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Abstract

Steenrod cohomology operations are algebraic tools for distinguishing
non—-homeomorphic topological spaces. In this paper, starting off from the
general method developed in [6] for cup—i products and Steenrod squares,
we present an explicit combinatorial formulation for the particular Steenrod
cohomology operation P} : HY(X;F,) — H® '(X;F,), where p is an odd
prime, ¢ a non—negative integer, X a simplicial set and [F,, the finite field with
p elements. As an example, we design an algorithm for computing B} on the
cohomology of a simplicial complex and we determine its complexity.

Extended Abstract

Algebraic Topology studies problems of purely qualitative nature making use of
algebraic structures. An evident example of this “algebrization” of Topology is the
theory of algebraic invariants associated to topological spaces. The most intuitive
algebraic invariant is the number of connected components of a topological space.
Appropriate generalizations of this notion are homology, cohomology and homo-
topy groups. Homology (or its dual, cohomology) groups are, in general, easier to
compute than homotopy groups. Moreover, the cohomology of a topological space
has an additional ring structure determined by the cup product of two cochains. In
particular, this product allows us to distinguish topological spaces having isomor-
phic homology groups. A finer class of invariants are cohomology operations, that



is, algebraic maps on the cohomology groups of spaces. Within these tools, an ex-
tremely important type are Steenrod squares and Steenrod reduced powers [15, 13].
The importance of these Steenrod cohomology operations is twofold: on the one
hand, they have a deep geometrical meaning; on the other hand, they can be used
in areas close to Homological Algebra: group cohomology, Hochschild cohomology of
algebras, .... These algebraic operations are extremely well-studied objects from a
topological viewpoint (see [17] and [1] for a non—exhaustive account of results). The
fact that Steenrod cohomology operations are completely determined by combina-
torial data is also well-known ([11],[2], [12], ...). However, the recursive algorithms
derived from these studies are too slow for practical implementation.

Passing on now to other matters, the problem of computability in Algebraic
Topology is a “delicate one”, as George Whitehead stated in 1983. With regard
to this question, we limit ourselves to say that it is necessary to distinguish the
problem of recognizing parts of classical Algebraic Topology as effective from that
of providing practical solutions for these parts. This assertion is motivated by the
fact that the majority of algorithms (spectral sequences, ...) in this field carry very
high computational costs.

In combinatorial design theory, there is a recent interest by cohomology as it is
indicated in [8]. Then the obtention of efficient algorithms for computing n—cocycles
can be useful in that field. With regard to 2—cocycles, several methods for finding
cocycles representing 2—dimensional cohomology classes of finite groups have been
designed recently [5, 8, 9]. Working within the framework of Simplicial Topology
[11], an explicit description of certain simplicial cocycles on simplicial sets (that is,
a combinatorial model of a topological space) is given in [6]. To be more precise,
in that paper, an explicit formulation for cup— products and Steenrod squares is
presented. An algorithm for computing these invariants is derived in a natural way.
For example, the data for computing Steenrod squares are a simplicial set X, a non—
negative integer ¢ and a n—cocycle ¢ of X, giving back as answer a (n + ¢)—cocycle
Sq'(c). As an application, algorithms for computing these invariants in simplicial
complexes are given in [7].

In this paper, we analyze in detail the underlying combinatorial structure of the
Steenrod reduced power B} : H4(X;F,) — H? '(X;F,), p being an odd prime, ¢ a
positive integer, X a simplicial set and F,, the finite field with p elements. This study
is based on the results obtained in [6] for Steenrod reduced powers. Regarding these
results, our motivation in the very near future is to give an explicit combinatorial
picture of all Steenrod cohomology operations.

We now give some simplicial and algebraic preliminaries in order to facilitate the
understanding of the extended abstract. This material can be found, for example,



in [11], [10] and [16].

Let R be aring and X a simplicial set (that is, a graded set, Xy, X7, ..., endowed
with two kinds of operators: face operators d; : X,, — X,,_; and degeneracy opera-
tors s, : X, = X1, 1 < j < n, verifying several “commutativity” relations). Let
us denote C.(X) by the chain complex {C,(X), d,} in which C,,(X) is the graded
R-module generated by X, and d,, : C,(X) — C,_1(X) is 1 o(=1)'0;. Let CM(X)
be the normalized chain complex {CY(X), d,} where C¥(X) = C,(X)/s(Crh1(X))
and s(C,—1(X)) is the graded R—module generated by all the non—degenerate sim-
plices y of C,,(X) (that is, y = s;(x) for some simplex & and degeneracy operator

Si).

Now, the cochain complex associated to CY(X), denoted by C*(X; R), is the free
R-module generated by all the R-module maps from CY(X) to R together with a
map ¢ defined by é(¢)(x) = e(d(x)). In this way, we define the cohomology of X
with coefficients in R by H*(X) =Ker 6,,/Im 6,_1. Note that a cocycle ¢ (that is,
¢ € C*(X; R) such that 6(c) = 0) represents a class of cohomology.

We are able to enunciate the main result of this paper.

Theorem 0.1. Lel p be an odd prime. Let F, be the ground ring and X a simplicial
set. If c € CUX;F,) and x € C)_(X) then P) : HY(X;F,) — HP(X;F,) is
defined by:
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where m = pg — 1, e is the natural product in F, and

S(7)=1{0<40 < <59 <ty <1 <ty <o <y <

The key of our combinatorial approach is the description given in [6] for Steenrod
reduced powers in terms of the component morphisms of a given Eilenberg—Zilber
contraction [4]. The proof of the previous theorem is a simplification of that combi-
natorial formulation based on the fact that any composition of face and degeneracy
operators can be expressed in a unique form:

Sjp e 5]‘1&'1 al

where 5, > - > 31 > 0and 15, > --- > > 0.

Moreover, bearing in mind that ¢ is a ¢—cochain, we only have to consider those
summands with exactly pg — g — 1 face operators in each factor. Then, we can
simplify the formula even more.

Proposition 0.2. Let p be an odd prime. Let F, be the ground ring and X a simpli-
cial set. If c € CYX;F,) and v € C)_(X) then P : HY(X;F,) - HPH(X;F,)
is defined by:
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where o is the natural product in F,.

Assuming that face operators are evaluated in constant time, the following result
gives us a first measure of the computational complexity of these formulae.



Proposition 0.3. Let p be an odd prime. Let F, be the ground ring and X a
simplicial set. If ¢ € HY(X;F,), then the number of face operators taking part in
the formula for P (c) of the proposition above is

plp— Dgl(p—1)g —1].

It is clear that at least in the case in which X has a finite number of non—
degenerate simplices in each degree, our method can be seen as an actual algorithm
for calculating B for an odd prime p. For example, if the number of non—degenerate
simplices in each X, is O(f) and each face operator of X is evaluated in constant
time, the complexity of our algorithm for calculating Bi(c,) is O(p*¢®). As an
example, an algorithm for computing B} on the cohomology of a simplicial complex
[14, 16] can be easily described and implemented. This example in particular shows
that it is not difficult to integrate Computational Algebra tools in the framework
of Algebraic Topology.
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