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a b s t r a c t

The fear experienced by datacenter administrators presents an ongoing problem due to the low percentage

of machines that they are willing to switch off in order to save energy. This risk aversion can be assessed

from a cognitive system. The purpose of this paper is to demonstrate the extra costs incurred by maintaining

all the machines of a data center executing continuously for fear of damaging hardware, degradating the

service, or losing data. To this end, an objective function which minimizes energy consumption depending

on the number of times that the machines are switched on/off is provided. The risk aversion experienced by

these data center administrators can be measured from the percentage of machines that they are willing to

switch off. It is shown that it is always the best option to turn off machines in order to reduce costs, given a

formulation of the cognitive aspects of the fear experienced by datacenter administrators.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

A data center is a facility used to house computer systems and as-

ociated components, such as telecommunications and storage sys-

ems. It generally includes redundant or backup power supplies, re-

undant data communications connections, environmental controls

e.g., air conditioning, fire suppression) and various security devices.

arge data centers are industrial-scale operations that can consume

s much electricity as a small town and sometimes constitute a major

ource of air pollution in the form of diesel exhaust.

The main purpose of a data center is to run applications, perform

asks or store data. The many examples of internet and computing

ervices performed by data centers include:

The spread of cloud and grid computing paradigms has increased

he size and usage of data centers; today there are thousands of data

enters worldwide, which means millions of machines in total.

The majority of these facilities are located in the USA (about 25%

f the total energy consumption of data centers worldwide [20]) and

o a lesser extent in Europe. However, large companies such as Google

ocate a number of their data centers in high latitudes near the north

ole to minimize cooling costs, which represent almost 40% of total

nergy consumption of these infrastructures [1].

Energy consumption by data centers has grown in the past

en years to 1.5% of worldwide energy consumption [25]. Major
✩ This paper has been recommended for acceptance by Lledó Museros.
∗ Corresponding author. Tel.: +34 954 559 769; fax: +34 954 557 139.

E-mail address: afdez@us.es (A. Fernández-Montes).
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ompanies have therefore addressed their energy-efficiency efforts

o areas such as cooling [7], hardware scaling [8] and power distri-

ution [9], thereby slowing down the growth in power consumption

n these facilities in recent years as we can see in Fig. 1, which shows

he latest predictions.

In addition to these areas of work, saving energy by switching

n/off machines in grid computing environments has been simulated

sing various energy efficiency policies, such as turning off every ma-

hine whenever possible, and turning off a number of machines de-

ending on workload [10].

Although it has been demonstrated that about 30% of energy can

e saved by applying these energy-aware policies [11], big companies

till prefer not to adopt such policies due to their potential impact

n the hardware, the possibility of damaging machines, and the costs

ssociated with this hardware deterioration.

The purpose of this paper is to compute the costs imposed by the

isk aversion experienced by data center administrators on switch-

ng off machines, and to show that even when taking these fears into

onsideration, some servers of the data center should still be turned

ff to minimize energy consumption and overall costs.

.1. Cognitive systems modeling emotions

In psychology [33], emotion is a subjective, conscious experience

haracterized primarily by psycho-physiological expressions, bio-

ogical reactions, and mental states. It is influenced by hormones

nd neurotransmitters, such as dopamine, noradrenaline, serotonin,

xytocin, cortisol, and gamma-aminobutyric acid. Furthermore,

http://dx.doi.org/10.1016/j.patrec.2015.06.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.06.018&domain=pdf
mailto:afdez@us.es
http://dx.doi.org/10.1016/j.patrec.2015.06.018
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Fig. 1. Data center energy consumption worldwide [24].

Fig. 2. Life cycle of a data center server [10].

2

s

u

m

l

l

l

t

i

i

e

f

I

s

neurologists [14] have made progress in demonstrating that emotion

is as, or more, important than reason in the process of making

decisions. Modeling emotions is a problem tackled from diverse

knowledge areas: robot-based systems [6], music [30], videogames

and virtual worlds [15] and domain-independent systems [16].

Moreover, emotion recognition systems [18] are on the rise in

effective computing research. Data can be obtained from diverse

sources: physiological signals (electromyogram, blood pressure,

skin conductance, respiration rate and electroencephalogram rate),

speech and facial expressions. Focusing on the emotional fear, it

appears in response to a specific and immediate danger or a future

specific unpleasant event. It can be measured and detected through

biosignals such as irregular heart and respiration rate [5,19], visual

signals (head gestures, nods and shakes) [17] and facial feature

information [34]. Several studies [21] using optogenetic techniques

have shown how aversive experiences trigger memories and suggest

that combined hebbian and neuromodulatory processes interact to

engage associative aversive learning.

Our interest in this paper is to model a function that quantifies the

costs of the fear experienced by a datacenter operator on deciding

whether a machine must be switched off. According to Michael

Tresh, formerly a senior official at Viridity, a company that delivers

energy-optimization to data centers: “Data center operators live in

fear of losing their jobs on a daily basis, because the business won’t

back them up if there’s a failure.” The startup ‘Power Assure’ which is

focused on energy management, marketed a technology that enables

commercial data centers to safely power down servers when they are

not needed, but, as the manager of energy efficiency programs at the

utility, Mary Medeiros McEnroe, explains that, even with aggressive

programs to entice its major customers to save energy, Silicon Valley

Power, a not-for-profit municipal electric utility, failed to persuade a

single data center to use that technology. “It’s a nervousness in the I.T.

community that something isn’t going to be available when they need it”

[13]. Moreover, Power Assure, was dissolved in october 2014. Its tech-

nology was based on algorithms that enabled optimal server capacity

and application needs to be calculated and to automatically shut off

unnecessary capacity or spin up more capacity based on actual appli-

cation demand. Jennifer Koppy, research director for data center man-

agement at International Data Corporation (IDC), said Power Assure’s

energy management technology was “extremely forward-looking …

they had a superb idea, but I don’t think the market is ready yet.”
. Problem analysis

It makes sense that one of the most effective ways to achieve con-

iderable energy savings is to turn off computers that are not being

sed. Although this idea is generally accepted by users, and hence

ost personal computers are turned off at night or during periods of

ow usage, it is seldom implemented in data centers or at enterprise

evel.

Although the average server utilization within data centers is very

ow (typically between 10% and 50% [4]), very few companies prefer

o turn off the machines that are not in use rather than leaving them

n an idle state. While idle servers consume half the energy of those

n a state of intensive use [24], this remains a high direct and indirect

nergy cost due to the increased need for cooling. The several dif-

erent states through which a machine can pass are shown in Fig. 2.

n this state diagram the average power consumption of a common

erver per CPU in each state is also shown, and the time needed to
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Fig. 3. File access pattern in Yahoo cluster [23].
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hange from one state to another. Notice that a server with 4 CPUs

pends 4 times the energy shown in each state, i. e. 432 Watts∗h in

N state.

It has to be noted that very few machines cannot be switched off.

ome of the machines from the data center act as master nodes, while

he vast majority of machines act as slave nodes which are candidates

o be switched off.

The main reasons why IT departments generally prefer to keep

achines idle are for fear of:

• Hardware damage: It is known that due to a high number of

switching on/off cycles, some computer hardware components

suffer stress, which can lead to computer deterioration. We incur

this as a cost: The repair cost. The component that is usually dam-

aged is the hard drive [29], which has other implications besides

simply their repair or replacement costs. However, due to the con-

stant improvements of these components and the new SSD hard

drives, it can be expected that the failure rate of these pieces of

hardware will diminish over time, and therefore these new drives

will reduce this type of fear.
• Service degradation: When a task needs the service of this

damaged computer which can no longer perform a service, in

a new cost is incurred due to the worsening in service quality,

response times, etc.: The opportunity cost. Despite this potential

opportunity cost, as we have seen, the server utilization within

data centers is very low therefore, in a distributed environment,

is highly unlikely that no other machine in the data center can

provide the service that this machine was providing.
• Data loss: This is a critical issue in a data center infrastructure.

If the machine (and its hard drive) that has been damaged was

the only one that stored certain data and this data has been lost,

certain critical operations could not be performed and it would

entail very high operation costs. However, as mentioned above,

distributed systems such as data centers typically replicate their

data between multiple machines across the data center servers,

and therefore, it is highly unlikely for information to be lost. Data

loss will only happen if data has just been created and has not had

time to be replicated.

Due to these fears experienced by the IT staff from big internet

ompanies, file distribution policies within data centers are designed

o minimize the possibility of losing any data, thereby maximizing

he availability of data and the available computing capacity to per-

orm tasks associated with it.

These distribution policies do not aim at energy efficiency. To

chieve this energy efficiency, data center managers rely on hard-

are systems that work by: switching off some components - mainly

he hard drive - to a state of inactivity; improving cooling systems;

dopting chiller-free cooling strategies; or by raising operating

emperature [7].

A performance penalty is imposed on hardware components left

n a state of inactivity and the entire data center has to assume a delay
f up to several seconds for inactive drives. In addition, we must take

nto account that there is a trend among these infrastructures that

nvolves the utilization of multiple hard drives – ranging from 4 to 6 –

ather than RAID systems, which are less energy efficient. In this type

f system, hard disk consumption only accounts for 10% of energy

onsumption; the bulk of the energy is consumed by harder scalable

ardware components such as RAM or CPU, which consume about

3% of the total energy [28].

To achieve this high availability of data stored in the data center,

any parallel-computing frameworks and distributed file systems

uch as Hadoop [31] and GFS [12], make use of data replication as a

trategy to maximize its availability and fault-tolerance, distributing

t in accordance with policies that minimize the possibility of cor-

uption in all stored replicas and thereby the irretrievable loss of any

ata.

The above policies meet the requirements satisfactorily, since they

inimize the risk of data loss within the data center. However, these

inds of policies have some disadvantages, including:

• Location and status of data are not taken into account: Tem-

poral data locality is essential to building operating optimization

policies for the data center due to the usage of and access to file

patterns. Therefore, the computation required to execute the re-

lated tasks follows a pattern as shown in Fig. 3.

In the case study of the Yahoo! Hadoop cluster that serves as a

base for GreenHDFS [22], 60% of this cluster total space was being

used by data that is not often accessed. The current average life-

time during which a piece of data is often used is 3 days in 98% of

cases, and even exceptions to this pattern of use, 80% of the files

were used intensively for fewer than 8 days. Within the group of

files that are not frequently used, non-access periods varied be-

tween 1 and 18 days [23].
• File distribution policies are not efficient-friendly: Current dis-

tribution policies scatter data blocks between the largest possible

number of machines with the aim of minimizing the risk of losing

any data due to hardware failure on the machine, failure of facility

components at rack level, etc. Servers are therefore constantly un-

derused as mentioned above, which in turn results in low power

usage in data storage and associated computing, as well as mak-

ing impossible an orderly shutdown of these servers impossible

without jeopardizing the proper functioning of the data center.

Moreover, these distribution policies are based on the static and

constant replication model, where all file blocks have the same

number of copies and are distributed following the same rules,

regardless of the access or computing needs.

For the reasons discussed (the low rates of storage and comput-

ng power utilization of these facilities), it seems that if efficient

istribution policies are applied in conjunction with switching

n/off policies, then not only will data center performance be free

rom compromise in achieving greater energy efficiency, but also

ubstantial improvements in both aspects can be achieved due to the
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inefficiency of the current data distribution policies. Of course, this

kind of efficient distribution and switching on/off policies can never

jeopardize the availability and integrity of data, but must minimize

(if not improve) impact on overall data center performance. Within

these distributions and machine power on/off policies we can

highlight:

• Covering subset: These policies are based on splitting the data

center into many disjoint areas so that a number of replicas of

each file are stored. The goal of systems that implement these

policies is to switch off the maximum number of sectors in the

data center to achieve greater energy savings, without affecting

the correct operation [26] [35]. The disadvantages of the systems

that implement these policies are:

– The worsening write rate due to write-offloading associated

with writing on machines that are not running at the time that

writing occurs [3].

– The number of replicas of each file is constant and static.

– Neither data time locality nor file utilization pattern are taken

into account.

Systems like Sierra [32] and Rabbit [2] obtain a very high energy

proportionality with virtually no impact on the availability and

only a slight impact on the overall performance of the data center.
• Data temperature: Systems that apply these policies are based

on the temporal locality and frequency of use of the files stored

in the data center to consistently assign them a temperature (the

more frequently used the file is, the hotter the temperature) and

redistribute them into two areas: a hot zone aimed at maximizing

the performance and availability of data stored on it; and a cold

zone whose aim is to minimize the energy consumption of the

machines assigned to this area. In such systems, such as Green-

HDFS [22], the ultimate goal is to efficiently distribute the ma-

chines between these different areas, maximizing the overall per-

formance thanks to improvements in the hot zone, minimizing

the overall energy consumption thanks to improvements in the

cold zone, increasing the time response as little as possible when

reading files from machines switched off (in GreenHDFS, only 2.1%

of the readings were affected by this temporary penalty due to

switching on the machine at the time of the reading), thereby sig-

nificantly reducing the energy consumption of servers: 24% in the

case of GreenHDFS [23].
• Dynamic replication: Other solutions, such as Superset [27], take

the above strategies as a starting point, but also take into account

the “temperature” of the data above a threshold, not only to power

on/off machines, but also to increase or decrease the number of

copies of stored data, thereby preserving the availability of data

and reducing overall energy consumption thanks to the switch-

ing on/off policies and improved performance. This is achieved

by transferring storage space and computing power from the cold

files that are not frequently used, to those files that need these

resources, i.e, the hottest files.

As we have discussed, the problems related to the server shut-

down are not critical and do not endanger the proper operation of

these infrastructures. Therefore, this paper studies the costs caused

by risk aversion, and the energy savings and reduced environmental

impact that could be achieved if this fear is overcome.

3. Theoretical analysis

A function that quantifies the costs of fear, i.e. the costs associ-

ated with the belief that turning off data center machines imposes a

greater cost than the energy savings achieved, is proposed. From this

function, an assessment of the risk aversion to switching off machines

is provided.

Let us present the problem. Given a set of tasks to be com-

puted in a period of time T, it is assumed that the minimum power
onsumption, min, is achieved by turning off the machines when-

ver possible, and that the maximum power consumption, Max, is

btained in the case that the machines never are turned off. Hence,

he extra expense imposed due to the consumption from all those

achines remaining turned on without interruption is given by

= Max − min

Let us suppose that a datacenter has n machines, all of them equal.

his act is justified since actually, data center machines are grouped

y racks of identical machines. Even machines from different racks

hare the same components or at least components are produced by

he same manufactures.

Let Nj be the maximum number of times that a machine j, j =
, . . . , n, can be turned on given an operation time T. This value is

omputed as a maximum that depends on operation time T, shutting

own time (Toff, time needed to switch off a machine) and turning on

ime (Ton, time needed to switch on a machine from the off state) as

ollows:

j = T

Tof f + Ton

herefore, by considering that all machines are equal (Nj = N), the

aximum number of times that the machines of the datacenter can

e turned on given an operation time T is

1 + · · · + Nn = n · N

Let X
j

i
be the random variable which takes the value 1 if a com-

uter j breaks down on power switching i and 0 otherwise. Hence, if

he probability of X
j

i
= 1 is pi, that is P(X

j
i

= 1) = p
j
i
, then X

j
i

follows

Bernoulli model and, hence E[X
j

i
] = p

j
i
. With respect to p

j
i
, some

onsiderations must be given:

• As aforementioned, all machine of the datacenter are supposed

equal, therefore p
j
i
= pi for any j = 1, . . . , n.

• pi depends on the power switching i and this values can be con-

sidered constant within a horizon of the framework T. Clearly,

pi = pi(t) and
d pi(t)

dt
> 0, that is, the probability of malfunction

of a machine is going to increase during its life. Nevertheless,

the technology of this machine provides that this probability de-

creases slowly,
d pi(t)

dt
≈ 0, and the considered operation time, T,

is short compared to its lifetime. Hence, pi = p ≈ constant can be

considered.
• With respect to the value of p. The advance in the technology in-

dicates that the real value of pi is to be very close to 0. Neverthe-

less, from a cognitive point of view, the data center administrator

can consider it is a high value and this is the reason why it would

never be a good idea to switch off machines.

It is worth noting that if a machine breaks down, there are other

achines of the datacenter available to replace its operational re-

uirements. Let nj be the number of times that a machine j should

e switched off, 0 ≤ nj ≤ N.

From here, if x denotes the number of power cycles, a new random

ariable

(x) =
n∑

j=1

nj∑
i=1

X j
i
, x = 0, 1, . . . , n · N

here x = ∑n
j=1 n j, that is, x is the number of power cycles per-

ormed in all machines. Thus, S(x) is a random variable that repre-

ents the number of machines broken down in x power cycles and,

ence, 0 ≤ S(x) ≤ n for any x.

The average number of damaged machines after x switching

n/off cycles, that is, the expectation of the random variable S(x) is

alculated as follows:

[S(x)] = E

[
n∑

j=1

nj∑
i=1

X j
i

]
=

n∑
j=1

nj∑
i=1

E[X j
i

] = p ·
n∑

j=1

nj = x · p
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Fig. 4. Graphical representation of the point where the minimum of function (5) is

attained.
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Furthermore, the cost of repairing computers damaged by the

witching on/off cycles has also to be taken into account. Let Cr >

be the average cost of repairing the computer. Hence, the costs of

ear, derived from switching on/off machines, denoted by Cfear, can be

iven as follows:

f ear(x) = x · p · Cr, x = 0, 1, . . . , n · N

In addition, if a computer is turned off and then there is a request

hat requires the machine to be turned on, then the client will need

o wait until the computer is turned on. Considering Co as the op-

ortunity cost that measures the value that a customer gives to that

ost time, and Ton as the time needed for a computer to be turned on.

hen, the turn on costs, denoted by Con, can be quantified as follows:

on(x) = x · Ton · Co, x = 0, 1, . . . , n · N

Therefore, the total cost of turning off x machines, denoted by C(x),

s given as C(x) = Cfear(x) + Con(x), that is,

(x) = x · (Ton · Co + p · Cr) x = 0, . . . , n · N (1)

From the above function, the cost of switching off the machines is

s follows:

(n · N) = n · N · (Ton · Co + p · Cr)

Nowadays due to the different aspect of the life among them, the

ognitive aspect, most companies prefer not to turn off machines so

his decision implies that C(n · N) > M. The main aim of this paper is

o show that this is not an optimal decision.

First, in order to simplify the function given in (1), the variable

= x
n·N is considered which indicates the proportion (per unit) of the

umber of switching on/off cycles applied against the natural maxi-

um applicable. Hence,

(y) = y · n · N · (Ton · Co + p · Cr) (2)

From the definition of y, it can be seen that (1 − y) represents the

ercentage of switching on/off cycles not applied to the machines.

ssuming that the cost of having all the extra machines turned on, M,

s proportional to the percentage of switching on/off cycles applied

s represented by y, then (1 − y) · M represents the cost of having the

achines switched on. From these latter two costs, the cost for having

percentage of machines turned off, is given by

f (y) = y · n · N · (Ton · Co + p · Cr) + (1 − y) · M 0 ≤ y ≤ 1 (3)

Since M is not null, and C(1) = n · N · (Ton · Co + p · Cr) > M due to

urrent fear experienced by most companies, the value

= C(1)

M
> 1

s considered and the cost function, denoted by fcurrent, is written as

ollows:

fcurrent(y) = A · y + (1 − y) 0 ≤ y ≤ 1, A > 1 (4)

Following the current hypothesis which assumes that switching

ff any machine implies more cost (the so-called fear cost), this ob-

ective function reaches its minimum when y0 = 0, i.e., when no ma-

hines are turned off and they maintain continuous execution, and

fcurrent(y0) = 1 (An example of this kind of function is given in Fig. 4).

. Fear cost

In this section, a new cost function is given by assuming that the

witching off/on of machines in moderation may have a benefit.

First, let us indicated that the function fcurrent(y) verifies that
d fcurrent (y)

dy
= A − 1 = cte, that is, the increment of the emotional cost

aused by the modification of the percentage of power cycles is con-

tant for the datacenter administrator. However, this is not a realis-

ic hypothesis since by taking into account the pessimism (cognitive
spect) of the administrator, the fcurrent(y) function must verify that
d2 fcurrent (y)

dy2 > 0 since, for instance, the incremental cost to change of

.1–0.2 must be smaller than the incremental cost to change of 0.7 to

.8.

Hence, the new function cost, denoted by fprop, must verify that

• If y is near to zero, then fprop(y) < fprop(0) since the switching

off/on of machines in moderation may have a benefit. Further-

more, in order to provide a regular function it is imposed that
d fprop(y)

dy
exists for any y.

• By following the commentary of the fcurrent(y) function with re-

spect to the second derivative, the
d2 fprop(y)

dy2 > 0 is required.

• Furthermore, a similar to fcurrent(y) functional form is required for

fprop(y).

Thus, the simplest function with these conditions is:

fprop(y) = Ay2 + (1 − y) 0 ≤ y ≤ 1, A > 1 (5)

Moreover, another justification of this new function is that it lends

ess weight to the value of C(y) given in (2) in the function (3). Hence

he importance of switching off machines is relaxed.

The function (5) is convex (see Fig. 5) and reaches its minimum at

he point:

0 = 1

2 A
(6)

nd fprop(y0) = 1 − 1
2 A

. This means that the ideal situation is to

witch off 1
2 A

% of machines, and the savings, as a percentage, are

qual to the percentage of machines switched off.

Thus, if A has a high value, this favours the shutdown of the servers

n the data center. And, if A is close to 1 it favours keeping 50% ma-

hines on/idle which is a consequence of the supposition that the

switching off/on of machines in moderation may have a benefit’.

Hence, a coefficient, denoted by fear, which measures the risk

version to switching off the machines, is modeled as follows:

f ear = 1 − 1

A

This value verifies 0 ≤ fear ≤ 1 and satisfies:

• f ear = 0 (A = 1) implies low risk aversion, and under the hypoth-

esis of ‘switching off/on machines in moderation may have a ben-

efit’, means switching off 50% of the machines.
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Fig. 5. Graphical representation of the function (5) for A = 2 (blue), 2.5 (green) and 3

(red). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article).
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• f ear = 1 (A = ∞) implies maximum risk aversion, and therefore

machines are never switched off.

As aforementioned, most data center companies currently do not

shut down servers, so the value of A is set to ∞ in the proposed func-

tion and hence the number of machines switched off is 0 (y0 = 0).

Based on these developments, it is possible to model the risk aver-

sion experienced by data center companies by posing a simple ques-

tion: What percentage of machines are you willing to switch off? For in-

stance, if the answer is 10%, the equation 0.1 = 1
2 A

is resolved, which

means that A = 5, thus the fprop(y) = 5y2 + (1 − y) 0 ≤ y ≤ 1 and

from this point the emotion of the fear experienced by the company

is as follows:

A = 5 ⇒ f ear = 1 − 1

5A
= 0.8

In contrast, if the answer is 40% of machines, then A = 5
4 , and

therefore: f ear = 0.2.

5. Conclusions

In this paper we have presented the cost of risk aversion to which

most companies currently subscribe due to the false belief that turn-

ing off machines in data centers involves more costs than savings.

In order to demonstrate this, an objective function has been pro-

posed which determines that a lower total cost can always be at-

tained by turning off data center servers a number of times, show-

ing that the current belief is a mistake that should be corrected by

applying shutting on/off policies.

As future work, we plan to measure the extra costs associated

with turning off the machines in terms of hardware damage and to

measure the energy savings that could be obtained by building a

software system which implements policies for energy efficiency in

data centers.
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