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Abstract. To prevent the release of large quantities of CO2 into the
atmosphere, carbon capture and storage (CCS) represents a potential
means of mitigating the contribution of fossil fuel emissions to global
warming and ocean acidification. Fluvial saline aquifers are favourite
targeted reservoirs for CO2 storage. These reservoirs are very heteroge-
neous but their heterogeneities were rarely integrated into CO2 reser-
voir models. Moreover, contrary to petroleum reservoirs, the available
dataset is very limited and not supposed to be enriched. This leads to
wide uncertainties on reservoir characteristics required for CSS manage-
ment (injection location, CO2 plume migration, etc.). Stochastic simula-
tions are classical strategies in such under-constrained context. They aim
at generating a wide number of models that all fit the available dataset.
The generated models serve as support for computing the required reser-
voir characteristics and their uncertainties. A challenge is to optimize
the uncertainty computations by selecting stochastic models that should
have a priori very different flow behaviours. Fluid flows depend on the
connectivity of reservoir rocks (channel deposits). In this paper, it is
proposed to study the variability of the Betti numbers in function of dif-
ferent fluvial architectures. The aim is to quantify the impact of fluvial
heterogeneities and their spatial distribution on reservoir rock topology
and then on CO2 storage capacities. Representative models of different
scenarios of channel stacking and their internal heterogeneities are gen-
erated using geostatistical simulation approaches. The Betti numbers are
computed on each generated models and statistically analysed to exhibit
if fluvial architecture controls reservoir topology.

1 Introduction

The impact of the heterogeneities on the reservoir performances has always
been a key topic in geosciences, especially in the case of fluvial reservoirs.
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They consist of sediments deposited along rivers. They are very heterogeneous
and characterized by a complex spatial organization of sedimentary entities.

Many studies have been developed for analyzing uncertainty of hydrocar-
bon fluvial reservoirs [1]. For instance, stochastic simulation methods have been
proposed to generate plausible 3D models of fluvial sedimentary architectures,
conditioned to available subsurface data (e.g., seismic, well). These sets of 3D
models serve as support for risk assessments. An important issue is to character-
ize the uncertainties on dynamic reservoir characteristics because flow simulators
are highly time and power consuming. As a consequence, only few 3D models of
reservoir heterogeneity are used to perform flow simulations. For several years,
optimization techniques [2] have been proposed to scan more rapidly the uncer-
tainty space. It is based on the determination of distances between the generated
stochastic simulations. Descriptors, i.e. variables estimated on the reservoir, are
used to define distances between models and multivariate statistics are used
to guide the selection of a limited subset of 3D reservoir models that are very
different and that correspond to a representative subsampling of the generated
plausible models.

In the CO2 geological storage context, taking into account high resolution
heterogeneity is still at the beginning even though some studies have shown the
impact of heterogeneities on CO2 reservoir performances and capacities [3,4].
Techniques proposed for petroleum reservoir analysis [1,2,5] may be used as
basis for CO2 applications. Several descriptors have been proposed to describe
the geometry and the topology (i.e. connectivity) of reservoir rocks. However,
differences exist between the problematics of petroleum and CO2-storage reser-
voirs. First, the involved space and time scales are greater in the CO2-storage
domain than in the hydrocarbon industry. Second, the amount and availability
of data are generally much more limited in CO2 context. Finally, the use of flow
simulation in CCS studies is not for predicting the flow path from an injection
well to a producing one, but mainly for estimating the reservoir capacity and
overpressure. This means that specific descriptors are needed.

In this paper, we focus on searching formal frameworks to define topological
descriptors. Indeed, several geometrical characteristics have been already pro-
posed [2,5,6], while only descriptors based on degraded flow simulations have
been proposed for describing the reservoir connectivity. Even if these descrip-
tors provide insights on rough flow behavior, they remain time consumming.
The question is then to determine if the “static” topology of the reservoir rocks
can also provide information about fluid flow behaviors. In this paper, we pro-
pose to use the formal framework of the Betti number to study the topology of
the reservoir rock volume. However, we focus on determining if different fluvial
architectures lead to significant differences of Betti number averages.

In a first section, basics on fluvial sediment architecture and the main mod-
elling issues are presented. To compare the Betti numbers on different fluvial
architectures, we propose to generate a synthetic data set of different 3D fluvial
reservoirs. It is then possible to master the explanatory parameters of the models.
Thus, the method used for generating the synthetic dataset and the explanatory
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parameters are described in a second section. In a third part, the mathematical
background of the Betti numbers is briefly presented. The proposed approach
for using the Betti numbers as descriptors is then described in a fourth section.
The statistical approaches proposed to analyse the connectivity of these different
reservoir models are also explained. Finally, the results are shown and discussed.

2 Fluvial Reservoir Modelling and Problematics

Rivers bring and deposit coarse sediments along their path (Fig. 1(A)) in a flood
plain consisting in fine sediments. If the river becomes unstable due to inter-
nal or external (e.g. tectonics) factors, an avulsion occurs and the river path
changes its location, potentially its orientation, in the flood plain. Coarse sed-
iments are then deposited at the new river location. The sedimentary bodies
deposited between two avulsions are often termed as channels even if the more
convenient terminology is channelbelts [7,8]. Thus, fluvial reservoirs consist in
the stackings of elongated tabular permeable bodies, the channelbelts, in an
impermeable background. The fluvial architecture follows sedimentological laws
such as: the channelbelt bodies pass entirely through the volume and their posi-
tions are correlated, in most cases [4,9] (Fig. 1(B)). The fluvial reservoirs are
highly compartmentalized: the channelbelt bodies may be amalgamated in cer-
tain places and the connectivity between these bodies has then a major impact
on the final reservoir rock organization, hence fluid flows.

For modelling purpose, it is common to only consider two lithologies ([4],
Fig. 1(A)): the overbank deposits (mainly impermeable) and the channelbelts
(reservoir rocks). Several algorithms have been proposed to stochastically repro-
duce the channelbelt stackings of fluvial architecture. Poisson point processes
and simulated annealing are the most known techniques [1,10]. However, even if
they assert to provide equiprobable models conditioned to subsurface data, both
techniques consider channel positions as independent and do not assert that the
generated objects totally pass through the volume. These drawbacks have been
noticed by several authors [4,11,12]. In [4], the authors propose an algorithm to

Fig. 1. Fluvial architecture: (A) channelbelt stackings and associated overbank
deposits (levees, crevasse-splays, flood plain fines); (B) Conceptual model of a chan-
nelbelt stacking influenced by a fault activity (modified from [9]).
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stochastically reproduce channel stackings that fit sedimentological laws. How-
ever, this technique is unconditional and can not then account for subsurface
data. The integration of geological laws into stochastic conditioned models is
still a sensitive issue in reservoir modelling [12] and a question is to determine
which sedimentological laws really influence reservoir behaviors [5].

In this work, the objective is to determine if the connectivity of the reservoir
rocks is in average influenced by different scenarios of channel stacking. An
algorithm inspired from [4] was used to generate different families of stochastic
models. The Betti numbers are proposed as descriptors for formelly compare the
final topology, i.e. connectivity, of the reservoir rocks.

3 Synthetic Data Set

A grid of 100 × 100 × 100 cells and 50 × 50 × 25 scale was built. A channel-
belt template is also constructed as a median polygonal line with perpendicular
demi-ellipse cross-sections. Its length is twice the grid one to ensure that simu-
lated objects totally pass through the volume. At a first glance, the object sizes
have no importance as we only deal with topology. However, the channel sizes are
chosen small enough compared to the grid in order to assert that the stochastic
simulation is an ergodic process (i.e. statistics are reproduced on a realization [1]).

The principle of the algorithm is to simulate N channelbelt parametric
objects within the volume. At each step, a channelbelt object is randomly gener-
ated and located in the volume using translation and rotation operations. Many
parameters are required to define the dimensions, the sinuosity, the orientation
and the location of a simulated channelbelt object. In this work, only two aspects
have been considered as variable: the style of stacking and the orientations of
the channelbelts. Indeed, the more parameters are variable, the more models
are required for cross comparisons. Except the width and height of the channel
sections, all the parameters are simulated using a Monte Carlo sampling on a
density probability law. For a sake of simplicity, the probability laws are always
considered as uniform and noticed U(min,max) in the following. The minimum
and maximum values are chosen so that it reproduces “realistic” shapes of chan-
nelbelts.

The sinuosity of the channel middle lines is simulated using a cosine equation
as follows:

X = a · cos(φ + τ · Y +40
280

φ = b·π
180

τ = c · π
(1)

where a ∼ U(5, 20), b ∼ U(5, 30) and c ∼ U(1, 5). The width and height of the
channel sections are constant and equal, respectively, to 10 and 3.
On one hand, two different styles of channel stacking were simulated (Fig. 2):

1. unstructured : the ith simulated object is randomly located in the volume,
independently from the i − 1 already simulated objects. This is similar to
Poisson point process as the events are considered as independent.
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2. structured : the location of the ith object depends on the location of the i−1th

object. Vertical and lateral translations are defined between them (Fig. 2(A)).
These values are simulated using a Monte Carlo sampling on, respectively,
U(0, 3) and U(−10, 10), except for the first simulated object for which the
lateral translation is randomly chosen in the volume. The vertical translation
asserts that there is no vertical gap between the i − 1th and the ith objects.
The values follow the sedimentological laws detailed in [4].

On the other hand, the orientations of the channel bodies are modified. In
two model series, the channelbelt orientation θ varies from −10◦ to 10◦, and in
the two others from −90◦ to 90◦ (Fig. 2(B)). In other words, the channelbelts
are roughly oriented in the same directions (North-South) for the first two series,
and in any orientations for the two others.

This leads to four series of models: (A) unstructured, orientations simulated
on U(−10◦, 10◦); (B) unstructured, U(−90◦, 90◦); (C) structured, U(−10◦, 10◦);
and (D) structured, U(−90◦, 90◦). Figure 3 shows top and cross-section views of
two models corresponding to, respectively, A and D type.

Fig. 2. Parameters for location simulation: (A) vertical and horizontal translations
between objects i − 1 and i; (B) Definition of the angle θ for simulating the main
channel orientations.

Moreover, it may be easy to imagine that proportions can also control the
Betti numbers, even if no specific study has been dedicated to that problem,
to our knowledge. To illustrate this phenomenon, a purely random white noise
of a binary variable was simulated for a proportion of black pixels from 0 to
100%. It may be seen in Fig. 4 that the Betti numbers are influenced in average
by the proportion. For this reason, we choose to generate 3D models of channel
stacking for which the poportion of the reservoir rock (channel) ranges over
[0.35, 0.4] (in average, 20 objects are simulated in the volume). This proportion
range is realistic and for a first study, corresponds to a balance between a too
small reservoir rock proportion leading to isolated small bodies (unexploitable)
and a high proportion (e.g. 80%), for which it has been shown that the geometry
and the organization of the channels have no more impact on reservoir behavior
[5,13].

Fifty simulations were provided for each model type (A, B, C and D) to
have a sufficient sampling of models. Simulations were performed using a Gopy
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research plugin of the Gocad R© software. The generated 3D models are firstly
represented as a set of parametric objects (Fig. 3, top view). These models are
secondly rasterized in the grid by storing the value 1 when a cell is intersected
by a channel and 0, else. At the end, the 3D models represent binary volumes
(3D grids), for which the value 1 corresponds to the reservoir rocks (channels)
and 0 the background (impermeable).

Fig. 3. Examples of 3D models: (left) the 8th simulation in the model A, section of the
3D grid and top view of the corresponding simulated parametric objects; (right) the
7th simulation in the model D, section of the 3D grid and top view of the corresponding
simulated parametric objects.

Fig. 4. Betti numbers (β0 in blue, β1 in green and β2 in red) computed for each
proportion of black pixels, over 10000 experiments on a 7 × 7 × 7 grid. (Color figure
online)

3.1 3D Cubical Complexes and Homology

The following section defines the Betti numbers for binary volumes. Let us first
point out that these numbers cannot be directly obtained from the volume, so
an intermediate structure, called cubical complex, must be considered.

An elementary interval is an interval of the form [k, k + 1] or a degenerate
interval [k, k], where k ∈ Z. An elementary cube is the Cartesian product of n
elementary intervals, and the number of non-degenerate intervals in this prod-
uct is its dimension. An elementary cube of dimension q will be called q-cube
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for short. Given two elementary cubes P and Q, we say that P is a face of Q if
P ⊂ Q. A 3D cubical complex is a set of elementary cubes. The boundary of a
q-cube is the collection of its (q − 1)-dimensional faces.

Given a binary volume X, we can define a topologically equivalent 3D cubical
complex K(X) which contains a 3-cube [x1, x1 + 1] × [x2, x2 + 1] × [x3, x3 + 1]
for every voxel (x1, x2, x3) of X.

A chain complex (C, d) is a sequence of R-modules C0, C1, . . . (called chain
groups and homomorphisms d1 : C1 → C0, d2 : C2 → C1, . . . (called differential
or boundary operators) such that dq−1dq = 0, for all q > 0, where R is some
ring, called the ground ring or ring of coefficients. In this paper we fix R = Z2

since we work in a three-dimensional space. The group chains are thus Z2-vector
spaces.

A 3D cubical complex K induces a chain complex. Cq(K) is the Z2-vector
space of dimension fq(K), the number of q-cubes in K. Its elements (called
q-chains) are formal sums of q-cubes with coefficients in Z2, so they can be
interpreted as sets of q-cubes. The linear operator dq maps each q-cube to the
sum of its (q − 1)-dimensional faces.

A q-chain x is a cycle if dq(x) = 0, and a boundary if x = dq+1(y) for some
(q + 1)-chain y. By the property dq−1dq = 0, every boundary is a cycle, so we
can define the q-th homology group of the chain complex (C, d):

H(C)q = ker(dq)/im(dq+1). (2)

This set is a group isomorphic to (Z2)b for some b ≥ 0. The ranks of the
homology groups are called the Betti numbers.

In the present work, the Betti numbers are scrutinized to determine if they
can be used for describing differences on reservoir geobody network or connec-
tivity.

4 Betti Numbers Used as Descriptor

4.1 Computations and Geological Meanings

This section aims at defining the “physical” meaning of each Betti number in the
case where the targeted object is a reservoir 3D model. Indeed, we may consider
two kinds of volume: the volume of reservoir rock (channelbelt sediments), which
corresponds to fluid storage and drainage, and the volume of impermeable rocks
(overbank deposits), which corresponds to flow barrier. We can then consider
not only the Betti numbers β0, β1 and β2 of the reservoir rock volumes but also
the Betti numbers of the impermeable background, that we refer to as β−

0 , β−
1

and β−
2 in the following.

The Betti number of dimension β0 represents the number of reservoirs con-
tained in the background. By “reservoir”, we mean the amalgamated channelbelt
bodies that lead to a connected volume of reservoir rock. The Betti numbers β1

and β2 represent, respectively, the number of impermeable tunnels and cavities
contained in the reservoir rock. These two parameters may have importance for
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CO2 storage application, as it has been shown that the presence of imperme-
able lenses in a reservoir rock volume increases the capacity of CO2 storage [14],
because of the CO2 accumulation under the lenses.

Concerning the complementary volume (i.e. the impermeable background),
β−
0 is the number of the barriers that compartmentalize the reservoir. Obvi-

ously, β−
1 and β−

2 are the number of tunnels and cavities in the background,
respectively. The tunnels may have importance as they represent potential leaks
for CO2 in the impermeable covers. It is of paramount importance for storage
efficiency and reliability that the CO2 does not migrate inside the impermeable
covers. Several studies have been conducted on the impact of thin permeable
tunnels (e.g. faults) in impermeable sediments [15].

The Betti numbers were calculated using an add hoc C++/python code and
the RedHom software [16]. The ad hoc code was developed to automate the
model import into the RedHom software and to extract a convenient output
format (i.e. column based file) from RedHom outputs for the statistical analysis
over the 200 models.

4.2 Statistical Tests

As previously mentioned, the final objective is to determine if significant differ-
ences in Betti number values can be observed between the four series of models.
A common way to achieve this is the use of hypothesis testing. In this study,
we propose to use the non-parametric Kruskal-Wallis test, whose purpose is to
compare the mean of a random variable V between different samplings, that are
assumed to be independent but that can have different sizes. This test does not
require that V follows a particular parametric distribution law.

Let us consider N samplings on which a random variable V has been mea-
sured and mi the means of V on the ith sampling. The Kruskal-Wallis test is
presented as follows:

{
The null hypothesis, H0 : m1 = m2 = ... = mN

The alternative hypothesis, H1 : ∃i, j/mi 	= mj
(3)

The underlying objective is to determine if the samplings are stemming from
the same statistical population (the null hypothesis). Thus, the question is to
reject or not H0. As any hypothesis testing, it relies on the computation of a
statistics t that should follow a given hypothetic law under H0. Then, an observed
value tobs is computed from the samplings and compared to a critical value tc.
This critical value is defined by assuming a given risk α, which corresponds to
the probability to reject H0 although it is true. If tobs is greater than tc, H0

is rejected, else it is accepted. Another way to interpret results is to compute
the p-value, which corresponds to the probability of rejecting H0 although it is
true, computed from the samplings. If it is greater than α then H0 is accepted,
otherwise rejected.

In the case of H0 rejection, it is a common practice to use post hoc tests
that allows the determination of which means are different from the others.
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In this study, the post hoc test “Kruskalmc” (multiple comparison) was chosen
in order to evaluate differences in medians among the four models. It is important
to notice that this test is less powerful than the Kruskal-Wallis test. This can lead
to unconsitent results between the two tests. The power of an hypothesis testing
corresponds to the probability to reject H0 when H1 is true. It characterizes its
robustness.

Moreover, in order to scrutinize the values of the Betti numbers, we propose
to use the boxplot (Fig. 5). The box plot displays the full range of variation (from
min to max), the likely range of variation (the IQR), and a typical value (the
median). They have also lines extending vertically from the boxes (whiskers)
indicating variability outside the upper and lower quartiles. Outliers may be
plotted as individual points. The spacing between the different parts of the box
indicate the degree of dispersion (spread) and skewness in the data, and show
outliers.

The statistical analysis was performed using the R software.

Fig. 5. Boxplots: left, diagram of the boxplot parameters; right, the four boxplots for
each Betti number.

5 Results and Discussion

5.1 Kruskal-Wallis Tests

For the 200 generated simulations, no cavity was found: β2 = 0 and β−
2 = 0.

They are then not studied. Concerning the four other numbers, Table 1 summa-
rizes the results found for the Kruskal-Wallis test. Except for β0, all the p-values
are under 5%. Thus, it can be concluded that the mean of β0 is not signifi-
cantly different between the different series. On the contrary, for β1, β−

0 and
β−
1 , there is at least one mean that is significantly different from the others.
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The post hoc test “Kruskalmc” was applied to evaluate differences among the
four models for these three variables. Table 2 summarizes the results. For β1, the
models are all different. In terms of β−

0 , the models C is significantly different
from the others. Finally, all the models are considered as similar in terms of β−

1 .
This is unconsistent with previous results. However, as previously mentioned,
the “kruskalmc” test is less powerful and “more easily accepts” H0, which can
explain these results. Moreover, the found p-values (0.03774) is very close to 5%.
Similarly, the tobs of the comparison between A − B (27.3) is very close to the
critical value (27.7123). This means that using a higher risk than 5%, the means
could be considered as different and that the models B would be considered as
different from A, C and D. In order to depict graphically the four groups of
numerical data through their quartiles, boxplots were used (see Fig. 5). These
plots confirm previous interpretations.

Table 1. Results of the Kruskal-Wallis test, p-values are always under 5 %, except for
β0 (in bold). It may be noticed that the p-value of β−

1 (in italic) is close to 5 %.

Betti number β0 β1 β−
0 β−

1

p-value 0.2334 7.5e−5 1.33e−6 0.03774

Table 2. Results of the Kruskal-Wallis post hoc test, applied for β1, β−
0 , and β−

1 .

β1 tobs tc Difference

A-B 33.96 27.7123 TRUE

A-C 46.94 27.7123 TRUE

A-D 37.96 27.7123 TRUE

β−
0 tobs tc Difference

A-B 11.94 27.7123 FALSE

A-C 46.15 27.7123 TRUE

A-D 1.59 27.7123 FALSE

β−
1 tobs tc Difference

A-B 27.3 27.7123 FALSE

A-C 0.63 27.7123 FALSE

A-D 12.55 27.7123 FALSE

5.2 Interpretations and Discussions

Considering a proportion of reservoir rock between [0.35; 0.4], it could be said
that the number of reservoir geobodies does not depend on the stacking law
and the channel orientation variability. On the contrary, both stacking and
orientations modify significantly the number of impermeable tunnels in the
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reservoir rocks. Regarding Fig. 5, the unstructured models seem to increase the
occurence of tunnels, in average. This means that this type of reservoir archi-
tecture is more tortuous and may facilitate dissolutions if these impermeable
tunnels are preferentially horizontal [14]. Concerning the number of imperme-
able compartmentalization (β−

0 ), it seems that unstructured models with sub-
parallel channel orientation present smaller occurences of these features. Regard-
ing Fig. 5, higher orientation variability leads to higher compartmentalization.
On the contrary, the stacking correlation tends to decrease it. Both trends explain
that the models C are different from the others, with a smallest mean. This
result is suprising as we could imagine at a first glance that the stacking corre-
lation tends to create vertical chimneys of reservoir geobodies that separate the
background in different components. Finally, the number of permeable tunnel
in background (β−

1 ) seems to be positively influenced by the stacking correla-
tion but negatively impacted by the channel orientation variability. This leads
to differentiate models B from the others. However, the difference is not clearly
significant as p − value and observed statistics are close to the cutoffs.

6 Conclusion

This preliminary study allowed us to define a “physical meaning” to the Betti
numbers computed on both permeable and impermeable volumes for reservoir
characterizations. Six variables were defined, but only four were really used in
the study because no cavity was found. This study also highlights that the type
of channelbelt stackings influence the reservoir topology. These results have been
only performed for a proportion of reservoir rocks ranged over [0.35; 0.4]. It could
be interesting to test if the trends observed in this study remain similar for dif-
ferent proportions. It may be noticed that some Betti numbers correspond to
entities that can be computed using more classical algorithms, such as β0 and
β−
0 . However, Betti numbers are known as powerful to characterize the number

of tunnels, which generally remains the most difficult task. The presence of per-
meable tunnels in impermeable background caused by faults or lithologies have
major impacts on CO2 storage risks. Thus, the use of Betti numbers helps com-
puting relevant topological indices for reservoir compactness characterization. In
further studies, we will study the impact on proportions on the observed trends
but also we will analyze more complex models having more than two lithologies.
Finally, hydraulic behavior will be also studied to check if relationships exist
between static (reservoir rock network) and dynamic (flow path) topology.
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