR EACH INDIVUAL AND SCENARIO
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the process of designing a wind farm more flexible, such as
follows.

1) Setting up forbidden areas where, for different reasons,
it is not possible to place a turbine. When an individual
shows a wind generator in a forbidden area, the genes
corresponding to the position of this aerogenerator are
mutated till they become located in an allowed area.

2) Turbines on the same position or outside the terrain.
Usually, after the operation of crossover or mutation,
non-feasible solutions can be created. In this case, a
regenerative algorithm goes through the individuals,
removing the turbines that are wrongly placed.

3) Limitation of the maximum investment to be done if
the investor has a limited available capital to start the
project. This constraint will be taken into account by
penalizing the individual in case of overinvestment.

4) Limitation in the maximum number of generators. This
restriction is controlled by limiting the number of the
individuals throughout the generation of the initial pop-
ulation and crossing operation.

B. Methods of Decision Making

When addressing the wind farm optimization problem
within the framework of a deterministic approach, once the
input variables values are set (the deterministic scenario),
an optimization algorithm, based on GA techniques, deter-
mines the optimal configuration of the wind farm Fig. 4(a).
But, when addressing the problem with a risk approach,
the uncertainty in the input variables must be considered
Fig. 4(b). Now, the input variables are characterized by a set
of scenarios (S, Sz, ..., Sy) and its probability of occurrence
(p1, p2,--.,pn)- In this case, Table I shows the correspond-
ing matrix results. As can be seen, the NPV;; element of this
matrix shows the NPV related to the ith potential wind farm
configuration (individual ith), considering the jth scenario (S).

In this paper, two different objective functions were used de-
pending on the decision criterion adopted: maximum expected
value (MEV) or maximum expected utility (MEU), based on
the utility theory (UT).

With the MEV approach, the objective is to find the wind
farm configuration with MEV of NPV. To reach that goal,
the expected value (EV) of NPV for each individual must be
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Fig. 4. Optimization algorithm. (a) Deterministic approach. (b) Incorporat-
ing uncertainty (risk) scenarios.

calculated as [20]

m

EVi =) NPV;p;. (D

=

The MEU criterion is based on the UT. The UT models
the behavior of the decision maker by means of a function
(the utility function) expressing the preference of the decision
maker for each one of the alternatives. The utility function
used in this paper is an exponential type [2] defined by

1 — e~ (NPV()=NPVyin)/p

1 — e~ NPV —=NPVinin)/p if p#oo
" (NPVOD =9 Ny — NPV, @

NPV nax — NPV

if p— o0

where u is the utility value corresponding to NPV(x), x is the
configuration of the wind farm, and p is the parameter of risk
tolerance. The utility function reaches the maximum value,
equal to one, for NPV, and the minimum value, equal to
zero, for NPV . In this paper, NPV, has been taken as
the minimum value of NPV that the decision maker would
be willing to accept to undertake the project, and NPV, is
the maximum value of NPV;; corresponding to the matrix of
results throughout the evolution of the GA.

Fig. 5 shows, as an example, the family of utility curves
depending on the risk tolerance parameter. The risk tolerance
parameter, p, allows modeling the attitude of the decision
maker. If p > 0, the decision maker is risk averse because, as
the NPV increases, the slope of the utility curve decreases. If
p < 0, the decision maker is risk seeking (the decision maker
increasingly appreciates NPV increases). In both cases, the
higher the risk tolerance, the higher the risk preference of the
decision maker. The extreme case is reached when the value
of risk tolerance is infinite (0 — Z£00), representing a neutral
decision maker attitude toward risk because the utility curve is
a straight line. Therefore, the decision maker uniformly values
each increment of NPV. Finally, in this approach, the objective

IEEE SYSTEMS JOURNAL

0 10 20 30

40 NPV

Fig. 5. Decision-maker attitude depending on the risk tolerance parameter.

will be achieved as the MEU is calculated by

EU; = Z u(NPV;) - p;. 3)
j=1
Both criteria (MEV and MEU) is necessary to calculate
the NPV for each scenario and potential solution (individual)
taking into account the economic model of the wind farm
detailed in the third section.

III. WIND FARM ECONOMIC MODEL

A wind farm with a certain turbine configuration (turbine
rated capacity, type, height, and location), x, requires an initial
capital investment to build and put the facility into production,
Iwrp(x). This initial investment is necessary mainly to afford
the WT acquisition costs, as well as the civil and electrical
infrastructure costs. The wind farm, once in operation, delivers
a stream of both financial benefit (profits from the generated
electric energy selling), Ngsk(x), and ordinary operation and
maintenance costs, Cogmk(x), year after year, over the life
span of the project, LT. A final present cost for the installation
decommissioning, Cp(x), and a present residual value, Vg(x),
after the production period, must also be considered. This way,
the NPV of the wind farm, NPV(x), taking into account the
equivalent discount rate, r, can be written as

Ni(x)
(1+ )k

LT
NPV (x) = —Iwr(x) — Cp(x) + V(x) + Y )
k=1

where the net cash flow, N, represents the net incomes
produced by the wind farm during the kth year. This term
is only the difference between the income resulting from the
energy sale and operation and maintenance costs, Ny(x) =
Ngsk(x) — Cogmk (x). Therefore, the maximization of the NPV
means a balance between the minimization of the investment
and maximization of the net cash flows (to maximize the net
generation of energy). Both terms depend on the number and
type of wind generators, tower height, and geographical posi-
tion, among others. Table II shows a typical cost breakdown
of a wind farm, adapted from [21]. As can be seen, most
of the initial investment is for the purchase of WTs, while
the remaining investment is aimed at the costs of electrical
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TABLE I
TYPICAL INITIAL COST STRUCTURE OF A WIND FARM

Item %
WTs 65-75
Substation and electrical infrastructure 10-15
Inner electrical distribution installation 6-9%
Substation and evacuation line connection | 4-6%
Civil work 5-10
Component installation 0-5
Other 5
Overall WT cost (€/kW) [ 800-1200

and civil infrastructure. The main problem to be solved is
the positioning and selection of the turbines (type and height
of the tower), and this is the problem that has the greatest
influence on the wind farm profitability. The costs of civil
works are relatively simple to calculate, however, the design
of the electrical installation is a complex problem and its exact
calculation would involve a high consumption of CPU time.
This reason, in addition to the relatively low economic weight
of the electrical installations, allows an approximation of the
electrical costs to be considered equal to the civil work cost.

To obtain a wind farm NPV as realistic as possible, the
evolution of the prices of the sold energy, as well as the
increment of the operation and maintenances cost, must be
considered. Assuming that Ej(x) is the annual net amount
of electric energy produced and sold at year k, pxwn is the
price of the kilowatt-hour of sold energy, Apywn is its annual
increment, and ACopgnm is the annual increment of the cost
of operation and maintenance, then the NPV of the cash flow
along the wind farm life span yields

NPV(x) = —Iwp(x) — Cp(x) + Vr(x)

LT Ep(x) Pawn(1 + Aprwn)©!

k=1 I+ %)
LT Cogmk (X)(1 + ACogm)™*!

>

k=1 (1 +r)

To properly evaluate the potential energy supplied by the
wind farm during a year, the wake speed decay effect must be
considered due to the perturbation of the wind speed profile
as a result of the operation of the turbines located upstream
[22]-[24]. The actual net energy produced and sold by a set
of turbines in a wind farm is lower that of the sum of the
energies of the turbines if they were isolated. This is due to
two kinds of losses: the wake effect previously mentioned and
the unavailability of the WTs (due to maintenance, repair or
technical restrictions).

A. Wind Behavior Model

The statistical behavior of the wind at a given altitude will
be approximated by the Weibull distribution function [25] that
describes frequency, p(v), for a given wind speed, v, as a
function of the shape parameter, K, and the scale parameter,
C, using the formula

=2 (2)" e (— (Z)K) . ©)

Wind speed depends on altitude due to the existing friction
of the air with the ground surface. Given the wind speed,
v(z,), for a reference height, z,, the corresponding wind speed
at a different height, z, can be calculated using an exponential
function

In(z/zo)
v(2) U(Zr)ln @ /20 (7
where zg is the length of roughness for the terrain [26].

The collection of wind energy done by a turbine reduces
the speed of the wind through it, causing a reduction in the
kinetic energy available for the turbines located downstream in
the direction of the incident wind. The resulting wind speed at
a distance, d, downstream of the turbine that creates the wake
is calculated by [23]

ud) 1 1 Do \’
U _2+2\/1—ch<D(d)) (8)

where U, is the speed of the wind in free flow, Dy is the
diameter of the rotor, D(d) the wake diameter, and C; the
dimensionless thrust coefficient.

Finally, the calculation of the electric energy generated in a
year, can be obtained by combining the long-term distribution
of the wind speed considering the different directions of the
wind rose, and the curve of specific power of the turbine, for
each type of generator considered in the wind farm as follows:

Veo j

N,
EWF=TZ/

j=l Vei j

kav jPGen j(V)p j(v)dv &)

where T is the number of hours per year (T = 8760h), N,
is the number of turbines, v,; ; is the cut-in speed (speed at
which the turbine starts generation) for turbine j and v, ;
is the cut-out speed (the final generation speed) for turbine j,
Pgen j(v) is the power—velocity curve for generator j, and kv ;
is the availability factor for turbine j.

B. Civil Infrastructure Cost

Civil infrastructure costs are made up mostly of foundation
costs and costs derived from the execution of auxiliary roads
to access the wind generators. The first entry depends on the
position of the wind generators and is calculated according to
typical values, taking into account an increase in the founda-
tion costs for cases where the wind generators are located in
areas with a reduced bearing capacity. The cost of building
auxiliary roads is made up of the activities of clearing, filling,
and compaction of roads, which are directly proportional to its
total length. The Prim algorithm for calculation of minimum
spanning tree [27] has been used to calculate the configuration
and length of the auxiliary roads.

IV. TEST CASES

A set of cases has been solved to show the suitability of the
proposed algorithm. The decision methods, MEV and MEU,
have been combined with the optimization algorithm to select
the most appropriate design for each situation and level of risk
that the decision maker is willing to assume. In both cases,
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TABLE III
MAIN FEATURES OF WTs

WTA WTB WTC
Rated capacity (MW) 2000 2000 1670
Minimum height (m) 60 60 60
Maximum height (m) 100 100 80
Cost (M€) 2.10 2.00 1.67
Tower cost (k€/m) 1.5 1.5 1.5
Foundation cost (k€) 80 80 80

uncertainty in the data for the characterization of wind has
been considered: the wind direction in Case 1 and wind speed
and direction in Case 2.

A. Case 1: Wind Direction Uncertainty

Fig. 6 shows the four scenarios considered for the possible
wind directions. Each scenario has a probability of occurrence.
In addition, each scenario consists of the probability that the
wind comes from each of the directions that make up the
wind rose. Over the whole terrain, the wind speed is defined
by the same scale factor (C = 6.5) and shape (K = 2) for
the Weibull distribution. The study has been carried out on a
square terrain of dimensions 3 x 3 km discretized in 10 x 10
cells as in Fig. 7. The parcel is crossed by a road from east to
west in the northernmost area. Cells crossed by the main road
and near the northwest corner of the land are forbidden areas
where WT placement is not allowed. In the northeast, there is
an area where the bearing capacity of soil is reduced so that
the foundation costs will be higher.

Table IIT shows the catalog of turbines from which the
algorithm can select. Fig. 8 shows the power—speed curves
of the WTs considered. Table IV shows the main technical
and economic input data to the algorithm.

For each scenario, the deterministic optimal solution (DOS)
has been calculated. These solutions are shown in Fig. 9.
Table V shows for each of the DOS, the EV and NPV (M€)
that would be obtained for other scenarios. As can be seen,
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Fig. 8. Power—speed curves of considered WTs.

TABLE IV
MAIN TECHNICAL AND ECONOMICAL INPUT DATA

Life span (years) 20
Interest rate (%) 6
Price of energy (€/kWh) 0.07
Maximum no. of turbines 8
Auxiliary roads cost (€/m) 100
Overcost in area of low bearing capacity (%) 25
Roughness length (m) 0.0055
Availability factor (%) 95
Present cost of decommission (%) 3
Present residual value (%) 3
Minimum NPV to undertake the project (M€) 1

for each of the scenarios, the maximum values are achieved
for the deterministic solution for that scenario.

Fig. 10 shows the optimal solution reached by the algorithm
taking into account the MEV criterion. The selected WTs are
type B (WTB) with a height tower of 100m. In this case,
the algorithm reaches the optimal solution in 254 generations
using a running time of 1170s, on a PC Intel Pentium Dual
Core 2 GHz. The second column of Table VI shows the main
economical results obtained by the algorithm for Case 1.

By using the MEU criterion, the aim is to maximize the
expected utility (EU) using the exponential utility function
detailed in (2). The case has been performed several times
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TABLE V
RESULTS OF CASE 1: NPV (M€) DOS FOR EACH SCENARIO

Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 EV
DOS (S1) 21.02 20.78 19.69 20.41 20.09
DOS (852) 20.76 21.21 20.40 16.30 19.94
DOS (83) 20.20 20.77 21.05 21.05 20.93
DOS (84) 20.20 20.77 21.05 21.05 20.93

Main read {forbidden zone)

Awrs | A wiB | AwTB |
\'\wu-n 100 m " 100 m g

Fig. 9. DOS obtained for each scenario. (a) Scenario 1. (b) Scenario 2.
(c) Scenario 3. (d) Scenario 4.
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Fig. 10. Optimal layout obtained by the MEV criterion for (a) Case 1 and
(b) Case 2.

by varying the decision-maker attitude (by varying the value
of risk tolerance, p). Fig. 11 shows the optimal configuration
depending on the risk tolerance parameter.

Table VII shows the results obtained by the algorithm
for Case 1 using the MEU criterion. Each row shows the
NPV (M€), for each scenario and its EV, for each optimal
configuration depending on the parameter of risk tolerance,
p (the risk preference increases moving down in the table).
With aversive or neutral attitudes to risk (p > 0), the optimal
solution is the same as that obtained by the MEV criterion

(km) ¢

=]

(km) 30

15 15
(c) (d)

Fig. 11.
risk tolerance of the decision maker. (a) p =
(c) p=—0.005. (d) p =—0.002.

Optimal layout obtained for Case 1 by the MEU by varying the
—0.01. (b) p = —0.008.

TABLE VI
MAIN ECONOMICAL RESULTS OBTAINED WITH MEV CRITERION

Case 1 | Case 2

EV of NPV (M€) 20.96 19.06
Investment (M€) 19.91 19.79
Turbines cost (M€) 17.20 17.20
Civil infrastructure cost (M€) 1.35 1.30
Electrical infrastructure cost (M€) 1.35 1.30
Average power EV (kW) 4042 3842

(Fig. 10). However, by increasing the risk preference of the
decision maker, the optimal solution leads to an NPV increase
of a specific scenario. For example, with values of the risk
tolerance p = —0.01 and p = —0.008, the optimal solution
maximizes the NPV of Scenarios 3 and 4 because they are
the most likely scenarios. If the decision maker becomes
more risky (p = —0.005) the optimal solution maximizes the
NPV for the Scenario 2 (because it is more profitable, as
can be seen in Table V), despite reducing the EV due to the
lower profitability of the remaining scenarios. If the decision
maker takes a highly risky attitude (in this case p = —0.002),
the solution obtained coincides with that resulting from a
deterministic approach considering only the Scenario 2. In
conclusion, the decision maker takes risk with the possibility
of increasing profitability in the event that the occurrence of
Scenario 2 is higher than expected.

As shown, the proposed methods yield solutions that im-
prove those obtained by the deterministic approach in the
presence of risk. On the other hand, it is also possible to
obtain solutions to the level of risk that the decision maker is
willing to take. Moderate attitudes toward risk lead to configu-
rations more insensitive to changes in wind direction; however,
increasing the risk preference, the trend is to maximize the
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TABLE VII
RESULTS OF CASE 1: NPV (M€) BY VARYING THE RISK PREFERENCE

Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | EV
p =0.005 20.84 20.94 20.99 20.99 20.96
p=0.1 20.84 20.94 20.99 20.99 20.96
p — too 20.84 20.94 20.99 20.99 20.96
p=-0.01 20.49 20.85 21.03 21.03 20.95
p=-—0.008 20.20 20.77 21.05 21.05 20.93
p =—0.005 20.81 21.17 20.53 17.26 20.16
p=-0.002 20.76 21.21 20.40 16.28 19.94
TABLE VIII

WIND DIRECTIONS SCENARIOS

Scenario (Probability) | C (m/s) Directions (Probability %)
S1 (2.25%) 7.5 ENE (20%) | E (70%) | ESE (10%)
S> (8.25%) 6.5 ENE (20%) | E (70%) | ESE (10%)
S3 (4.50%) 5.5 ENE (20%) | E (70%) | ESE (10%)
S4 (9.75%) 7.5 NE (20%) | ENE (70%) | E (10%)
Ss (35.75%) 6.5 NE (20%) | ENE (70%) | E (10%)
S (19.50%) 55 NE (20%) | ENE (70%) | E (10%)
S7 (3.00%) 7.5 E (20%) | ESE (70%) | SE (10%)
Ss (11.00%) 6.5 E (20%) | ESE (70%) | SE (10%)
So (6.00%) 55 E (20%) | ESE (70%) | SE (10%)
TABLE IX

RESULTS OF CASE 2: NPV (M<€) BY VARYING THE RISK PREFERENCE

S S> S3 S4 Ss Se S7 Sg So | EV
34.81|21.10(7.45|34.81|21.10(7.45(34.81|21.10|7.45{19.06
p — oo [34.81(21.10|7.45|34.81|21.10|7.45|34.81|21.10|7.45]|19.06
p=—0.1 |34.87(21.06|7.29(34.87(21.06|7.29|34.87(21.06|7.29|19.00
p=—0.03(34.26(20.56|6.94|35.00(21.21|7.43]|29.02|16.02|3.49|18.07

p=0.1

profitability of a given scenario without taking into account
the loss of profitability for the remaining possible scenarios.

B. Case 2: Wind Direction and Intensity Uncertainty

Case 2 considers the same conditions described in Case
1, but with different wind conditions, and adds uncertainty
in the scale parameter of Weibull distribution. The scenarios
considered in this case are shown in Table VIII.

The solution reached by the algorithm, taking into account
the MEV criterion, is shown in Fig. 10. Table VI shows the
most relevant economic performance of the solution obtained.

Table IX presents the results obtained with the MEU crite-
rion, varying the risk preference of the decision maker. It can
be seen that the solution obtained with neutral and aversive
attitudes to risk (p > 0) is the same as that obtained with
the MEV criterion. Risk preference attitudes (p < 0) lead to
an increase in the profitability for the Scenario 4. Scenarios 1
and 4 provide the highest NPV but the higher probability of
Scenario 4 leads the algorithm to increase the profitability of
such a scenario.

Fig. 12 shows the solutions obtained for the levels of risk
preference p = —0.1 and p = —0.03, respectively. As can be
seen, by increasing the risk preference of decision maker, the
turbines selected change from WTB to WTA because this tur-
bine can provide a bit more power despite requiring a slightly
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Fig. 12. Optimal layout obtained for Case 2 by the MEU by varying the
risk tolerance of the decision maker. (a) p = —0.1. (b) p = —0.03.

higher initial investment. It can also be seen how by increasing
the risk from p = —0.1 to p = —0.03, the geographical layout
of the wind generator changes to maximize energy capture that
would be produced for the Scenario 4.

V. CONCLUSION

The design of a wind farm is an extremely complex task
that involves a large number of variables. At the project
stage, the behavior of many of these variables is difficult
to characterize either due to factors, such as errors in the
estimation of costs and uncertainty in economic behavior,
or due to the random nature of some of the variables, such
as the wind. Among all of the variables that influence the
profitability of a wind farm project, the characteristics of the
wind have the greatest influence on the plant configuration
and its economic efficiency. Therefore, in this paper, the risk
analysis and decision making has focused on the uncertainty
in wind resource (direction and speed) characterization.

The performance of the proposed method has been success-
fully verified by analyzing a set of test cases, with different
wind scenarios. As a result, when the risk analysis was
included, the optimization process of the wind farm led to
solutions (plant configurations) less sensitive to the uncertainty
than the deterministic solution. In addition, the proposed
methods allowed us to obtain configurations that met the level
of risk that the developer wishes to assume. Furthermore, the
algorithm provided information on the levels of profitability
under uncertainty in the wind characterization.
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