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Abstract

In this paper, working over Z(p) and using algebra perturbation results from
[18], p-minimal homological models of twisted tensor products (TTPs) of Car-
tan’s elementary complexes are obtained. Moreover, making use of the notion
of indecomposability of a TTP, we deduce that a homological model of a inde-
composable p-minimal TTP of length ¢ (¢ > 2) of exterior and divided power
algebras is a tensor product of k-indecomposable (k < ¢) p-minimal TTPs of
exterior and divided power algebras.

1 Introduction

Henri Cartan described in his study [3] of the homology of Eilenberg-Mac Lane spa-
ces four types of commutative differential graded augmented algebras, called elemen-
tary complexes, which can be made by using exterior and divided power algebras.
The first is the exterior algebra E(u,2n — 1) with one generator u of degree 2n — 1;
the second is the divided power algebra I'(v,2n) with one “generator” v of degree
2n; the third is the twisted tensor product I'(u,2n)®"*"" E(v,2n + 1) with differen-
tial operator defined by pi,-(v) = £ p" u; and the fourth is the twisted tensor product
E(u,2n — 1)®"*" T'(v, 2n) with differential operator defined by p,(v) = & p" u. Using
Cartan’s notion of construction, John C. Moore established in [14] and [15] that the
p-local homology of a DGA-algebra A of this kind is determined in its turn by a tensor
product of Cartan’s elementary complexes; more precisely, he described the correspon-
ding acyclic Cartan’s construction A ® X. A short account of Moore’s work on this
subject is given by Stasheff in [19].



The relation of the methods of the Séminaire Cartan to Homological Perturbation
Theory is studied in [10], [11] and, particularly in [12]. In the light of the work of
Prouté [16], in which every small Cartan’s construction X = A ® X is described in
a concise way (exploiting systematically the notion of Brown’s cochain), the fact that
this small resolution splits off of the bar resolution B(A) = A® B(A) (see [11]) appears
as a natural result. The main technique used in [12] is the determination of general
recursive formulas (a constructive version of the comparison theorem for resolutions)
for a splitting of the bar construction for this class of resolutions.

Another way to obtain the previous splitting from B(A) to X is working a la
Eilenberg-Mac Lane, that is, handling the reduced bar construction B(A) instead of
the bar resolution B(A)). Taking into account Theorem 4.11 of the present paper (a
graded-commutative version of Theorem 8.1.3 of [11]), this method can be directly
translated to resolutions without any problem. This will be our modus operandi of
this paper. We work over Z localised over a prime p and consider algebra structu-
res and transference problems. The explicit homotopy equivalences from reduced bar
constructions of Cartan’s elementary complexes to tensor products of DGA-algebras of
the same type given in [17] and [18] preserve algebra structures and characterize the
particular homological process detailed by Moore in [15]. These results are our point
of departure.

We introduce here the algebraic notion of indecomposable twisted tensor product
(TTP) of length ¢ of commutative DGA-algebras. The elementary complexes can be
seen, in particular, as indecomposable TTPs of length 1 and 2 of exterior and divided
power algebras. In this way, Moore’s method can be considered as a p-local homological
preservation result of 2-indecomposability. On the other hand, since we work over Z,),
7Z localised over a prime p, we simplify our study using the notion of p-minimal DGA-
algebra.

Finally, always taking Z,) as the ground ring and applying some algebra perturba-
tion results ([18]) and basis change arguments, we prove here a result guaranteeing that
a p-minimal homological model of a ¢-indecomposable (with ¢ > 2) p-minimal TTP of
exterior and divided power algebras is given by a tensor product of k-indecomposable
(with £ < ¢) p-minimal TTP of exterior and divided power algebras. In other words,
this conclusion, via Theorem 4.11, can be thought as a generalization of the Moore’s
work in [15].

2 Preliminaries

Let A be a commutative ring with 1 # 0. In this paper, our main objects are commu-
tative connected DGA-algebras.

The differential, product, augmentation and coaugmentation of a DGA-algebra A
will be denoted by d4, p., €4 and 7,4, respectively. In what follows, the Koszul sign
conventions will be used. A morphism p : A, — A, is called derwation if it is



compatible with the algebra structures on A. The degree of an element a € A is
denoted by |al.

We need here the reduced bar construction B(A) of a commutative DGA-algebra A
(see [13]). Recall that, as a coalgebra, B(A) = T¢(X(Ker €,))), where T¢( ) is the tensor
coalgebra and Y( ) is the suspension functor. The element of By(A) corresponding to
the identity element of A is denoted by [ ] and the element a; ® - -+ ® a, of B(A) is
denoted by [aq]- - |a,]. The tensor and simplicial degrees of the element [aq]- - -|ay]
are |[a1]---|an]ls = X |a;| and |[aq] - - - |a,]|s = n, respectively; its total degree is the
sum of its tensor and simplicial degree. A product x (called shuffle product) can be
defined on B(A), such that the reduced bar construction has a Hopf algebra structure.
Recall that the homology of a commutative DGA-algebra A is defined as the homology
of the DGA-module B(A).

A resolution of A over the DGA-algebra A is a differential A-module X which is
projective as an A-module and such that the homology of X is zero except in degree 0
where it is A. If X is actually a free A-module, then X is called a free resolution.

An example of a free resolution of A over a DGA-algebra A is the bar resolution
(or one-sided bar construction) B(A) ([13], [11]). More concretely, B(A) is the twisted
tensor product ([2]) A ®y B(A), where the twisting cochain 6 is given by

n=1
otherwise

oo l)) = {

We deal with a special type of homotopy equivalence. A contraction (see [5], [9]) is
a data set r: {N, M, f,g,¢} where f : N — M, g: M — N are morphisms of DGA-
modules (called projection and inclusion, respectively) and ¢ : N — N is a morphism
of graded modules of degree +1 (called the homotopy operator), and these data are
required to satisfy the rules: (rl) fg = 1., (r2) f¢ = 0; (r3) ¢g = 0, (r4) ¢dy +
dyo¢ 4+ gf =1y and (r5) ¢¢p = 0.

For instance, the bar resolution B(A) of a DGA-algebra A supports the following
contraction:

RB(A) : {B(A)aAaeB(A)vnB(A)v 5} (1)

where the homotopy operator s is given by
s: B(A) — B(A)

sla@lai|---lan]) = 1@ [alar]---an).

A free resolution K of A over the DGA-algebra A splits off of the bar construction
(see [12]) if there is a contraction (called the splitting) from B(A) to K.



We recall the concept of a perturbation datum. Let N be a graded module and let
f N — N be a morphism of graded modules. The morphism f is pointwise nilpotent
if, for all z € N, = # 0, a positive integer n exists (in general, the number n depends on
the element z) such that f™(z) = 0. A perturbation of a DGA-module N is a morphism
of graded modules § : N — N of degree —1, such that (dy + §)*> = 0 and £y = 0.
A perturbation datum of the contraction r : {N, M, f,g,¢} is a perturbation ¢ of the
DGA-module N verifying the condition that the composition ¢d is pointwise nilpotent.

We now introduce the main tool in Homological Perturbation Theory: the Basic
Perturbation Lemma ([6], [8], [7], [1])-

THEOREM 2.1 (BPL)

Letr : {N, M, f,q,0} be a contraction and 6 : N — N a perturbation datum of r.
Then, a new contraction

Ts - {(N7 dN + 57 EanN)7 (M, dM + d(5761\4777M)a f(57 gs, Qbé}
is defined by the formulas: ds = f6X2g; fs = f(1 — 6X2¢); g5 = X2g; ¢s = X2¢; where

r

E = (1) (60)" = 1= 98+ 6060 — o+ (—1)'(80) 4+,

>0

Let us note that $(z) is a finite sum for each z € N, because of the pointwise
nilpotency of the composition ¢d. Moreover, it is obvious that the morphism dy is a
perturbation of the DGA-module (M, d,,, €,,71r)-

The perturbation problem for more complex structures has been extensively studied.
The most significant results for DGA-algebras (or DGA-coalgebras) can be found in
[8], [9] and [18]. First, we review several notions.

DEFINITION 2.2 [18] Let A and A’ be two DGA-algebras and r : {A, A', f, g, ¢} a con-
traction. The projection f is a quasi algebra projection if the following conditions
hold:

fus(d® ) = 0, frap®g) = 0,
fualg® @) = 0,

The homotopy operator ¢ is a a quasi algebra homotopy if the following conditions
hold:

DEFINITION 2.3 [8] Let A and A" be two DGA-algebras and r : {A, A, f, g, ¢} a con-
traction. The homotopy operator ¢ is said to be an algebra homotopy if

dps = pa(la®@ o+ 0@ gf).



DEFINITION 2.4 [18] Let A and A’ be two DGA-algebras and r : {A, A’ f, 9,0} a
contraction. We say that r is

e a semi-full algebra contraction if f is a quasi algebra projection, g is a morphism
of DGA-algebras and ¢ is a quasi algebra homotopy.

e an almost-full algebra contraction if f and g are morphisms of DGA-algebras and
¢ is a quasi algebra homotopy.

e a full algebra contraction if f and g are morphisms of DGA-algebras and ¢ is an
algebra homotopy.

Obviously, full and almost-full algebra contractions are, in particular, semi-full
algebra contractions. It is not difficult to prove that both sets of semi-full and almost-
full algebra contractions are closed by composition and tensor product of contractions.

DEFINITION 2.5 [7] Let A and A’ be two DGA-algebras and r : {A, A’ f,g,6} a
contraction. An algebra perturbation datum 6 of r is a perturbation datum of this
contraction which is also a derivation.

The following result tells us that the set of semi-full algebra contractions is closed
by homological perturbation. This theorem plays a key role in the proof of the main
theorem of this paper.

THEOREM 2.6 (SF-APL) ([18])

Taking as data a semi-full algebra contraction r and an algebra perturbation datum
0 of r, the perturbed contraction rs is an algebra contraction of the same type, where
the product on A's is the original product ji .

3 Some semi-full algebra contractions

In this section, we give several algebra contractions which will be essential in the next
section. However, we do not explicitly describe the morphisms of these contractions
because this is not relevant in the sequel.

The following functions will be extremely useful:

DEFINITION 3.7 [3] Let A be a DGA-algebra. We define the following morphisms of
graded modules:

o The suspension, o : A — B(A) defined by o(a) = [a], where a € A.

e The p-transpotence, where p is a prime number, ¢, : A — B(A), defined by
op(a) = [ala?~'] where a € A.



Notice that Cartan defined the homology operations of suspension and
p-tranpotence while we define here analogous functions from a DGA-algebra A to its
reduced bar construction.

We now analyze an important contraction “connecting” the reduced bar contruc-
tion of a tensor product of two DGA-algebras and the tensor product of reduced bar
constructions of these DGA-algebras.

PROPOSITION 3.8 [5] Let A and A" be two commutative DGA-algebras. There is a
contraction, that we denote by Ry, from B(A® A') to B(A) @ B(4)

Eilenberg and Mac Lane also proved in [5] that the projection and the inclusion
of the contraction Rys are morphisms of DGA-algebras. The fact that the homotopy
operator of this contraction is a quasi algebra homotopy and, therefore, that the last
contraction is an almost-full algebra contraction is proved in [18].

Let ®;c; A; be a tensor product of commutative DGA-algebras. Using Rpg and
classi_cal contraction constructions, we can determine a contraction from B(®;c14;) to
®ierB(A;). We also denote this contraction by Rpg,.

Other interesting contractions in the sequel are:

e ([5]) An isomorphism of Hopf algebras, that we denote by Ry, from B(E(u,2n —
1)) toI'(o(u), 2n). Obviously, this datum can be seen as a full algebra contraction.

e ([5], [18]) A contraction, that we denote by Ry, from B(Q,(v,2n)) to
E(o(v),2n+1) ® ['(p,(v), 2np + 2) which is an almost-full algebra contraction.
Qp(v,2n) denotes the truncated polynomial algebra P(v,2n)/(v?).

We have denoted the generators on the small algebras of the two last contractions by
making use of the suspension and p-transpotence functions. For instance, the generator
v of the divided power algebra in the contraction Ry has been denoted by o(u). This
means that the image of v by the inclusion of this contraction is o (u).

4 A generalization of a result of Moore

We are mainly concerned with the fact of obtaining, working over Z,), homological
models of a special type of commutative DGA-algebras.

First, an important notion is introduced: twisted tensor product of commutative
DGA-algebras.

DEFINITION 4.9 Let {A;},c; and p be a family of commutative DGA-algebras and a
derivation of degree —1 of the DGA-algebra ®,.,;A;. A twisted tensor product (or TTP)
®7_,A; is a commutative DGA-algebra satisfying the following conditions:



p

e i) as graded algebra, ®_, A; coincides with the tensor product ®,¢; A,

e ii) and its differential is the sum of the differential of the ordinary tensor product
and the derivation p.

Then a TTP of DGA-algebras is a perturbed DGA-algebra where the “perturba-
tion” affects its differential (and not its product). Notice that this notion shows a
little structural difference with respect to that of multiplicative principal construction
of Cartan (see [3], [16]). Notice that the third and fourth Cartan’s elementary comple-
xes are TTPs of DGA-algebras and, at the same time, they are twisted tensor products
(in Brown’s sense [2]).

We are interested here in a particular class of free resolutions of A over a commuta-
tive DGA-algebra A, those that are TTPs of the form X = A®”X, where X is a free
commutative DGA-algebra. X is the reduced complex of the resolution. For instance,
if A is a commutative DGA-algebra, the bar resolution B(A) becomes a twisted ten-
sor product of DGA-algebras. More precisely, B(A) is the commutative DGA-algebra
A®"B(A), where

pla @ lar|ag| -+ - |an]) = pa(a, a1) @ [ag| - - - |an]. (2)

In this case, the contraction Ry, (see (1)) is an almost-full algebra contraction.

DEFINITION 4.10 A twisted tensor product TTP = ®&!_, A; is called decomposable if
there is a non-trivial partition I = [; U Iy of I, such that TT' P decomposes into a
tensor product of twisted tensor products TTP, = ®%; A; and TTP, = ®[2; A; with
pm = plrre, for m = 1,2. Otherwise, TTP is called indecomposable of length ¢ (or
(-indecomposable), where ( is the cardinal of the set of indices I.

Obviously, Cartan’s elementary complexes are 1-indecomposable and 2-indecom-
posable TTPs.

In this section, we determine an algebra contraction from the reduced bar construc-
tion of a TTP A of Cartan’s elementary complexes to a free commutative DGA-algebra
H. This information can be used to derive small free resolutions of A over A as it is
shown in the following theorem, which is a graded-commutative version of Theorem
8.1.3 of [11]:

THEOREM 4.11 Let A be a connected commutative DGA-algebra. Given a semi-full
algebra contraction from the reduced bar construction B(A) to a free commutative DGA-
algebra H, in which the homotopy operator increases the simplicial degree by one, there
is a free resolution K which split off of the bar construction. Moreover, this resolution
K is a twisted tensor product of the DGA-algebras A and H and the splitting is a
semi-full algebra contraction.



Proof.

First of all, given a semi-full algebra contraction r : {B(A), H, f, g, ¢}, it is possible
to construct the tensor product contraction

1A®T{A®B<A>7 A®H7 1A®f7 1A®g> 1A®¢}

It is clear that the previous contraction is a semi-full algebra contraction, taking
into account the natural products on A ® B(A) and A ® H.

Now, the question boils down to applying the SF-APL Theorem to this contraction,
taking as algebra perturbation datum the morphism p (see (2)). Obviously, p is a
derivation-perturbation of A ® B(A). It remains to prove the pointwise nilpotency
of the composition (1, ® ¢)p. The DGA-algebra A ® B(A) inherits a filtration given
by the tensor degree of the reduced bar construction B(A). It is easy to see that p
lowers filtration, at least, by one (notice that A is connected). On the other hand,
since 1, ® ¢ increases simplicial degree by one, this homotopy operator is filtration
preserving. Then, (1, ® ¢)p lowers the filtration, at least, by one, and this means that
this composition is pointwise nilpotent. This completes the proof.

From now on, the ground ring will be Z,). Notice that this restriction will be
essential in the achievement of good homological results in the sequel.

DEFINITION 4.12 [9] Let M be a DGA-module over Z,). We say that a morphism of
DGA-modules h : M — M is p-minimal if h(M) C p- M. We say a DGA-module M is
p-manimal if it is free and of finite type as graded module over Z,), and its differential
d,, is p-minimal. It is known that a contraction between two p-minimal DGA-modules
is an isomorphism of DGA-modules.

DEFINITION 4.13 We say that a commutative DGA-algebra H is a p-minimal ho-
mological model of a commutative DGA-algebra A if H is p-minimal and there is an
(explicit) semi-full algebra contraction from the reduced bar construction B(A) to H.

In [18] it is established that p-minimal homological models of Cartan’s elementary
complexes are, in their turn, tensor products of elementary complexes. In this section,
not only do we want to determine the algebras making up p-minimal homological
models of TTPs of Cartan’s elementary complexes, but we also want to control the
behavior of the differentials on these models. In order to prove this result, we need
several theorems of [18]. First of all, an explicit algebra contraction for B(I'(u,2n))
is constructed by perturbation. More precisely, in this case we apply the SF-APL
Theorem to a tensor product of contractions R,. Here we will only deal with odd
primes p. For p = 2, analogous results are obtained. From now on, we denote the



generators of the small DGA-algebras of the contractions in relation to the functions
of suspension o, p-transpotence ¢, and k-th divided power ~;.

THEOREM 4.14 ([18]) There is a semi-full algebra contraction Ry from B(T'(u,2n))
to a tensor product of the exterior algebra E(o(u),2n+1) and 2-indecomposable twisted
tensor products of the form

E(oy,i(u), 2np" + 1) @™ T (ppypi-1 (u), 2np' + 2).
We also get in [18] the following semi-full algebra contractions:
(a) from B(E(u,2n —1)@"* I'(v,2n)) to a tensor product

[Fﬂ(g(u), 2n)Q7F" E(a(v),2n + 1)]|®
(®i21[E (07 (v), 2np" + 1)@ T (@pypi-1(v), 2np" + 2)]).

(The notation o,:(v) means that a change of basis has been done in which the
generator of the algebra E(o7,:(v), 2np’ + 1)) has been modified.)

(b) from B(T(u,2n)@"**" E(v,2n + 1)) to a tensor product of the form

[E(o(u), 2n + 1)®pf"rl‘(a(v), 2n +2)|®
(®@iz1[E (0 (w), 2np" + 1)@ T (0pypi-1 (u), 2np" + 2))).

In the case (a), a basis change is necessary to get a tensor product of 2-
indecomposable twisted tensor product as p-minimal homological model. This idea
was already used by Moore in [15].

In order to complete our homological study of 2-indecomposable p-minimal TTPs
of exterior and divided power algebras, we must analyze the case of the DGA-algebra
A=T(u, 2n)®plE(v, 2nt + 1) (where p'(v) = £p°y(u), s,t € N). Taking into account
the techniques of [18], it is easy to deduce a semi-full algebra contraction from B(A) to
a tensor product of indecomposable p-minimal TTPs of length 1 and 2. For instance,
if t = p", we have the following p-minimal homological model

E(o(u),2n +1) @ T(o(v), 2np” +2)®
(@21 [E(07pe(w), 2np" + D@ T (061 (u), 2np" + 2)]).

To sum up, these particular indescomposable TTPs of length 1 and 2 have as
p-minimal homological models, TTPs of the same type. Theorem 4.11 allows us to
translate these results into the lenguage of resolutions and, in this way, we recover the
Moore’s work in [15].

Finally, the problem of generalizing these results to indecomposable TTPs of length
higher than 2 is solved in the following theorem, which tells us that there is a p-local
homological non-degeneration result of ¢-indecomposability (¢ > 2).



THEOREM 4.15 There is a semi-full algebra contraction from the reduced bar
construction of a £-indecomposable (with £ > 2) p-minimal TTP A of exterior and divi-
ded power algebras to a tensor product H of k-indecomposable (with k < {) p-minimal
TTPs of exterior and divided power algebras (equipped with its natural product). That
is, H is a p-minimal homological model of A.

Moreover, at the graded algebra level, we have that

e cach E(u,2n — 1) factor in A contributes with a T'(o(u),2n) factor in H.

e cach I'(u,2n) factor in A contributes with E(o,:(u),2np" + 1) (with i > 0) and
T(ppypi-1 (), 2np' +2) (with i > 1) factors in H.

Proof.

If Ais a DGA-algebra and d : A — A is a differential and a derivation, the notation
(A, d) means a DGA-algebra such that its graded algebra structure is that of A and
its differential is d. If A is a connected DGA-algebra, Ker €, in degree n is A,, if n > 0
and 0 if n = 0. In this case, we denote Ker ¢, by A

Using the previous contractions and applying perturbation, it is an easy task
to establish the construction process of an explicit algebra contraction for the
A; = E(u;,n;) (with n; odd) or A; = I'(uy, n;) (with n; even) and ny < ng < o<y
We use the contractions Rys, Rpe, Ry to construct a semi-full algebra contraction
R from B(®, A;) (excluding p) to a tensor product (H,d,) = ®‘_, H;, where
H;, =T(o(u),2n) if A; = E(u,2n — 1) and

H; = E(o(u),2n+ 1) ® ®@;»1 [E(ov:(u), 2np" + 1) @ T(ppypi-1(u), 2np’ + 2)]

if A; =T (u,2n). From now on, we omit the degree of the generator in the description
of the algebras. The p-minimal derivation p produces an algebra perturbation datum
0 for R. More concretely, p induces a perturbation datum in the tensor differential of
B(®;er A;). Tt is clear that § is a p-minimal derivation. Now, let us denote by f, g
and ¢ the projection, inclusion and homotopy operator of R. We deduce the pointwise

nilpotency of the composite ¢d from the following facts:

e ¢ increases simplicial degree in B(®ier A;) by 1.

e ) does not change simplicial degree. In fact, this morphism decreases tensor
degree by 1.

It is time to apply SF-APL, obtaining in this way a perturbed semi-full algebra
contraction R; from B(A) to (H, dy + ds). Keeping in mind that § is p-minimal, it is
clear that the small DGA-algebra (H,d, + ds) of Rs is a p-minimal homological model
of A. The fact that the inclusion of Rs is a morphism of DGA-algebras induces an



enormous calculational improvement in the determination of the perturbed differential
on H. The presence of a DGA-algebra structure in the p-minimal homological model
severely limits how the differential ds = f6%2g can act. In fact, we only need to compute
this morphism on the generators of this DGA-algebra.

Therefore, the graded algebra structure of the p-minimal homological model has
been determined. Now, we analyze its differential structure in more detail. We prove
by a straightforward induction on number of DGA-algebras that a p-minimal homolo-
gical model of A can be a tensor product of k-indecomposable twisted tensor products,
with £ < ¢. Now we apply the perturbation machinery ¢ — 1 times to R by using
the derivations 6 |®§:1 4, 2 < k < £. We control the behavior of the perturbed diffe-
rential in the p-minimal homological model using change-of-basis arguments as in the
2-indecomposable case (a).

First, we state a result that is the key to establish the homological preservation (or,
more precisely, non-degeneration) of the ¢-indecomposability of the TTP A. The proof
is left to the reader.

Let {C;}ics be a family of Cartan’s elementary complexes of the form E(u)®”*"T'(v)
with differential operator defined by pi,(v) = £ pu and pyy(u) = 0. If we consider
the DGA-algebra

C = ®ier Ci, (3)

it is not difficult to prove the following property:

pKerd., = Imd..

Moreover, if B is a p-minimal TTP of exterior and divided power algebras and we
denote the differential of B ® C by dp¢c, we have:

pKerdse = Imdge. (4)

After these preliminaries, it is time to apply induction on number of DGA-algebras.
For ¢ = 2, all has been proved.

The DGA-algebra A = ®f€{17_.7£}Ai can be expressed in the form

/
SPe—1

A= ®¢e{1,...,£—1}Ai ®™ Ay,
where p;,_, = p|®§;11Ai and py = p|a,. It is clear that ®féﬁ7“_7€_1}14,- is a p-minimal TTP
of £ — 1 algebras. Our induction hypothesis is that there is a semi-full algebra con-
traction, denoted by Ry_;, from the reduced bar construction of this last algebra to
a tensor product (H, ,,d’) of two DGA-algebras (Hé_lvl,dll) and (Hé_m,d;). The
former (H,_,,,d;) is a tensor product of /,-indecomposable p-minimal TTPs, with
re{l,...;s}and >;_, ¢, = {—1. The exterior and divided power algebras that make

— —

up this tensor product are all the algebras F(o(u;)) and I'(o(u;)) from the p-minimal



homological model of ®‘Z4;. The notation D(%), where D is the symbol E or T,
means that a basis change may have been done in the process, such that the generator
of the algebra D(u) could have been modified.

On the other hand, (Hé_m, dy) is a DGA-algebra as the one described in (3), com-
posed by the pairs

B0 (1)) & gy (1)),
(where u; is of even degree) of the p-minimal homological model of ®{Z} A;.

By using the contractions R,_1, Rps, Ry and Ry, we construct a semi-full algebra
contraction, that we denote by Ry, from B(@féﬁ ..... Zfl}Ai ® Ay) to (H'y_1,d") ® H,.
Taking as perturbation datum the derivation d, produced by py in the tensor diferencial
of B (®f/i_11 14 ® Ay), we perturb the contraction R, and we get a new semi-full

-----

algebra contraction (Ry)s, from B(A) to the TTP (Héfl,d’)é)d‘s" Hy. We also denote
the latter by (H,d). The differential ds, is determined by its action on the generators
of the DGA-algebra Hy. If A, = E(uy), then Hy = I'(c(uy)). In this case, we only need
to compute the differential on the generator o(u,). Suppose that

ds, (o (ug)) = p™v + p'w,
where a,b € N, v € Hé—l,l and w € H2—1,1 ® H,_, 5. Since d' ds,(c(ug)) = 0, then

pdy(v) + pbd'(w) = 0.

From the facts d; (v) € H,_,, and d'(w) € H,_, ®H,_, 5, we deduce that dy(v) =0

and d'(w) = 0. By the property (4), there is an element w € H,_, ; ® H,_, ,, such that
d'(w) = pw.

If we change the generator o(u,) into the generator o(u,) = o (u¢) — p* 1w, we have
d(o(ue)) = ds,(0(ug)) = p*v,and, consequently, we see that a p-minimal homological
model of A is a tensor product of k-indecomposable p-minimal TTP (with & < /) of
exterior and divided power algebras.

If Ay =T'(uy) then

Hy = E(o(u)) ® (@2[E (09 () @ T(0p -1 (ue))]).

and so, we must determine the differential ds, on the generators o(u), oy,i(ue) and
©pypi-1(ue), for all @ = 1,2,.... The process described in the previous case for the
generator o(ug) can also be done here and we obtain that the differential ds, on this
generator (up to basis change) lies in H',_,.

Now, we control the behavior of ds, on the couples of generators ov,i(u,) and
©pYpi-1(ue), for i > 1.

Suppose that



d5é<0-7pi (uf)) = P v,

ds,(epypi-1(ue)) = plwy,
with a,b € N and v;,w; € H, Vi > 1.
On the other hand, we have that

d(UVpi (ur)) = ds, (U’Vpi (ur)),

Po(@pYpi-1(we)) = p oypi(we)
and
d(prpi-1(ue)) = (pp + ds,) (prpi-1 (ur)).

If we change the generator o, (u,) into the element oy, (ue) = o7y (ue) + p*~* 2,

we have that d(o7,i(ue)) = 0 and d(ppypi-1(uwg)) = porypi(ue). That is, after all
these basis changes, the p-minimal homological model of A is a tensor product of
k-indecomposable p-minimal TTPs (with £ < ¢) of exterior and divided power alge-
bras.

This completes the proof of the theorem.

In the light of Theorem 4.11, a version of this result using resolutions instead of
reduced complexes can be stated.

THEOREM 4.16 Let Z,) be the ground ring. Let A be a (-indecomposable (with £ > 2)

p-minimal TTP of Cartan’s elementary complexes. There is a free resolution A®p,H
that split off of the bar construction. More precisely, the splitting is a semi-full algebra
contraction and the reduced complex H is determined by Theorem 4.15.

In this manner, we have established a generalization of Moore’s work [15].
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