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Abstract. In this paper, we prove that the two flavours of well-compo-
sedness called Continuous Well-Composedness (shortly CWCness), stat-
ing that the boundary of the continuous analog of a discrete set is a
manifold, and Digital Well-Composedness (shortly DWCness), stating
that a discrete set does not contain any critical configuration, are not
equivalent in dimension 4. To prove this, we exhibit the example of a con-
figuration of 8 tesseracts (4D cubes) sharing a common corner (vertex),
which is DWC but not CWC. This result is surprising since we know
that CWCness and DWCness are equivalent in 2D and 3D. To reach our
goal, we use local homology.
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1 Introduction

Digital well-composedness (shortly DWCness) is a nice property in digital topol-
ogy, because it implies the equivalence of 2n and (3n − 1) connectivities [3] in a
subset of Zn and in its complement at the local and global points of view. A well-
known application of this flavour of well-composedness is the tree of shapes [7,9]:
usual natural or synthetic images generally contain many critical configurations
and this way we cannot ensure that the hierarchy induced by the inclusion re-
lationship between these shapes does not draw a graph without cycles. On the
contrary, when an image is DWC, no cycle is possible and then we obtain a tree,
called the tree of shapes [7,9,16].

On the other side, continuously well-composed (shortly CWC) images are
known as “counterparts” of n-dimensional manifolds in the sense that the bound-
ary of their continuous analog does not have singularities (called “pinches”),
which is a very strong topological property. The consequence is that some geo-
metric differential operators can be computed directly on the discrete sets, which
simplifies or makes specific algorithms faster [12,13].

These two flavours of well-composednesses, known to be equivalent in 2D
and in 3D, are not equivalent in 4D, and this is what we are going to prove in
this paper. Section 2 recalls the material relative to discrete topology and local
homology necessary to the proof detailed in Section 3. Section 4 concludes the
paper.
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Fig. 1: Examples of primary and secondary critical configurations in 2D/3D/4D
blocks S. Black bullets correspond to the points of the digital set X and the
white bullets correspond to the points of S \ X .

2 Discrete topology

As usual in discrete topology, we will only work with digital sets, that is, finite
subsets of Zn or subsets X of Zn whose complementary set X c = Zn \X is finite.

2.1 Digital well-composedness

Let n ≥ 2 be a (finite) integer called the dimension. Now, let B = {e1, . . . , en} be
the (orthonormal) canonical basis of Zn. We use the notation vi, where i belongs
to J1, nK := {i ∈ Z ; 1 ≤ i ≤ n}, to determine the ith coordinate of a vector
v ∈ Zn. We recall that the L1-norm of the vector v ∈ Zn is denoted by ‖ · ‖1
and is equal to

∑
i∈J1,nK |vi| where | · | is the absolute value. Also, the L∞-norm

is denoted by ‖ · ‖∞ and is equal to maxi∈J1,nK |vi|.
For a given point p ∈ Zn, the 2n-neighborhood in Zn, denoted by N2n(p),

is equal to {q ∈ Zn ; ‖p− q‖1 ≤ 1}. Also, the (3n − 1)-neighborhood in Zn,
denoted by N3n−1(p), is equal to {q ∈ Zn ; ‖p− q‖∞ ≤ 1}. Let ξ be a value in
{2n, 3n − 1}. The starred ξ-neighborhood of p ∈ Zn is noted N ∗ξ (p) and is equal
to Nξ(p) \ {p}. An element of the starred ξ-neighborhood of p ∈ Zn is called a
ξ-neighbor of p in Zn. Two points p, q ∈ Zn such that p ∈ N ∗ξ (q) or equivalently

q ∈ N ∗ξ (p) are said to be ξ-adjacent. A finite sequence (p0, . . . , pk) of points in

Zn is a ξ-path if and only if p0 is ξ-adjacent only to p1, pk is ξ-adjacent only to
pk−1, and if for i ∈ J1, k− 1K, pi is ξ-adjacent only to pi−1 and to pi+1. A digital
set X ⊂ Zn is said ξ-connected if for any pair of points p, q ∈ X , there exists a
ξ-path joining them into X . A ξ-connected subset C of X which is maximal in
the inclusion sense, that is, there is no ξ-connected subset of X which is greater
than C, is said to be a ξ-component of X .

For any p ∈ Zn and any F = (f1, . . . , fk) ⊆ B, we denote by S(p,F) the set:{
p+

∑
i∈J1,kK

λif
i ; λi ∈ {0, 1},∀i ∈ J1, kK

}
.

We call this set the block associated with the pair (p,F); its dimension, denoted
by dim(S), is equal to k. More generally, a set S ⊂ Zn is said to be a block if there
exists a pair (p,F) ∈ Zn ×P(B) such that S = S(p,F). We say that two points
q, q′ ∈ Zn belonging to a block S are antagonists in S if the distance between
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them equals the maximal distance using the L1 norm between two points in S;
in this case we write q = antagS(q′). Note that the antagonist of a point q in a
block S containing q exists and is unique. Two points that are antagonists in a
block of dimension k ≥ 0 are said to be k-antagonists; k is then called the order
of antagonism between these two points. We say that a digital subset X of Zn
contains a critical configuration in a block S of dimension k ∈ J2, nK if there
exists two points {q, q′} ∈ Zn that are antagonists in S such that X ∩S = {q, q′}
(primary case) or such that S \ X = {q, q′} (secondary case). Figure 1 depicts
examples of critical configurations.

Definition 1 (digital well-composedness [3]). A digital set X ⊂ Zn is said
to be digitally well-composed (DWC) if it does not contain any critical configu-
ration.

This property is self-dual : for any digital set X ⊂ Zn, X is digitally well-
composed iff X c is digitally well-composed.

2.2 Basics in topology and continuous well-composedness

Let (X,U) be a topological space [11,1]. The elements of the set X are called the
points and the elements of the topology U are called the open sets. In practice,
we will abusively say that X is a topological space, assuming it is supplied with
U . An open set which contains a point of X is said to be a neighborhood of
this point. Let X be a topological space, and let T be a subset of X. A set
T ⊆ X is said closed if it is the complement of an open set in X. A function
f : X → Y between two topological spaces X and Y is continuous if for every
open set V ⊂ Y , the inverse image f−1(V ) = {x ∈ X ; f(x) ∈ V } is an
open subset of X. The function f is a homeomorphism if it is bicontinuous
and bijective. The continuous analog CA(p) of a point p ∈ Zn is the closed
unit cube centered at this point with faces parallel to the coordinate planes
CA(p) = {q ∈ Rn ; ‖p − q‖∞ ≤ 1/2}. The continuous analog CA(X ) of a
digital set X ⊂ Zn is the union of the continuous analogs of the points belonging
to the set X , that is, CA(X ) =

⋃
p∈X CA(p). Then, we will denote bdCA(X )

the topological boundary of CA(X ), that is, bdCA(X ) = CA(X ) \ Int(CA(X )),
where Int(CA(X )) is the union of all open subsets of CA(X ).

Definition 2 (continuous well-composedness [14,15]). Let X ⊂ Zn be a
digital set. We say that X is continuously well-composed (CWC) if the boundary
of its continuous analog bdCA(X ) is a topological (n − 1)-manifold, that is, if
for any point p ∈ X , the (open) neighborhood of p in bdCA(X ) is homeomorphic
to Rn−1.

This property is self-dual : for any digital set X ⊂ Zn, bdCA(X ) = bdCA(X c)
and then X is continuously well-composed iff X c is continuously well-composed.

2.3 Homomorphisms

Recalls about Abelian groups and homomorphisms can be found in [10]. A homo-
morphism f is called an isomorphism if it is bijective. Two free Abelian groups
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are said isomorphic if there exists an isomorphism between them; for A and B
two free Abelian groups, we write A ' B when A and B are isomorphic. Let A
be a free Abelian group and B a subgroup of A. For each a ∈ A, defined the
equivalence class [a] := {a + b ; b ∈ B}. The quotient group A/B is defined as
A/B := {[a] ; a ∈ A}.

Theorem 1 (First Isomorphism Theorem [10]). Let A and B be two free Abelian
groups and f : A→ B a homomorphism. Then A/ ker f ' im f .

2.4 Cubical sets

An elementary interval is a closed subinterval of R of the form [l, l+1] or {l} for
some l ∈ Z. Elementary intervals that consist of a single point are degenerate,
while those of length 1 are non-degenerate. An elementary cube h is a finite
product of elementary intervals, that is, h = h1 × · · · × hd = ×i∈J1,dKhi ⊂
Rd where each hi is an elementary interval. The set of elementary cubes in
Rd is denoted by Kd. The set of all elementary cubes is K :=

⋃∞
d=1Kd. Let

h = ×i∈J1,dKhi ⊂ Rd be an elementary cube. The elementary interval hi is
referred to as the ith component of h. The dimension of h is defined to be the
number of non-degenerate components in h and is denoted by dim(h). Also,
we define Kk := {h ∈ K ; dim(h) = k} and Kdk := Kk ∩ Kd. A set X ⊂ Rd
is cubical if X can be written as a finite union of elementary cubes. If X is a
cubical set, we adopt the following notation K(X) := {h ∈ K ; h ⊆ X} and
Kk(X) := {h ∈ K(X) ; dim(h) = k}.

2.5 Homology

Let X ⊆ Rd be a cubical set. The k-chains of X, denoted by Ck(X), is the
free Abelian group generated by Kk(X). The boundary homomorphism ∂Xk :
Ck(X) → Ck−1(X) is defined on the elementary cubes of Kk(X) and extended
to Ck(X) by linearity (see [10]). The chain complex C(X) is the graded set
{Ck(X), ∂Xk }k∈Z. A k-chain z ∈ Ck(X) is called a cycle in X if ∂Xk z = 0.
The set of all k-cycles in X, which is denoted by Zk(X), is ker ∂Xk and forms
a subgroup of Ck(X). A k-chain z ∈ Ck(X) is called a boundary in X if there
exists c ∈ Ck+1(X) such that ∂Xk+1c = z. Thus the set of boundary elements in

Ck(X), which is denoted by Bk(X), consists of the image of ∂Xk+1. Since ∂Xk+1

is a homomorphism, Bk(X) is a subgroup of Ck(X). Since ∂Xk ∂
X
k+1 = 0, every

boundary is a cycle and thus Bk(X) is a subgroup of Zk(X). We say that two
cycles z1, z2 ∈ Zk(X) are homologous and write z1 ∼ z2 if z1 − z2 is a boundary
in X, that is, z1 − z2 ∈ Bk(X). The equivalence classes are then the elements
of the quotient group Hk(X) = Zk(X)/Bk(X) called the k-th homology group
of X. The homology of X is the collection of all homology groups of X. The
shorthand notation for this is H(X) := {Hk(X)}k∈Z. Given z ∈ Zk(X), [z] is
the homology class of z in X. A sequence of vertices V0, . . . , Vn ∈ K0(X) is an
edge path in X if there exists edges E1, . . . , En ∈ K1(X) such that Vi−1, Vi are
the two faces of Ei for i = 1, . . . , n. For V, V ′ ∈ K0(X), we write V ∼X V ′
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if there exists an edge path V0, . . . , Vn ∈ K0(X) in X such that V = V0 and
V ′ = Vn. We say that X is edge-connected if V ∼X V ′ for any V, V ′ ∈ K0(X).
For V ∈ K0(X) we define the edge-connected component of V in X as the union
of all edge-connected cubical subsets of X that contain V . We denote it eccX(V ).
The following result states that in the context of cubical sets, edge-connectedness
is equivalent to (topological) connectedness4.

Theorem 2 (Theorem 2.55 of [10]). Let X be a cubical set. Then H0(X) is a
free Abelian group. Furthermore, if {Vi ; i ∈ J1, nK} is a collection of vertices in
X consisting of one vertex from each component of X, then{

[V̂i] ∈ H0(X) ; i ∈ J1, nK
}

forms a basis for H0(X) (where V̂i is the algebraic element associated to Vi).

This way, edge-connected components of X are (topologically) connected
components of X and conversely.

2.6 Relative homology

Now, we recall some background in matter of relative homology. A pair of cubical
sets X and A with the property that A ⊆ X is called cubical pair and is denoted
by (X,A). Relative homology is used to compute how the two spaces A,X differ
from each other. Intuitively, we want to compute the homology of X modulo A:
we want to ignore the set A and everything connected to it. In other words, we
want to work with chains belonging to C(X)/C(A), which leads to the following
definition.

Definition 3 (Definition 9.3 of [10]). Let (X,A) be a cubical pair. The relative
chains of X modula A are the elements of the quotient groups Ck(X,A) :=
Ck(X)/Ck(A). The equivalence class of a chain c ∈ C(X) relative to C(A)
is denoted by [c]A. Note that for each k, Ck(X,A) is a free Abelian group.

The relative chain complex of X modulo A is given by
{
Ck(X,A), ∂

(X,A)
k

}
k∈Z

where ∂
(X,A)
k : Ck(X,A) → Ck−1(X,A) is defined by ∂

(X,A)
k [c]A := [∂Xk c]A.

Obviously, this map satisfies that ∂
(X,A)
k ∂

(X,A)
k+1 = 0. The relative chain com-

plex gives rise to the relative k-cycles: Zk(X,A) := ker ∂
(X,A)
k , the relative k-

boundaries Bk(X,A) := im ∂
(X,A)
k+1 , and finally the relative homology groups:

Hk(X,A) := Zk(X,A)/Bk(X,A).

Proposition 4 (Proposition 9.4 of [10]). Let X be an (edge-)connected cubical
set and let A be a nonempty cubical set of X. Then, H0(X,A) = 0.

4 A set X is said connected if it is not the union of two disjoint open non-empty sets.
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2.7 Exact sequences

A sequence of groups and homomorphisms · · · → G3
ψ3−→ G2

ψ2−→ G1 → . . .
is said exact at G2 if im ψ3 = kerψ2. It is an exact sequence if it is exact at
every group. If the sequence has a first or a last element, then it is automatically
exact at that group. A short exact sequence is an exact sequence of the form

0 → G3
ψ3−→ G2

ψ2−→ G1 → 0. A long exact sequence is an exact sequence with
more than three nonzero terms.

Example 5 (Example 9.21 of [10]). The short exact sequence of the pair (X,A)
is:

0 −→ Ck(A)
ιk−→ Ck(X)

πk−→ Ck(X,A) −→ 0

where ιk is the inclusion map and πk is the quotient map.

Lemma 6 (Exact homology sequence of a pair [10])). Let (X,A) be a cubical
pair. Then there is a long exact sequence

· · · → Hk+1(A)
ι∗−→ Hk+1(X)

π∗−→ Hk+1(X,A)
∂∗−→ Hk(A)→ . . .

where ι : C(A) ↪−→ C(X) is the inclusion map and π : C(X) → C(X,A) is the
quotient map.

2.8 Manifolds and local homology

A subset X of Rn is said to be a (n-dimensional) homology manifold if for any
x ∈ X the homology groups

{
Hi(X,X \ {x})

}
i∈Z satisfy:

Hi(X,X \ {x}) =

{
Z when i = n,
0 otherwise.

Theorem 7 ([17]). A topological manifold is a homology manifold.

2.9 Homotopical equivalence

Let X,Y be two topological spaces, and f, g be two continuous functions from
X to Y . We say that f and g are homotopic if there exists a continuous function
H : X× [0, 1]→ Y such that for any x ∈ X, H(x, 0) = f(x) and H(x, 1) = g(x).
Furthermore, we say that X and Y are homotopically equivalent if there exist
f : X → Y and g : Y → X such that g ◦ f is homotopic to IdX and f ◦ g is
homotopic to IdY .
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3 DWCness does not imply CWCness

It is well-known that DWCness and CWCness are equivalent in 2D and 3D (see,
for example, [4]). In this section, we prove that there exists at least one set
X ⊂ Z4 which is DWC but not CWC.

To this aim, we will start with the definition of the set X and we will check
that X is DWC. Then, to prove that X is not CWC, we will prove that X =
bdCA(X ) (up to a translation) is not a homology manifold and conclude that it
is not a topological manifold by Theorem 7. To compute the homology groups
{Hi(X,X \ {x0}}i∈Z, where x0 is a particular point in X (detailed hereafter),
we need to compute {Hi(X \ {x0})}i∈Z and {Hi(X)}i∈Z. However, X \ {x0} is

not a cubical set, then we need to find a cubical set X̃(x0) which is homotopy
equivalent toX\{x0} to compute its homology groups using the CHomP software

package [8]. After having defined X̃(x0) and having proven that it is a cubical

set, we will show that X \ {x0} and X̃(x0) are homotopically equivalent. Then,

we will compute the homology groups of X̃(x0) and of X; this way we will deduce
{Hi(X,X \ {x0})}i∈Z using the long exact sequence of the pair (X,X \ {x0}).
At this moment, we will see that X is not a homology 3-manifold, which will
make us able to conclude that X is not CWC since the boundary of its continuous
analog is not a topological 3-manifold. This way, we will conclude that DWCness
does not imply CWCness in 4D.

3.1 Choosing a particular DWC set X ⊂ Z4

Fig. 2: A set X ⊂ Z4 depicted by blue points which is DWC and not CWC. Blue
lines show that the blue points are 2n-connected (n = 4).

We recall that it is well-known in the community of discrete topology that
CWCness and DWCness are equivalent in 2D and 3D as developed in [2,4]. For
this reason, we chose a digital set X in Z4 to study the relation between these
two flavours of well-composedness in higher dimensions.

As depicted in Figure 2, we can define the digital subset of Z4:

X := {{0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 1}, {0, 1, 1, 1},
{1, 1, 1, 1}, {1, 1, 1, 0}, {1, 1, 0, 0}, {1, 0, 0, 0}}.
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Let us check that X is DWC (see Figure 2). It is easy to observe that it does not
contain any 2D critical configuration. Now, to observe that there is no primary
or secondary 3D critical configuration, we can simply look at the eight 3-faces
(including the interior and the exterior cubes): since each one contains exactly
four points of X , they contain neither a primary critical configuration (made of
two points) nor a secondary critical configuration (made of six points in the 3D
case). Finally, we observe that the only 4D block that we have to consider is
{0, 1}4 which contains eight points of X , and eight points of X c, concluding that
X contains neither a primary nor a secondary 4D critical configuration.

Property 8. The digital set X is DWC.

3.2 Finding a cubical set X̃(x0) homotopy equivalent to X \ {x0}

Let us start with the following proposition.

Proposition 9. Let X be a cubical set in Rn and x0 be a point of X∩Zn. Then,
the set:

X̃(x0) := {x ∈ X \ {x0} ; ‖x− x0‖∞ ≥ 1}

is cubical.

Proof. Our aim is to prove that X̃(x0) is equal to
⋃
{h ∈ K(X) ; x0 6∈ h}. This

way, we will be able to conclude that X̃(x0) is equal to
⋃
{h ∈ K(X \ {x0})} and

then it is a cubical set (since it is made of cubes and closed under inclusion).
First, let us prove that:

X̃(x0) ⊆ ∪{h ∈ K(X) ; x0 6∈ h}.

Let x ∈ X \ {x0} be a point such that ‖x − x0‖∞ ≥ 1. Then, there exists
i∗ ∈ J1, nK such that ‖x− x0‖∞ = |xi∗ − x0i∗ | ≥ 1. Then two cases are possible:

(1) xi∗ > x0i∗ , then xi∗ ≥ x0i∗ + 1,
(2) xi∗ < x0i∗ , then xi∗ ≤ x0i∗ − 1.

Since x ∈ X \ {x0} ⊂ X where X is a cubical set, there exists a smaller face
h∗ ∈ K(X) (in the inclusion sense) such that x ∈ h∗ := ×i∈J1,nK[bxic, dxie].
Then, x0 ∈ h∗ iff for each i ∈ J1, nK, x0i ∈ [bxic, dxie]. However, since in case
(1), x0i∗ ≤ xi∗ − 1 < bxi∗c, and in case (2), x0i∗ ≥ xi∗ + 1 > dxi∗e, then x0 6∈ h∗.
Obviously, h∗ ∈ K(X): otherwise, all the cubes containing h∗ do not belong to
K(X), and then x 6∈ X \ {x0}. This way, there exists a cube h ∈ K(X) such that
x0 6∈ h and x ∈ h.
Second, let us prove that: X̃(x0) ⊇

⋃
{h ∈ K(X) ; x0 6∈ h}. Let p be an

element of
⋃
{h ∈ K(X) ; x0 6∈ h}. In other words, p ∈ h ∈ K(X) and x0 6∈

h. Since p ∈ h ∈ K(X) and x0 6∈ h then p ∈ X \ {x0}. Now, let us write
h = ×i∈J1,nK[h

min
i , hmax

i ], where hmin, hmax ∈ Zn. Since x0 6∈ h, there exists
i∗ ∈ J1, nK such that x0i∗ 6∈ [hmin

i∗ , hmax
i∗ ]. Furthermore, we have:

(a) either x0i∗ ≤ hmin
i∗ − 1,
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(b) or x0i∗ ≥ hmax
i∗ + 1.

Since p ∈ h, for each i ∈ J1, nK, we have pi ∈ [hmin
i , hmax

i ], and then pi∗ ∈
[hmin
i∗ , hmax

i∗ ]. Then, in case (a), x0i∗ ≤ hmin
i∗ −1 ≤ pi∗−1, which leads to pi∗−x0i∗ ≥

1, and in case (b), x0i∗ ≥ hmax
i∗ + 1 ≥ pi∗ + 1, which leads to x0i∗ − pi∗ ≥ 1. In

both cases, we obtain that ‖p− x0‖∞ ≥ 1.

Fig. 3: X \ {x0} is homotopy equivalent to X̃(x0): From left to right, a cubical
set X (see the location of the central point x0 in red), X minus its central point

x0 and the new cubical set X̃(x0) homotopy equivalent to X \ {x0}.

Now, let us prove that X \ {x0} and X̃(x0) are homotopy equivalent (as
depicted on Figure 3).

Proposition 10. Let X be a cubical set in Rn and x0 be a point of X ∩ Zn.
Then, X \ {x0} is homotopy equivalent to X̃(x0).

Proof. Let f : X \ {x0} → Rn be the function defined such as:

f(x) :=

{
x when ‖x− x0‖∞ ≥ 1,

x0 + x−x0

‖x−x0‖∞ otherwise,

and let g : X̃(x0)→ X \ {x0} be the map from X̃(x0) to X \ {x0} such that:

∀x ∈ X̃(x0), g(x) = x,

which is possible since X̃(x0) ⊆ X \ {x0}. Now, let us proceed step by step.

Step 1: X \ {x0} and X̃(x0) are topological spaces. The setsX \ {x0} and X̃(x0)
are topological spaces since they are subsets of Rn supplied with the usual Eu-
clidian distance.

Step 2: f is a map from X \ {x0} to X̃(x0). Let x be an element of X \ {x0}.
When ‖x−x0‖∞ ≥ 1, f(x) = x. This way, f(x) ∈ X \ {x0} and ‖f(x)−x0‖∞ ≥
1, then f(x) ∈ X̃(x0). When ‖x − x0‖∞ < 1, f(x) = x0 + x−x0

‖x−x0‖∞ . This way,

‖f(x) − x0‖∞ = 1. Since x ∈ X \ {x0} ⊂ X with X a cubical set, there exists
a cube h ∈ K(X) such that x ∈ h. Furthermore, this cube h contains x0 since
all the cubes containing a point of ×i∈J1,nK]x

0
i − 1, x0i + 1[ contain also x0 (the
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cubes are defined relatively to integral coordinates). Since h = ×i∈J1,nKhi, then
for each i ∈ J1, nK, xi ∈ hi, and

(f(x))i = x0i +
xi − x0i
‖x− x0‖∞

.

Let us prove that this last equality shows that f(x) ∈ h. Since n is finite, there
exists some i∗ ∈ J1, nK such that: ‖x− x0‖∞ = |xi∗ − x0i∗ |, then:

(f(x))i = x0i +
xi − x0i
|xi∗ − x0i∗ |

(P1)

Let us assume without constraint that xi∗ > x0i∗ , then (f(x))i∗ = x0i∗ + 1.
However, xi∗ > x0i∗ implies that hi∗ = [x0i∗ , x

0
i∗ + 1] since h contains x0. When

i 6= i∗, since xi ∈ hi, and since h 3 x0 ∈ Zn, hi = [x0i , x
0
i + 1] or hi = [x0i −1, x0i ].

Let us assume without constraint that xi > x0i , then hi = [x0i , x
0
i + 1]. Because

of (P1), it follows easily that (f(x))i ∈ hi since
xi−x0

i

|xi∗−x0
i∗ |
∈ [0, 1].

Then, we have proven that when ‖x − x0‖∞ < 1, there exists h ∈ K(X) such
that for any i ∈ J1, nK, (f(x))i ∈ hi, that is to say,

f(x) ∈ h. (P2)

Also, x 6= x0, which is equivalent to f(x) 6= x0. Then, f(x) ∈ X̃(x0).

Step 3: g ◦ f is homotopic to IdX\{x0}.

– We can observe that g ◦ f : X \ {x0} → X \ {x0} is the continuous function
defined as:

g ◦ f =

{
x when ‖x− x0‖∞ ≥ 1,

x0 + x−x0

‖x−x0‖∞ otherwise.

– Let H : (X \ {x0})× [0, 1]→ Rn defined such that for any x ∈ X \ {x0} and
any λ ∈ [0, 1],

H(x, λ) := λx+ (1− λ)g ◦ f(x),

then:

• H is continuous as a composition of continuous functions,
• H is a function from (X \ {x0})× [0, 1] to X \ {x0}:
∗ when ‖x− x0‖∞ ≥ 1, H(x, λ) = x ∈ X \ {x0},
∗ when ‖x−x0‖∞ < 1, H(x, λ) = λx+ (1−λ)f(x). However, we have

seen that in this case, cf. (P2), there exists a cube h ∈ K(X) such
that f(x) ∈ h. Since h is a cube, it is convex, and then H(x, λ) ∈ h.
Then, H(x, λ) ∈ X. Also, we can prove that H(x, λ) 6= x0: the cases
λ = 0 and λ = 1 are obvious; in the case λ ∈]0, 1[, we can see that

H(x, λ) = λx+ (1− λ)

(
x0 +

x− x0

‖x− x0‖∞

)
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and then, by assuming without constraints that x0 = 0 and that for
any i ∈ J1, nK, xi ≥ 0, we obtain that for any i ∈ J1, nK:

(H(x, λ))i = λxi + (1− λ)
xi
‖x‖∞

= (λ(‖x‖∞ − 1) + 1)
xi
‖x‖∞

,

then, because (‖x‖∞−1) < 1 and xi

‖x‖∞ ≥ 0, (H(x, λ))i is decreasing

relatively to λ, and then

xi ≤ (H(x, λ))i ≤
xi
‖x‖∞

.

Since x 6= 0, there exists i∗ such that xi∗ 6= 0, and then such that
(H(x, λ))i∗ > 0 since xi∗ > 0. Therefore, H(x, λ) 6= 0, that is,
H(x, λ) 6= x0. Then, H(x, λ) ∈ X \ {x0}.

– We can see that H(x, 0) = g ◦ f(x),∀x ∈ X \ {x0},
– We can also observe that H(x, 1) = x, ∀x ∈ X \ {x0}.

Then g ◦ f is homotopic to IdX\{x0}.

Step 4: f ◦ g is homotopic to IdX̃(x0). Since f ◦ g is equal to IdX̃(x0), they are

homotopic.

Step 5: Conclusion. X \ {x0} and X̃(x0) are homotopically equivalent.

Corollary 11. Assuming the notations of Proposition 9, we can compute the
homology groups of X \ {x0} based on the ones of the cubical set X̃(x0). Indeed,

for each i ∈ Z, we have the following equality: Hi(X \ {x0}) = Hi
(
X̃(x0)

)
.

Proof. This follows from Propositions 9 and 10.

3.3 Defining the cubical set ϕd(X )

Let us define the mapping ϕ : Z/2→ K1:

∀x ∈ Z/2, ϕ(x) :=

{
[x, x+ 1] when x ∈ Z,{
x+ 1

2

}
otherwise.

Then we can define: ∀x ∈ (Z/2)d, ϕd(x) := ×di=1ϕ(xi) where, as usual, xi denotes
the ith coordinate of x; ϕd is then a bijection between (Z/2)d and Kd. Note that
the underlying polyhedron of ϕd(X ) is equal to CA(X ) up to a translation, and
in this way they are topologically equivalent.

3.4 Choosing a particular point x0 in the boundary X of ϕ4(X )

Let us begin with a simple property.

Property 12. The point x0 := (1, 1, 1, 1) belongs to the boundary X of ϕ4(X ).
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Proof. Let us recall that ϕ4(X ) is a translation of the set CA(X ) by a vector
v := ( 1

2 ,
1
2 ,

1
2 ,

1
2 ). Also, the point p := ( 1

2 ,
1
2 ,

1
2 ,

1
2 ) ∈ R4 belongs to CA(X ) and

does not belong to Int(CA(X )) since there does not exist any topological open
ball B(p, ε), ε > 0, in R4 centered at p and contained in Int(CA(X )) since B(p, ε)
intersects Int(CA(X c)). This way, p belongs to bdCA(X ). Finally, we obtain that
the translation x0 = p + v of p by v belongs to the translation X of bdCA(X )
by v.

3.5 Computation of H(X,X \ {x0})

Let us compute the relative homology groups Hi(X,A) for each i ∈ Z.
Obviously, since Ck(X,X \ {x0}) = 0 for k ∈ Z\J0, 4K, then Hk(X,X \ {x0}) =

0. Also, thanks to Proposition 4, we know that H0(X,X \ {x0}) = 0. To compute
the other relative homology groups, we will use the exact homology sequence of
(X,X \ {x0}) discussed in Lemma 6: the sequence

· · · → Hk+1(X \ {x0}) ι∗→ Hk+1(X)
π∗→ Hk+1(X,X \ {x0}) ∂∗→ Hk(X \ {x0})→ . . .

is exact, and then by computing the homology groups Hk(X) and Hk(X \ {x0})
and using the First Isomorphism Theorem, we will be able to compute the local
homology groups Hk(X,X \ {x0}) and to deduce if X is a homology 3-manifold
or not.

H4(X \ {x0}) = 0 H4(X) = 0 H4(X,X \ {x0})

H3(X \ {x0}) = 0 H3(X) = Z H3(X,X \ {x0})

H2(X \ {x0}) = 0 H2(X) = Z H2(X,X \ {x0})

H1(X \ {x0}) = Z H1(X) = 0 H1(X,X \ {x0})

H0(X \ {x0}) = Z H0(X) = Z H0(X,X \ {x0}) = 0

ι4 π4

∂4
ι3 π3

∂3
ι2 π2

∂2
ι1 π1

∂1
ι0 π0

Fig. 4: Long exact sequence of the cubical pair (X,X \ {x0}).

Using CHomP [8], we compute the local homology groups H(X̃(x0)) and
Hi(X) for i ∈ J0, 4K. Using Corollary 11 we obtain Hi(X \ {x0}), and replacing
this information in the long exact sequence discussed in Lemma 6, we obtain
Figure 4.
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Let us compute H4(X,X \ {x0}). By exactness, im π4 = 0 = ker ∂4 and
H4(X,X \ {x0})/ ker ∂4 ' im ∂4 = 0, then H4(X,X \ {x0}) = 0.

Now, let us compute H3(X,X \ {x0}). By exactness, im ι3 = 0 = kerπ3, and
Z/ kerπ3 ' im π3 ' Z, then im π3 = ker ∂3 = H3(X,X \ {x0}) ' Z.

Concerning H2(X,X \ {x0}), by exactness, im ι2 = 0 = kerπ2, and Z/ kerπ2 '
im π2 ' Z ' ker ∂2. Also, ker(ι1) = Z = im ∂2 and H2(X,X \ {x0})/ ker ∂2 '
im ∂2 imply that: H2(X,X \ {x0}) ' Z2.

Finally, let us compute H1(X,X \ {x0}). By exactness, im π1 = 0 = ker ∂1.
Also, kerπ0 = Z ' im ι0, and Z/ ker ι0 ' im ι0 imply that ker ι0 = 0 = im ∂1.
Then, H1(X,X \ {x0}) = 0.

3.6 Our final observation

Fig. 5: Projection in the 3D space of the continuous analog of the 4D counter-
example. Each color corresponds to a same (projected) hypercube. Note that
the pinch is not observable in 3D.

Since we have H2(X,X \ {x0}) ' Z2 6= 0, X is not a homology 3-manifold,
and then it is not a topological 3-manifold, which implies that DWCness does not
imply CWCness in 4D, which contradicts the conjecture arguing that DWCness
and CWCness are equivalent in nD on cubical grids [2]. See Figure 5 for some 3D
projections of the continuous analog of our 4D counter-example. Furthermore,
this counter-example shows that a digital set which is well-composed in the sense
of Alexandrov (AWC) [16,6] is not always CWC, since it has been proven in [5]
that AWCness and DWCness are equivalent in nD.

4 Conclusion

The counter-example presented in this paper shows that in 4D, DWCness does
not imply CWCness. It shows how much it is important to explicit which flavour
of well-composedness we consider when we work with nD discrete images.

Furthermore, two questions arise in a natural way. First, is it possible to find a
generic counter-example showing that DWCness does not imply CWCness in any
dimension greater than 3 (like the product of the set X with {0, 1}n−4). Second,
does CWCness imply DWCness in nD? This last question seems intuitive but
we will show in a future report that it is far from being so simple.
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Est, France (2016)
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