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Abstract In this paper, we combine two complementary techniques for computing homol-
ogy: Incremental Algorithm for computing AT-models (which consist of an algebraic set
of data that provide, in particular, homological information of the given object) is suitable
for homology computation in cases in which new cells are added to the existing complex,
whereas Decremental Algorithm for computing AT-models is more appropriated in the case
that some cells are removed from the complex. Using these algorithms, we are able to de-
scribe tunnels and pockets of a 3D digital image (given as a sequence of 2D digital images)
in terms of sets of equivalent 1-cycles.

Keywords Cubical complexes, homology computation, incremental-decremental algorithm,
AT-models

1 Introduction

Regarding digital images, topological invariants are being widely used to identify patterns in image
recognition. One of the main topological invariant developed is the one of homology groups. Many
researchers have made significant contributions in this area (for example, [2, 9, 1, 11, 5]).

In this paper, we deal with the problem of delineating tunnels and pockets in 3D digital
images. Formally, a tunnel is a homology generator of dim. 1. A formal definition of pockets
in macromolecules is given in [4]. The concept of a pocket in that paper is based on an acyclic
relation over the set of Delaunay tetrahedra motivated by a continuous flow field. This definition
reflects the idea that through a continuous growth process that simultaneously thickens every
part of the protein, a pocket becomes a void inaccessible from the outside before it disappears.
The definition deliberately excludes shallow valleys or depressions. The problems for delineating
tunnels and pockets in 3D digital images is twofold: first, a representative cycle of a homology
generator corresponding to a tunnel is a 1D closed path (which does not correspond with the
intuitive idea of tunnel). Second, pockets have no translation in the homology of the 3D object.

In this paper, we combine two complementary techniques (incremental and decremental) for
computing an algebraic topological datum called AT-model that provides, in particular, the homol-
ogy of the given object [7, 8, 6]. More concretely, an AT-model for an object is a chain contraction
[10] from the chain complex C(K) canonically associated to a combinatorial structure K of the
object (for example, K could be a simplicial or cubical complex) to a chain group isomorphic to
the homology of the object. A formal definition of AT-model is given in Section 3.

Using these algorithms, we are able to describe tunnels and pockets of a 3D digital image
(given as a sequence of 2D digital images) in terms of sets of equivalent 1-cycles. More concretely,
using incremental-technique, in a sequence of 2D digital images, we define and compute horizontal
tunnels which is a set of equivalent 1-cycles that survive along the sequence. It is true that all
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Figure 1: Coding of the cubes in a 3 × 3 picture (2-cubes on the left, edges on the center and
vertices on the right).

the 1-cycles of an horizontal tunnel are representative cycles of a tunnel of the 3D image obtained
by concatenating the successive 2D digital images in the sequence. A frontal pocket is the set of
equivalent 1-cycles that was born at the beginning and died along the sequence. A back pocket is
the set of equivalent 1-cycles that was born along the sequence and does not die (see Section 4).
Relation between the definition of frontal and back pockets in this paper and previous definition
of pockets is regarded as future work in Section 5.

The paper is organized as follows: in Section 2 we describe our coding system for the cubical
structure extracted directly from the digital image; Section 3 is devoted to the explanation of the
Incremental-Decremental algorithms for computing homology; such algorithms can be suitably
combined to hole tracking purposes, as it is shown in Section 4; finally, we draft some plans for
future in Section 5.

2 Digital Images and Cubical Complexes

A cubical complex Q in R3, is given by a finite collection of q-cubes such that a 0-cube is a vertex,
a 1-cube is an edge, a 2-cube is a filled square and a 3-cube is a filled cube; together with all their
faces and such that the intersection between two of them is either empty or a face of each of them.
A proper face of c ∈ Q is a face of c whose dimension is strictly less than the one of c. A facet of
c is a proper face of c of maximal dimension. A facet of c is free if it is not a proper face of any
other cube of Q. A maximal cube of Q is a cube that is not a proper face of any other cube of Q.

In order to provide an efficient computation of our algorithms on cubical complexes, we es-
tablish a coding system by which each cube of the corresponding cubical complex is coded by an
integer. This way, the manipulation of the cubes is really efficient (in time and space) since one
can get the different relationships between them by basic operations with integers. We numerate
each cube in the whole picture, beginning from the 2-cubes, followed by the horizontal edges, the
vertical edges and finally by the vertices. See an example of coding in Fig. 1 for a 3 × 3 grid of
pixels.

This coding system performed in 2D pictures can be extended to nD.

3 Incremental-Decremental Algorithms for Computing Ho-
mology

In this section, we recall two different algorithms for computing homology that are somehow
complementary to each other. Incremental Algorithm for computing AT-models [7, 8] is suitable
for the homology computation in cases in which new cells are added to the existing complex,
whereas Decremental Algorithm for computing AT-models [6] is more appropriated in the case
that some cells are deleted and hence, the homological information needs to be updated.

For any graded set S = {Sq}q, one can consider formal sums of elements of Sq, which are
called q-chains, and which form abelian groups with respect to the component-wise addition (mod
2). These groups are called q-chain groups and denoted by Cq(S). The collection of all the chain
groups associated to S is denoted by C(S) = {Cq(S)}q and called also chain group, for simplicity.
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Figure 2: An example of execution of Incremental Algorithm for computing AT-models. a) The
input cubical complex (only the labels of the vertices are shown). b) The cubes in H ′. c) The
table with the information of f ′, g′ and φ′.

Let {s1, . . . , sm} be the elements of a set Sq for a fixed q. Given two q-chains c1 =
∑m

i=1 αisi

and c2 =
∑m

i=1 βisi, where αi, βi ∈ Z/2 for i = 1, ...,m, the expression 〈c1, c2〉 refers to
∑m

i=1 αi ·βi

mod 2. For example, fixed i and j, the expression 〈c1, si〉 is αi and 〈si, sj〉 is 1 if i = j and 0
otherwise.

The cubical chain complex associated to the cubical complex Q is the collection C(Q) =
{Cq(Q), ∂q}q where:

(a) each Cq(Q) is the corresponding chain group generated by the q-cubes of Q;

(b) the boundary operator ∂q : Cq(Q) → Cq−1(Q) connects two immediate dimensions. The
boundary of a q-cube is the formal sum of all its facets. It is extended to q-chains by
linearity.

Roughly speaking, the homology groups of a cubical chain complex will be a chain group whose
elements are equivalence classes of cycles (vertices in dim. 0, closed paths in dim. 1), such that if
one cycle can be obtained from another by continuous deformation through the object, then they
are homologous (or equivalent). For example, two vertices are homologous if there exists a path
through the object between them. Formally, a q-cycle is a q-chain a such that ∂q(a) is zero.

From now on, we will omit subscripts on behalf of simplicity.
Given a cubical complex Q, an algebraic-topological model (AT-model [7, 8]) for Q is a set of

data (Q,H, f, g, φ), such that:

• H is a subset of Q. In 2D, H can only have points and edges: each point of H represents a
connected component of Q and each edge represents a “gap” (i.e., a background connected
component) of Q. In 3D, H can contain vertices, edges and 2-cubes: each point of H repre-
sents a connected component, each edge represents a “tunnel” and each 2-cube represents a
“void” (i.e. a connected component of the background inaccessible from the outside).

• f is a map from C(Q) to C(H). This map provides the equivalence relation between cycles
(that is, if two cycles, a and b, are equivalent, then f(a) = f(b)).

• g is a map from C(H) to C(Q). For each cube c in H, g(c) is a representative cycle of a class
of homology.

• φ is a map from C(Q) to C(Q). This map can be seen as a kind of boundary inverse. For
example, if c is a vertex, then φ(c) is the path from c to the vertex v ∈ H homologous to c.
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Figure 3: An example of execution of Decremental Algorithm for computing AT-models. a) The
output cubical complex (only the labels of the vertices are shown) after deleting some cubes from
Fig. 2.a. b) The cubes in H ′. c) The table with the information of f ′, g′ and φ′.

3.1 Incremental Algorithm for Computing AT-Models

An algorithm for computing AT-models using the incremental technique [2] appears in [7, 8].
The input of that algorithm is a cubical complex Q (associated, for example, to a 2D digital

image; see Fig. 2, on the left), an AT-model for Q, (Q,H, f, g, φ), and a cube c′ such that its
facets are in Q. The output is an AT-model (Q ∪ {c′}, H ′, f ′, g′, φ′) for Q ∪ {c′}, where:

C.1. If f(∂(c′)) = 0 then a homology class was born.

H ′ := H ∪ {c′}; f ′(c′) := c′; g′(c′) := c′ + φ(∂(c′)); φ′(c′) := 0;
for each σ ∈ Q: f ′(σ) := f(σ); φ′(σ) := φ(σ); and g′(σ) := g(σ) if σ ∈ H.

C.2. If f(∂(c′)) 6= 0 then a homology class died.

Let c ∈ Q such that 〈c, f(∂(c′))〉 = 1 then H ′ := H \ {c}; f ′(c′) := 0; φ′(c′) := 0;
for each σ ∈ Q: f ′(σ) := f(σ) + 〈c, f(σ)〉f(∂(c′)); and φ′(σ) := φ(σ) + 〈c, f(σ)〉(c′+φ(∂(c′)).

Observe that H and H ′ differ in exactly one element.
The computational cost for obtaining the AT-model (Q ∪ {c′}, H ′, f ′, g′, φ′) for Q ∪ {c′} from

the AT-model (Q,H, f, g, φ) for Q, is O(m2).
Now, to obtain an AT-model for a cubical complex without having any previous AT-model

computed, we consider an ordering on all the cubes of Q: {c1, . . . , cm} and apply the formulas
above for i = 1 to m. In this ordering, we put first all the free facets of Q together with all
their faces in increasing dimension (this is equivalent to add first the boundary of the foreground
of the image). The rest of the cubes are added later in increasing dimension. Moreover, when
running the algorithm, if Case 2 occurs, then the selected c ∈ Q will be the one with greatest index
among all the candidates. Given a cubical complex Q, the computational cost for computing an
AT-model for Q is O(m3) where m is the number of cubes of Q ([7, 8]). See Fig. 2 as an example
of execution of the algorithm.

Therefore, observe that if we have an AT-model AT1 for a cubical complex Q and we add a
new cube c′ later, it is more efficient to compute an AT-model AT2 for Q ∪ {c′} using AT1 than
to directly compute AT2.

3.2 Decremental Algorithm for Computing AT-Models

An algorithm for computing AT-models “decrementally” appears in [6].
The input of that algorithm is a cubical complex Q, an AT-model for Q, (Q,H, f, g, φ), and a

maximal cube c′ of Q. The output is an AT-model (Q \ {c′}, H ′, f ′, g′, φ′) for Q \ {c′}, where:

4



Figure 4: A sequence of 10 binary digital pictures corresponding to a trabecular bone

C.1. If there exists c ∈ Q such that 〈c′, g(c)〉 = 1 then a homology class died.

1.1. If c′ ∈ H and 〈c′, g(c′)〉 = 1 then H ′ := H \ {c′};
for each σ ∈ Q \ {c′}: f ′(σ) := f(σ) + 〈c′, f(σ)〉c′; φ′(σ) := φ(σ) + 〈c′, φ(σ)〉g(c′); and
g′(σ) := g(σ) + 〈c′, g(σ)〉g(c′) if σ ∈ H ′.

1.2. If c′ 6∈ H then H ′ := H \ {c};
for each σ ∈ Q \ {c′}: f ′(σ) := f(σ) + 〈c, f(σ)〉c; φ′(σ) := φ(σ) + 〈c′, φ(σ)〉g(c); and
g′(σ) := g(σ) + 〈c′, g(σ)〉g(c) if σ ∈ H ′.

C.2. If c′ 6∈ Im g then a homology class was born.
Let c ∈ Q such that c 6∈ H then H ′ := H ∪ {c}; g′(c) := ∂(c′);
for each σ ∈ Q \ {c′}: f ′(σ) := f(σ) + 〈c′, φ(σ)〉c; and φ′(σ) := φ(σ) + 〈c′, φ(σ)〉φ(∂(c′)).

Again, observe that H and H ′ differ in exactly one element.
The computational cost for obtaining the AT-model (Q \ {c′}, H ′, f ′, g′, φ′) for Q \ {c′} from

the AT-model (Q,H, f, g, φ) for Q, is O(m2).
Therefore, if we have an AT-model AT1 for a cubical complex Q and we remove a cube c′ from

Q later, it is more efficient to compute an AT-model AT2 for Q \ {c′} using AT1 than to directly
compute AT2.

See Fig. 3 as an example of execution of Decremental Algorithm for computing AT-models.
In this example, the input is an AT-model for a cubical complex, (Q,H, f, g, φ), representing a 2D
image (Fig. 3a) and a list of cubes to eliminate from Q: {c1, . . . cn} (the cubes to be eliminated
from Q correspond to the cubes to be deleted in Fig.2.a to obtain Fig. 3.a) in decreasing dimension.
It has to be satisfied that Q \ {c1, . . . cn} is again a cubical complex. The output of the algorithm
is the set (Q′, H ′, f ′, g′, φ′) for Q′ = Q \ {c1, . . . , cn}, in a table form (see Fig. 3 on the right).

4 Delineating Tunnels and Pockets in 3D Digital Images
using Incremental-Decremental Technique

For 3D images, it is easy to define and count connected components and voids or cavities. The
concept of a tunnel is a bit more delicate. Think in a hollow torus. It has one connected component,
one void and two tunnels (one tunnel that passes through the hole of the torus and another one
(less intuitive) that surrounds the cavity). Roughly speaking, intrusions or pockets can be defined
as regions in the complement with limited accessibility from the outside. A geometrically rigorous
definition of pocket using concepts of Morse theory appears in [4].

The problems for delineating tunnels and pockets in 3D digital images is twofold: first, a
representative cycle of a homology generator corresponding to a tunnel is a 1D closed path. Second,
pockets have no translation in the homology of the 3D object.
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Figure 5: A piece of a trabecular bone in 3D perspective.

Our aim in this section is to describe tunnels and pockets in terms of sets of equivalent 1-cycles.
For doing this, given a sequence of 2D digital images (for example, the sequence in Fig. 4 of the
trabecular bone in Fig. 5), we compute an AT-model for each 2D digital image of the sequence
as follows: let A and B two consecutive images in the sequence. Suppose we have computed an
AT-model for A. Then, in order to obtain an AT-model for B, do the following steps:

Step 1. Apply Decremental Algorithm for computing AT-models to obtain an AT-model for A \ B
from the AT-model for A.

Step 2. Apply Incremental Algorithm for computing AT-models to obtain an AT-model for B from
the AT-model for A \B.

Following the idea of persistence of homology classes (see [3]), consider two consecutive images in
the sequence, A and B. Let (QA, HA, fA, gA, φA) and (QB, HB, fB, gB, φB) be the AT-models for A
and B obtained, respectively. We say that an element a ∈ HA ∩HB is a surviving homology class.
If a ∈ HB \HA then a is a born homology class in HB. If a ∈ HA \HB then a is a death homology
class in HA.

This way, a horizontal tunnel will be a set of the cycles representing a homology class that
survives along the sequence. A frontal pocket will be a set of the cycles representing a homology

Figure 6: Representative cycles of the holes of the sequence computed using incremental-
decremental technique.
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Figure 7: Representative cycles of the tunnels (on the left) and cavities (on the right) in a 3D
perspective

class that was born at the beginning and died in one of the images along the sequence and a back
pocket will be a set of cycles representing a homology class that was born along of the image of
the sequence and survives. Observe that a homology class that was born along the sequence and
died later is a cavity. See, for example, Fig. 6 and 7 where there are two tunnels (7 on the left),
two frontal pockets (8 on the left), two back pockets (8 on the right) and four cavities (7 on the
right).

5 Future Work

Relation between the definition of frontal and back pockets in this paper and previous definition
of pockets is regarded as future work. Tunnels and pockets in any direction in 3D digital pictures
is regarded as future work.

We think that the potential of the method will be in 3D+time images, where the computation
and tracking of tunnels is important for segmentation of non-rigid moving objects.

Another possible application of the method is in morphology under topological control. For
example, we could control which pockets are converted to tunnels when a closing operation is
performed over an object.

Figure 8: Representative cycles of the frontal pockets (on the left) and back pockets (on the right)
in a 3D perspective

7



References

[1] S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi, L. Papaleo, and
M. Spagnuolo. Describing shapes by geometrical-topological properties of real functions. ACM
Comput. Surv., 40(4):1–87, 2008.

[2] C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for betti numbers of
simplicial complexes on the 3–sphere. Comput. Aided Geom. Design, 12:771–784, 1995.

[3] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplifica-
tion. In FOCS ’00: Proceedings of the 41st Annual Symposium on Foundations of Computer
Science, page 454, Washington, DC, USA, 2000. IEEE Computer Society.

[4] Herbert Edelsbrunner, Michael Facello, and Jie Liang. On the definition and the construction
of pockets in macromolecules. Discrete Appl. Math., 88(1-3):83–102, 1998.

[5] R. Gonzalez-Diaz, M. J. Jimenez, B. Medrano, and P. Real. Chain homotopies for object
topological representations. Discrete Appl. Math., 157(3):490–499, 2009.

[6] R. Gonzalez-Diaz, B. Medrano, P. Real, and J. Sanchez-Pelaez. Simplicial perturbation
techniques and effective homology. In CASC 2006: Proceedings of the 9th international
workshop on Computer algebra in scientific computing, volume LNCS 4194, pages 166–177,
Berlin, Heidelberg, 2006. Springer-Verlag.

[7] R. Gonzalez-Diaz and P. Real. Towards digital cohomology. In DGCI 2003: Discrete Ge-
ometry for Computer Imagery, volume LNCS 2886, pages 92–101, Berlin, Heidelberg, 2003.
Springer-Verlag.

[8] Rocio Gonzalez-Diaz and Pedro Real. On the cohomology of 3d digital images. Discrete Appl.
Math., 147(2-3):245–263, 2005.

[9] T. Kaczynski, K. Mischaikow, and M. Mrozek. Computational Homology, Applied Mathemat-
ical Sciences 157. Springer, 2004.

[10] J.R. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.

[11] Samuel Peltier, Adrian Ion, Walter G. Kropatsch, Guillaume Damiand, and Yll Haxhimusa.
Directly computing the generators of image homology using graph pyramids. Image Vision
Comput., 27(7):846–853, 2009.

8


