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Abstract

There exist several algorithms for computing the homology groups of finite simplicial com-
plexes (for instance, [Mun84], [DE95, ELZ00] and [DG98]), but concerning the algorithmic treat-
ment of the cohomology ring or cohomology operations, very little is known. In this paper, we
establish a version of the incremental algorithm given in [ELZ00] for computing the homology,
which saves additional algebraic information, allowing us the computation of the cup product and
primary and secondary cohomology operations on the cohomology of a finite simplicial complex.
Our algorithmic approach makes possible to consider the cup product as an efficient computa-
tional tool for distinguishing non—homotopy equivalent objects. The computational complexity
of this process is also studied.

1 Introduction

A simplicial complex is a well-known discrete model of a geometric object, which consists of a
collection of simplices that fit together in a natural way to form the object. In order to classify
simplicial complexes from a topological point of view, a first algebraic invariant that can be used is
the homology, which in some sense, counts the number of holes of a given simplicial complex.

Two relevant algorithms for computing the homology groups H,K of a simplicial complex K
must be cited: (1) the classical algorithm based on reducing certain matrices to their Smith normal
form [Mun84]; (2) the incremental algorithm [DE95, ELZ00, EZ01], consisting of assembling the
complex, simplex by simplex and at each step updates the Betti numbers of the current complex.
Starting with the boundary of a negative simplex, this persistence process finds the cycle which is
destroyed by this simplex through the search, computing in this way the geometric realization of a
homology cycle. It runs in time at most O(m?), where m is the number of simplices of the complex.
For simplicial complexes embedding in R3, this complexity is reduced to O(m) in time and space
[DE95]. The algorithm proposed in [DG98] is based on simulating a thickening of a given complex
in R? to a topological 3-manifold homotopy equivalent to it, and computing the homology groups
of the last one using classical results. The time and space complexity is linear and this method also
produces representations of generators of the homology groups.

In general, computing the homology is not enough for determining whether two simplicial com-
plexes are homotopy equivalent or not. Finer algebraic invariants such as cohomology (an algebraic
dual notion to homology), the cup product on cohomology or cohomology operations [Spa81], allow
us to topologically distinguish two geometric objects having isomorphic homology groups. For ex-
ample, a torus and the wedge product of a sphere and two circumferences have the same homology
but the respective cohomology rings are “essentially” different [Mun84, c. 5]. Using a field as the
coefficient group, the cohomology H*K of a simplicial complex K gives us the same topological

*Partially supported by the PAICYT research project FQM-296 from Junta de Andalucia and the DGESIC research
project PB98-1621-C02-02 from Education and Science Ministry (Spain). Web address: http://www.us.es/gtocoma



information as the homology of it. However, neither the additional ring structure on the cohomol-
ogy determined by the cup product, nor cohomology operations can directly be produced from the
algorithms previously mentioned for computing homology.

For addressing this question, the key idea is the construction of an explicit chain contraction (a
special chain equivalence) connecting the chain complex C, K, canonically associated to a simplicial
complex K and its homology H,.K. In [GRO1], a translation of the classical matrix algorithm (1) in
terms of chain contractions is designed. We give here a version of the incremental method described
in [ELZ00] in terms of chain contractions. The complexity of our method is also O(m?) where m is
the number of simplices of K, but our algorithm saves information which allows us to compute not
only the representations of (co)homology generators but also the following computations:

1. The (co)homology class of a (co)cycle in terms of (co)homology generators in O(m?).

2. The construction of a (co)boundary of a given (co)cycle in O(m?).

3. The induced homomorphism at (co)homology level of a simplicial map between two complexes.
4. The cohomology ring of K in O(m?).

5. Cohomology operations such as the Steenrod square operation S¢'cy, in O(i"~"Tlm) (see
[GR99]); or the Adem secondary cohomology operation ¥y on a cohomology class as €
KerSq*?H'K in O(m®) (see [GRO2D]).

In this paper, we only deal with the problem of the computation of the cup product on cohomology;
Roughly speaking, our algorithmic approach allows us to consider the cohomology ring as an efficient
computational tool for distinguishing non-homotopy equivalent objects. Observe that the difficulty
for doing this is not the computation of the multiplication tables of the rings, the problem is that
one cannot, in general, by examining the multiplication tables, determine at once whether or not the
rings are isomorphic. We partially solve this problem computing the first non—null homology group
of the simplicial bar construction [McL75] of the cohomology ring of a given simplicial complex.

2 Homology and Chain Contractions

In this section, we design a version of the incremental algorithm given in [ELZ00] in terms of chain
contractions. In this way, a chain contraction from the chain complex canonically associated to a
simplicial complex K to its homology is constructed.

We first give a brief summary of concepts and notations. The terminology follows Munkres
[Mun84]. For the sake of clarity and simplicity, we only define the concepts that are really essential
in this paper.

In the sequel, Zs is the ground ring. A g—simplez o in R"™(where ¢ < n) is the convex hull of g+ 1
affinely independent points {vy, ...,vys}. We denote o = (vy, ...,vy). The dimension of o is |o] = q.
For example, a 0—simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, a 3—simplex
is a tetrahedron, and so on. An i-face of o = (vg, ..., v4) (¢ < ¢) is an i—simplex whose vertices are in
the set {vo,...,vg}. The (¢ — 1)-faces of o are called the facets of o. A simplex is mazimal if it does
not belong to any higher—dimensional simplex. A simplicial complex K is a collection of simplices
such that:

e If 7isaface of 0 € K, then 7 € K.
e Ifo/,c e K,theno'Noce Koro No=10.

Let us note that K can be given by the set of its maximal simplices. All the simplices here have
finite dimension and all the simplicial complexes are finite collections. The dimension of K is



dimK = maz{|o| : o € K}. The set of all the ¢-simplices of K is denoted by K(9). Let K and
L be two simplicial complexes. A map f : K — L guch that whenever (vo, ..., vq) € K then
f(vg), ..., f(vy) are vertices of a simplex of L, is called a vertex map. Let E be a subset of K. Define

E={deK: o <oe€E}
then, the star of E, is the set StE={oc € K: o >0¢' € E} and the link of F is
LkE=StE - StE,

where o/ < o0 means that ¢’ is a face of o.
The chain complex C, K associated to a simplicial complex K is a family {(CyK, 0;)}¢>0 defined
in each dimension g as follows:

e (C,K is the free abelian group generated by the ¢g—simplices of K. An element a = oy +---+0y,
of CyK (0; € K@) is called a g-chain.

e J,: CyK — Cy_1 K called the boundary operator is given by

q
0g(vo, ..., vg) = Z(vg, ey Ujy ey Ug)
i=0
where (v, ...,v4) is a ¢-simplex of K and the hat means that v; is omitted. By linearity, 0,
can be extended to CyK, where it is a homomorphism. Observe that 9,0,+1 = 0.

By abuse of notation, if L is simply a graded set, we define C, L as the family {(CyL,0)},>0 where
CyL is the free abelian group generated by the elements of L of degree (or dimension) ¢ and O :
CyL — Cyi1L is the null map (observe that, in this case, H * L = C,L). A g—chain a is called a
g—cycle if 0a = 0. If a = 0b for some b € Cyy1K then a is called a g-boundary. We denote the
groups of g—cycles and g-boundaries by Z,K and B, K respectively, and define ZgK = CyK. Since
B,K C Z,K, define the gth homology group HyK to be the quotient group Z,K/B,K. Given that
elements of this group are cosets of the form o = a + ByK, where a € Z;K, the coset « is the
homology class in HyK determined by a or a is a representative cycle of a. Let K and L be two
simplicial complexes. A chain map f : C. K — C,L is a family of homomorphisms

{fq: CgK — CyL}g>0

such that 0, f, = f,—10, for all g. Observe that for every vertex map f : K© — L) we can obtain
the corresponding chain map fy : C.K — C.L such that

if f(v;) disti
f#(Uo,...,vq> :{ (f(vo), (7)f(Uq)> :)t}]:e(i)vziselstlnct

Let h,k : C, K — C,L be two chain maps. A chain homotopy from h to k is a family of homomor-
phisms
{¢q : CgK = Cy1L}q>0

such that 0y41¢¢ + pg—10q = hq + kq. A chain contraction [EM52] from C,K to C,L consists of two
chain maps, f: C,K — C,L and g : C,.L — C,K, and a chain equivalence ¢ : C, K — C,11 K from
gf to the identity map 1.,k : Co K — C,K; that is, ¢ satisfies that

lo.x +9f =09+ ¢0. (1)

Moreover, it is required that

fg=1lc.. (2)
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Figure 1: A chain contraction (¢, f,g) from C,K to C,L.

We denote such chain contraction as (¢, f,g) : Cx K = C.L. From (1), it is derived that H,K is
isomorphic to H,L and, from (2), L has fewer or the same number of simplices than K. In this way,
a chain contraction can be seen as an “homological thinning” of the starting object K. It is very
intuitive to know what a contraction is when L is a subset of K. In this case, we can think of f as
the way of partially destroying K to obtain L. On the other hand, the map ¢ can be seen as the way
of reconstructing what we have destroyed. Note that a contraction can be defined between objects
K and L that are not necessary simplicial complexes; for example, they can be simply graded sets.
Moreover, in general, L is not a subset of K. We show two examples of contractions:

()

Contraction to a Vertex.

Let 0 = (vg,...,v4) be a simplex and let K[o] be the simplicial complex whose maximal
simplex is 0. A contraction (¢, f, g) from C,K|[o] to C.{(vo)} determining the acyclicity of the
simplex o, is defined as follows:

— ¢: CyK[o] = Cy11K]o] is given by
#(vo, iy, .., 05,) =0 and ¢(vj,...,v;,) = (vo,vj,,...,v;5,) where 1 < j; <.+ < jp <
q.

— f:CiKo] = C{(vg)} is such that f(v;) = (vg) if 0 <i<¢q and f7 =0 otherwise.

— g: C{(vo)} = C.K]o] is the inclusion.

Edge Contractions.

Conditions under which edge contractions are homeomorphisms appear in [DEGN99]. Here, we
show one property under which edge contractions become, at algebraic level, chain contractions.

Let K be a simplicial complex and let 7 = (a, b) be an edge in K. An edge contraction is given
by the vertex map f: K©® — L = KO — {4 b} U{c} where f(a) = f(b) =c, and f(v) =v
for all v # a, b.

If Lka N Lkb = Lkt then, a chain contraction (¢, fx,g) from C,K to C.L is defined as
follows:

— ¢ : C.K — Cyq1 K is given by ¢(vo, ...,vq,b) = (vo,...,vq,a,b) if (vg,...,vq) € LkT and
¢7 = 0 otherwise.



— f4 is the chain map induced by the vertex map f.
—¢g:C,L — C.K is such that

gr =T V7 & Stc,

w U (a) ifwe Lka,
w U (b) + @ U (a,b) ifwe Lkb— Lkt
glwU{c)) = and w € Lk 7 is a facet of w,
w U (b) ifwe Lkb— Lk

and no facet of w belongs to Lk 7.

2.1 Incremental Homology Algorithm and Chain Contractions

Our algorithm for computing a chain contraction from the chain complex of a simplicial complex
K to its homology is based on the incremental algorithm for computing the persistence of the Betti
numbers developed in [ELZ00].

The input of the algorithm is the sorted set of all the simplices of K, (o1,...,0.,), with the
property that any subset of it, {o1,...,0;}, ¢ < m, is a simplicial complex itself. We call such
an ordering a filter. Initially, we consider that fo; = ¢o; = go; = 0 for 1 < i < m and L = (.
Let (ai,...,qm) and (B1,...,0m) be two sorted sets of symbols. First, let us explain what this
algorithm computes. The key idea of the algorithm is that any time we add a simplex o¢;, then a
class of homology is created or destroyed. If fdo; = 0 then o; “creates” a new class of homology
named ;. Otherwise, fdo; is a sum of classes of homology and, therefore, o; “destroys” one of the
classes of homology involved in the expression fdo;. By convention, we say that o; destroys the
youngest class of homology, that is, the class «j in fdo; with largest index j. The pseudocode of
the algorithm is:

For i=1 to 4=m do
if fdo; =0 then L =L U {w;},
po; = B,
foi=a,
ga; = 0; + ¢0oy;
else let «; be the youngest symbol in fdJo; then L = L — {a;},

a; = o+ foo;,
Bj = o + B + ¢0o;.
Now, we destroy the symbols a,...,qy,51,..., 0, in order to obtain a well-defined contraction

from C,K to C.L:

For 1=1 to 2 =m do
Q; = 0y,

Bi =0.

Let us observe that L is not necessarily a simplicial complex. It is easy to check that (¢, f,g)
is, in fact, a chain contraction from C,.K to C.L, then K and L have isomorphic homology, so
H.K ~ C,L. Therefore, each simplex 7 in L represents a class of homology of H,K. Moreover, the
representative cycle of the class 7 is a = g7 = 7 + ¢07. Let us check that a is in fact a cycle:

Ot +¢ot) = O + 00T = 01 + (9f + 1+ $0)0T = gfOT + $AOT [ since 0T = 0, then |
gfor [ since, by construction, foT = 0, then | = 0.

Given a cycle b, if fb = 0 then b is also a boundary. In order to compute a chain b such that
b= 0l', we can use the relation

b+ gfb= b+ Ogb.



Since 9b = 0 and fb = 0, we have b = O¢b then, b’ = ¢b.

An easy example of the computation of a chain contraction using the algorithm is the following.
Let K be a simplicial complex whose set of maximal simplices is {(1, 3), (1,4), (2,3,4)}. The output
of the algorithm applied on a concrete filter of K is:

K L ¢ f g
v | @ 0 (1) (1)
(4) - (1,4) (1) -
(1,4) | - 0 0 —~
(2) - (2,4) + (1, 4) (1) -
(3) = |23+ 249+ (1,4 (1) -
(2,3) | - 0 0 —~
(2,4) | - 0 0 —
(1,3) | (1,3) 0 (1,3) | (1,3) + (2,3) + (2,4) + (1,4)
(3,4) | - (2,3,4) 0 —
(2,3,4) | — 0 0 —~

Finally, let us analyze the complexity of the algorithm. Let K = {oy,...,0p,} and d = dim K.
Suppose we are in the ith step of the algorithm. In the worst case, the number of simplices involved
in Jo; is fewer or the same than the dimension of o; which is at most d and then, the number of
elements involved in the formulas for fdo; and ¢pdo; is O(dm) = O(m). Since we have to replace
the youngest class of homology in fdo;, the total cost of these operations is O(m?). Therefore, the
total algorithm runs in time at most O(m?). Analogously, for obtaining the representative cycle a
of any class of homology 7, we have to compute 7 + ¢37. So, the cost of this is also O(m?).

3 The Cohomology Ring of a Simplicial Complex

One reason in order to use the cohomology instead of the homology, is that the cohomology has
additional structures, such as the cup product and cohomology operations. If two spaces have
isomorphic (co)homology groups but the behaviour of the ring structure or cohomology operations
is different, then they are not homotopy equivalent. In this section we explain how to compute
the cohomology ring of a simplicial complex K, starting from a chain contraction from C, K to its
homology. Using this information, we design a method for distinguishing non-homotopy equivalent
simplicial complexes. We first need to define more concepts.
The cochain complex associated to K, denoted by C*K, is the family

{(CIK, 0% }4>0,
defined in each dimension ¢ by:
e The group C'K = Hom(CyK;Zy)={c: CyK — Z, cis a homomorphism}.
e The homomorphism 67 : CIK — CIH' K called the coboundary operator given by
dlca = c0yq10
where c € C1K and a € Cyy1 K.

The elements of C?K are called ¢—cochains. Observe that a g-cochain can be defined on K@ and it
is naturally extended by linearity on C,K. Z9K and BYK are the kernel of §7 and the image of 0971,
respectively. The elements of Z9K are called g—cocycles and those in BIK are called g—coboundaries.



The coboundary operator satisfies that 6767~! = 0. The gth cohomology group is defined for each
integer ¢ by
H'K =Z79K/BK .

Taking into account that the ground ring is a field, the homology and cohomology of K are isomor-
phic. Moreover, given a generator of homology, «, of dimension ¢, the corresponding generator of
cohomology o* : HyK — Z> can be defined:

o (o) =1 and a*(f) =0 fora#peHK.

Define the dual of chain maps and chain contractions, in the obvious way. The cohomology of K has
an additional ring structure. Let o« € H'K determined by an i—cocycle ¢ and let § € H/ K determined
by a j—cocycle ¢’ then the cup product of o and 3, a — f3, is the class of cohomology of dimension i+
determined by the (i + j)—cocycle ¢ ~— ¢ defined by (¢ — ')o = (c(vo,...,vi)) - (¢ (vi, ..., vitj)),
where 0 = (vp,...,vi1j) € KU+9) ig such that vy < --+ < viyj. In general, the cup product
is commutative up to a sign. Since the group of coefficients is Zs, the cup product is, in fact,
commutative.

Now, we show how to compute the cohomology ring of K using the chain contraction (¢, f,g)
from C.K to H,K. Let us fix two integers I and J (we suppose I < J, since the cup product is
commutative). Let (o1,...,0,) be a basis for H K, (u1, ..., pq) a basis for HyK and B = (y1,...,7)
a basis for Hy, ;K. For any two integers i and j (where 1 <i <pand 1 < j < gq), we have that

k

of = ui =2 (0] ) = (W5 gve) v -

r=1

In the worst case, we have to do k-m - p-q elementary operations if K has m simplices, consequently,
the cost of this function is O(m?). Notice that the resulting cohomology class o} ~— pj is determined
by the cocycle (o] f) — (u} f). Having computed the multiplication tables of two cohomology rings,
to determine whether or not the rings are isomorphic appears as an extremely difficult task. In order
to avoid this problem, we consider the cup product as a linear operation instead of a bilinear one.
More concretely, for fixed I and J, let V' be the graded set of all the possible pairs (], ,6]*) where
1<i<pandl<j<q. Weimpose that the degrees of the elements of V' are I + J. Then, the cup
product can be seen as a homomorphism —: Cr, ;V — H'*/ K. We express this homomorphism in
a matrix form and the process of diagonalization of such matrix gives us detailed information about
the kernel and image of this operation. Let us show the pseudocode of the algorithm for doing this.
Let P be a set of integers and let v* € H't/ K. We first compute a function called CHANGEBASIS
in order to obtain a simpler expression for the cup product.

CHANGEBASsIS(v, P, B)

R={r|v € B is a summand in ~v};

if R—RNP is non empty then ¢ =min(R— RN P),
Ye=">
P=PuU{‘}.

Now, for computing the cup product of any two classes of dimension [ and J, we do:

cupPropuct(I, J, K)
P={}, cup={};
if I =J then for :=1 to i=p do
for =1 to j=p do
v =o0; — o,
CHANGEBASsIS(v, P, B)

if v #0 then cup = cupU{((i,7),7)};



else for 1t =1 to 1 =p do
for j=1 to j=4¢q do
V= ol = g,
CHANGEBASIS(v, P, B)
if v #0 then cup = cupU{((3,5),7)}:
return (P, cup).

Since the cup product is commutative, in the case I = J, we only have to compute the products
o; ~— o with i < j. Finally, it is easy to see that the complexity of this algorithm is O(mb) if K
has m simplices.

Let us suppose that K and K’ are two simplicial complexes of dimension d with isomorphic
(co)homology groups. The goal now is to find out if K and K’ are not homotopy equivalent. Let
(P1,7,5), cup(1,5,k)) denote the output of cUPPRODUCT(I, J, K), then we simply have to study the
number of elements of P; j k) and P; j g+ for all the possible pairs (I, J):

TESTCUP(I, J, K, K')
For I=1tol=d—1do
for J=1 to J=d—1 do
if [Pyl # [P1,0,k1)| then
return K and K’ are not homotopy equivalent.

An easy example applying of our method is showed. Consider the objects represented in Figure
2. We triangulate both objects (in order to obtain two simplicial complexes K and K’ whose

Figure 2: The object A and the object B.

geometric realizations are homomeomorphic to A and B, respectively), and apply our algorithm
for computing a contraction to their homologies. We obtain that a basis for H, K is ((1), (2,19),
(4,19), (12,29), (14, 29),(1,3,9), (1,3,19), (11,13,29)) and a basis for H. K" is ((21), (2,9), (9, 23),
(12,19), (21,27), (1,3,9), (9,21,23), (11,13,19)). We show in Figure 3 and Figure 4 the geometric
realizations of K and K’, respectively, and the cycles that represent the classes of homology of
dimension 1 (the “tunnels” of A and B). Since both simplicial complexes have dimension 2, we only
have to compute cUPPRODUCT (1,1, K) and cupProDUCT (1,1, K'):

cupPropucr (1,1, K) = ({1,3},{((1,2),(1,3,9) +(1,3,19)),((3,4), (11,13,29)) })
cupProbucr (1,1, K") = ({1,2,3},{((1,4),(1,3,9)),((2,4), (9,2,23)), ((3,4),(11,13,19))})

Since [{1,3}| =2 # 3 = |{1,2,3}|, then A and B are not homotopy equivalent.

In order to obtain more powerful topological invariants derived from the cohomology ring struc-
ture, a basic tool in Algebraic Topology and Homological Algebra could be used: the bar construction
of a ring [McL75]. More concretely, the method developed above can be seen, in fact, as the compu-
tation of the first non—null homology group of the simplicial bar construction of the cohomology ring
of a simplicial complex K. Therefore, the design of algorithms computing the rest of the homology
groups could allow us an adequate generalization of the method.
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Figure 4: A triangulation of B and the cycles representing the tunnels of B.

4 Somme Comments

Let us note that in this paper the ground ring is Z», but the processes described here work as well
if the ground ring is any field.

Apart from allowing the computation of the cohomology ring, another argument for saving a
chain contraction from the chain complex of a given simplicial complex K to its homology is the
possibility of designing algorithms for calculating cohomology operations. A cohomology operation
is a set map O : H"K — H"K. The modus operandi for evaluating a cohomology operation

O : H™K — H"K on a cohomology class o* € H™K is the following:

1. Construct a chain contraction (¢, f, g) from C,K to H,K using our version of the incremental
technique.

2. Evaluate O on the cohomology class o* using the diagram

cng L HmK
ol o
ok L H'K,

where O : C"™K — C™K is a cochain operation associated to O whose formulation is explicitly
given in simplicial terms. Then, for obtaining Oa*, compute O(a* f)g.

For example, a combinatorial description O for O being a Steenrod square, a Steenrod reduced power
[GR99, GR02a] or some Adem secondary cohomology operations [GR01, GR02b] have already been
done by the authors. More concretely, in [GR02b], an algorithm implemented in Mathematica
for computing the Adem secondary cohomology operation Wsas on any cohomology class ag €
KerSq?H'(K;Z>) is explained.

From a practical standpoint, we emphasize that all the algorithms presented here have been
implemented. For the particular case of objects embedded in R?, we have developed a software for



visualizing the homology and the cohomology ring of 3D objects represented as simplicial complexes
obtained from cubical decompositions (more details can be found in [BGLLRO1]).

Finally, in order to get the action of any cohomology operation at cochain level on a representative
cocycle, we have to compute it on a basis for C, K on the desired dimension. In order to improve
the efficiency of the algorithms, we could “topologically” thin the simplicial complex K. We obtain
a “thinned” simplicial complex M;,, K such that there exists a chain contraction from CyK to
Cy(MiopK). Two examples of thinning in this way are edge contractions (example (b) on page 4)
and simplicial collapses [For99]. After doing this, we could apply our machinery to compute the
cohomology ring or cohomology operations on M;,, K and the results could be easily interpreted in
the “big” simplicial complex K via the chain contractions.
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