
Heuristic optimization algorithms in
the study of biological networks

Riu Rodrı́guez Sakamoto

Heuristic optimization algorithms in the study of
biological networks

Riu Rodrı́guez Sakamoto

Memoria presentada como parte de los requisi-
tos para la obtención del tı́tulo de Doble Grado
en Fı́sica e Ingenierı́a de Materiales por la Univer-
sidad de Sevilla.

Tutorizada por

Prof. Marı́a del Carmen Lemos Fernández

Junio, 2019

Contents

Abstract 1

1 Introduction and objectives 2

1.1 Heuristic algorithms . 2

1.1.1 Approachable problems . 2

1.1.2 Algorithms . 2

1.2 Gene Regulatory Models . 7

1.3 Objectives . 9

1.4 Used tools . 9

2 Optimization across time 11

2.1 Modeling Methodology . 11

2.2 Motivation . 11

2.3 Genetic Algorithm (GA) implementation . 12

2.4 Statistics: Receiver Operating Characteristic 14

2.5 Results . 15

2.5.1 Network #1 . 16

2.5.2 Network #2 . 18

2.5.3 Network #3 . 20

3 Optimization across space 23

3.1 Motivation . 23

3.2 Implementation . 23

CONTENTS ii

3.3 Encoding . 27

3.4 Decoding . 28

3.5 Logic gates . 30

3.6 Representations . 32

3.7 GA operations . 32

3.8 Results . 34

4 Conclusions 39

Bibliography 40

Abstract

�is work uses Genetic Algorithms (GA) to study in silico Gene Regulatory Models (GRM) and
the relation between their structure and the temporal and spatial behavior. We �rst present a
structure estimation algorithm based on the work by Ando and Iba [2] evaluating the networks
temporal expression pa�ern, and in the second part of the thesis we apply a similar GA to �nd
a GRM able to reproduce L. Wolperts French Flag model [28], evaluating its spatial pa�ern
through simulation using CompuCell3D.

1 Introduction and objectives

1.1 Heuristic algorithms

1.1.1 Approachable problems

Problems whose de�nition can’t allow analytical approaches and whose solution space is too
broad to allow a exhaustive search can be found across many �elds of science, where vast
amounts of information are to be treated. Big Data has rightfully found its application in
physics, biology, material science, among other domains in the last couple of decades due
to technological advancements and an increasing availability of digitized data. Heuristic algo-
rithms are used to trade accuracy, precision or completeness for speed to give an approximate
solution to this kind of problems.

1.1.2 Algorithms

�e following three heuristic algorithms have all an inspiration in natural phenomena: ant
colonies, metal annealing and genetics. A common term in heuristic algorithms is the �tness
function, that is, the metric that describes how close a given solution is to achieving the desired
goal. Depending on the problem, it can be a simple analytical function or as complex as a result
of a simulation.

Ant Colony Optimization

Ant Colony Optimization is a family of algorithms inspired by the behavior of ants in a physical
environment and aims to solve discrete optimization problems. Many ant species communicate
between individuals and with the environment not visually but with the secretion and detec-
tion of chemicals called pheromones. Ants use these pheromone trails for example to mark the
path to food sources. Other ants can then follow this path and reinforce the path leaving their
own pheromones. �is positive feedback characterizes the system, where the probability of an
ant following a certain path increases with the number of ants that chose the path before.

�ere are multiple implementations and variations of this family of algorithms, e.g. the
Max-Min Ant System or the Ant Colony System. �e �rst developed algorithm, called Ant

1. introduction and objectives 3

Algorithm 1 Ant System pseudocode (applied to the Travelling Salesman Problem).
m← number of ants
repeat

for all k = 0 to m do . Construct ant solutions
i← random initial point
for all construction step do

j ← next point to visit applying a random proportional rule
i← j

end for
end for
for all E(i, j) do . Update pheromone

τij ← (1− ρ)τij . Pheromone evaporation
for all k = 0 to m do

∆τ kij ←

{
1/Ck E(i, j) ∈ T k

0 otherwise
end for
τij ← τij +

∑m
k=0 ∆τ kij

end for
until termination-condition

Figure 1.1: In the case of the Travelling Salesman Problem (TSP), i and j represent the cities to
visit. For each k-th ant from a total of m ants, a route is built step by step. j is set by a random
proportional rule (eq. (1.1)). τij is the pheromone present between points i and j. ρ ∈ (0, 1]

is the pheromone evaporation rate. E(i, j) represents the edge or path from i to j. Ck is the
length of the tour T k built by the k-th ant, computed as the sum of lengths of the arcs belonging
to T k. �us shorter tours get greater amounts of pheromone.

System (Algorithm 1), consists of two phases which repeat until an optimal solution is found:

1. Ant’s solution construction: Each ant traverses the search space forming a path.
2. Pheromone update: �is is done once all the ants have �nished their paths, and the

amount of pheromone deposited by each ant is a function of the paths �tness.

�e random proportional rule is a probabilistic action choice rule associated with the fol-
lowing probability of an ant k to go from point i to point j:

pkij =
[τij]

α[ηij]
β∑

l∈N k
i

[τij]α[ηij]β
if j ∈ N k

i (1.1)

where ηij = 1/dij is a heuristic value available a priori de�ned as the inverse of the distance
dij , α and β are parameters which determine the relative in�uence of the pheromone trail
τij and the heuristic information ηij , and N k

i are the neighbor sites that ant k in site i hasn’t
visited yet. For a more detailed explanation, along with variants of the Ant System algorithm,
see the work by Dorigo et al. [7].

1. introduction and objectives 4

�eir applications are broad: Many NP-hard problems can be classi�ed into one of these
four categories:

• Routing: Like the Travelling Salesman Problem presented in Algorithm 1, these prob-
lems consist of visiting a set of locations in an optimal order. AntNet is an Ant Colony
Optimization algorithm designed to solve routing problems in telecommunications net-
works introduced by Di Caro and Dorigo [6].

• Assignment: �is task consists of assigning a set of items I to a number of resourcesR
under some constraints, which can be seen as a mapping f : I → R. �e objective
function is a function of the mapping.

• Scheduling: Allocating a limited amount of resources to tasks over time.
• Subset: �e solution to these kind of problems consists of a subset of the available compo-

nents subject to constraints. E.g. the Weight Constrained Graph Tree Partition Problem,
where an undirected graph with weighted nodes and arcs has to be split into di�erent
trees -group of connected nodes- all with their weight between a minimum and a max-
imum. �is NP-hard problem is found for example in the design of telecommunication
networks and is generally not approximable [7].

Simulated Annealing

�is algorithm takes its name from the physical process of steal annealing, that is, the con-
trolled cooling of the metal where initially at high temperatures the atoms in the molten state
are randomly located, and later when it gradually solidi�es, the steel �nds an energetic min-
imum. Ideally, a slow enough annealing leads to the ground state. A rapid quenching might
induce some irregularities that are trapped in, resulting in a solid with higher �nal energy
(local minimum).

�e di�erent �nal states of the metal correspond to the feasible solutions found by the
algorithm. �e energy corresponds in this analogy to the �tness function, and ground state to
the optimal solution of the problem. A fast cooling is analogous to a local search, where the
solution converges to a local optimum.

�e general operation of the simulated annealing algorithm is very similar to that of a local
search: it starts at a random point xc in search space S. It evaluates xc with the �tness function.
Finds a new point xn in the neighborhood of xc and evaluates it too. If xn has a be�er �tness
than xc, xn replaces xc. Else, xn replaces xc only with a probabilityP (xn) = exp(−δ/T), where
δ is the di�erence in �tness of xc and xn. �e general structure is described in Algorithm 2.

1. introduction and objectives 5

Algorithm 2 Simulated Annealing pseudocode (minimization problem).
t← 0

initialize T > 0

select random xc ∈ S
evaluate xc
repeat

repeat
select new point xn ∈ S near xc
if eval(xn) < eval(xc) then

xc ← xn
else if U [0, 1) < exp(−δ/T) then

xc ← xn
end if

until termination-condition
T ← g(T, t)

t← t+ 1

until halting-condition

Figure 1.2: xc and xn are points of the search space. If the �tness of xn is lower than xc (lower
thus be�er, as this is a minimization problem), it replaces it and searches for a new xn in the
vicinity of the newly assigned xc. If not, it replaces xc with xn only if a random value between
0 and 1 is lower than exp(−δ/T), where δ is the di�erence in �tness of xc and xn.

Genetic Algorithm

Genetic Algorithms (GA) are based on the mechanics of genetics and natural evolution, and
were �rstly developed by Holland (1975) in his book Adaptation in Natural and Arti�cial Sys-
tems [13] as a method to both understand the natural adaptation processes in living organisms
and to design a mathematical framework common to other �elds like economics (’optimal
planning’), arti�cial intelligence and psychology (’learning’).

GAs search iteratively for a solution of an optimization problem. Each candidate solution
(also called an individual) is a set of properties coded in a 1D array of data called chromosome.
�e algorithm starts with a random population of these candidate solutions and applies various
operations to mutate and alter the individuals in the population each generation, until an
individual with an acceptable �tness value has been found or until the maximum number of
generations has been reached (Algorithm 3). �e basic operators are:

• Mutation: An individual is mutated in a random point of its chromosome, resulting in
a slightly di�erent individual with a similar �tness value to its original. �is operator
introduces some variability that can act as a local search in solution space. In the case
of a simple 1D-array of bits, a random position m is chosen and it’s value is �ipped.

• Crossover: Two individuals exchange parts of their chromosomes. �e speci�c way of
crossing two chromosomes depends on the problem design, but in the simple case of a
1D-array of bits, a random position p is chosen and each sub-array is exchanged with

1. introduction and objectives 6

Algorithm 3 Genetic Algorithm pseudocode (minimization problem).
max gen← number of maximum generations
goal fitness← desired value of the evaluation function
population← population of random individuals
g ← 0

repeat
for all individual ∈ population do

eval(individual)

end for
population← mutation(population)

population← crossover(population)

population← selection(population)

g ← g + 1

until g = max gen or ∃ individual ∈ population : eval(individual) < goal fitness

Figure 1.3: In each generation g of a maximum of max gen, each individual in the popula-
tion is evaluated and the whole population is the mutated, breed and selected to produce the
population of the next generation.

the other individual.
• Selection: At the end of each generation, a portion of the existing population is selected

to breed a new generation. Individuals with be�er �tness values are more likely to sur-
vive. Out of the many selection operators, the simplest is taking the best n individuals
of the current generation.

Analogies

We have seen these three examples of heuristic algorithms and their basic functionality. In
order to explain all of them, an analogy was used to give an intuition of their inner mechanism.
�ese analogies are shown in Table 1.1. As it o�en happens, making these analogies between
seemingly unrelated topics gives some insightful intuitions in the process of algorithm design.
It is useful to have these similarities in mind as a tool and not as a constraint on what can or
cannot be modi�ed.

Optimization problem Physical system
Ant Colony System Simulated Annealing Genetic Algorithm

Feasible solution Ant path Metal microscopic state Chromosome
Evaluation function Pheromone update Energy Life

Local search ηij � τij Rapid quenching Genomic uniformity
Optimal solution Best ant Ground state Best individual

Table 1.1: Analogies.

1. introduction and objectives 7

1.2 Gene Regulatory Models

Gene Regulatory Models (GRMs) describe the interaction of DNA, RNA and proteins to express
transcriptomic and proteomic behavior of a cell, coded in a DNA chain. GRMs can describe
for example the cell fate determination, or how a particular stem cell develops into the �nal
cell type with specialized structure and function, as proposed by Okawa et al. [22]. �e DNA
chain is formed by instructions that specify the interaction between di�erent genes that acti-
vate or inhibit the production of other genes. Gene Regulatory Networks (GRNs), also called
transcription networks, are graph representations where the interactions between genes are
represented as edges between nodes. Each gene of the network has an expression level, which
is simply the amount or concentration of that particular gene in the network. A GRN modeling
about the 20% of the transcription interactions in the bacterium E. coli is shown in Figure 1.4.
Depending on the nature of the interactions, multiple formulations - not necessarily indepen-
dent from each other- can be given for in silico simulations of these networks:

• Continuous networks: continuously-weighted interactions (edges) between genes (nodes)
with continuous expression levels, similar to arti�cial neural networks in the �eld of ma-
chine learning - in particular, recurrent neural networks [20]-.

– Directed Cyclic Graph: Markov network with continuous and bounded expression
levels of genes, as in [2, 18, 19]. �ey are Markov networks because genes don’t
retain any memory, so when modeled as a stochastic process, the conditional prob-
ability distribution of the next time step only depends on the state of the previous
step [11].

– Directed Acyclic Graph (DAG): Bayesian network which contains no cyclic rela-
tions. �e acyclic property allows the de�nition of node’s children and parents.
From this relations we can de�ne a Markov Blanket of a node, consisting of its
parents, children and any other parents of its children. �e analysis of Markov
Blankets using Conditioned Independence tests gives an insight into the probabil-
ity distribution of the expression pa�ern [23].

• Boolean networks: Genes can only be in two possible states: active or inactive. �is
simpli�cation accelerates simulation but diminishes the precision of results [18].

• Coupled ordinary di�erential equations: �ey specify the rate of change of concentration
of each gene Xi as a function of the current concentrations of all genes as

dXi/dt = fi(X1, X2, . . . , XN)

Analyzing the �xed point of the system (dXi/dt = 0 ∀i) one obtains constant expres-
sion pa�erns. However, this cannot guarantee their stability nor if such states can be
reached from initial conditions.

– System of linear di�erential equations: �ey are used to model the expression level
dynamics by Ando and Iba [2]. �e linearity means that a gene is activated based
on a linear combination of other genes from which there’s a connection (edge).
�ere’s no product between concentrations, so this model doesn’t take into account
the synergistic action of transcription factors. “A simple example of synergy is a

1. introduction and objectives 8

situation in which only the complex of two di�erent transcription factors is able
to repress transcription, whereas either of the constituents of the complex have
no e�ect. In that case, repression will only occur under conditions in which both
transcription factors are being expressed” [16].

• Stochastic gene networks: �e stochastic nature of gene expression, backed up exper-
imentally [8], favors the introduction of �uctuations and correlations (Gillespie algo-
rithm, master equation) in numerical simulations in order to avoid invalid results ob-
tained from purely deterministic solutions. �ese techniques can be implemented within
the framework of coupled di�erential equations [12].

�ese models are independent of the posterior study by genetic algorithms, but give dif-
ferent information to the heuristic algorithm for its evaluation and model manipulation.

Figure 1.4: Experimental GRN representing about 20% of transcription regulations in the bac-
terium Escherichia coli. Nodes are genes and directed edges indicate regulations. [1]

1. introduction and objectives 9

1.3 Objectives

�e main goal is to �nd a GRN with speci�c edges and connection weights so that its observ-
able properties -the expression level of the genes across time or space- can match some known
pa�ern. Two di�erent strategies are laid out:

Optimization across time (Figure 1.5a) Search for a GRN comparing the whole evolution
of the expression levels of one cell across a period of time with the one for a known tar-
get GRN. �e experimental network and the target network share the same initial con-
ditions. �is method is similar to the ones used by Sakamoto and Iba [24] and by Ando
and Iba [2]. Sakamoto and Iba propose a structure of the kinetic equations - including
non-linear terms, e.g. the derivative ofX1 can depend onX1 ·X2 like dX1/dt = kX1X2

-, from which the coe�cients k are the variables that it are searched for. In the �rst part
of this work a system of linear di�erential equations is proposed, where the elements
of the in�uence matrix W are the variables to be optimized. �ese values dictate which
genes in�uence which other and the strength of this in�uence, or in other words, the
coe�cients kab for genes a and b in

dXb/dt = · · ·+ ka−1,bXa−1 + kabXa + ka+1,bXa+1 + · · ·

Optimization across space (Figure 1.5b) Here we search for the desired GRN comparing
the �nal stable expression levels across space. �is requires the simulation of multiple
cells (all with the same GRN, but with di�erent initial conditions) laid out in physical
space. �is brings the possibility of introducing interactions of cells with the environ-
ment and between cells, which complicate the simulation procedure. We therefore resort
to a simulation so�ware called CompuCell3D.

1.4 Used tools

• Python: a high-level language focused on rapid application development (RAD).
– DEAP (Distributed Evolutionary Algorithms in Python) [10] is a Python package

providing a framework for evolutionary algorithms and a set of tools to log vari-
ous statistics. It provides su�cient freedom to program custom algorithms, and its
codebase is available at https://github.com/deap/deap. We use this as a base
to program our heuristic algorithms.

• CompuCell3D [26]: �is program provides a �exible and extensible simulation environ-
ment to evaluate our GRNs across space. According to the web page:

“CompuCell3D is a �exible scriptable modeling environment, which allows
the rapid construction of sharable Virtual Tissue in-silico simulations of a
wide variety of multi-scale, multi-cellular problems including angiogenesis,

https://github.com/deap/deap
http://www.compucell3d.org/FrontPage

1. introduction and objectives 10

comparison

Heuristic algorithm

�nal GRN

same
initial
conditions

temporal expression pattern

?
target GRN

t

experimental
GRN

t

(a) Optimization across time

comparison
same
initial
conditions

target spatial expression pattern

x

experimental
GRN

x

Heuristic algorithm

�nal GRN

(b) Optimization across space

Figure 1.5: Two di�erent strategies to search for GRNs using heuristic algorithms.

bacterial colonies, cancer, developmental biology, evolution, the immune sys-
tem, tissue engineering, toxicology and even non-cellular so� materials. Com-
puCell3D models have been used to solve basic biological problems, to de-
velop medical therapies, to assess modes of action of toxicants and to design
engineered tissues […]. It uses Cellular Po�s Model to model cell behavior.”

– SBML (Systems Biology Markup Language) is a “so�ware-independent language
for describing models common to research in many areas of computational biol-
ogy, including cell signaling pathways, metabolic pathways, gene regulation, and
others.”[14]. �is tool allows us to express the dynamics of our GRNs in a way that
CompuCell3D understands.

2 Optimization across time

2.1 Modeling Methodology

�e method to implement the GRN is the one used by Ando and Iba [2]. �e network is ex-
pressed mathematically as a matrix of weights connecting in�uencing genes or nodes (rows) to
in�uenced genes or nodes (columns). Each element of the matrix corresponds to the weight or
regulation strength, which is a continuous value between maximally repressing (−1) to max-
imally activating (+1). �e expression levels for each gene are continuous values bounded
between complete repression (0.0) to maximal expression (1.0). �e state of the network is
represented as a vector ~x(t), where each element xi(t) represents the expression level of gene
i at time t. �e dynamics are expressed in the following equation:

xi(t+ ∆t) = xi(t) + ri · s

(
n∑
j=0

ωjixj(t) + hi

)
− αi · xi(t) (2.1)

where ri are scaling coe�cients, αi are decay coe�cients, hi are the basal activation rate - that
is, the activation rate for gene i when all genes are repressed, xj(t) = 0 ∀j - , the weight
matrix coe�cients are represented by ωji, and s(x) is a sigmoid function:

s(x) =
1

1 + e−x
(2.2)

2.2 Motivation

Figure 2.1 represents the histogram of stable activations xi(t→∞) of the di�erent genes of a
GRN with 30 genes following (2.1) from multiple random initial conditions: initial expression
levels are drawn from an uniform distribution between the minimum and maximum possible
values [0, 1]. It can be observed that although the majority of genes stabilize in a narrow range
of values independently of initial conditions, some genes have di�erent stabilization levels
(X26 andX1), which suggests that in certain situations the GRN ends up behaving in di�erent
modes depending on the history that it went through. We can therefore assert that (2.1) is
capable of describing a model for cellular di�erentiation, given the right coe�cients ri, αi, hi
and matrix weights ωij .

2. optimization across time 12

0 0.2 0.4 0.6 0.8 1

Expression level

0

20

40

60

80

100

P
op

ul
at

io
n

di
st

rib
ut

io
n

(%
)

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
X16
X17
X18
X19
X20
X21
X22
X23
X24
X25
X26
X27
X28
X29
X30

Nodes

X1X26

Figure 2.1: Histogram of stable expressions levels from random initial conditions.

2.3 Genetic Algorithm (GA) implementation

We want to obtain the values of the weight matrixwji that give rise to a certain time expression
pa�ern. To format the matrix in a way that a GA can use, we concatenate the rows of the matrix
in a single 1D array of real values, as done in [2]. As we are using a GA, we have to de�ne
how we implement the �tness, mutation, crossover and selection operators explained in Section
1.1.2.

Fitness

�e �tness of an individual is computed from two values: the linear norm δ and the parsimony
factor P .

• �e linear norm between the generated expression pa�ern xi(t) and the target expres-
sion pa�ern yi(t) through time is given as:

δ =
N∑
i=0

|yi(t)− xi(t)| (2.3)

2. optimization across time 13

• �e parsimony factor P is proportional to the number of pathways through the GRN
and the number of non-zero elements m of the in�uence matrix.

P = T ·m (2.4)

T =
0.01 ·#pathways

N2
(2.5)

�e value 0.01 is simply a scaling factor to be combined later with the linear norm into
a single �tness value (2.8). It is the same as the one used by Ando and Iba [2].
�e number of pathways is strictly speaking in�nite, because the GRN is a cyclic graph.
We limit the number of pathways calculating them using the adjacency matrix. �e
adjacency matrix is a square matrix whose element Aij is 1 if there’s an edge from node
i to node j, and 0 otherwise. E is the set of all edges of the graph.

Aij =

{
1 if (i→ j) ∈ E
0 if (i→ j) /∈ E

(2.6)

If we raise A to the n-th power, each element (An)ij has the number of paths from node
i to node j consisting on n edges or hops. �erefore, if we sum all elements of An for n
up to the number of nodes N , we will cover all possible paths through the graph.

#pathways =
N∑
n

∑
i,j

(An)ij (2.7)

�e justi�cation behind the use of this second metric P is based on the Minimum De-
scription Length principle [2]. Using P, the search is biased towards smaller, less inter-
connected networks, e.g. to the parsimonious model.

�e total �tness is a weighted combination of the two values. DEAP allows to give multiple
�tnesses individually and their corresponding weights.

fitness = w1 · δ + w2 · P (2.8)

Two-point crossover

�e crossover is the standard two-point crossover: A randomly selected position splits each
individual in two. One section of one individual is swapped with the same section of the other
individual, maintaining the total length of both individuals. Iterating in pairs over the complete
population, the probability of mating two individuals is pcx.

Gaussian mutation

Mutation is done with a set probability pmut for each individual of the population in a given
generation. For an individual to be mutated, each of it’s elements has a probability pind to
su�er a Gaussian mutation of mean µ = 0 and standard deviation σ = 0, 2. �e values set
for these hyperparameters is justi�ed, as it o�en happens in many optimization techniques,
through trial and error. We also take these values from the ones used by Knabe et al. [16].

2. optimization across time 14

Tournament selection

Tournament selection is also a standard procedure: it selects the best individual among three
randomly chosen ones and repeats until it obtains enough to make a new generation. �e
criterion to choose the best individual is their �tness.

2.4 Statistics: Receiver Operating Characteristic

Strictly speaking, a receiver operating characteristic curve is used to evaluate a binary classi-
�er. It plots the true positive rate against the false positive rate. �ese statistical measures can
be de�ned in our case for comparing graphs following the criteria shown in Table 2.1.

• True positive rate (TPR) is the proportion of actual activating edges in the target graph
that are correctly identi�ed as such in the acquired graph. It is also called sensitivity.

TPR =
TP

P
=

TP

TP + FN
= 1− FNP = sensitivity (2.9)

where TP are true positives, P are total positives, FN are false negatives and FNP is
false negative rate.

• False positive rate (FPR) is the ratio between the number of repressing edges wrongly
categorized as activating and the total number actual repressing edges. It can also be
de�ned as 1− specificity, where the speci�city or false positive rate is the proportion
of actual repressing edges that are correctly identi�ed as such.

TNR =
TN

N
=

TN

TN + FP
= 1− FPR = 1− specificity (2.10)

where TN are true negatives, N are total negatives, FP are false positives and FPR is
false positive rate.

Measure De�nition
TP An edge that is activating in both the target and acquired graphs.
TN An edge that is repressing in both the target and acquired graphs.
FP An edge that is repressing in the target graph but activating in the acquired graph.
FN An edge that is activating in the target graph but repressing in the acquired graph.
P Total number of activating edges in the target graph.
N Total number of repressing edges in the target graph.

Table 2.1: Statistical measures de�ned for graph comparison.

2. optimization across time 15

2.5 Results

�e Genetic Algorithm parameters used are di�erent for each graph. In general, bigger or
more complex GRNs require more individuals per generation (the population pop is higher)
and the GA should run more generations to �nd a suitable solution. �e parameters for each
network are shown in Table 2.2. For the �rst target graph, the target and acquired networks
are shown side by side in Figure 2.2. �e evolution of the sensitivity and speci�city (Section
2.4) is shown in the Receiver Operating Characteristic in Figure 2.3, and the �tness in Figure
2.4. �e comparison of the expression levels evolutions across time is displayed in Figure 2.5.

Similar results were obtained for network #2 (Figures 2.6, 2.7, 2.8 and 2.9). However, for
bigger GRNs (network #3: Figures 2.10, 2.11 and 2.12), the algorithm �lls the weight matrix ωij ,
even against the parsimony factor P introduced in the �tness function, resulting in overreg-
ulated GRNs. �e results are summarized in Table 2.3. For network #1, the Genetic Algorithm
successfully replicated 8 out of the 10 edges in the network, out of the 72 = 49 possible, with a
edge weight error of 14.96%. �is edge weight error is determined from the average di�erence:

e =
1

n

n∑
i=1

∣∣∣ω(t)
i − ω

(f)
i

∣∣∣ (2.11)

where n =
∣∣E (t)∣∣ is the number of edges in the target network, i.e. the sets cardinality, and

ω
(t)
i and ω(f)

i are the weights of the i-th edge in the target and �nal graphs respectively. If the
�nal graph doesn’t have the corresponding i-th edge, ω(f)

i = 0.

N pop gen pcx pmut pind
1 7 1000 150 0.99 0.01 0.01
2 10 7000 150 0.99 0.01 0.01
3 30 8000 600 0.99 0.01 0.01

Table 2.2: GA parameters for the tested networks.N is the number of nodes, pop the number of
individuals per generation in the GA, gen is the total number of generations to be computed.
pcx is the probability of mating two individuals, pmut the probability of mutating an individual,
and pind the independent probability of each a�ribute within an individual to be mutated.

Fitness Edges in target Edges in �nal Missing edges Extra edges e

1 0.012434 10 9 X1→ X1 X6→ X6 14.96%

X5→ X6

2 0.006762 13 13 X8→ X7 X7→ X1 4.35%

3 0.207424 35 73 see Fig. 2.12 and Fig. 2.11 31.36%

Table 2.3: Properties of the �nal networks obtained. e is the edge weight error (2.11).

2. optimization across time 16

2.5.1 Network #1

X1 0.5

X3

0.5

X2

-0.8 X4

0.7

X5

0.5

-0.5

X6

0.1 X7

0.9

-0.8

0.4

(a) Target graph

X1

X3

0.601

X2

-0.786 X4

0.735

X5

0.309

-0.468

X7

0.958

X6

-0.453

0.146

0.283

(b) Acquired graph

Figure 2.2: Comparison between the target and acquired GRNs for network #1. Green edges in-
dicate activating regulations (ωij > 0) and red edges indicate inhibitory regulations (ωij < 0).
X1→ X1 and X5→ X6 are missing regulations, and X6→ X6 is an extra regulation.

Figure 2.3: Receiver Operating Characteristic evolution for network #1. Center is random, top
le� is be�er. �e initial population of GRNs starts at the center, and gradually moves towards
be�er individuals as generations evolve.

2. optimization across time 17

Figure 2.4: Evolution of �tness (objetive function) across generations in scalar (le�) and log
(right) scales for network #1. Although the best individual (lowest curve, orange line) keeps
scoring be�er �tness values until the end, it’s drop rate diminishes signi�cantly, together
with the average �tness (blue line) at around generation 50, which suggests a decrease in
the marginal e�ciency of the algorithm for this network.

Figure 2.5: Comparison between the target (solid line) and acquired (do�ed line) GRNs expres-
sion levels across time with identical initial conditions for network #1. A decent overlap of the
curves can be observed, which supports the low �tness value obtained for the best individual.

2. optimization across time 18

2.5.2 Network #2

X1 0.6

X5

-0.4

X2

X3

0.4

X4

0.6

X6

-0.5

X7

0.4

-0.7

X8

0.5

-0.3

X9

0.3

X10

-0.7

-0.5

0.3

-0.1

(a) Target graph

X1 0.487

X5

-0.344

X2

X3

0.425

X4

0.644

X6

-0.472

X7

0.113 0.386

-0.824

X8

0.498

-0.325

X9

0.302

X10

-0.68

-0.536

0.28

(b) Acquired graph

Figure 2.6: Comparison between the target and acquired GRNs for network #2.

Figure 2.7: Receiver Operating Characteristic evolution for network #2. Center is random
(starting point), top le� is be�er.

2. optimization across time 19

Figure 2.8: Evolution of �tness (objective function) across generations in scalar(le�) and log
(right) scales for network #2.

Figure 2.9: Comparison between the target (solid line) and acquired (do�ed line) GRNs expres-
sion levels across time with identical initial conditions for network #2.

2. optimization across time 20

2.5.3 Network #3

(a) Receiver Operating Characteristic evolution
for network #3.

(b) Evolution of �tness (objective function) across
generations for network #3.

Figure 2.10: ROE and �tness evolution across generations for network #3.

2. optimization across time 21

X1

X5

1.0

X6

1.0

X2

X7

0.5

X3

0.4

X4

X8

0.2

X11

0.4

X9

1.0 -0.1

X10

0.3 -0.2

X13

-0.6

X14

1.0

X15

0.2

X16

0.5

X12

-0.2 X17

0.5

X19

0.1

X20

0.7

X24

-0.2

X21

-0.2

X22

0.5

X23

0.2

X18

-0.10.3

X25

0.4

X26

0.6

0.4

0.1

X27

0.6 0.3

X28

0.5

X29

0.4

X30

0.6 0.1-0.2

Figure 2.11: Target graph representation of the GRN for network #3.

2. optimization across time 22

X1

X5

0.723

X6

0.667

X15

-0.231

X2

0.154

X7

0.484

X28

0.147

X3

X8

-0.101

X13

-0.387

X20

0.49X4

0.23

X10

0.304 X14

0.365 X17

-0.243

X9

0.63

0.39

-0.312X27

0.168

0.14

X12

0.176

0.1670.159

X25

0.32

0.169

X11
0.179

0.332

X16

0.283

0.203

0.112

0.479

0.179

-0.562

0.123

0.109

X29

0.338

-0.16

0.1530.341

0.301

X18

X19

0.657

-0.285

X23

0.139

X21

0.109

0.26

-0.216

X26

0.186

X22

-0.13

0.122

0.219

-0.157

0.304

X24

-0.191

-0.202

0.187

0.192

0.134 0.429

0.125

-0.155

0.118

0.116

0.18

0.413

0.22

X30

0.334

0.135

0.221

0.212

0.245

-0.644

0.135

0.192

0.178

0.394

Figure 2.12: Final graph representation of the GRN for network #3. �e obtained graph is
clu�ered with extraneous regulations not present in the target GRN.

3 Optimization across space

3.1 Motivation

In molecular biology, transcriptomics techniques like RNA-Seq study an organism’s RNA tran-
scripts [4]. �ey are used for gene expression pro�ling, and because RNA-Seq includes all
mRNA transcripts in the cell, it provides information about the active expression of genes at
a certain time snapshot. Ge�ing a continuous temporal gene pro�le has therefore a practical
barrier of how short these time intervals between snapshots can be. Single-cell transcriptomics
examines the gene expression levels of individual cells and allow an insight into the inference
of GRNs [15, 25].

�ese techniques can give information about the �nal pa�ern across space: cells in space
end up having di�erent amounts of each RNA (and proteins), e�ectively di�erentiating them-
selves from the rest. �is cellular di�erentiation is, together with morphogenesis and cell growth,
the basis of evolutionary developmental biology.

�e basis of cellular di�erentiation adopted here is the introduction of morphogens in our
model. A morphogen can be any substance whose concentration gradient governs the cellular
di�erentiation. Turing, who �rst coined the term [27], proposed a system of two morphogens:
C (catalyst) and I (inhibitor). C catalyses the formation of both itself and I , and I inhibits the
formation of C and also di�uses more rapidly than C . �is system develops a pa�ern due to a
instabilities introduced by random disturbances to the homogeneous equilibrium.

�e French �ag model, conceived by developmental biologist Lewis Wolpert [28, 29], de-
�nes a similar system, where this time only one certain morphogen forms a gradient across
space. Cells in this environment sense the morphogen gradient through speci�c proteins, and
respond with a speci�c di�erentiation to match the gradient. �is is the morphogen model we
are going to adopt in this chapter.

3.2 Implementation

To start the search for the optimal GRN, we will adjust the Genetic Algorithm and the Gene
Regulatory Model developed in the later section. A GRN here consists of a �xed set of eight
proteins1, which inhibit or activate the production rate of each other. �e function of the pro-

3. optimization across space 24

teins is shown in Table 3.1. �ese inhibition/activation relations are modeled as rate equations
which are simulated through time until stabilization in a so�ware environment called Com-
puCell3D. �e simulation uses the rate equations to model each cell in a random grid of cells
within a 2D plane. Each cell is able to move across the environment following the Cellular
Po�s Model that CompuCell3D implements. Each cell is internally represented as a collection
of pixels of the la�ice, and uses an energy formalism to describe cell properties, interactions
and behaviors as additive terms of the Hamiltonian. Note that this e�ective energy does not
represent the physical energy of the cells, but a simple way to produce the desired cell behavior
[26].

Protein Address Function
pr00 000 Color determinant #1
pr01 001 Color determinant #2
pr02 010 None
pr03 011 None
pr11 100 None
pr12 101 Morphogen concentration sensor
pr13 110 None
pr15 111 None

Table 3.1: Proteins in the GRN, their address in the genome and their prede�ned functions.
pr12 senses the morphogen concentration gradient, and can be seen as an input protein. pr00

and pr01 are the proteins that determine the color or type of cell, and can therefore be seen
as output proteins. �e other proteins do not have a prede�ned function, so they simply act as
extra nodes in the GRN.

�e other change respect to the optimization across time is the evaluation of the GRNs.
Once the simulation is performed, we obtain an expression pa�ern of the proteins for each
gene in a 2D spatial plane. We compare this to the expected result obtained by the French �ag
model.

Knabe et al. [16] developed an algorithm (including the GRN, the cellular model, mitosis
rules, etc) wri�en in C++ as CompuCell3D plugins. We propose another procedure, wri�en
mainly in Python and using CompuCell3D as our simulation environment (Algorithm 4, Fig.
3.1).

All in all, we want to search by means of heuristic algorithms an optimal solution of the
system consisting on two parts:

• GRN structure, that is, which protein regulates which other, or the functional form of
the rate equations.

• Numerical values of the reaction constants.

1Here we use the word ’protein’ as the element that has a certain expression level and interacts with other
proteins, represented in a GRN as node. It is a synonym of what was called ’gene’ in section 2. �e term ’gene’ is
used here as a unit of encoding in the genome.

3. optimization across space 25

Algorithm 4 General work�ow pseudocode.
Start master Python script
Initialize Genetic Algorithm parameters
population← random population
repeat

for all genome ∈ population do
SBML �le← genome
CompuCell3D non-GUI simulation
result← �nal cell types and positions
fitness← evaluate(result)

end for
new population←Mutation, crossover, selection
population← new population

until halting-condition

3. optimization across space 26

CompuCell3D

y

x x

y

0P

x

y

1P

x

y

2P

...
1

2

0dP
dt
dP
dt
dP
dt

=

=

=

 
 
  
 
 
 
  







t Monte Carlo

Steps

Python

DEAP - Genetic Algorithm

population

next generation

01101011

10001010

11010110

10101001

00111010

01101011

10001010

11010110

10101001

00111010 0.2

0.3

0.7

0.1

0.5

fd

Mutation

Crossover

Selection

00101011

11001010

11110110

10001001

00110010

simulate()

· config settings

· genome

XML
</>

SBML
</>

evaluate()

x

y

x

y

x

y

0P

x

y

1P

x

y

· amplitude
· difference

= +

Figure 3.1: General work�ow. �e program starts with a random population. Each individual of
the population is simulated (simulate() method), where its genome is translated to a system
of di�erential equations in SBML format and together with the con�guration se�ings is sent to
CompuCell3D. Inside this program, the grid of cells is simulated t steps, where each cell has it’s
own levels of proteins and evolved according to the system of equations notated in the SBML
�le. At the end of the simulation, all proteins P0, P1, … have a di�erent concentration map
across the cell domain, which is extracted and compared with the target maps back in Python
(evaluate() method). From the di�erence between the target and acquired protein maps, a
�tness value fd is calculated and a�ached to the individual. Once all individuals are simulated
and evaluated, the genetic algorithm in DEAP performs mutation, crossover and selection and
creates the next generation of individuals. It then repeats the cycle for ngen generations, and
the best individual at the end is obtained as a result.

3. optimization across space 27

3.3 Encoding

To use a genetic algorithm, we need the individuals to have an array-like structure. In order to
ful�ll this condition, we encode the graph-like structure of the GRN, together with the numeric
values, to a DNA-like integer array. �is imposes a relationship T between the space of 1D
genomes and the space of decoded solutions (GRNs). We will discuss both spaces and the
decoding function T once we de�ne the structure of the genomes (3.6).

CRM 2 0/1 ak dk n TTF1TF 2TF 

Gene PR 1CRM 2CRM  CCRM3

Genome 1β 2β  Nβ 1G 2G  MG

Figure 3.2: Genome array structure. Each genome contains N decay rates corresponding to
each of the N proteins, and M genes. Each gene is always preceded by a 3 indicating the start
of a gene, followed by the target protein address PR, and C cis-regulatory modules (CRMs).
�e start of each CRM is indicated by a 2, followed by either a 0 or a 1 indicating whether
the regulation is activating or repressing. It then encodes the association and dissociation
constants ka and kd and the Hill coe�cient n used in the Hill equation (3.7) (page 29). At the
end of each CRM are the T transcription factors TF , that is, the proteins that regulate the
target protein PR.

As seen in Figure 3.2, the entire genome is a 1D list of integers that take values between
0 and 3. It starts de�ning the decay coe�cients for N proteins, represented by βi which is an
array of four bits encoding a �oat in the range (0, 1]. It then encodes M genes, all of them
starting with a 3. Each gene is structured starting with a 3, followed by the protein address2

which is going to be a�ected. �e gene ends with C di�erent cis-regulatory modules (CRM).
Each CRM starts with a 2, followed by a 0 if it’s inhibitory or 1 if it’s activating, and then its
corresponding constants: ka and kd are binary encodings of �oats in the range (0, 1], and n
is the binary encoding of an integer in the range [0, 24 − 1]. �eir meaning will be explained
shortly a�er. Table 3.2 shows the mapping of the binary numbers representable with 4 bits with
the �oating point numbers in the interval (0, 1] corresponding to ka and kd, and the integers
corresponding to n.

Finally, at the end of each CRM are T transcription factors, which are the addresses2 of the
proteins that activate or inhibit the production of the a�ected protein.

2�e protein address or protein index is an array of 3 bits, allowing to address the 23 = 8 proteins in Table
3.1. For greater number of proteins in the GRN, this index bit length is increased. E.g, for 16 proteins, 4 bits are
necessary.

3. optimization across space 28

Binary 0000 0001 0010 0011 0100 0101 0110 0111

ka or kd 0.0625 0.125 0.1875 0.25 0.3125 0.375 0.4375 0.5
n 0 1 2 3 4 5 6 7

Binary 1000 1001 1010 1011 1100 1101 1110 1111

ka or kd 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375 1.0
n 8 9 10 11 12 13 14 15

Table 3.2: Binary encoding of all possible values for ka, kd and n.

3.4 Decoding

We decode the rate equations from the genome. In order to do this, we interpret that when
a protein Pj activates another Pi, this activation is a reaction catalysis in biochemistry: the
activator protein Pj binds to a speci�c location S of the DNA and forms a complex Pi, allowing
the transcription of Pi. �e location of the DNA can either be free (Pj not present) or bound
(with Pj), so the total is Ptot = S + Pi. �e reaction is:

S + nPj
ka

kd
Pi (3.1)

where S is the substrate, Pj is the catalyst, Pi is the product, ka is the association constant and
kd the dissociation constant. S is the molecule that forms the complex with n molecules of Pj
to result in Pi. �e three constants ka, kd and n are the ones present in each CRM in Figure
3.2.

As it is derived by U. Alon [1], the association rate is proportional to the concentration of
S and the concentration of Pj to the power n (the probability of �nding n molecules of Pj
simultaneously). �e proportionality factor is the association constant ka:

association rate = kaSP
n
j (3.2)

�e dissociation rate is proportional by a factor kd to the concentration of Pi:

dissociation rate = kdPi (3.3)

In equilibrium, the rate of change of the concentration of Pi, that is, the di�erence between
association and dissociation rates, is zero in a steady state approximation:

dPi
dt

= kaSP
n
j − kdPi = 0 (3.4)

From here, we can obtain the apparent dissociation constant de�ned by the Law of mass action
as:

(Kij)
n =

kd
ka

=
S · P n

j

Pi
(3.5)

Solving for the ratio between bound Pi and total S + Pi we get the Hill equation:

Pi
S + Pi

=
P n
j

Kn
ij + P n

j

(3.6)

3. optimization across space 29

In non-equilibrium, the transcription rate for a protein Pi follows the Hill kinetic equation,
expressed as:

dPi
dt

= vmax
P n
j

Kn
ij + P n

j

= vmax
(Pj/Kij)

n

1 + (Pj/Kij)n
(3.7)

where n is the Hill coe�cient and Kij is the apparent dissociation constant (3.5). �e Hill
kinetic equation (3.7) is also known simply as Hill equation, which is how it is going to be
named from here on, but should not be confused with the similar (3.6), which is not a di�er-
ential equation. For n = 1, (3.7) reduces to Michaelis-Menten kinetics, one of the best known
models of enzyme kinetics:

dPi
dt

= vmax
Pj

Kij + Pj
(3.8)

Analogously, the Hill equation for gene Pj repressing Pi has the form:

dPi
dt

= vmax

(
1−

P n
j

Kn
ij + P n

j

)
= vmax

1

1 + (Pj/Kij)n
(3.9)

�e general form of the rate equations is a combination of both and is called the generalized
Hill equation, as proposed by Del Vecchio and Murray [5]:

dPi
dt

=
vmaxA({Pj}) + vb

1 + A({Pj}) + I({Pj})
− βPi

Pi (3.10)

where βPi
is the decay rate of the i-th protein, vb is the basal transcription rate and vmax is the

maximum transcription rate (saturation). �e functions A({Pj}) and I({Pj}) are the sums of
normalized concentrations of the activating and inhibitory proteins of Pi to the power of their
respective Hill coe�cients ni, described by the CRMs of Pi. For example, if P1 and P2 activate
P3, the activator function has the form:

A(P1, P2) =

(
P1

K31

)n1

+

(
P2

K32

)n2

(3.11)

We can assert that the transcription rate of Pi doesn’t get over vmax and that the sigmoidal
shape of the Hill equation is conserved for limiting cases (A → 0, A → ∞, I → 0, I → ∞)
(Figure 3.3). We can also assert that, by means of the limiting factor of the decay rate, the model
doesn’t explode: �e concentration of Pi reaches an equilibrium at a �nite positive value:

P eq
i =

1

βPi

vmaxA({Pj}) + vb
1 + A({Pj}) + I({Pj})

(3.12)

3. optimization across space 30

105

104

1030

Activator (A)

105

0.5

102
104

1

Inhibitor (I)

103

1.5

101
102

2

101

2.5

3

Figure 3.3: Generalized Hill equation without the decay factor (βPi
= 0) as a function of

activator (A) and inhibitor (I) concentrations, with parameters νmax = 3, νb = 1, KiA = 50,
KiI = 50, nA = 1, nI = 1. For both low A and I , the transcription rate dPi/dt is the basal
rate νb. For high A and low I , it saturates at νmax and for low A and high I the transcription
rate tends to zero.

3.5 Logic gates

As illustrated in Figure 3.2, each CRM can have more than one transcription factor (TF) than
can act in conjunction as inhibitor or activator of an in�uenced protein PR. �is allows to
model logic gates, primarily AND and OR gates. �e implementation of logic functions in
DNA has been experimentally shown by Okamoto et al. [21]. AND, OR, YES and NOT are the
basic logic gates from which all logic functions can be constructed from [9].

We have designed a genome structure (Fig. 3.2) and a set of kinetic equations (3.10) �ex-
ible enough that certain combinations give rise to logic functions as an emergent property
of the system, rather than hard-coding them explicitly for example as a special ’AND’ gene.
Remember that genes represent regulations or edges between nodes -the proteins-. �e result-
ing kinetic equations for logic functions are equivalent to those derived by thermostatistical
modeling from principles of statistical physics [3]. We can always design a genome to have
such behavior (Fig. 3.4):

• AND: Modeled as multiple TFs per CRM. �e rate equation will depend on the product

3. optimization across space 31

of the concentrations, creating an e�ective AND gate (extended to continuous values).

dP3

dt
=
vmax

(
P1

K13

)n (
P2

K23

)n
+ vb

1 +
(
P1

K13

)n (
P2

K23

)n − β3P3 (3.13)

• OR: Modeled as multiple CRMs activating a PR in a gene. If any of the CRM activates,
the formation of the corresponding PR will increase.

dP3

dt
=
vmax

[(
P1

K13

)n
+
(
P2

K23

)n]
+ vb

1 +
[(

P1

K13

)n
+
(
P2

K23

)n] − β3P3 (3.14)

• YES: Modeled as a PR with a single activating CRM.

dP2

dt
=
vmax

(
P1

K12

)n
+ vb

1 +
(
P1

K12

)n − β2P2 (3.15)

• NOT: Modeled as a PR with a single inhibitory CRM.

dP2

dt
=

vb

1 +
(
P1

K12

)n − β2P2 (3.16)

AND genome 1β 2β 3β 3 2 1 ak dk n pr1 pr2pr3

1CRM

1G

OR genome 1β 2β 3β 3 2 1 ak dk n pr1pr3

1CRM

2 1 ak dk n pr2

2CRM

1G

YES genome 1β 2β 3 2 1 ak dk n pr1pr2

1CRM

1G

NOT genome 1β 2β 3 2 0 ak dk n pr1pr2

1CRM

1G

AND

1

2
3

1

2
3

1 2

1 2

Figure 3.4: Minimal examples of GRNs implementing each logic gate, together with their cor-
responding graph representation.

3. optimization across space 32

3.6 Representations

We have presented three spaces in which an individual or solution can be represented:

• Genome space: Each point in this space represents a 1D-array genome. �e genetic al-
gorithm applies operations of crossover, mutation and selection in this space.

• Graph space: Points in graph space represent the decoded GRNs.
• Space of systems of di�erential equations: Each point in this space represents a sys-

tem of di�erential equations governing the dynamics of the protein concentrations and
interactions.

�ere is a bijective correspondence between elements in graph space and space of systems
of di�erential equations. However, the decoding function T (3.4) is not injective nor surjective,
because it can transform many genomes to the same GRN - e.g, two genomes consisting of the
same genes but in di�erent order -, and because some GRNs can’t be encoded in a genome
- e.g, a GRN where one protein has a higher decay rate than the bounded (0, 1] range that a
genome can express-.

�e genome space contains the full hereditary information of individuals, so it can be called
genotype. On the other hand, the space of systems of di�erential equations and the graph space,
together with environmental information like initial conditions for the simulation, comprise
the individuals behavior and observable characteristics, so they represent the phenotype.

3.7 GA operations

Mutation and crossover are designed so that every possible outcome is a valid individual.
�erefore we avoid having to reject invalid individuals or de�ning a penalty function.

Mutation

Mutation is simple: It looks for a random position in the genome where there’s a 0 or a 1, and
�ips it’s value. We avoid changing the value of positions where there’s a 2 or a 3 because these
digits mark the structure of the genome (starting positions of a gene and a CRM respectively,
as explained in 3.3), so modifying these values would result in a drastic change in phenotype.

Crossover

To mate two genomes, we �rst choose a random section in each genome. If the chosen section
is the �rst (where the decay rates β1, . . . , βN are encoded), we choose a random position within
the section and exchange each part of the section between the two individuals. If the chosen
section is a gene (second section onwards), we choose a random position within the section

3. optimization across space 33

but also an o�set (from a normal distribution with its width or standard deviation being the
address bit length, 3) which we apply to the le� of one individual and to the right of the other
to locate the �nal cu�ing points. We then split the genes in each individual and exchange
them. �is is similar to the crossover mechanism proposed by Knabe et al. [16].

Selection

We combine two selection algorithms as done in [16]: Tournament selection, where a �xed
number of individuals (30 in this case) is randomly chosen from the population and the indi-
vidual with the highest �tness score is selected, and elitism, where the best individual of the
population is always conserved.

X

X

X-d

X+d

Mutation
P

C

01001011301021001001110001001010

01001111301021001001110001001010

Crossover
(�rst section)

P1
P2

01001011301021001001110001001010
01100101300120011110010011011

C1
C2

01001101301021001001110001001010
01100011300120011110010011011

Crossover
(gene)

P1
P2

01001011301021001001110001001010
01100101300120011110010011011

C1
C2

01001011301021000011011
01100101300120011110011001110001001010

Figure 3.5: Mutation and crossover mechanisms introduce generic variation. Mutation requires
one parent (P) and produces one child (C) varying one of its bits. Crossover takes two parents
(P1 and P2) and produces two children (C1 and C2). First-section crossover exchanges the bits
on the right of a random position from the �rst section of both genomes. Gene crossover swaps
bits to the le� of X − d of P1 and the bits to the right of X + d of P2, being d an o�set chosen
from a normal distribution3 with width σ = 3.

pop gen pcx pmut tournsize

500 150 0.90 0.01 30

Table 3.3: GA parameters for GRN optimization across space. pop is the number of individ-
uals per generation in the GA, gen is the total number of generations to be computed. pcx
is the probability of mating two individuals, pmut the probability of mutating an individual.
tournsize is the number of individuals from which the best is selected in tournament selec-
tion.

3�e standard deviation σ is chosen to be the same as the protein address length. Again, for greater number
of proteins in the GRN, this address length is increased so σ will also be greater.

3. optimization across space 34

3.8 Results

Figure 3.6 shows the evolution of the evaluated function -�tness- and the genome length across
generations. Each generation -along the abscissa- has a population for which there’s an indi-
vidual with a minimum �tness - the best individual, in orange- and an individual with the
maximum �tness value - worst individual, in green-. We also calculate the average �tness of
the population - blue line-. Similarly for genome lengths, we plot the minimum, maximum and
average genome lengths across generations. Figure 3.6a shows that from about generation 120,
the best score stabilizes at fitness ' 4.4.

Figure 3.7 shows the �nal stable expression pro�le for the best individual a�er 150 genera-
tions along the x-axis of the 2D plane, averaged from the values in the y-axis. �e green curve
is the protein sensing the morphogen gradient pr12. pr00 and pr01 are the color determinants.
It shows resemblance to the objective French �ag model (fitness = 4.401).

To reconstruct the French �ag model, we have compared an ad hoc colormapping based
on the spatial �elds of pr00 and pr01 with the theoretical french �ag in Figure 3.8. Finally,
�gure 3.9 shows the complete regulatory network connecting the eight nodes of the system.
Proteins pr02 and pr03 don’t have any inputs, which is in accordance with the constant zero-
valued �eld in Figure 3.10. As the �tness does not include any parsimony factor, there are two
negative consequences:

• Genomes tend to become longer each generation, adding complexity.
• �e �nal GRN contains some residual elements which do not contribute to the �nal

expression pa�ern, like pr02 regulating an AND gate, e�ectively suppressing its output
as the output of an AND gate depends on the product of input concentrations and pr02

has always zero expression level.

However, this information sparsity is desirable because of two reasons:

• Unused sections of the genome can be put into use once again in the next generation
a�er population crossover or mutation.

• It adds diversity to the individuals of the population, observable in the wide range of
�tnesses that the evolution encompasses - di�erence between maximum and minimum
�tnesses in Figure 3.6a, and allows the GA to escape local minima.

Moreover, constraining the genome length -either hard coding a maximum length or inserting
a penalty term in the evaluation function where longer genomes score worse �tness values-
would end up leading the population to a local minimum. As an alternative, a periodic change
in �tness goal is proposed, where during a �rst period of generations the algorithm seeks
expression levels closer to the French �ag model, and later this genome length penalty term
is added with increasing weight in the evaluation function in order to obtain simpler GRNs,
much in the same line as the parsimony factor used in Section 2.

3. optimization across space 35

(a) Fitness evolution across GA generations. (b) Genome length evolution across GA genera-
tions. Sudden maximum and minimum peaks cor-
respond to gene crossover between two average
length genomes yielding a very long and a very
short o�spring.

Figure 3.6: Evolution of �tness and genome length across GA generations.

(a) Obtained expression pro�le. (b) Comparison between normalized expression
pro�le and theoretical expression pro�le (FFM:
French �ag model).

Figure 3.7: Stable expression pro�les across the spatial dimension. pr12 (green) is the protein
sensing the morphogen gradient, pr00 and pr01 are the color determinants.

3. optimization across space 36

(a) Obtained 2D expression map. (b) French �ag model 2D expression map.

Figure 3.8: Comparison between stable expression maps across the 2D spatial domain. To ob-
tain blue, white and red cell types, the normalized concentrations have been colormapped as
follows: if the sum of normalized pr00 and normalized pr01 is smaller than 0.5, the cell type
is red. If it is between 0.5 and 1.5, it is blue, and if it is greater than 1.5, it is a white cell.

3. optimization across space 37

pr
00

0.
87

5

pr
15

0.
75

A
N

D
A

N
D

A
N

D
A

N
D

A
N

D

A
N

D
A

N
D

A
N

D
A

N
D

A
N

D

pr
01

0.
5

0.
87

5

pr
13

2.
0

0.
85

7
(2

)
0.

62
5

(6
)

A
N

D

A
N

D

pr
02

0.
43

75

pr
03

0.
25

A
N

D
A

N
D

pr
11

0.
07

7
(5

6) 0.
56

25

0.
66

7

A
N

D

pr
12

0.
4

(4
)

1.
0

A
N

D

0.
41

7

0.
31

25

A
N

D

0.
8

1.
0

(7
)

0.
37

5

1.
71

4
(5

)
1.

71
4

(5
)

0.
31

2
(7

)

0.
75

0.
75

0.
4

(4
)

0.
75 (3
)

0.
38

5
(2

4)
0.

41
7

1.
16

7
0.

41
7

(1
8)

0.
41

7

0.
41

7
(6

)

0.
41

7

1.
16

7

0.
41

7

0.
41

7

Fi
gu

re
3.9

:F
in

al
Ge

ne
Re

gu
la

to
ry

N
et

w
or

k
ob

ta
in

ed
to

m
at

ch
re

sp
on

se
w

ith
th

e
Fr

en
ch

�a
g

m
od

el
.R

ed
ed

ge
s

in
di

ca
te

in
hi

bi
tio

n
re

gu
la

tio
n,

gr
ee

n
ed

ge
si

nd
ic

at
e

ac
tiv

at
io

n
re

gu
la

tio
n,

an
d

bl
ac

k
ed

ge
sa

re
in

pu
ts

to
A

N
D

ga
te

so
rn

od
es

se
lf-

re
gu

la
tio

n
(d

ec
ay

ra
te

).
D

ec
im

al
nu

m
be

rs
ar

e
th

e
ap

pa
re

nt
di

ss
oc

ia
tio

n
co

ns
ta

nt
K
ij

(3
.5)

,a
nd

in
te

ge
rs

be
tw

ee
n

pa
re

nt
he

sis
ar

e
th

e
H

ill
co

e�
ci

en
tn

of
th

e
gi

ve
n

re
gu

la
tio

n.
If

no
ts

ho
w

n,
n

=
1.

Gr
ap

h
la

yo
ut

fo
llo

w
sa

n
ed

ite
d

D
O

T
gr

ap
h

de
sc

rip
tio

n
la

ng
ua

ge
sp

ec
i�

ca
tio

n
[1

7]
.

3. optimization across space 38

Figure 3.10: Final protein �elds in the 2D spatial plane. �e morphogen gradient decreasing
from le� to right (x axis) is sensed by pr12. pr00 and pr01 are the color determinants.

4 Conclusions

�e study of GRNs provides an insight into the mechanisms that real cells like E. coli (Fig. 1.4)
use to express certain behavior and seeks to capture general laws that govern these biological
interactions. Our use of Genetic Algorithms is inspired by the historical nature of Biology,
where these networks are the result of evolution.

In this work, we have studied two ways of evaluating in silico Gene Regulatory Networks
and using a Genetic Algorithm to �nd �rstly arbitrary networks from temporal expression
pa�ern data and secondly, suitable models to replicate behavior like cellular di�erentiation
under the French Flag model from spatial expression pa�ern data.

�e optimization across time (Section 2) yields good matching networks for small sized
samples (12 correct edges out of a network with 13 edges, with a edge weight error of 4.35%),
but produces networks that are too crowded when trying to �nd bigger GRNs (e.g. network
#3, section 2.5.3).

�e optimization across space (Section 3) utilizes a much more complex evaluation tool,
namely CompuCell3D, which is able to simulate GRNs in a spatial environment, together with
factors not controlled by the network description, like cell movement and behavior (using the
Cellular Po�s Model). �e Genetic Algorithm used to mutate, reproduce and select be�er GRNs
was adapted from the �rst section to allow the evaluation against the expected behavior (the
French �ag model spatial pa�ern seen in 3.8). �e result was a rather complex network (Figure
3.9), where much of its complexity was due to an unconstrained genome length which led to
many regulation paths. �is network was able to successfully express a discernible French �ag
pa�ern.

Bibliography

[1] Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chap-
man and Hall/CRC, London, 2006.

[2] Ando, S., and Iba, H. Inference of gene regulatory model by genetic algorithms. In
Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546)
(2001), 1, IEEE, 712–719.

[3] Carballido-landeira, J. Nonlinear Dynamics in Biological Systems, vol. 7 of SEMA SIMAI
Springer Series. Springer International Publishing, Cham, 2016.

[4] Chu, Y., and Corey, D. R. RNA Sequencing: Platform Selection, Experimental Design,
and Data Interpretation. Nucleic Acid �erapeutics 22, 4 (2018), 271–274.

[5] Del Vecchio, D., and Murray, R. M. Biomolecular Feedback Systems. Princeton Univer-
sity Press, 2014.

[6] Di Caro, G., and Dorigo, M. AntNet: Distributed Stigmergetic Control for Communi-
cations Networks. Journal of Arti�cial Intelligence Research 9 (2011), 317–365.

[7] Dorigo, M., Stützle, T., and Socha, K. Ant Colony Optimization, vol. 20073547 of Chap-
man & Hall/CRC Computer & Information Science Series. Chapman and Hall/CRC, 2007.

[8] Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S. Stochastic gene expression
in a single cell. Science 297, 5584 (2002), 1183–1186.

[9] Floyd, T. L. Digital Fundamentals 11th Edition, Pearson ed. Pearson Prentice Hall, 2008.

[10] Fortin, F.-A., Gardner, M.-A., Parizeau, M., and Gagné, C. DEAP: Evolutionary Al-
gorithms Made Easy. Journal of Machine Learning Research 13 (2012), 2171–2175.

[11] Gillespie, D. Markov Processes. In SpringerReference, Academic Press ed. Springer-
Verlag, Berlin/Heidelberg, 2003, 31–38.

[12] Gillespie, D. T. A general method for numerically simulating the stochastic time evolu-
tion of coupled chemical reactions. Journal of Computational Physics 22, 4 (1976), 403–434.

[13] Holland, J. H. Adaptation in Natural and Arti�cial Systems. �e MIT Press, Cambridge,
MA, USA, 1992.

BIBLIOGRAPHY 41

[14] Hucka, M., Finney, A., Sauro, H. M., et al. �e systems biology markup language
(SBML): A medium for representation and exchange of biochemical network models.
Bioinformatics 19, 4 (2003), 524–531.

[15] Kanter, I., and Kalisky, T. Single Cell Transcriptomics: Methods and Applications.
Frontiers in Oncology 5 (2015), 53.

[16] Knabe, J. F., Wegner, K., Nehaniv, C. L., and Schilstra, M. J. Genetic Algorithms
and �eir Application to In Silico Evolution of Genetic Regulatory Networks. In Journal
of Sports Science and Medicine, D. Fenyö, Ed., Methods in Molecular Biology 673.
Humana Press, Totowa, NJ, 2010, 297–321.

[17] Koutsofios, E., and North, S. Drawing graphs with dot, http://www.graphviz.org/pdf/
dotguide.pdf, 1991.

[18] Kyoda, K., Morohashi, M., Onami, S., and Kitano, H. A gene network inference method
from continuous-value gene expression data of wild-type and mutants. Genome informat-
ics. Workshop on Genome Informatics 11 (2000), 196–204.

[19] Maki, Y., Tominaga, D., Okamoto, M., Watanabe, S., and Eguchi, Y. Development
of a System for the Inference of Large Scale Genetic Networks. Paci�c Symposium on
Biocomputing 6, February 2001 (2001), 446–458.

[20] Mandal, S., Saha, G., and Pal, R. Recurrent Neural Network Based Modeling of Gene
Regulatory Network Using Bat Algorithm. Journal of Advances in Mathematics and Com-
puter Science 23, 5 (2017), 1–16.

[21] Okamoto, A., Tanaka, K., and Saito, I. DNA logic gates. Journal of the American
Chemical Society 126, 30 (2004), 9458–9463.

[22] Okawa, S., Nicklas, S., Zickenrott, S., Schwamborn, J. C., and del Sol, A. A General-
ized Gene-Regulatory Network Model of Stem Cell Di�erentiation for Predicting Lineage
Speci�ers. Stem Cell Reports 7, 3 (2016), 307–315.

[23] Ram, R., and Chetty, M. A guided genetic algorithm for learning gene regulatory net-
works. 2007 IEEE Congress on Evolutionary Computation, CEC 2007 (2007), 3862–3869.

[24] Sakamoto, E., and Iba, H. Evolutionary Inference of a Biological Network as Di�erential
Equations by Genetic Programming. Genome Informatics 12, 13 (2001), 276–277.

[25] Stegle, O., Teichmann, S. A., and Marioni, J. C. Computational and analytical chal-
lenges in single-cell transcriptomics. Nature Reviews Genetics 16, 3 (2015), 133–145.

[26] Swat, M. H., Thomas, G. L., Belmonte, J. M., et al. Multi-Scale Modeling of Tissues
Using CompuCell3D. Methods in Cell Biology 110 (2012), 325–366.

[27] Turing, A. M. �e chemical basis of morphogenesis. Bulletin of Mathematical Biology
52, 1-2 (1990), 153–197.

[28] Wolpert, L. Positional information and the spatial pa�ern of cellular di�erentiation.
Journal of �eoretical Biology 25, 1 (1969), 1–47.

BIBLIOGRAPHY 42

[29] Wolpert, L. Positional information and pa�erning revisited. Journal of �eoretical Biol-
ogy 269, 1 (2011), 359–365.

	Abstract
	Introduction and objectives
	Heuristic algorithms
	Approachable problems
	Algorithms

	Gene Regulatory Models
	Objectives
	Used tools

	Optimization across time
	Modeling Methodology
	Motivation
	Genetic Algorithm (GA) implementation
	Statistics: Receiver Operating Characteristic
	Results
	Network #1
	Network #2
	Network #3

	Optimization across space
	Motivation
	Implementation
	Encoding
	Decoding
	Logic gates
	Representations
	GA operations
	Results

	Conclusions
	Bibliography

