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a b s t r a c t 

In [18], a membrane parallel theoretical framework for computing (co)homology information of fore- 

ground or background of binary digital images is developed. Starting from this work, we progress here 

in two senses: (a) providing advanced topological information, such as (co)homology torsion and effi- 

ciently answering to any decision or classification problem for sum of k -xels related to be a (co)cycle or 

a (co)boundary; (b) optimizing the previous framework to be implemented in using GPGPU computing. 

Discrete Morse theory, Effective Homology Theory and parallel computing techniques are suitably com- 

bined for obtaining a homological encoding, called algebraic minimal model, of a Region-Of-Interest (seen 

as cubical complex) of a presegmented k -D digital image. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Nowadays, to determine in a fast and accurate way topology-

elated information of technologically relevant mathematical struc-

ures has become a very important question. Within the context of

igital Imagery, computational topology has acquired a significant

ole in fields of applications like Computer Vision, Digital Image

rocessing or Medical Imaging. In [18] , a series of massively paral-

el algorithms using membrane computing are developed in order

o calculate a discrete Morse complex associated to the set of fore-

round k -xels of a k -D binary digital image. However, nowadays

here is no device capable of executing such algorithms. Hence, an

ptimization is required to implement them in current computers.

lthough the algorithms developed in this paper are directly in-

pired by those developed in [18] , the content of current paper can

e read independently. 

In order to avoid the mathematically ill-posed problems of

egmentation and noise which are ubiquitous in most of the

mage processing tasks, we will work here with a pre-segmented

 -D digital image represented by k -dimensional matrix with non-

egative integer values. In fact, we can restrict our work to study

he topology of the set of foreground (having value 1) k -xels of a
✩ This paper has been recommended for acceptance by Mihail Gaianu. 
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inary image. Working with cubical cell complexes representations

f digital images, we rewrite in terms of explicit chain homotopy

quivalences a non-negligent part of the computational machinery

nderlying in discrete Morse theory [7] . 

Effective homology (see [21] ) deals with the encoding of ad-

anced homology information of a cell complex K in terms of chain

omotopy equivalences algebraically connecting K with a much

maller chain complex M . If the homology H ( K ) of K is torsion-free,

 is H ( K ) (seen as trivial chain complex). Otherwise, minimality is

eached with an Algebraic-Minimal model (see [9] ). Anyway, the

revious chain homotopy equivalences provides an almost auto-

atic answer to any interrogation of homological nature or even

bout homotopy invariants [21] . 

The main contribution of this paper is the design of an algo-

ithm for computing an AM-model of the foreground (seen as a

ubical complex) of a k -D binary image. 

Various DMT-based approaches to compute discrete functions

efined on cells of a cell complex have been already used.

19,20] apply DMT methods to analyze vector fields. Bauer et al.

1] computed simplified two-dimensional scalar functions while

nsuring that the input function is modified by no more than a

hreshold d and all surviving critical point pairs have persistence

reater than 2 d . Cazals et al. [3] and Lewiner et al. [13] suc-

essfully employed Forman’s discrete Morse theory to compute

orse complexes of piecewise-linear functions and show appli-

ations to segmentation, visualization, and mesh compression.

elgado-Friedrichs et al. [5] also used a DMT-based formulation to

http://dx.doi.org/10.1016/j.patrec.2016.05.034
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Fig. 1. Cubical complex K 0 . 
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develop an efficient algorithm for computing Morse (more con-

cretely, Morse–Smale) complexes of large 3D data. Reininghaus

et al. [20] proposed an algorithm to compute the Morse complex of

2D and 3D gray-scale digital images modeled as discrete functions

on cubical complexes. The algorithm computes the Morse complex

with provable guarantees on its correctness with respect to the

critical cells. In [14] , an algorithm for computing homology using a

recursive tree-based technique for generating Morse complexes is

established. Peterka et al. [15] introduced a set of building blocks

for implementing parallel algorithms, which leverage high perfor-

mance computing clusters. In particular, they discuss a parallel im-

plementation of the discrete Morse theory based on the algorithm

proposed in [11] . Günther [10] design a memory efficient algorithm

to compute the Morse–Smale complex for 3D data and use the

complex to compute persistent homology groups. The discrete gra-

dient field is computed using a parallel variant of the method pro-

posed by Gyulassy et al. [11] followed by an efficient computation

of the boundary map representing the Morse complex. Finally, the

parallel algorithm for computing the discrete gradient field given

in [22] is based on a novel description of the discrete Morse func-

tion followed by a two-step algorithm computing the cells of the

Morse–Smale complex. The algorithms are implemented using a

hybrid multi-core implementation. 

This paper is structured as follows. First, some aspects related

with the required algebraic topology background are reviewed.

Then, the proposed algorithms are presented and discussed. Next, a

simple example is shown to illustrate the algorithms. Finally, some

conclusions are given. 

2. Algebraic topology background 

In this section we introduce the topological background needed

for designing the algorithms. First of all, we review the required

combinatorial structure for the topological spaces that are used.

We mainly follow the process introduced in [12] with some mi-

nor changes. Specifically, Kaczy ́nski et al. uses closed cubes as main

combinatorial objects while we use open cubes. 

A cubical cell σ is a finite product of intervals: 

σ = I 1 × · · · × I k ⊂ R 

k 

where I j is an interval with integer extremes (m j , m j + 1) and

length one or the singleton { m j }, denoted as ( m j ), for each j ∈
{ 1 , . . . , k } . The interval I j is referred as the j th component of σ and

denoted by I j ( σ ). The set of all cubical cells in R 

k is denoted by K 

k .

The set of all cubical cells is 

K = 

∞ ⋃ 

k =1 

K 

k (1)

Given a cubical cell σ in R 

k , its embedding number k is denoted

by emb σ . The dimension of σ is defined as the number of unitary

intervals in its expression as product of intervals and is denoted

by dim σ . The set of all elementary cubes with dimension p is de-

noted by K p . The set of all elementary cubes in R 

k with dimension

p is denoted by K 

k 
p . Whenever the dimension of a cubical cell re-

quire to be made explicit, it is denoted as a superscript between

parenthesis. Therefore, dim σ (p) = p. We also explicitly indicate the

dimension of a cell σ ( p ) writing that σ is a p -cell. 

The closure 1 of a cubical cell can be decomposed into the union

of lower-dimensional cubical cells. If δ and σ are two cubical cells

in R 

k of any dimension and δ ⊂ σ , then δ is a face of σ and is

denoted as δ ≤ σ . If δ is a face of σ and δ � = σ , then δ is a proper

face of σ , denoted as δ < σ . If δ is a face of σ and dim δ = dim σ −
1 Given a set A ⊂ R 
k , its closure is A = { p ∈ R k : ∀ ε > 0 ∃ q ∈ A | d(p, q ) > ε} . Infor- 

mally, the closure of a set is the set itself together with the points that are “in- 

finitely” near to the set. 

i  

a

 then δ is a primary face of σ , denoted by δ ∈ ∂σ . Therefore, the

et of primary faces of a cell σ will be denoted as ∂σ
As an example, let σ be the open square (0, 1) × (3, 4), a 2-

imensional cubical cell in R 

2 . Its closure is the square σ = [0 , 1] ×
3 , 4] and is decomposed as follows 

0 , 1] × [3 , 4] = (0 , 1) × (3 , 4) ∪ 

(0 , 1) × (3) ∪ (0 , 1) × (4) ∪ 

(0) × (3 , 4) ∪ (1) × (3 , 4) ∪ 

(0) × (3) ∪ (0) × (4) ∪ 

(1) × (3) ∪ (1) × (4) 

amely, the interior of the square, its four edges and its four ver-

ices. The set of primary faces is given by 

(0 , 1) × (3 , 4) = { (0 , 1) × (3) , (0 , 1) × (4) , (0) 

× (3 , 4) , (1) × (3 , 4) } 
A cubical complex is a collection K of cubical cells with the same

mbedding number and such that, for every cubical cell σ ∈ K , all

f its primary faces are in the complex. We denote the set of p -

ells in K as K p . In Fig. 1 a cubical complex in R 

2 is showed. 

As usual, we define the chain complex C ( K ) as the graded Z -

odule { C p (K) } p∈ Z where C p ( K ) is the free abelian Z -module gen-

rated by the cubical p -cells in K . Namely, a p -chain is a sum of

ells multiplied by some integer number. The boundary map d in

he chain complex is defined in [12] . For any cubical cell σ , d σ is

n alternating sum over its faces and such that d ◦ d = 0 . As usual,

et Z p = ker d p the subgroup of cycles and B p = Im d p+1 the sub-

roup of boundaries . The p th cubical homology group of K is the

uotient subgroup 

 p (K) = 

Z p K 

B p (K) 

amely, a chain is a generator of homology if it is a cycle (has no

oundary) and is not the boundary of any other cycle. The cubical

omology of K is the collection H ∗(K) = { H p (K) } p∈ Z . Recall that, for

 < 0 or p > dim K, is H p (K) = 0 . 

The cubical complex in Fig. 1 has homology groups given by: 

 0 (K) ≡ Z , H 1 (K) ≡ Z , H n (K) ≡ 0 for n �∈ { 0 , 1 } 
or a review in some algorithms for calculating homology groups,

nterested readers would read Chapter 3 in [12] . 

As an example, the chain 

(4) × (0 , 1) − (3) × (0 , 1) + (3 , 4) × (0) − (3 , 4) × (1) 

s a cycle but it is not a generator of homology as it is the bound-

ry of (3, 4) × (0, 1). 
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Fig. 2. Vector field V 0 in K 0 . 
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On the other hand, the chain 

(0 , 1) × (1) + (1 , 2) × 1 + (2) × (1 , 2) + (2) × (2 , 3) 

− (1 , 2) × (3) − (0 , 1) × (3) − (0) × (2 , 3) − (0) × (1 , 2) 

s a cycle and is not the boundary of any other chain, as it would

e the boundary of 

(0 , 1) × (1 , 2) + (1 , 2) × (1 , 2) + (0 , 1) × (2 , 3) + (1 , 2) × (2 , 3) 

nd this chain are not in C 2 ( K ) because its cells do not belong to

 . 

.1. Discrete Morse theory 

We need to recall now notions and results of discrete Morse

heory. A real-valued smooth map defined over a compact k -

anifold is a Morse function if all its critical points have non-

ingular Hessian matrix and no two critical points have the same

unction value [11] . Morse functions allow to endow the manifold

ith a cellular structure. 

A CW complex is, roughly speaking, a topological space en-

owed with a decomposition into smaller pieces called cells, be-

ng homeomorphic to Euclidean spheres. A formal definition can

e found in [7] . 

Discrete Morse theory introduced by Forman [7] adapts Morse

heory to CW complexes instead of smooth manifolds. Although

iscrete Morse theory has been developed for finite regular CW

omplexes, we restrict our research to finite cubical complexes,

hich are a particular type of CW complexes. 

Let K be a cubical complex and f : K → R a function that as-

igns scalar values to every cell of K . f is a discrete Morse function

f, for every cubical cell σ ( p ) ∈ K the following conditions hold: 

• # { τ (p+1) ∈ K| τ > σ ∧ f (τ ) ≤ f (σ ) } ≤ 1 . I.e., there is at most

one facet 2 of σ where f takes in it a lower value than it does

on σ . 

• # { μ(p−1) ∈ K| μ < σ ∧ f (τ ) ≥ f (σ ) } ≤ 1 . I.e., there is at most

one face of σ where f takes in it a greater value than it does

on σ . 

where # A denotes de number of elements of the (finite) set A . 

A discrete Morse function f can be thought as a discrete func-

ion that is increasing with respect to cell dimension except for, at

ost, two cells for each cell. Concretely, for each cell σ there is at

ost one face μ ( μ ∈ ∂σ ) with f ( μ) ≥ f ( σ ) and there is at most

ne facet τ ( σ ∈ ∂τ ) with f ( τ ) ≤ f ( σ ). 

A cubical cell σ ( p ) is critical if one of the following conditions

old: 

• # { τ (p+1) ∈ K| τ > σ ∧ f (τ ) ≤ f (σ ) } = 0 

• # { μ(p−1) ∈ K| μ < σ ∧ f (τ ) ≥ f (σ ) } = 0 

Given a cubical cell σ its barycenter is the point 

(σ ) = 

(
inf I 1 (σ ) + sup I 1 (σ ) 

2 

, . . . , 
inf I k (σ ) + sup I k (σ ) 

2 

)
s the closure of a cubical cell is convex, its barycenter is an inte-

ior point. 

We define a discrete vector as a pair of incident cells { σ (p) <
(p+1) } . Vectors are represented as arrows from the barycenter of

he lower dimension cell to barycenter of the higher dimension

ell. A discrete vector field V on K is a collection of vectors in K

uch that each cubical cell in the vector belongs to, at most, one

air of V . 

Formally, a discrete vector field is a map V : K → K ∪ {0} such

hat: 
2 A cell with σ in its boundary. 

s

p

1. for each σ ∈ K , if V ( σ ) � = 0 then dim V (σ ) = dim σ + 1 

2. for each σ ∈ K p , either V (σ ) = 0 or σ ∈ ∂V ( σ ) 

3. if σ ∈ Im (V ) then V (σ ) = 0 

4. for each σ ∈ K p 

# { μ(p−1) ∈ K| V (μ) = σ } ≤ 1 

In Fig. 2 , a vector field (red arrows) in the cubical complex in

ig. 1 is showed. 

Given a discrete vector field V on K , a V-path of dimension p , γ ,

s a sequence of cubical p -cells σ0 , σ1 , σ2 , . . . , σr such that 

1. If V (σi ) = 0 , then σi +1 = σi . 

2. If V ( σ i ) � = 0, then σi +1 < V (σi ) with σi +1 � = σi . 

The set of V -paths is denoted as �( V ). 

For example, γ = (0) × (0) , (0) × (1) , (0) × (2) , (0) × (3) is a

 -path of dimension 0, where V is the vector field in Fig. 2 . 

A V -path γ = σ0 , σ1 , . . . , σr is called closed is σr = σ0 and is

alled non-stationary if σ 1 � = σ 0 . A vector field V is called acyclic

f there is no non-stationary closed V -paths. As an example, the

ector field in Fig. 2 is, indeed, an acyclic vector field. 

Given a discrete Morse function, a special discrete vector field

alled discrete gradient vector field is defined so that f ( V ( σ )) ≤ f ( σ ).

s shown in [7] , a cubical complex can be transformed into an-

ther homotopically equivalent following a series of simplicial col-

apses 3 , where each of them collapses both cubical cells in each

ector in the corresponding discrete gradient vector field. 

Recall that vectors give some kind of dynamic to the cells.

amely, one can (imaginary )move from one cell σ to another one

if μ ∈ ∂V ( σ ). In the previous example, one can move from cell

0) × (0) to (0) × (1) as V ( (0) × (0) ) = (0) × (0 , 1) and (0) × (1)

s in the boundary of the later. 

We recall here one of the main results of discrete Morse theory.

heorem 2.1 [7] 9.3 . A discrete vector field V is the gradient vector

eld of some discrete Morse function if and only if there are no non-

tationary closed V-paths. 

A vector field V is extended to a graded group homomorphism

 : C p (K) → C p+1 (K) such that 

 (σ (p) ) = 

{
±τ (p+1) if { σ < τ } is a vector in V 

0 otherwise 
(2) 

here the sign is chosen so that 〈 σ, ∂V (σ ) 〉 = +1 . 
3 In [7] , Forman works with simplicial complexes, however the mathematical 

caffolding provided by DMT can be settled with no change to finite cubical com- 

lexes. 
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The reduced (discrete time) flow map , denoted as ϕ is defined by

ϕ = id −∂ ◦ V (3)

The reduced flow map associates a (p + 1) -chain ϕ( σ ) to any

p -cell σ , such that ∂ V (σ ) = σ − ϕ (σ ) . Hence, 〈 σ, ϕ (σ ) 〉 = 0 . The

map ϕ establishes a way of following the flow determined by the

vector field. Concretely, if there is a V -path of length r from a p -

cell σ to another p -cell σ ′ , then 〈 ϕ 

r ( σ ), σ ′ 〉 � = 0. This fact can be

proved by induction in the length of the V -path. 

Please note that the reduced flow map encodes the dynamic

idea presented before. If a cell μ is present in the chain ϕ( σ ), then

σ , μ is a valid V -path. 

Definition 2.2. Let K be a cubical complex and f be a Morse

discrete function on K . Let C p ( K ) denote the p -chains on K and

M p ⊆C p ( K ) the span 

4 of the critical p -cells. The graded group M =
{ M p } p∈ Z is called the space of Morse chains. 

In [7] , Forman makes use of the set of V -paths to build the

boundary map of the Morse complex associated to a given com-

plex and an acyclic vector field. It is shown in the following result.

Theorem 2.3 [7] 7.1 . There are boundary maps d M 

: M ∗ → M ∗−1 so

that 

d M 

◦ d M 

= 0 

and such that the differential complex 

0 

( d M ) k +1 −−−−→ M k 

( d M ) k −−−→ M k −1 

( d M ) k −1 −−−−→ · · · ( d M ) 2 −−−→ M 1 
( d M ) 1 −−−→ M 0 

( d M ) 0 −−−→ 0 

calculates de homology of K. That is, if we define 

H p (M, d M 

) = 

ker ( d M 

) p 
Im ( d M 

) p+1 

then, for each p 

H p (M, d M 

) ≡ H p (K) . 

2.2. From DMT to effective homology 

Our modus operandi for not only reaching homology torsion in-

formation but also for fully control it is to translate DMT to an al-

gebraic context of chain contractions. 

Definition 2.4 [6] . Given two chain complexes C ∗ = { C q , d q } and

 

′ ∗ = { C ′ q , d 

′ 
q } , a chain map f is a family of homomorphisms { f q :

 q → C ′ q } such that d 

′ 
q ◦ f q = f q −1 ◦ d q . 

A chain contraction from C ∗ to C ′ ∗ is a triple ( π , ι, φ) of chain

maps π : C ∗ → C ′ ∗ (projection), ι : C ′ ∗ → C ∗ (inclusion) and φ : C ∗ →
 ∗+1 (chain homotopy or integral operator) that satisfy the follow-

ing conditions: 

(a) id C −ι ◦ π = d ◦ φ + φ ◦ d 

(b) π ◦ ι = id C ′ 
(c) π ◦ φ = 0 

(d) φ ◦ ι = 0 

(e) φ ◦ φ = 0 

This is a classical notion in homological algebra and algebraic

topology: see e.g. Section 12 of [6] and comments on the termi-

nology and applications in [9] , p.86. Note that because of the con-

dition (a), if there exists a chain contraction from C ∗ to C ′ ∗ then

their homology modules are isomorphic. 

Given two chain contractions (π1 , ι1 , φ1 ) : C 
1 ∗ → C 2 ∗ and (π2 , ι2 ,

φ2 ) : C 
2 ∗ → C 3 ∗ , the composition 

(π, ι, φ) = (π2 , ι2 , φ2 ) ◦ (π1 , ι1 , φ1 ) : C 
1 
∗ → C 3 ∗
4 Linear combinations of the critical cells. A
s given by: 

= π2 ◦ π1 (4)

= ι1 ◦ ι2 (5)

= φ1 + ι1 ◦ φ2 ◦ π1 (6)

In the proof of Theorem 7.3 in [7] , the argument used to

emonstrate that the homology groups of a cell complex and its

orse complex are isomorphic consists in the creation of a chain

ontraction from the chain complex (associated to the initial cell

omplex) to the Morse complex (associated to a given acyclic vec-

or field V ). This chain contraction is explicitly given by: 

= 

( 

V ◦
N ∑ 

p=0 

ϕ 

p 

) 

: C ∗ → C ∗+1 (7)

= 

[
( id C −d ◦ φ − φ ◦ d ) · χcrit V 

]
: C ∗ → M ∗ (8)

= ( id C −d C ◦ φ − φ ◦ d C ) : M ∗ → C ∗ (9)

here N is a non negative integer number such that, ∀ n > N : V ◦
 

n = 0 and χcrit V 
is the characteristic function 

5 of critical cells of

 extended by linearity to the chain complex. Recall that the set

f critical p -chains M p is a subset of the set of chains C p for any

p ∈ Z . 

Please note that the Morse complex is the set of critical chains

ndowed with the Morse differential given by 

 M 

= π ◦ d C ◦ ι (10)

The classical method for calculating the homology of a cell

omplex involves reducing the matrices of the differential mor-

hisms to its Smith normal form, which consists in finding

wo bases which respect to them the matrix of the differen-

ial is 0 outside the main diagonal and the main diagonal is

 11 | a 22 | . . . | a pp , 0 , . . . , 0 where | means “divides to” and a ii � = 0. The

ater matrix is called the Smith normal form of the differential and

s represented as SNF for short. 

efinition 2.5 (AM Model, [9] ) . An algebraic minimal model , or an

M model for short, of a cell complex K is a chain contraction from

 

∗ ( K ) to a chain complex ( M , d 

′ ) such that each M p is a free Z -

odule and all the non-zero elements in the SNF of each d q are

on-invertible. 

Recall that, in Z the only invertible elements are ± 1. 

An AM model exists for every cell complex, and any two AM

odels for the same complex are isomorphic. An algorithm com-

uting an AM-model for a given cell complex is designed in [9] . An

fficient sequential implementation of an AT-model and AM-model

or a given cubical complex is shown in [16] . 

. Algorithm 

Our algorithm consists on several stages. All of them are pre-

ented below. 

tage 1 Build the cubical complex associated to the foreground of

a binary image. Recall that a binary image can be repre-

sented as a function I : Z 

k 
n → { 0 , 1 } . The cubical complex

is built using the following fact: 

A cell (a 1 , b 1 ) × (a 2 , b 2 ) × · · · × (a k , b k ) with 0 ≤ b i − a i ≤ 1

is in the cell complex if and only if 

{ a 1 , b 1 } × { a 2 , b 2 } × · · · × { a k , b k } ⊆ I −1 (1) 

Namely, all the vertices in the cubical cell belongs to

points in the image (usually represented as black pixels). 
5 The characteristic function χA of a given set A is the function that values 1 in 

 and 0 outside. 
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This step can be executed in parallel in one computation

step. Concretely, all the possible cells in the cell complex,

which is finite like the source image, are all checked at the

same time. 

lgorithm 1 Acyclic cubical vector field for a cubical complex. 

1: function AcyclicCubicalVectorField ( K) 

2: V ← ( 0 : Z [ K ∗] → Z [ K ∗+1 ] ) 
3: for p ← n, 1 do 

4: for all σ ∈ K parallel do 

5: τ ← σ � �
 e p 

6: if τ � = σ ∧ τ ∈ K then 

7: q ← dim σ
8: dom σ ← 

∑ 

μ∈ K q +1 
| V q [ μ, σ ] | 

9: dom τ ← 

∑ 

μ∈ K q +2 

∣∣V q +1 [ μ, τ ] 
∣∣

10: img σ ← 

∑ 

μ∈ K q | V q [ σ, μ] | 
11: img τ ← 

∑ 

μ∈ K q +1 

∣∣V q +1 [ τ, μ] 
∣∣

12: if d om σ + d om τ + img σ + img τ = 0 then 

13: V q (σ ) ← 〈 σ, d(τ ) 〉 τ
14: end if 

15: end if 

16: end for 

17: end for 

18: return V 

19: end function 

tage 2 Create an acyclic vector field V within the cubical com-

plex K . This stage finishes in emb K parallel steps. See

Algorithm 1 . This stage is the only one requiring that K

needs to be a cubical complex. If other kind of cell com-

plex is given, e.g. simplicial or CW, the construction of the

acyclic vector field is the only step to be changed. The rest

of the stages remain unchanged as they do not depend

on the geometry of the cell complex but on its associated

chain complex, which is an algebraic object. 

tage 3 Calculate the chain contraction ( πV , ιV , φV ): C ( K ) → M V ( K )

associated to the vector field V . This stage requires, at

most, � log 2 λV � steps (where λV is the length of the

longest V -path). 

tage 4 Create another acyclic vector field in the Morse complex

of the previous vector field. 

tage 5 Repeat the two previous stages until the differential of the

Morse complex associated to the simplified vector field

has no invertible elements in its matrix. 

tage 6 If the Morse complex of the last reduced vector field has

some non zero element in its matrix representation, calcu-

late the AM-model for it. 

tage 7 Compose all the chain contractions associated to the vec-

tor fields previously calculated. This composition repre-

sents, in fact, an effective homology of cubical complex K . 

.1. Acyclic vector field on a cubical complex 

Let K be a cubical complex. We suppose, without loose of gener-

lity, that there exists a non negative integer n , such that for every

ell σ in K 

 ≤ inf I p (σ ) ≤ sup I p (σ ) < n (1 ≤ p ≤ emb K) (11)

Let � e p denote the p th vector in the orthonormal canonical base

f R 

emb K . We define the right shift of a cell σ = I 1 × I 2 × · · · × I emb K 

y σ � �
 e p = I ′ 1 × I ′ 2 × · · · × I ′ 

emb K 
where 

 

′ 
k = 

{
( inf I p , 1 + inf I p ) if k = p ∧ inf I p = sup I p 

I k otherwise 
For example, (1 , 2) × (2 , 3) × (2) � �
 e 2 = (1 , 2) × (2 , 3) × (2) as

he second interval is non degenerated, and (1 , 2) × (2 , 3) × (2) �

  3 = (1 , 2) × (2 , 3) × (2 , 3) . Roughly speaking, shifting a cell in

 (principal) direction consists on extending the cell along this

irection. 

Recall that Z [ A ] is the free Z -module with basis the elements

f the set A and V [ μ, σ ] is the coefficient of the chain V ( σ ) cor-

esponding to cell μ. Please note that, essentially, a morphism be-

ween two free modules can be represented as a matrix, hence the

ater notation gives direct access to the elements of that matrix. 

The Algorithm 1 works as follows. In line 2 a null chain map

f degree +1 is created. The “for” loop in line 3 sequentially iter-

tes over the vectors belonging to the canonical orthonormal base

or the embedding space of the cubical complex. The parallel “for”

n line 4 iterates in parallel over all the cells in the cubical com-

lex. In this situation, at most at theoretical level, the algorithm

ill treat every cell at the same time. In line 5 the right shift of

very cell along the current vector in the canonical base is com-

uted. The condition at line 6 ensures that the shift is well de-

ned (i.e., it returns a facet inside the cubical complex). In lines 8

hrough 11, we calculate if σ or τ belongs to the domain or the

mage of the (previously calculated) vector field. The condition at

ine 12 ensures that the vector field is well defined, i.e. every cell

elongs, at most, to only one vector in the vector field. Finally, line

3 creates the corresponding vector with the correct sign. Recall

hat the incidence of σ in V ( σ ) is the same as the incidence of σ
n τ . 

Recall that all the vectors in the vector field follow one of the

ositive directions in the canonical orthonormal base in R 

emb K .

his ensures that the vector field is acyclic as we avoid the pos-

ibility of turning back and, hence, preventing the generation of

ycles. 

The vector field showed in Fig. 2 is computed using

lgorithm 1 . 

.2. Chain contraction from vector field 

Let V be an acyclic vector field over a chain complex ( C ∗ ,

 

∗ ). We will compute the chain contraction associated to V de-

ned in 2.2 using Algorithm 2 , whose correctness is based on the

roposition 3.1 . 

lgorithm 2 Chain contraction associated to an acyclic vector

eld. 

1: function ChainContraction ( V ) 

2: ϕ ← id − d ◦ V 

3: S ← id + ϕ 

4: P ← ϕ 

5: while V ◦ P � = 0 do 

6: S ← (S − id ) ◦ (P + id ) + id 

7: P ← P ◦ P 

8: end while 

9: φ ← V ◦ S 

10: π ← id − d ◦ φ − φ ◦ d 

11: ι ← ( id : Crit ∗ → C ∗) 
� Crit p is the spanning of critical p-cells

12: return (π, ι, φ) 

13: end function 

roposition 3.1. Let ϕ be the reduced flow of an acyclic vector field

n a chain complex ( C ∗ , d 

∗ ) . The integral operator φ = 

∑ 

q ≥0 ( V ◦ ϕ 

q )

an be calculated as φ = V ◦ S (N) for N higher enough, where 

 

(m ) = 

2 m ∑ 

q =0 

ϕ 

q (12) 
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Algorithm 3 Vector field simplification. 

1: function SimplifiedVectorField ( V ) 

2: V ′ ← V 

3: h ← ϕ · χdomV 

4: t ← h 

5: M ← MorseComplex (V ) 

6: while V ◦ t � = 0 do 

7: h ← ( id C + t) ◦ h 

8: t ← t ◦ t 

9: end while 

10: for τ ∈ K(M) do 

11: for σ ∈ ∂ M 

(τ ) do 

12: P C ← 

∑ 

μ∈ ∂ C (τ ) 〈 h (μ) , σ 〉 
13: if P C = 1 ∧ |〈 d M 

(τ ) , σ 〉| = 1 ∧ IsCritical (V ′ , σ ) ∧ 

IsCritical (V ′ , τ ) then 

14: V ′ (σ ) ← τ
15: end if 

16: end for 

17: end for 

18: return V ′ 
19: end function 

Fig. 3. Reduced flow ϕ 0 for V 0 . 

Fig. 4. Morse complex M 1 . 

n  

c

 

b  
Furthermore, a “logarithmic” way of calculating φ is given by the

following recursive equation: {
S (0) = id + ϕ 

S (m +1) = (S (m ) − id ) ◦ (ϕ 

2 m + id ) + id 

(13)

Proof. Let N 

′ be an integer satisfying Theorem 7.2 in [7] . Then, for

all m ≥ N 

′ , is ∑ m 

q =0 ( V ◦ ϕ 

q ) = 

∑ N ′ 
q =0 ( V ◦ ϕ 

q ) . 

Furthermore, it is straightforward to prove that 

S (m +1) = S (m ) + ϕ 

2 m ◦ (S (m ) − id ) = (S (m ) −id ) ◦ (ϕ 

2 m + id ) + id 

Last equation allows us to calculate φ in logarithmic time with

respect to the number of summands. It is enough to take N =
� log 2 (N 

′ ) � . �

The geometric–combinatorial approach of Forman to Morse the-

ory using acyclic vector fields, allows us to represent the vector

field as arrows and the flow of the vector field as “path” of cells

following those arrows. This point of view ensures that the max-

imum number of summands in the ordinary expression of φ is,

at most, the length of the longest V -path. Hence, previous result

leads us to ensure that the integral operator can be calculated in

� log 2 ( λ) � iterations where λ is the length of the longest V -path. 

3.3. Vector field simplification 

The acyclic vector field built in Algorithm 1 is far from being

combinatorially optimal 6 . In this stage we follow the reasoning in

Section 11 of [7] and Section 9 of [8] . Both sections are devoted to

the simplification of a given acyclic vector field in order to reduce

the amount of critical cells. 

Theorem 3.2 (11.1 [8] ) . Suppose f is a discrete Morse function on K

such that β(p+1) and α( p ) are critical, and there is exactly one gradi-

ent path from the boundary β to α. 

Then there is another Morse function g on K with the same critical

cells except that α and β are no longer critical. Moreover, the gradient

vector field associated to g is equal to the gradient vector field associ-

ated to f except along the unique gradient path from the boundary β
to α. 

Recall that domV = { c ∈ C ∗ : V (c) � = 0 } and χA is the character-

istic function of the set A , i.e. 

χA (x ) = 

{
1 if x ∈ A 

0 if x �∈ A 

Note also that function IsCritical ( V , σ ) returns true whenever σ is

a critical cell in V . 

The validation of Algorithm 3 relies on the following observa-

tion: condition at line 13 checks if there is only one V -path from

the boundary of a critical cell τ to another critical cell σ . This in-

struction is in agreement with Theorem 3.2 . Please note that loop

at line 6 computes the sum of powers of h , and h can be consid-

ered as the adjacency matrix of the graph whose vertices are cells

of the cell complex and whose edges are determined by the fol-

lowing relation: there is an edge between two different nodes σ
and σ ′ if and only if 〈 σ ′ , ϕ( σ ) 〉 � = 0. 

4. Example 

In this section we present a simple example to illustrate the

behavior of the previous set of algorithms. Let us start with the

cubical complex K 0 in Fig. 1 in page 2. Algorithm 1 computes an

acyclic vector field V 0 in K 0 as showed in Fig. 2 in page 3. Please
6 Recall that an acyclic vector field is combinatorially optimal if there is no other 

acyclic vector field with less critical cells. 

0  

I  

C  

d

ote how the vectors follow the positive directions provided by the

anonical orthonormal basis. 

An useful way of describing the dynamic of the vector field is

y its reduced flow ϕ. This fact is illustrated in Fig. 3 , where only

-cells and 1-cells are represented, as 2-cells have no facets in R 

2 .

n this figure we represents cells as vertices of a directed graph.

ritical cells (2) × (3), (5) × (3), (0, 1) × (1) and (2, 3) × (2) are

istinguished. 
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−1 0 0 0 0 0 0 0 0 0 0 

0 −1 0 0 0 0 0 0 0 0 0 

0 0 −1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 −1 0 0 0 0 0 0 0 

0 0 0 0 −1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 −1 0 0 0 0 0 

0 0 0 0 0 0 −1 0 0 0 0 

0 0 0 0 0 0 0 −1 0 0 0 

0 0 0 0 0 0 0 0 −1 0 0 

0 0 0 0 0 0 0 0 0 −1 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

epresents the homomorphism ϕ 0 . 

The Morse complex K 1 associated to V 0 is presented in Fig. 4 ,

here both critical 0-cells and both critical 1-cells are shown. This

gure also shows that the cell in K 1 corresponding to (0, 1) × (1)

epresents a cycle which is not a boundary (an homology genera-

or representative) and the cell corresponding to (2, 3) × (2) has

oundary given by (5) × (3) − (2) × (3) . 

Therefore, we have some entries in the differential 7 of the

orse complex that are invertible in Z and we must simplify the

ector field. The result is illustrated in Fig. 5 . 

The final complex which combinatorially represents the homol-

gy of K 0 is given by K 2 , the Morse complex of V 1 and is showed

n Fig. 6 , where we can see the expected result: one generator for

 0 (the only connected component) and one generator for H 1 (the

nly hole). 

Finally, in Fig. 7 the composition of the corresponding chain

ontractions is represented as an optimized acyclic vector field in

 0 . 

. Conclusions and further work 

In this paper, the bio-inspired theoretical framework of [18] is

ptimized in order to be implemented using GPGPU computing.

aking as input a ROI K of a pre-segmented k -D digital image,

he final output of this effective homological approach of discrete

orse theory is an AM-model for a cubical complex version of

he ROI. To efficiently compute advanced topological information

both homological and homotopical) from this AM-model is pos-

ible thanks to its parallel algebraic (as a chain contraction) and
7 Concretely, the matrix of the differential (d K 1 ) 1 is ( 0 −1 
0 1 ) 
0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 

−1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 −1 0 0 0 0 0 0 0 0 

0 0 −1 0 0 0 0 0 0 0 

0 0 0 −1 0 0 0 0 0 0 

0 0 0 0 −1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 −1 0 0 0 0 

0 0 0 0 0 0 −1 0 0 0 

0 0 0 0 0 0 0 −1 0 0 

0 0 0 0 0 0 0 0 −1 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

ombinatorial (as an acyclic vector field) encoding. Effective ho-

ology encodings of digital objects allows to describe the global

opology phenomenology of them in terms of homology generators

nd relations between them [2] . 

In fact, such AM-model representations shows how the original

igital object can be algebraically transformed into a simpler one.

his last cell complex presents one cell for each torsion-free ho-

ology generator and two cells for each homology torsion genera-

or. AM-models also allow to efficiently answer to any decision or

lassification problem for a sum of k -xels at (co)boundary, (co)cycle

r (co)homology level. 
Fig. 5. Simplified vector field V 1 in K 1 . 
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Fig. 6. Morse complex M 2 combinatorially representing the homology of K 0 . 

Fig. 7. Optimized acyclic vector field in K 0 . 
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The algorithm presented here can be used in many image pro-

cessing applications that involves counting or identifying holes at

any dimension . For example, counting cavities in trabecular bone

can be used as a measure of osteoporosis level (see [23] ), or topo-

logical trees or region-adjacency-graphs are used for segmentation

of skin lesions in dermatoscopic images (see [4] ). 

An implementation of this algorithmic theoretical study have

already been done using Python and NVidia CUDA (see [17] for

source code). However, the memory consumption grows exponen-

tially with image dimension, enormously limiting the computation

power of the software. 

In a near future, some algorithms must be developed in or-

der to break the original image in smaller pieces and, after com-
uting an AM-model for every piece, appropriately “glue” all that

nformation for calculating an AM-model of the whole original

mage. 
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