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Abstract. In this paper, we make use of the topological invariants of
2D images for an accelerated training and an improved recognition abil-
ity of a deep learning neural network applied to digital image objects.
For our test images, we generate the associated simplicial complexes and
from them we compute the Betti numbers which for a 2D object are the
number of connected components and the number of holes. These infor-
mation are used for training the network according to the corresponding
Betti number. Experiments on the MNIST databases are presented in
support of the proposed method.
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1 Introduction

The intelligent classification of data objects with human eye precision and speed
or if possible even more accurate, is one of the current ambitions in computer
analysis of images and patterns. From quantum algorithms to topological data
analysis to the state of the art deep learning architecture, the human mind is
trying to overcome the condition of the machines and if possible his own native
condition [2–5,12].

In this context, the search for refined methods of classification involves
designing new algorithms that could make use of the research developments
in scientific cross-fields. In here, we merge the use of Betti numbers from com-
putational topology with the training of a deep learning network to enhance the
speed and the accuracy of the recognition for the handwritten digits.

Similar merges have been proposed in [4–6], but the areas of application are
different from our approach. For example in [4], the authors propose a Topology-
Net for biomolecular property predictions. In [5], the topological characteristics
of digital models were employed for geological core and in [6] a geometric data
analysis for image understanding is proposed and this analysis is based on man-
ifold learning.
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Our method is based on designing a first layer of the deep learning net used
to feeding the data to the network. So the network will be trained with extra-
information on the object to be discovered. As a concrete example, instead of
training the network for the entire MNIST database, we train three networks for
the corresponding three Betti numbers 0, 1 and 2 characterizing the number of
holes. The digits 1, 2, 3, 4, 5, 7, have 0 holes then 0, 6 and 9 have 1 hole, and
respectively the digit 8 has 2 holes. Smaller networks allow a more flexible and
faster training and possibly even more accurate results.

We evaluate our constructive model on the MNIST database which contains
60,000 training and 10,000 test examples of handwritten digit images, each of
which is 28 × 28 pixels (784-dimensional) and belong to one of 10 classes [1].
We randomly partition the original training set into training and validation sets
with a ratio of 5 : 1.

Neural networks are widely used nowadays, but they have some drawbacks.
A major one consists of the time spent to train the network, that is directly
proportional to the accuracy of the results. We present in this work a different
and novel approach that improves the accuracy and decreases the time spent
for training the network. In order to do this, we make use of deep learning
feed forward networks in which we alter the first layer of the network to act
like a filter for the other layers that keep their standard role. The filtering is
necessary for maintaining only the useful information in the database, such that
the training will be performed optimally. For this, in the first step, we compute
the boundaries of the objects and their holes and afterwards, we eliminate the
impossible matching from the database that is not in our recognition interest.

The structure of the paper is the following: in the next section we introduce a
theoretical brief about homology, topological spaces and Betti numbers, followed
by a section with the presentation of the algorithm. In the last section, the final
performances of our approach will be presented on the MNIST database, to
emphasize the benefits stated by the theoretical algorithm.

2 Theoretical Brief

We describe briefly in this section the basis of the computational topology theory
before applying them to the deep learning network.

We begin with homology which provides valuable information about topolog-
ical spaces, by observing sets that intuitively have no boundary, but are on the
boundary of other sets [13]. These sets are representative cycles of a homology
hole, seen as an equivalence class. Algebraic homology information with coeffi-
cients in a field could be defined as the set of processed and structured linear
algebraic data describing in some sense its (co)homology classes and the relations
between them. We talk about homology and cohomology information as a whole
due to the fact that homology and cohomology classes are measured using, up to
dimension, the same algorithmic strategy of connectivity clustering over the ini-
tial topological data and they both provide the same measurable information
quantities, up to “duality” [9,11]. A simple example of (co)homology informa-
tion is provided by the numerical topological invariants called Betti numbers. If
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X is a cell complex embedded in R3, Betti numbers β0, β1 and β2 respectively
measure the number of different connected components, (co)homological tunnels
and cavities of X.

Roughly speaking, “homotopy holes” of objects (those related to generalized
“parametrized and oriented closed curves”) are theoretically attainable from
homology’s ones [10], but these methods have an enormous complexity in time
and space [8]. An easier relation is given by the Euler-Poincaré characteristic
(see [7]), defined in local terms as the alternate sum of the number of cells in
each dimension. This number is the most simple example of homotopy invariant
that can also be obtained from global homological information (Betti numbers).

A simplicial complex consists of a set of vertices and a set of simplices (over
that set of vertices) satisfying some simple conditions that we now describe.
We make no requirement on vertices other than that they admit a total order.
An n-dimensional ordered simplex, or just n-simplex, over a set V of vertices
is an (n + 1)-tuple of distinct vertices from V . (An ordered triangle is thus a
2-simplex.) An ordered simplex is oriented iff we do not distinguish between two
orderings that differ by an even permutation (one that can be expressed as an
even number of swaps). Oriented simplices therefore have a well-defined notion
of “inside” and “outside”.

An n-dimensional, oriented, pure simplicial complex, or just n-complex for
short, is a pair K = (V, S) where V is a set of vertices and S is a set of oriented
simplices satisfying the following conditions:

1. Every vertex in V determines a 0-simplex in S. We usually do not distinguish
between a vertex v and its associated 0-simplex (v).

2. Every sub-simplex of a simplex in K is also a simplex of K. That is, if s ∈ S
and t ≤ s, then t ∈ S (where ≤ is the ordered sub-simplex relation).

3. Every simplex s ∈ S is a sub-simplex of some n-simplex in S. That is, there
are no n′-simplices with n′ < n other than those that are faces of an n-simplex
in S.

A closed surface is a 2-complex in which the link of every 0-simplex is a simple,
closed polygon having the vertex as an interior point.

Now, we can build a continuous object out of the point cloud, hoping to get a
good approximation of the original object. One way to do that is by centering a
ball of fixed radius on each sample point. There are some smart techniques based
on this idea: e.g., the construction of Vietoris-Rips or alpha complexes [14]. Out
of these constructions, we can compute topological invariants; typically they
are the dimensions of the homology modules at various dimensions k, called
Betti numbers. Substantially, they count the numbers of k-cycles, i.e. connected
components and voids in the object. The Betti numbers that one obtains depend
on the radius of the balls. While varying the radius, there may be k-cycles which
persist, and a good guess is that those may correspond to the true k-cycles of
the sampled object.



616 D. M. Onchis et al.

3 Algorithm Description

The proposed algorithm makes use of the concrete relation between the compu-
tation of Betti numbers and the training of the neural network. Betti numbers
already shown their use in computational topology, graphs theory and even in the
determination of a neural network capacity [4–6]. But their use in the training
of the deep learning networks was less explored. Therefore, we are considering
in here the context in which a neural network is trained for object recognition in
a 2D image. With the use of Betti numbers we can quickly discriminate during
the training phase between the wheels of a car or bike and other objects with
less or more number of holes. This information is useful for training as it does
a separation of the objects to be recognized in smaller and more lighter neural
networks.

We present below a complete and exhaustive algorithm description as we
have implemented it.

1. Loading database
2. Dataset normalization of size s × (m × n), image by image
3. Extract a point set from an image given as m × n matrix
4. Compute 2D simplicial complexes
5. Compute Betti numbers and determine the number of holes

(a) Compute plot points
(b) Compute vertices to form triangles
(c) Determinate the number of unconnected elements
(d) Determinate the number of holes

6. Send the image to the network corresponding to training the image with the
same Betti number as the number of holes determined

7. Set beginning time for each network
8. Train the network
9. Set and compute end time for each network

For the MNIST database the maximum number of holes is 2 for number 8,
so in order to have a concrete exemplification, we designed a network with 3 sub
networks. We have designed and implemented a neural network as seen in Fig. 1.
The first layer of the network computes the Betti numbers and depending on the
number of holes determined, the image is sent to the corresponding network for
training. The number of networks has to be equal to the number of holes that
training images might have.
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Fig. 1. Network architecture

Two in MNIST database

Two after sim-
plicial complexes
were computed

The experiment must compare the accuracy of each network after training
therefore we performed multiple sets of independent trainings i.e. training one
time each of the 3 networks is an element of the set. Each set of training can
have a number of epochs that can vary between the set elements.

On our way to compute the Betti numbers, we determine the simplicial com-
plexes, the number of unconnected components and the number of holes from
an image.
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Considering the image representing a 2 in the MNIST database, the simpli-
cial complexes were computed and the output image can be seen in the second
picture. As mentioned in the description of the algorithm, first, the points of
every vertex were computed and then the triangles were formed. For this par-
ticular example, there are 314 points and 157 vertices. An example of points
coordinates as they result from the PYTHON code looks like below:

[[ 0.14285714 0.42857143]
[ 0.14285714 0.46428571]
[ 0.14285714 0.5 ]
[ 0.14285714 0.53571429]
[ 0.14285714 0.57142857]
[ 0.17857143 0.32142857], etc].

For this image we get the Betti number 0 because we do not have any hole
and we get the number of unconnected components 0, because the image has all
the components connected. From the fact that the number has no holes, we can
conclude that the possible numbers can be only 2, 3, 4, 5 and 7, because all the
other numbers have at least one hole.

This topological computation is performed on the first layer of the neural
network, due to the fact that depending on the result of the Betti numbers, the
images are sent to the corresponding training sub network so both the accuracy
and the training time are improved. The accuracy is enhanced and sometimes,
as can be seen from Table 1, the errors can be eliminated even before the neural
network training and the compilation time can be diminished by more than half,
as the tests will show.

Table 1. Recognition percent

[ 7.] 7 0.99588446515 [ 0.] 0 0.961333326967

[ 2.] 2 0.865965937884 [ 6.] 6 0.619316634394

[ 1.] 1 0.988815228181 [ 9.] 9 0.955976339534

[ 0.] 0 0.985114050493 [ 0.] 0 0.989992193154

[ 4.] 4 0.989545536094 [ 1.] 1 0.994334666874

[ 1.] 1 0.993095777184 [ 5.] 5 0.894572800157

[ 4.] 4 0.968422037592 [ 3.] 3 0.89274171303

[ 9.] 9 0.809672938457 [ 9.] 9 0.964876201986

[ 5.] 6 0.376798989843 [ 7.] 7 0.995512296425

[ 9.] 9 0.935884560644 [ 4.] 4 0.996539732474

As it can be seen on line 9 of the recognition test, on a regular neural network,
there is a mistake. It should have been five, but the network recognized a 6. By
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computing the Betti numbers first, this mistake would not have been possible to
appear because five has ho hole, while 6 has one hole.

The Fig. 2 shows the initial picture from MNIST and the image after the
topological computation of the simplicial complexes. Also the computation time
for the simplicial complexes of each picture is shown.

Fig. 2. Computational timings simplicial complexes

As it can be seen, the computation time for this images varies between 1.53 s
and 4.38 s. The variation of time computation with respect to the number of
vertices determined, will be discussed at Testing.

4 Testing

Experiments showed that by determining, for example the boundaries and num-
ber of holes from numbers, if a hole is found, than the number can be only 0, 6
or 9, so the training of the network could be done only with these numbers.

Integrating the topological computation to the first layer of the neural net-
work has two important parts: the first one is actually computing the simplicial
complexes and the second one is to send the picture to the corresponding sub
network for training.

The tests were performed on a standard PC with Intel core I7 processor
and 8G RAM. The comparison was made between a standard deep feed forward
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neural network trained with backpropagation and on the network showed in
Fig. 1. Both time and accuracy were tested. For the consistency of the comparison
we restricted the number of hidden layers to 3 in both the standard network and
the proposed network on all the three sub networks. The results can be observed
in Fig. 3.

Fig. 3. Total neural network timing

For computing the time for the proposed architecture, the time for each sub
network was computed (see t1-t11, t2-t21, t3-t31) and also the time for Betti
computation was considered. The difference between the proposed method and
architecture overcomes the classical network by reducing the time to half. Also,
the accuracy of our work did not give any mistakes, while the classical one
misplaced a five with a six.

5 Conclusions

We introduced in here a novel method for improved recognition of objects in 2D
images by merging computational topology invariants and deep learning neural
networks. By splitting the full network into several small deep learning networks
depending on the corresponding Betti numbers we have obtained a better accu-
racy in the recognition and also a faster training time. The next step is to try
different numbers of layers for the small networks architecture and to validate
the procedure also on noisier data sets.
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