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A discussion is presented on the role of limited conductivity and permittivity on the behavior of
electrified jets. Under certain conditions, significant departures with respect to the perfect-conductor
limit are to be expected. In addition, an exploration is undertaken concerning the validity of
one-dimensional average models in the description of charged jets. To that end, a temporal linear
modal stability analysis is carried out of poor-conductor viscous liquid jets flowing relatively to a
steady radial electric field. Only axisymmetric perturbations, leading to highest quality aerosols, are
considered. A grounded coaxial electrode is located at variable distance. Most available studies in
the literature are restricted to the perfect-conductor limit, while the present contribution is an
extension to moderate and low electrical conductivity and permittivity jets, in an effort to describe
a situation increasingly prevalent in the sector of small-scale free-surface flows. The influence of the
electrode distanceb, a parametera defined as the ratio of the electric relaxation time scale to the
capillary time scale, and the relative permittivityb on the growth rate has been explored yielding
results on the stability spectrum. In addition, arbitrary viscosity and electrification parameters are
contemplated. In a wide variety of situations, the perfect-conductor limit provides a good
approximation; however, the influence ofa andb on the growth rate and most unstable wavelength
cannot be neglected in the general case. An interfacial boundary layer in the axial velocity profile
occurs in the low-viscosity limit, but this boundary layer tends to disappear whena or b are large
enough. The use of a one-dimensionals1Dd averaged model as an alternative to the 3D approach
provides a helpful shortcut and a complementary insight on the nature of the jet’s perturbative
behavior. Lowest-order 1D approximationssaverage modeld, of widespread application in the
literature of electrified jets, are shown to be inaccurate in low-viscosity imperfect-conductor jets.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1863285g

I. INTRODUCTION

Electrification of free-surface flows is guided by three
principal aims: first, increasing the surface-to-volume ratio
by means of a reduction of the liquid’s apparent surface ten-
sion; second, controlling the stability range of the flow; third,
directing the flow towards a target. Multiple applications de-
rive from these achievements: atomization, particle sorting,
ink jet printing, fuel injection, and fiber spinning. For in-
stance, jet stimulation by electric fields is increasingly used
in a variety of ink jet printing technologies as a method for
charging and steering the ink drops resulting from jet disin-
tegration. Alternatively, continuous deviated ink jet technol-
ogy is based on direct deflection of electrified jets. Electric
charges modulate the jet’s response to electric fields, random
noise, or specific excitation wavelengths. In many applica-
tions, a grounded electrode located at the vicinity of the jet
surface establishes a radial field; the quasielectrostatic pres-
sure jump competes with convective, capillary, and viscous
effects to determine the selected wavelength. Another re-
search field involving electrified jets is electrospinning, a
process in which solid fibers are produced from a polymeric

fluid stream delivered through a millimeter-scale nozzle. Ad-
ditional achievements are presently reported in pharmaceuti-
cal and material sciences. These applications are leading to a
growing interest of researchers in electrified jets. In the
search for diverse applications, poor conductivity liquids are
becoming increasingly attractive, because food and phar-
macy technologies, among others, depend on their efficient
handling.

An important motivation source for the study of electro-
hydrodynamics is the search for high quality sprays from
liquid microjets, eagerly demanded in technological applica-
tions requiring small and homogeneous droplet size. The axi-
symmetric capillary breakupsRayleigh breakupd of small
and steady liquid ligaments into droplets gives rise to con-
trollable monodisperse aerosols, unattainable through other
high-yield processes.

The foundations for the study of conducting jets in a
radial electric field were set by Melcher,1 assuming inviscid
flow and constant electric potential. Saville2 generalized the
analysis for arbitrary viscosity liquids. Huebner and Chu3

studied the stability of a charged jet in the inviscid limit
assuming arbitrary electrode distanceb. Setiawan and
Heister4 extended this description to the nonlinear growth
phase. The influence of the surrounding atmosphere on the
stability of the jet was considered by Baudryet al.5 An el-
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egant overview of the linear stability problem was presented
by García,6 who explored the perturbative spectrum for a
variety of parameters. This work has been recently extended
to ac electric fields by Gonzálezet al.;7 the authors provide
an attractive formulation of the dc problems, whose notation
we follow here.

The electrical behavior of a moving liquid follows from
the ratio of the characteristic hydrodynamic time versus the
electrical relaxation timete,«i /K, where«i and K are the
electrical permittivity and conductivity of the liquid, respec-
tively. In the absence of other forcing agents, the time scale
on which perturbations grow and cause the jet’s breakup is
given by a balance of surface tension and inertia, summed up
by the capillary timetc,srA3/gd1/2, wherer ,g, andA are
the liquid density, surface tension, and the jet radius, respec-
tively. If the ratio te/ tc is strictly zero the liquid can be con-
sidered as a perfect conductor even in the last stages of
pinch-off. In the perfect-conductor limit the calculation of
electrical stresses on the jet surface is simplified since all
charges are interfacial, the external electric field is normal to
it, and the electric field in the jet bulk is zero. In this limit,
provided the breakup is axisymmetric, electrification stabi-
lizes long-wavelength perturbations while destabilizing short
ones.1,8

In the present work we aim to study the stability of elec-
trified liquid jets when the ratiote/ tc is not strictly zero. Our
model is directly borrowed from the general formulation
Saville provided in 1997 by expanding previous results from
Taylor and Melcher.9–11 The analysis is applicable to situa-
tions where the relaxation time for free charges is short com-
pared with the time scale for fluid motion. In the survey
published in 1997 by Saville,9 the stability of fluid cylinders
or free jets and pinned cylinders or liquid bridges is studied.
These examples are given as an illustration of the powerful
set of equations for the leaky dielectric model, which builds
the core of the above survey. The discussion is mostly quali-
tative, and the results disclosed are restricted to some par-
ticular cases where a solution can be obtained with relative
ease. Additional contributions in this field by Saville and
co-workers focused on the effect of axial electric
forcing.2,12–15

The starting point is provided by the linearized Navier–
Stokes equations. A careful description is then made of the
parametrical behavior of the resulting dispersion equation.
Our study attempts to complete a systematic consideration of
all the input variablesswavelength, viscosity, surface tension,
electrical conductivity, permittivity and electrification levels,
surrounding gas dynamicsd. Previous works do not include
all these terms or do not weigh their relative influence. The
ambient influence is explored by means of a sketchy model,
which does however allow a preliminary glimpse into the
stability of electrified coflowing liquid-gas streams. The si-
multaneous forcing of a jet by hydrodynamic focusingsflow-
focusing technique16d and by electrification is a different
field of research, with a variety of presumed applications,
e.g., ultrafine atomization; the present contribution may pro-
vide a stepping stone for the joint analysis of electrification
and flow focusing.

In addition, under sufficiently general conditions, a one-

dimensional model following López-Herreraet al.17 yields
excellent resultsffor a comparison on the suitability of either
a three-dimensionals3Dd axisymmetric or a 1D model see
for example Yildirim and Basaran18g, which allows the de-
tailed and quite inexpensive exploration of extense para-
metrical ranges of interest. It is our aim to determine under
which conditions the lowest-order 1D approximationsslice-
average modeld, widely used in the literature, is to be trusted.
It can be anticipated that the assumption of a flat axial ve-
locity profile is inaccurate when either of two situations oc-
cur: sad the velocity profile is markedly convex;sbd an axial
velocity boundary layer develops, due to the action of shear,
at the interface. In both cases, the flat-profile approximation
fails to provide a trustworthy description. It will be shown
that jets with moderate conductivity and permittivity often
display sharply convex or boundary-layer velocity profiles.
Indeed, nonuniform radial profiles are favored by the combi-
nation of small viscosity, poor conductivity and permittivity,
and a shear agent. Tangential stress may be generated by a
variety of mechanisms, such as surfactant diffusion or, in our
case, an electric field. Axially oriented electric fields are the
most efficient shear agents and they lead to the conversion of
electric potential into kinetic energy; but even radial fields as
studied here can give rise to significant shear provideda and
b are small or moderate. It is important, therefore, to be
cautious when modeling electrified jets: slice-average mod-
els may turn out to be inaccurate, so that a 3D model or
higher-order expansionssparabolicd become unavoidable.

Moderate liquid conductivity and permittivity is readily
observed in many technological fields, in particular when-
ever oils or other organic compounds are manipulated. Other
practical applications, such as electrospinning or jet printing,
may involve imperfect conductors. In the following section,
once the main dimensionless groups are introduced, refer-
ence will be made to experimental and technological appli-
cations involving low conductivity/permittivity liquids.

II. FORMULATION OF THE PROBLEM

A. Context and assumptions

The results presented here arise from some previous
work on the conditions leading to jet breakup, under a diver-
sity of geometrical and electrification contexts. López-
Herrera and Gañán-Calvo19 presented a detailed experimen-
tal procedure concerning charged capillary jet breakup, in the
assumption of perfect-conductor behavior and radial electric
forcing. In the course of experimentation, an extended explo-
ration was attempted of the poor-conductor range. As stated
above, food, pharmacy, carburation, and other applications at
hand are increasingly pushing researchers toward the study
of poor-conductors’ stability and breakup.

Preliminary experimental results provided a wide diver-
sity of data leading to considerable trouble in the effort to
calibrate and sort out raw data from a theoretical point of
view. Therefore, a detailed theoretical description of poor-
conductor jet behavior appeared to be desirable, both to pro-
vide a solid basis for the experimental program, and to ori-
entate the production of an efficient numerical code able to
include breakup. As an intermediate goal, the stability analy-
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sis of a liquid jet is hereby described: it yields inference on
sad the size of drops after breakup and the stimulation re-
quired therefore;sbd the conditions required in the opposite
case, i.e., when breakup is to be avoided and the integrity
and longevity of the jet is to be preserved. Both objectives
are technologically relevant.

We limit the scope of our study to the axisymmetric
stability of capillary cylindrical jets of a liquid with density
r, permittivity «i, viscositym, conductivityK, and interfacial
surface tensiong. Our interest will be focused on the axi-
symmetric capillary jet instability. This choice is dictated by
two main reasons: first, the prevalence of axisymmetric in-
stability in most applications where a high quality spray is
requiredse.g., when electrospraying small liquid flow ratesd.
Second, axisymmetric modes are dominant in most dc es-
timulation regimes provided the Weber number is moderate.
Accordingly, we restrict our study to moderate We numbers
and ignore sinuous or asymmetric perturbation modes.

The surrounding atmosphere is assumed inviscid and its
influence on the dynamics of the jet is modeled with the help
of a simplified approach, which will be justified later by
invoking some restrictions on the Weber numbers.A andUo

are the jet radius, assumed constant, and the average axial
velocity. The equilibrium velocity profile is assumed flat; its
value Uo is usually scaled with the capillary wave velocity
vc=sg /rAd1/2 by means of the Weber number, We
=srAUo

2d /g.
In the gas-at-rest limit, whereU`=0, and assuming

We@1, Keller et al.20 show that the perturbation is rapidly
convected downstream with the jet velocity, thus avoiding
the simultaneous propagation of disturbances in the upstream
and downstream directionssabsolute instabilityd. See also
Artana et al.21 for a discussion on the role of absolute and
convective instabilities in the evolution of electrified jets, as
well as O’Donnellet al.22 and Chauhanet al.23 for an experi-
mental investigation of the convective instability in un-
charged jets. Kalaajiet al.24 presented an experimental inves-
tigation of the breakup length of a jet and showed that
provided the Weber number is large enough, temporal and
spatial linear perturbation theories coincide. We therefore re-
strict our study to moderate or large Weber numbersfap-
proximately above 4, see Eq.s5d in Lin and Reitz25g: this
restriction ensures that the jet velocity is sufficiently higher
than the group velocity of perturbations so that a temporal
evolution of the perturbation is observed from a Galilean
reference frame moving with the jet. However, when the
Weber number exceeds a critical value, either nonsymmetric
perturbations grow faster than axisymmetric perturbations or
viscous effects in the surrounding atmosphere can no longer
be neglected.

The above references do not consider the coflowing re-
gime, where both the jet and the surrounding gas flowswith
different mean velocityd in the axial direction. This flow con-
figuration is increasingly attractive as a source of potential
technical applications. Unfortunately, the parametric limits of
axisymmetric breakup in coflowing jets have not been ex-
plored in detail in terms of the liquid and gas Weber num-
bers. A mapping of the breakup regimes as sketched by Lin
and Reitz25 in the gas-at-rest limit is not available in the

coflowing case. It is known that interfacial shear promotes
Taylor’s instability, where droplets much smaller than the jet
diameter are produced,26 but a systematic exploration of the
breakup regimes prevailing under different gas and liquid
Weber numbers is not available.

In the following, however, we narrow the scope of our
attention to flow configurations located in the Rayleigh and
first wind-induced regimes, where shear effects from the gas
side can be ignored. Accordingly, aerodynamic effectssgas–
liquid interactiond are modeled with a simplified theory; the
influence of the gas is accounted for in terms of its pressure
fluctuation, but gas viscosity is neglected. The surrounding
gas is assumed to flow coaxially with an uniform speedU`

which, depending on the envisaged application, may range
from 0 sambient gas at restd to an amount one or two orders
of magnitude above the jet velocityUo. With this choice, we
leave the door open to the study of electrified flow focusing
configurationssEF3d, a field of considerable interest. The
flow focusing technology is based on the acceleration of a
liquid jet surrounded by a coflowing gas stream, whereby a
favorable pressure gradient is created, allowing an enhanced
control of the problem’s hydrodynamics.16

Three main simplifications are introduced in our gas–
liquid interaction model.

sad The gas is incompressible: results can be extrapolated
to the case where the surrounding stream is also liquid,
under the stringent condition that it be perfectly insu-
lating.

sbd The gas is inviscid, and a uniform flow is assumedsflat
axial velocity profileU`d.

scd The surrounding stream is an insulator with vacuum
permittivity: it removes all space charges and is per-
fectly unelectrified.

Therefore, the ensuing description will not undertake the
analysis of the velocity boundary layer at the ambient side. A
detailed investigation of the gas velocity profile is performed
by Gordillo et al.,27 but their resultssthe liquid jet dynamics
is assumed inviscid; no electric effects are consideredd can-
not be extrapolated here.

Additional assumptions in our model9 are the following:
magnetic fields generated by moving charges can be ne-
glectedselectrostatic assumptiond; gravitational acceleration
is ignored.

Figure 1 shows the geometric outline of the problem.
Initially, a potential differenceVo is applied between the jet
and a coaxial cylindrical electrode of radiusR`=bA sur-
rounding it. In this geometrical configuration, the axial elec-
tric field is negligible compared to the normal electrical field,
as is the case in jets emitted by electrospray.28,29 The radial
electric field creates, in the unperturbed state, a surface
charge density located at the interface, the liquid bulk being
electrically neutral.

In most of the applications, charged jets issue from a
liquid source, where a voltageVo is applied, and end up at
the breakup region. A transition from conduction to convec-
tion, as the relevant charge transport mechanism, takes place
in the vicinity of the needle. Charges relax from the bulk to
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the surface in a characteristic timete; this process taking
place in a region of lengthLr ,Uote much shorter than the
total jet lengthLj. The jet length is generally of the order of
Uotc, but in many practical situations, the longevity of the jet
can be extended by avoiding all instability factors. Most of
the voltage drop along the jetDV is located in the charge
relaxation region, which can be modeled as a resistor of or-
der VR,Lr / sKpA2d; therefore, the characteristic relative
voltage drop is

DV

Vo
,

VRI

Vo
, VR«oU ,

We

b
S te

tc
D2

! 1, s1d

whereI is the current transported by the jet. Thus, the axial
voltage drop in the relaxation stretch is negligible, and the
potential at the jet surface can be estimated, in first approxi-
mation, as the potential applied at the needleVo. Further
insight on the structure of the potential drop along the axial
coordinate of a jet is provided by Gamero-Castaño and
Hruby30 and Higuera.31

The equations of the problem are made dimensionless
with the radius of the unperturbed jetA, the densityr, sur-
face tensiong, and the characteristic surface charge density
«oEo, «o being the vacuum permittivity and Eo

=Vo/ fA lnsbdg the characteristic radial electric field, while
b=R` /A. Our choice ofEo rather thanVo as a scaling factor
has the following implication: at the interface, the normal-
ized electrostatic pressure is ofOs1d. This is unrealistic when
b→`, because an infinite potential differenceVo is required
in order to preserve the scaling; however, the results are con-
sistent, and can be applied safely for anyb@1. The advan-
tage in choosingEo rather thanVo is that the normalized
electrostatic pressure«oEo

2 does not become vanishingly
small in theb→` limit. Setiawan and Heister,4 who used the
Vo scaling, alluded to the shortcomings of this choice: “as the
ground location is moved far from the jet, the effect of elec-
trostatic contributions vanishes.” Note, however, thatEo

must be bounded in our problem; otherwise, dielectric rup-
ture would lead to corona discharge effects.

The above scaling leads to a set of nondimensional pa-
rameters which characterize each particular jet and perturba-
tion.

s1d The half wavelength of the perturbationl=L /A or the
dimensionless wavenumberk=p /l.

s2d The radial position of the ground electrodeb=R` /A.
s3d The Weber number We=rAUo

2/g=sUo/vcd2, where vc

=sg /rAd1/2 is the capillary velocity, measuring the rela-
tive importance of the jet’s absolute inertia with respect
to the capillary forces. Some authors prefer to use its
inverse, which is referred to as a Euler number.

s4d An external flow Weber number We`=rAU`
2 /g

=sU` /vcd2, measuring the relative importance of the am-
bient fluid’s absolute inertia with respect to the capillary
forces. Note that the liquid’s densitysand not the gas’d is
used. In many applications, the ambient gas is at rest, so
that Wè =0. An additional parameter of interest in de-
scribing the liquid-gas interaction is the ratio between
the gas and liquid densitiesr̄=rg/r.

s5d The Ohnesorge numberC=m / srgAd1/2=ntc/A2 weigh-
ing viscous forces against capillary forces. It is the in-
verse of a Reynolds number based on the capillary ve-
locity; it can also be understood as the ratio between the
capillary time tc and the viscous radial diffusion time
tv,A2/n. The usual or convective Reynolds number,
Re=UoA/n, can be expressed as Re=We1/2/C.

s6d The electric numberx=A«oEo
2/g, also known as Taylor

number or electrical Bond number, comparing the elec-
tric pressure with the capillary pressure. It can be con-
ceived as the ratio between the capillary time scale and a
time scale obtained by geometric averaging of the vis-
cous diffusion timetv and the shear or electrohydrody-
namic time scale ts=m / s«oEo

2d, i.e., x, tc
2/ stvtsd

,Ctc/ ts. Saville9 introduced a Reynolds number based
on the electrohydrodynamic velocityus=A/ ts; it can be
written as Res=r«oA

2Eo
2/m2=x /C2.

s7d The liquid’s relative permittivityb=«i /«o. The ambient
fluid is supposed to have vacuum permittivity.

s8d The relaxation parametera=frA3K2/ sg«i
2dg1/2= tc/ te. It

coincides with the ratio of the electrical relaxation to the
capillary time sgenerally, the shortest hydrodynamic
time of the processd. The combinationab will be shown
later to describe the relative importance of conductive
versus convective charge transport. The perfect-
conductor limit is recovered whenab@1 sgenerally
simplified to a@1 by taking into account customaryb
valuesd: this limit implies that “relaxation is quicker than
deformation,”32 so that the jet remains isopotential at
any time, and its internal electric field is zero. In the
opposite situationab!1, charges are glued to the inter-
faces“honey-bubble” limitd, and are therefore passively
convected and stretched with it.

Each perturbative situation is therefore characterized by a set
of eight free parameters:a , b , C, x , b, We, Wè , and l,
whose influence will be explored next. It is important to note
that our hypothesis about the electric charge being relaxed to
the jet surface does not necessarily implya@1. Indeed, pro-
vided that the jet is long enough, the relaxation process can
be considered to have taken place at an earlier location.
Therefore, the influence ofa when it is of Os1d or even
smaller can be explored under the assumption that all

FIG. 1. Geometrical sketch of the problem.
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charges are superficial. This is a realistic situation, frequently
observed in experimental work.

Electrospray can be used to illustrate the above. This is
an apt technique for the generation of electrified capillary
microjets nanojets and sprays. It gives rise to a great variety
of jet configurations and atomization modes; among them,
the cone-jet mode is preferred because of its steadiness and
spray characteristics.33 Cone-jet operation can be attained
with a wide range of liquids34 exhibiting enormous diversity
in the relevant physical constantssconductivity K, surface
tensions, densityr, relative permittivityb, and viscositymd.
Conductivity and, to a lesser extent, viscosity coefficients,
may exhibit radically different orders of magnitude. Cone
jets have been obtained with toluenesK=10−11 S/md, in-
tensely acid water solutionssK=1 S/md, hexane sm=3
310−4 Pa sd or glycerol sm=1.3 Pa sd.

Experimental and theoretical investigations28,31,35–37

have led to the introduction of the following scaling magni-
tudes:

Qo =
g«o

rK
, Io = S«og2

r
D1/2

, do = S «o
2g

p2rK2D1/3

. s2d

The above magnitudes set the scale for the injected flow rate
Q, the electric current transported by the jetI, and the jet
diameterA. With their help, a universal ratio is established:
I / Io,sQ/Qod1/2 and A/do,sQ/Qod1/2. Provided second-
order effects such as the needle geometry are ignored, the
above scaling is accurate in a wide range of situations in-
volving diverse liquids and geometries.

On the basis of electrospray scaling,a and C can be
estimated in typical liquid jets issuing from a cone-jet
source. Table I showsa andC values drawing on experimen-
tal data from Gañán-Calvo;36 different organic liquids are
used. Some additional data from Gañán-Calvoet al.38 were
obtained by electrospraying low-viscosity liquidssheptane,
dioxane, as well as dodecanold. As can be gathered from the
new data, Ohnesorge numbers well below unity can be found
by electrospraying nonpolar liquids such as toluene, cyclo-
hexane, or heptane, characterized by their low conductivity

and viscosity. Such low Ohnesorge numbers are called to
play an increasing role in multiple technological applications
involving organic liquids.

These results indicate that lowa andb are met in real-
istic experimental explorations. Electrical polarization, the
key to dielectric energy storage, is the result of a wide vari-
ety of processes, including distortion or reorientation of mol-
ecules and orbitals as well as electrochemical reactions. Low
values ofb, implying weak polarizability, are frequently ob-
served in connection with organic or long-chain molecules,
particularly when water is absent from the composition of
the liquid. Ionic charge transport is reduced in low-b liquids
because of their reluctance to dissolve ions, so that low con-
ductivities are frequent in such cases. Accordingly, the rou-
tine assumption that jets are perfect conductors cannot be
made without risk. In addition, very low Ohnesorge numbers
are frequently observed in low-viscosity jets.

In particular, López-Herrera and Gañán-Calvo19 carried
out a set of experiments with precisely the same electric field
and configuration proposed here. In the above paper, the
electrification of the jet tries to achieve the condition of zero-
tangential stress. Experiments leading to breakup were car-
ried out and compared with a theoretical model assuming
perfect-conductor behavior. Three mixtures of water and
glycerine were used in the study. Agreement between experi-
ments and theory was in general good, a logical consequence
of the fact that all the jets tested were water solutions; and a
small amount of water is all that is needed for the permittiv-
ity to become highsso that ab@1, close to the perfect-
conductor limitd. Should the experimental range be expanded
to include purely organic liquids, the perfect-conductor hy-
pothesis would no longer hold. The need for a stability
theory of imperfect conductors follows from such consider-
ations.

B. Equations

Under the conditions and assumptions described above,
the nondimensional, cylindrical coordinates equations in a
reference frame moving with the jet velocityUo are

TABLE I. Estimated values in electrospray jets: diameterA, relaxation parametera, and Ohnesorge numberC;
experimental data and scaling law from Gañán-CalvosRef. 36d and Gañán-Calvoet al. sRef. 38d.

Liquid dosmmd Qosml/mind b Q/Qo Asmmd a C

Dodecanola 1.67 2.34 6.5
2 2.36 0.08 1.70

30 9.16 0.62 0.86

1-Octanola 1.52 1.88 10
2 2.15 0.05 1.25

30 8.33 0.41 0.63

Propylenglycola 1.24 1.54 31.2
2 1.76 0.02 5.18

30 6.82 0.13 2.63

Dioxaneb 5.82 14.5 2.5
2 4.62 0.09 0.11

30 20.72 0.86 0.05

Heptaneb 7.43 21.2 1.9
2 5.89 0.12 0.04

30 26.46 1.13 0.02

aReference 36.
bReference 38.
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srUdr

r
+ Wz = 0, s3d

Ut + UUr + WUz = − Pr + CsUzz− Wzrd, s4d

and

Wt + UWr + WWz = − Pz + CSWrr +
Wr

r
+ WzzD , s5d

wherer andz are the radial and the axial coordinates,t is the
time, U andW are the radial and axial velocity, andP is the
pressure. Subscripts denote partial derivatives.

In the chosen frame, neglecting the gas viscosity, we can
approximate the axial speed of the gas asU`−Uo, which in
our scaling amounts to We`

1/2−We1/2. Therefore, the equa-
tions for the gas phase are

srUgdr

r
+ sWgdz = 0, s6d

r̄fsUgdt + sWè1/2 − We1/2dsUgdzg = − sPgdr , s7d

and

r̄fsWgdt + sWè1/2 − We1/2dsWgdzg = − sPgdz. s8d

The hydrodynamic variables are subject to periodicity con-
ditions in the axial direction

Fzuz=0 = Fzuz=l = 0, s9d

Wuz=0 = Wuz=l = 0, s10d

Uzuz=0 = Uzuz=l = 0, s11d

where r =Fsz,td is the interface equation. In addition, the
regularity conditions at the axis demand

Uur=0 = Wrur=0 = Prur=0 = 0. s12d

The electric problem is modeled by the Laplace equation
for both the inner potentialfi and the outer potentialfo

¹2fi = ¹2fo = 0, s13d

subject to the radial boundary conditions

four=b = 0 s14d

and

fr
i ur=0 = 0, s15d

and periodicity in the axial direction

fz
i sr,zduz=0,l = fz

osr,zduz=0,l = 0 s16d

for both the inner and outer potentials.
At the interfacer =Fsz,td, the electrical boundary condi-

tions are

sEn
o − bEn

i dur=Fsz,td = se s17d

and

four=Fsz,td = fiur=Fsz,td, s18d

wherese is the surface charge density andEn
o andEn

i are the
normal component of the electric field for the outer and inner
domain, respectively. The normal and tangential components
of the electric field at the interface can be written in terms of
the potential as

En
o,i =

1

s1 + Fz
2d1/2s− fr

o,i + Fzfz
o,idur=Fsz,td s19d

and

Et =
1

s1 + Fz
2d1/2s− Fzfr

o − fz
odur=Fsz,td. s20d

In addition, the kinematic conditions for the liquid and
for the gas, the continuity equation of the surface charge
density, and the stress balance in the normal and tangential
direction read

sFt − U + FzWdur=Fsz,td = 0, s21d

hUg − U + sWe1/2 − Wè1/2dFzjur=Fsz,td = 0, s22d

ssedt +
FzU + W

1 + Fz
2 ssedz − abEn

i

−
se

1 + Fz
2hUr + Fz

2Wz − FzsUz + Wrdjur=Fsz,td = 0, s23d

sP − Pgdur=Fsz,td − pce

−
2C

1 + Fz
2hUr + Fz

2Wz − FzsWr + Uzdjur=Fsz,td = 0, s24d

and

C

1 + Fz
2h2FzsUr − Wzd + s1 − Fz

2dsWr + Uzdjur=Fsz,td

− xseEt = 0. s25d

The capillary-electric pressure term is defined as

pce=
1

s1 + Fz
2d1/2S 1

F
−

Fzz

1 + Fz
2D

−
x

2
fsEn

od2 − bsEn
i d2 + sb − 1dsEtd2g. s26d

Note that the electrification numberx weighs the relative
importance of the capillary pressure jumpsdestabilizing
for long wavelengthsd against the normal component of
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Maxwell’s stress, thereby creating the appearance of an al-
tered surface tension. It will be shown later that providedx

.1 and b.2.718 28, a wavelength range emerges in the
vicinity of k=0 where axisymmetric disturbances are stable.

In our linear analysis, initial conditions are only used to
define the unperturbed solution, as will be done in Eq.s27d.

III. LINEAR ANALYSIS: 3D APPROACH

A. Perturbed equations and boundary conditions

In this section we describe the linear analysis of the
problem considered. A similar approach has been adopted by
Mestel,39,40who analyzed the linear dynamics of charged jets
forced by an axial electric field in the quasi-inviscid and
highly viscous limits. In both works the jet is charged and
subject to an external uniform axial electric field, the electri-
cal relaxation time being a free parameter. Gamero-Castaño
and Hruby30 studied filaments emitted by cone jets assuming
small wave axisymmetric disturbances. Their results are
based on the perfect-conductor simplificationsEi =0, Et=0d,
an approximation implicitly requiring thatab→`; there-
fore, the application of their results to the honey-bubble limit
scharge-convection dominant, i.e.,a=0d demands special
caution. Hartmanet al.41 studied small wave disturbances
sboth axisymmetric and helical modesd in a jet issuing from
a nozzle cone with the help of a lowest-order 1D model for
the slice velocity. Their analysis is restricted to the perfect-
conductor limit. On the other hand, Gonzálezet al.7 provided
a thorough stability analysis of conducting jets under ac ra-
dial electric fields. A brief description of the dc case is made
drawing on previous work by García.6 In their paper,
Gonzálezet al.7 take into account surrounding gas dynamics
effects using a semiempirical model. Azimuthal perturbation
modessnonaxisymmetric fluctuationsd are included in their
description, and modal competition is shown to take place
under the stimulus of the imposed ac frequency. However,
their equations are restricted to the perfect-conductor limit.
In the present paper, as indicated in the Introduction, only
axisymmetric modes will be considered, a hypothesis gener-
ally satisfactory when only dc forcing is considered. Most
research on the subject agrees in considering nonaxisymmet-
ric modes as evanescent, i.e., either damped or displaying
slower growth as axisymmetric disturbancesssee for instance
Lin and Webb42d. Our study concentrates on the influence of
arbitrary viscosity, permittivityb, and conductivityK in the
presence of a dcradial electric field. The interplay of these
parameters is shown to be a key factor in the emergence of
an interfacial boundary layer. In addition, the effect of elec-
trification x and electrode distanceb is discussed.

The temporal linear analysis looks out for solutions in
the form of a small sinusoidal spatial perturbation over the
static or basic solution. We take the perfect cylinder to be our
static reference; therefore, solutions as follows are examined:

1
Usz,r,td
Wsz,r,td
Psz,r,td
Pgsz,r,td
fosz,r,td
fisz,r,td
sesz,td
Fsz,td

2 =1
0

0

1 − x/2

P`

lnsb/rd
lnsbd

1

1

2 +1
ũsr,z,td
w̃sr,z,td
p̃sr,z,td
p̃gsr,z,td

f̃osr,z,td

f̃isr,z,td
s̃esz,td

f̃sz,td

2 , s27d

and the perturbation is written as

1
ũsr,z,td
w̃sr,z,td
p̃sr,z,td
p̃gsr,z,td

f̃osr,z,td

f̃isr,z,td
s̃esz,td

f̃sz,td

2 = Re31
ûsrd
ŵsrd
p̂srd
p̂gsrd

f̂osrd

f̂isrd
ŝe

f̂

2z4 , s28d

where z is equal to eVt+ikz, k being the nondimensional
wavenumberp /l sl is the half wavelengthd, andV=s+vi
is the complex eigenvalue involving the growth rates and
the oscillation frequencyv. Hatted variables denote small
amplitudes. Neglecting nonlinear terms of the Navier–Stokes
equations we obtain

= · ṽ = 0 s29d

and

ṽt = − = p̃ + C¹2ṽ. s30d

A separate equation for the pressure can be obtained by ap-
plying the divergence operator tos30d and usings29d; the
same holds for the gas pressure:

¹2p̃ = 0, ¹2p̃g = 0. s31d

On the other hand, taking the Laplacian ofs30d leads to

¹2S¹2 −
1

C

]

]t
Dṽ = 0. s32d

Due to the linear character of the operators in the latter equa-
tion we can split the velocity into two termsṽ= ṽv+ ṽnv,
where ṽnv is the inviscid contribution andṽv the viscous
contribution; the following equations are satisfied:

¹2ṽnv = 0, S¹2 −
1

C

]

]t
Dṽv = 0, ṽnvt

= − = p̃. s33d

The perturbations comply with the regularity condition at the
axis p̃sr ,z,tdur=0 and w̃sr ,z,tdur=0 finite and ũsr ,z,tdur=0=0.
By Taylor expansion aroundr =1 at the interface, the kine-
matic conditions and the stress balance yield

ũur=1 = f̃ t, s34d
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sũ − ũgdur=1 = iks− Wè1/2 + We1/2d f̃ , s35d

sp̃ − p̃gdur=1 = − f̃ − f̃ zz+ 2Cũrur=1 + xs f̃ + f̃r
odur=1, s36d

and

Csũz + w̃rdur=1 + xf̃z
our=1 = 0. s37d

The outer and the inner electrical potential perturbations sat-
isfy the Laplace equation

¹2f̃o,i = 0 s38d

with regularity conditions,

f̃isr,z,tdur=0 finite, f̃osr,z,tdur=b = 0. s39d

At the interface the inner and the outer potential are coupled
through the normal electric field jump and the continuity of
the potential

s− f̃r
o + bf̃r

i dur=1 = s̃e s40d

and

f̃our=1 = f̃iur=1 s41d

together with the continuity equation for the charge surface
density

ss̃edt − ũrur=1 = − abf̃r
i ur=1. s42d

Substituting the solutions27d in the bulk equationss31d–s33d
and s38d we obtain the ODE system which governs the am-
plitudes of the variables

C9 +
C8

r
− k2C = 0, s43d

ŵv9 +
ŵv8

r
− kv

2ŵv = 0, s44d

ûnv9 +
ûnv8

r
− Sk2 +

1

r2Dûnv = 0, s45d

ûv9 +
ûv8

r
− Skv

2 +
1

r2Dûv = 0, s46d

whereC stands forp̂, p̂g, ŵnv, andf̂o,i. The primes denote
differentiation with respect tor andkv is defined as

kv
2 = k2 +

V

C
. s47d

The additive termV /C,V̄A2/n, tv / td is occasionally iden-
tified as a Reynolds number based on the problem’s unsteady

character,V̄ being the physical magnitude ofV;39 it can also
be viewed as the ratio between the viscous diffusion time
scale tv and the disturbance time scaletd. In addition, the
continuity and momentum equations read

û8 +
û

r
+ ikŵ = 0, p̂8 = − Vûnv, ikp̂ + Vŵnv = 0. s48d

The gas momentum equation in the radial direction is

r̄fV + iksWè1/2 − We1/2dgûg = − p̂g8. s49d

The boundary conditions closing the problem are

ûs0d = 0, ŵs0d, p̂s0d andf̂is0d finite, p̂gs`d = 0; s50d

ûs1d = V f̂, ûgs1d = ûs1d + iksWè1/2 − We1/2d f̂ , s51d

p̂s1d − p̂gs1d = s− 1 +k2d f̂ + 2Cû8s1d + xff + sf̂od8s1dg,

s52d

Cfikûs1d + ŵ8s1dg + xikf̂is1d = 0, s53d

− f̂ + f̂os1d = f̂is1d, s54d

− f̂ − sf̂od8s1d + bsf̂id8s1d = ŝe, s55d

Vŝe − û8s1d = − absf̂id8s1d, s56d

f̂osbd = 0. s57d

B. The dispersion equation

The general solution of the ODE sets43d–s48d consists
of a combination of modified Bessel functions. Recalling
s50d and s57d, the solution reads

p̂srd = − AVIoskrd
kI1skd

, p̂gsrd = Ag
Koskrd
kK1skd

, s58d

ûsrd = ûnvskrd + ûvskrd = A I1skrd
I1skd

− B I1skvrd
I1skvd

, s59d

and

ŵsrd = ŵnvskrd + ŵvskrd = Ai
Ioskrd
I1skd

− Bi
kvIoskvrd
kI1skvd

s60d

for the hydrodynamic variables, and

f̂osrd =
AefKoskbdIoskrd − IoskbdKoskrdg

kfKoskbdI1skd + IoskbdK1skdg
s61d

and

f̂isrd = Be
Ioskrd
kI1skd

s62d

for the outer and inner electrical potential, where
A , Ag, B , Ae, and Be are real constants. Note that, under
adequate scaling, the radial profiles of the pressure and the
electric potential are identical. The substitution of the previ-
ous solutions in the boundary conditions at the interface
s50d–s57d and the elimination of the constants
A , Ag, B , Ae, andBe leads to the dispersion relation
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D = V2jskd + 2CVf2k2jskd − 1g + 4k2C2fk2jskd

− kv
2jskvdg +

2JskdC
V

k2f2 + Gskdgfk2jskd − kv
2jskvdg

+ JskdS2k2jskd + k2jskdkv
2jskvdGskd +

1

Gskd
D

+ S1 +
Jskdk2Gskd

V2 fkv
2jskvd − k2jskdgDTskd = 0, s63d

where the driving termTskd sums up all the interfacial forc-
ing ssurface tension, aerodynamic effects, electric chargingd
and is defined as

Tskd = k2 − 1 +xS1 +
1

Gskd
D

− r̄fV + iksWè1/2 − We1/2dg2Gskd, s64d

while the following auxiliary functions are introduced:

Gskd =
KoskbdIoskd − IoskbdKoskd

kfKoskbdI1skd + IoskbdK1skdg
, jskd =

Ioskd
kI1skd

,

s65d

Jskd =
xjskd
Eskd

, Eskd = GskdbS1 +
a

V
D − jskd, s66d

and

Gskd = −
Koskd
kK1skd

. s67d

Jskd is a combined electrification number, barely sensitive to
b, condensing all the influence ofa and b; its magnitude
increase as the conductivity or the permittivity decrease.
Jskd becomes zero in the perfect-conductor limit, when ei-
ther a , b, or their combination tend tò . Eskd is always
negative. In the limit whereb@1, Gskd→Gskd. The leading
term in D is V2jskd, representing the effect of inertia, i.e.,
forces caused by the unsteadiness of the disturbance. In low-
viscosity jetssC!1d, this term becomes dominant and is
balanced by the driving term alone. In the opposite limit
sC@1d, the driving term is balanced by the viscous terms
alonessecond and third terms inDd. The calculations leading
to the dispersion relation are detailed in the Appendix.

It can be readily verified thatab→` implies thatBe

→0, so that the inner electric field becomes vanishingly
small. Assuming the disturbances are small, it follows as
well that the tangential fieldEt becomes negligible. There-
fore, the perfect-conductor case can be recovered by select-
ing ab@1.

Our description of the influence of the surrounding gas
mirrors the procedure introduced by Gonzálezet al.;7 in their
paper they suggest a simple semiempirical correction, based
on Sterling and Sleicher,43 allowing the description of the gas
viscosity influence. Additionally, concerning the validity
range of the theory, the work of Lin and Reitz25 is cited to
justify the parametric range where the above applies: We
.4, r̄We,6.5. These limits are empirically consistent for
unelectrified jets only, but can be used as orientative land-

marks in our case. The first restriction is aimed at avoiding
absolute instabilitysdripping moded; it sets a criterion for
Rayleigh breakup. The second restriction excludes situations
belonging to the second wind-induced breakup regime,
where gas shear becomes important. However, the range of
validity is not well studied in the case where the outer fluid is
flowing co-axially with a speedU`. In spite of the resulting
uncertainty, the dispersion equations63d is to be trusted
whenever dripping or second wind-induced breakup can be
excluded.

Figure 2 shows a characteristic stability map; the growth
rates and the oscillation frequencyv are plotted against the
wavenumberk. The jet is characterized by an Ohnesorge
numberC=0.1, Taylor numberx=0.6, relative permittivity
b=10, relaxation parametera=1.0, andb=`. Aerodynamic
effects are ignored. A single unstable branch is observed,
corresponding to values ofk ranging from 0 to 1.167 03,
associated with aperiodic growth of perturbations. The other
branches are stable, some of them being oscillatory stablesI,
II, and IIId. There are four complex solutions associated to
each wavenumber. In Fig. 3 the velocity fields and external
electric fieldssvectoriald are depicted for each one of the
solutions;k=0.5, a regime where all behaviors are aperiodic
sV is a real numberd. We observe thatsid the electric field is
always symmetrical with respect to the wavelength;sii d the
only unstable mode is essentially capillarysAd while the oth-
ers are stable. The main stabilizing force in mode B is the
surface tension. Modes C and D are characterized by strong
recirculations of the liquid where the viscous term balances
the inertial term, the capillary term being negligible.

An even number of roots are observed. The problem
dealt with by Hohmanet al.44 displays a distinctive differ-
ence compared to our problem: the presence of an axial,
rather than radial, electric field. The dispersion relation ob-
tained by them is cubic; accordingly, they find three modes;
on the other hand, the radial geometry of our electric forcing
leads to a fourth-order dispersion relationsfour modesd.

A salient physical difference between the two problems
is that the first one displays antisymmetric electric charges in

FIG. 2. Solution of the dispersion relationsa=1, b=10, C=0.1, andx
=0.6d.
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the axial direction along a perturbation wavelength, while
ours is symmetric. Their having an odd-order dispersion re-
lation rather than an even-order one may plausibly be a re-
flection of the antisymmetry inherent to axial forcing. In ad-
dition, as illustrated in Fig. 2, the radial electric field induces
an additional stable modesthree out of fourd while the physi-
cal picture drawn by Hohmanet al. in the presence of a
tangential field clearly hints at the destabilizing role of axial
electric forcing. A simplistic but illustrative picture is the
following: given a symmetricscosine-liked perturbation, a
radial electric field induces additional dynamical actions
which are symmetrical in the axial direction with respect to
the perturbationsand these may be stabilizing or destabiliz-
ingd, while the axial electric field gives rise to antisymmetric
forces which are always destabilizing: see Figs. 9 and 11 in
Hohmanet al.44

Aerodynamic effects modify the above map in that non-
zero r̄, We, or Wè give rise to an imaginary component of
the dispersion equationD. This has an immediate implica-
tion: it is impossible for a realV to satisfy the dispersion
equation. Therefore, all growth behaviors are modulated,
lmsVd;vÞ0, i.e., aperiodic growthsas shown in Fig. 2 for
the unstable branch Ad cannot exist.

C. Parametrical patterns of the dispersion equation

In the uncharged limitsx=0 in Dd, the dispersion equa-
tion coincides with the expression obtained by
Chandrasekhar45 after Rayleigh.46 Setting the additional con-
straint C=0 leads to the original result for the capillary in-
stability due to Rayleigh. Setiawan and Heister4 obtained an
expression forD in the electrified inviscid limit, assuming
perfect conductivity andb=`. Huebner and Chu3 developed
a variational approach leading to an expression forD in the
perfect-conductor limit, assuming zero viscosity and arbi-
trary electrode distanceb. Artana et al.32 included aerody-
namic effects and higher stability modes using the same as-
sumptions.

In this section, different growth rate curves are shown. In

growth curves,s=ResVd is plotted as a function of the
wavenumberk in the instability window corresponding to the
unstable branch A of Fig. 2. All dispersion curves exhibit
maximal growth rate for a particular value of the wavenum-
ber, as well as upper and lower cutoff wavenumberssk1, k2d,
which define our instability window. The fastest growing
mode skm, smd is the most relevant quantity in the case of
random perturbationsnoised. Artana et al.,32 among others,
indicate that the mean diameter of the first droplets produced
at the jet’s breakup is proportional to the inverse ofkm while
the intact length of the jetsbefore detachment of the first
dropletd is proportional to the inverse ofsm.

Provided that the speed differenceUo−U` is sufficiently
large, aerodynamic effects can no longer be neglected. Our
exploration shows that asr̄sWè1/2−We1/2d increases, the fol-
lowing trend is observed: the instability lobe expands, while
skm, smd increase, implying smaller droplet size at breakup.
Effects are hardly noticeable whenr̄sWè1/2−We1/2d,0.2.
The imaginary partv as a function ofk is monotonously
growing.

FIG. 3. Jet velocity and interfacial outer field in a
wavelength segment for:sAd Capillary unstable mode;
sBd capillary stable mode;sC and Dd recirculating
modessb@1, k=0.5,a=1, b=10, C=0.1, andx=0.6d.

FIG. 4. Growth rates vs the wavenumberk for a jet with b@1, x=0.6,
C=1, andb=2 and several values of the relaxation parametera.
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In the ensuing discussion, the effects of the ambient gas
will be considered negligible. In the gas-at-rest case, this
amounts to the constraintr̄We,0.2, marking the onset of
the first wind-induced breakup regime.

The influence of the conductivity and permittivity pa-
rameters is explored in Figs. 4 and 5, where the growth rate
is shown for a jet of moderate viscosity and electrification
sb=`, C=1, andx=0.6d; Fig. 4 is plotted withb=2; in Fig.
5, a=1. It is worth noting that theb influence can only be
explored provideda is finite. A similar trend is observed for
a and b. Growing conductivity or permittivity results in a
decrease ofkm and an increase ofsm, implying larger
breakup wavelength and increased instability. Provided that
any of these parameters is sufficiently high, the perfect-
conductor limit is reached.

These results illustrate the influence ofa and b on the
growth rate, and show a clear stabilizing trend associated
with imperfect conductivity or permittivity. The stabilization
is more evident as the wavelength rises. Particular sensitivity
to a and b is felt in the long-wavelength range. Imperfect

conductivity and permittivityssmall enougha or bd gives
rise to a slow-growth zone neark=0. It is worth noting that
poor conductivity becomes irrelevant as the outer electrode
gets closer to the jetslower values ofb tend to annihilate the
influence ofb and a, bringing results close to the perfect-
conductor limitd. In general, the conducting limit is rapidly
reached by increasing the permittivityb or the relaxation
parametera. In the practice, both parameters tend to be cor-
related: high permittivity liquids usually exhibit a high elec-
trical conductivity as well, on account of their polarity and
their ability to dissolve ionic species. Both parameters have
no influence whatsoever on the stability range, which, as will
be shown next, is only dependent onx andb.

Figures 6 and 7 show growth rate curves for different
values of the electrification numberx and the electrode dis-
tanceb. Coincident patterns of influence are observed: in-
creasing the electric fieldx exerts a similar effect as bringing
the outer electrode closer. The electrification effect is there-
fore enhanced by an encroaching electrode. Both parameters
have in common a destabilizing influence, reflected in wid-
ening instability lobes.

The stability range is very sensitive to electrification. As
x increases, the instability lobe expandsssee, for instance,
Baudry et al.5d. Taking the V→0 limit in the dispersion
equation, under the assumption thatkÞ0, leads to an equa-
tion for the limits sk1,k,k2d where a positive real growth
rate is found:

Tsk1d = Tsk2d = 0, s68d

Tskd being the driving term defined in Eq.s64d. The upper
and lower bound are plotted in Fig. 8 for different values of
x. In the unelectrified case, the Rayleigh instability limits
sk1=0 andk2=1d are recovered: the capillary termsk2−1 are,
respectively, associated with the transversal curvaturesdesta-
bilizingd and the longitudinal curvaturesstabilizingd. Long
wavelengths increase the relative importance of the first and
thereby cause instability.

Electrification has an ambivalent effect on stability. For
largeb, as discussed by Gonzálezet al.7 swho also provide a

FIG. 5. Growth rates vs the wavenumberk for a jet with b@1, x=0.6,
C=1, anda=1 and several values of the relative permittivityb.

FIG. 6. Growth rates vs the wavenumberk for a jet
with b@1 andb=2. The other parameters are fixed at
C=1, a=1, andb=2. Several values of the electrifica-
tion numberx are plotted.
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physical interpretation of the dual influence ofx at the crests
and valleys of the disturbanced, electric charging of the jet
destabilizes short waves while stabilizing long ones. In fact,
provided thatx is larger than 1 and under the condition that

b . G−1US−
x

x − 1
DU

k=0
= expS x

x − 1
D , s69d

the lower boundk1 rises abovek=0, so that a stable region in
the range 0,k,k1 emergesssee Fig. 6,b@1; and Fig. 8,
where the lower and upper cutoff bounds are plotted as a
function of b for diverse values ofxd. Nevertheless,k1 is
bounded, and even in the most favorable casesb andx→`d,
k1=G−1s−1d=0.595. This boundary, in the large-b limit,
separates the range where electrostatic forces are stabilizing,
as reported by Setiawan and Heister.4

The above observations are in agreement with recent ex-
perimental and numerical studies on perfect-conductor jets17

indicating that, in the range of electrification levels and We-
ber numbers ensuring an axisymmetric breakup, the influ-
ence ofx is merely quantitative. The breakup wavelength
and frequency are sensitive to the electrification level, owing
to a change in the effective surface tension operated by the
electric field. The effects of electrificationsand aerodynamic
couplingd are summed in the driving termTskd, the only part
of the dispersion equation dependent onx , b, U`, and Uo.
However, if the liquid is an imperfect conductor, a tangential
electric stress arises which attenuates the growth of pertur-
bations, and may promote longer jets as observed in electro-
spray experiments using moderate viscosity liquids in the
nonwhipping jet regime.12,13,39,40

For arbitrary ground locationb, a threshold value can be
defined,ks=G−1s−1dub, cutting off the region where electrifi-
cation is stabilizingsk,ksd from the region where a desta-
bilizing influence is observedsk.ksd. It is interesting to note
that b values lower than thee numbersb,2.718 28d imply
that, whatever the electrification, its effect is always destabi-
lizing, regardless ofk. Therefore, in the tight-electrode limit
sb→1d, increasingx gives rise to an unanimous increase of
the growth rate.

On the other hand, the upper cutoff modek2, also de-
picted in Fig. 8, is very sensitive to electric charging, par-
ticularly when the electrode gets closer to the jet. Indeed, in
the tight-electrode limit, the instability range grows asymp-
totically, so that the entire wavelength range ends up being
unstable.

The long-wavelength limit can be explored in the gen-
eral case by taking the limit of the dispersion equationD
whenk→0. The positive real root ofD is

s < B1sb,xdk, B1sb,xd = 1
2fxs3 − 4 lnbd + 1g s70d

indicating a local linear behavior of the growth rate. This
approximation is only correct provided that

FIG. 7. Growth rates vs the wavenumberk for a jet
with a=1, b=1, C=1, x=0.3, and several values of the
grounded electrode distanceb.

FIG. 8. Lower and upper stability cutoff boundsk1 and k2 plotted as a
function of the ground radial distanceb for different values of the
electrification.
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b , expF1

4
S3 +

1

x
DG = 2.117e1/4x = bosxd. s71d

Whenb.bosxd, the growth rate follows a quadratic trend:

s < B2sb,xdk2,

B2sb,xd =
sabC + x/2dfsx − 1dln b − xg

2Cs1 + 3x − 4x ln bd
. s72d

A low growth region is observed neark=0; the width of this
region increases with decreasinga ,b. In order to carry out
consistent expansions of the general solution in thek!1
limit, it is worth noting thatkv

2=k2+V /C is of the following
order of magnitude:

kv = HOsk1/2d when b , bosxd,

Oskd when b . bosxd.
J s73d

The above does not hold whenC→0, because the emer-
gence of an interface boundary layer modifies the small-k
patterns.

Equationss70d and s72d confirm the existence of a low-
k stability regionf0, k1g as illustrated by Figs. 6 and 8. In-
deed, for sufficiently large values ofb andx, the local values
of s switch from positive to negative.

D. The influence of viscosity and the boundary layer
at the interface in the low-viscosity limit

1. High-viscosity limit

The influence of the viscosity can be illustrated by com-
paring growth curves having diverse Ohnesorge numbers
ssee Fig. 9d. As viscosity increases, the most unstable wave-
length becomes longer and the growth rate decreases, corre-
sponding to an increasingly uniform and stiff flow regime
and therefore increasingly limited deformability.47 Viscosity
does not modify the stability limits, but it lowers the growth
rate of any perturbation. High Ohnesorge numbers are also

linked to the addition of surfactants, all of which possess the
common property of lowering surface tension when added to
liquids in small amounts.48

In the high-viscosity limitsC@V, i.e., tv! td, wheretv is
the viscous diffusion time scale andtd is the disturbance time
scaled, the dispersion equation yields the following simpli-
fied expression for the positive real roots=ResVd:

s <
Tskd

2f1 + k2 − k4jskd2g
1

C
, s74d

whereTskd is the driving term as defined in the dispersion
equation; this approximation is in agreement with the result
reported by García and Castellanos49 in the uncharged limit.
The above equation implies thatV,1/C!1, and therefore
negligible growth rates will be found provided the viscosity
is high. Equations74d is only correct whena@1/C, i.e.,
when the electric relaxation time scalete is much longer than
the disturbance time scaletd, tcV. In the limit a&1/C, a
different limiting expression is obtained:

ao + a1VC + a2sVCd2 = 0, s75d

where

ao = − 1
2TskdjskdGskdxk2fk2jskd2 − 2jskd − 1g, s76d

a1 = TskdfbGskd − jskdg

+
xjskd
Gskd

h1 + f2 + k2Gskdjskdgk2Gskdjskdj

+ f2 + Gskdgjskdxk2fk2jskd2 − 2jskd − 1g, s77d

a2 = 2fbGskd − jskdgfk4jskd2 − k2 − 1g. s78d

2. Low-viscosity limit: The boundary layer

Saville2 studied the effects of charge relaxation at the
interface of a liquid jet and pointed out that, provided the
viscosities were low, viscous stresses concentrated within an
electrohydrodynamic boundary layer at the interface.
Mestel39 points out that an interfacial boundary layer is in-
duced by electrical axial forcing, and refers to Melcher and
Taylor11 for its physical interpretation. Similarly, in their
one-dimensional analysis of slender axisymmetric unelectri-
fied liquid jets, in the low-viscosity limitsC!1d, García and
Castellanos49 identified a boundary layer at the interface in
the axial velocity profile. Citing previous work by Borkar
and Tsamopulos50 and Higueraet al.,51 they hint at the small
influence of the boundary layer in terms of global energy
dissipation. A boundary layer, however, is bound to exert
intense influence on the behavior of interface-driven jets,
such as the surfactant-covered viscous threads analyzed by
Crasteret al.48

In the sC!Vd limit, the dispersion equation converges
to the simplified form:

D
8

= V2jskd + Tskd = 0, s79d

an expression fully coincident with the perfect-conductor
dispersion equation. This fact was already remarked by
Mestel:39 “a slightly surprising feature exhibited by poor

FIG. 9. Growth rates vs the wavenumberk for a jet with b@1, a=1, b
=1, x=0.6, and several values of the Ohnesorge numberC.
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conductors is that the small fluid viscosity performs to some
extent the role of a high conductivity in permitting the rapid
redeployment of surface charge.” Therefore, the growth rate
depression, however small, caused by imperfect conductivity
sa ,bÞ`d vanishes altogether in the proximity of the invis-
cid limit. Mestel39 explained the insensitivity toa andb in
terms of the rapid redistribution of charge towards the equi-
librium state by the boundary layer. In his analysis of a jet
flowing in an axial electric field, two cases are considered:
the perfectly conducting limit, where the prevailing transport
is conduction with a characteristic timete,«i /K; and the
imperfect-conductor range, where the redistribution is due to
the surface convection in the boundary layer induced by the
electric tangential stress. Our problem howeversradial elec-
tric field rather than axial fieldd requires a reassessment of
this interpretation.

The effect of the tangential electric stress on the jet dy-
namics is strongly influenced by the viscosity of the liquid.
The shear-induced boundary layer cannot be modeled by a
low-order one-dimensional velocity model, inaccuracies aris-
ing which grow with decreasing viscosity. The suitability of
the average 1D model in the poor-conductor range, as well as
the emergence of the boundary layer, can be illustrated by
plotting the radial dependency of the axial velocity for sev-
eral values of the Ohnesorge number. In Fig. 10sb=10, x
=0.6 anda=1.0,k=0.5d, the axial velocity is scaled with the

average velocityŵav=2i f̂ V /k and represented as a function
of the radius.

Velocity profiles for moderate or high Ohnesorge,C
.10−2, areconvexparabolic. The only exception to the con-
vex profile is to be found whenb is very close to 1, where a
concave profile is observed; but this is a situation unrealistic
enough in present applications. As the viscosity increases,
the profiles become flattersfor C=10−1 the maximal differ-
ence with respect to the average is about 11%d. Therefore, an
average or parabolic velocity model is adequate for simulat-
ing the evolution of jets with moderate or high viscosity.

However, as the viscosity decreases,Cø10−2, the profile
develops a boundary-layer structure:sad a core region, with a
very flat concaveparabolic profile, andsbd an interface
boundary layer with considerable velocity gradient. Velocity
departures with respect to the average are above 25%sC
=10−2d, thus confirming the inadequacy of 1D models in this
parametric region. Even in the absence of a boundary layer,
sharp convex profiles are often observed, thus discouraging
routine slice-averaging methods.

The existence of a boundary layer has been postulated
by Gañán-Calvoet al.38 to explain the experimental behavior
of jets and sprays obtained by electrospraying liquids with
small enough viscosity and conductivity, such as light paraf-
fins. In his modelssteady jet, tangential electric fieldd, a
boundary layer is expected to arise wheneverCsabd1/3!1.
Note the implication that the boundary layer disappears in
the perfect-conductor limit, i.e., whena or b are large
enough. A similar observation will be made in our case
sabC1/2!1d.

The main magnitudes characterizing the boundary layer
can be estimated as follows. At the boundary layer, the vis-
cous stresses are of the same order as the tangential electric
stresssbarred magnitudes are assumed dimensionald:

t̄ , s̄eĒt , m
DW̄

d̄
, rV̄d̄W̄1, s80d

whered̄ , s̄e, andV̄ are the physical magnitudes of the width
of the boundary layer, the steady surface charge at the inter-
face, and the growth rate or oscillatory frequency, respec-

tively; m is the viscosity,DW̄ is the velocity jump at the

boundary layer, andW̄1 is the axial velocity at the interface.
s̄e can be estimated as«oEo.

From the above, the dimensionless width of the bound-
ary layer isd,sC/Vd1/2,std/ tvd1/2, where td is the distur-
bance time scale andtv is the viscous diffusion time. It is
interesting to note that, for a givenC, the width of the
boundary layer is sensitive to the main parameters ruling on
V, i.e., the electrification levelx and the ground locationb.
Increasingx, bringing the electrode closer or intensifying the
aerodynamic effect, i.e., increasinguU`−Uou, gives rise to a
narrowing of the boundary layer.

In the long-wavelength limit,k!1, the core velocity
profile flattens and, in addition, the boundary layer tends to
thicken and, thereby, to vanish altogether. However, a persis-
tent boundary layer will be observed providedC!k fwhen
b,bosxdg or C!k2 fwhenb.bosxdg: see Eqs.s70d ands72d.

In addition, the dimensionless stresst= t̄ / sg /Ad, A being
the jet radius andg being the surface tension, is of the order
of

t ,
C

d

V f̂

k
,

C1/2V3/2f̂

k
, s81d

where the axial velocity jump has been estimated from the
average oscillatory axial speedŵav whose exact value is

2i f̂ V /k. This result shows that the tangential stress tends to
be negligible whenC→0.

FIG. 10. Radial profiles of the axial velocity, scaled with the average axial
velocity, for several values of the Ohnesorge numbersC=10−4, C=10−3, C
=10−2, C=10−1, and C=1.0d. The jet is characterized by:b@1, b=10, x
=0.6, anda=1.0. The wavenumber of the perturbation isk=0.5.
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Therefore, the tangential electric fieldsscaled withEod is
of the order of

Et ,
C1/2V3/2f̂

kx
, s82d

and En
i ,lEt. Both En

i and Et are vanishingly small forC
!1, as happens to be the case in the perfect-conductor limit.
The interpretation is straightforward from the above: any de-
parture from the perfect-conductor limit in a radial electric
field impliesEtÞ0, but a tangential electric stress can only
be balanced by a viscous stress. In theC!1 limit, the vis-
cous stress is too small to counterbalance any significant
tangential field, even in spite of the intensified velocity slope
created by the boundary layer. Axial electric fields give rise
to quite a different situation.39

The radial velocity profile in the low-C limit is therefore
insensitive toa andb. In addition, when the axial velocity is
scaled with the average value, self-similarity of the bulk so-
lution is observed not only with respect toa andb, but also
with respect to the electric numberx. The resulting scaled
profile is only dependent of the wavelengthk. The thickness
of the boundary layer, however, does depend on all the vari-
ables influencingV, namely, onx andb; and the velocity at
the interface,ŵs1d / ŵav=−1/f2Gsk,bdg, depends ofb. It fol-
lows from Eq.s60d that the bulk axial profilesscaled with the
average velocityŵavd is characterized by the following val-
ues: at the axis,ŵs0d / ŵav=k/ f2I1skdg; at the external asymp-
tote sr →1−d of the inviscid core,ŵs1−d / ŵav=k2jskd /2. The

average velocity is, as in the general case, 2i f̂ V /k, whereV,
obtained froms79d, is dependent ofx and b. The velocity
jump at the boundary layer isfŵs1d−ŵs1−dg / ŵav=−Bkv /2V.

It is worth noting that there is an exception to the above:
whena or b are sufficiently large, the velocity jump across
the boundary layer tends to become zero, while the thickness
is preserved. It can indeed be shown that, under the condition
that eitherabC1/2@1, ŵs1d→ ŵs1−d, so that the boundary

layer becomes unnoticeable. This confirms that the perfect-
conductor limit masks the emergence of an interfacial bound-
ary layer, and moderate or smalla andb values are required
for the boundary layer to show up.

The above estimations for the tangential electric field
and the interfacial shear, issuing from Eqs.s80d, do not hold

whenDW̄, the velocity jump at the boundary layer, andW̄1,
the axial velocity at the interface, are no longer of the same

order. Such is the case in theabC1/2@1 limit, where DW̄
→0. However, providedab@1, the charge transport balance
Eq. s23d shows that the inner electric field will tend to zero,
so thatEt→0. This is the perfect-conductor limit, where the
boundary layer is inconspicuous because of the lack of a
shear agent.

An interesting feature about the boundary layer is that it
either flows more slowly or more rapidly than the inviscid
core, as illustrated in Fig. 11, thus defining two regimes
which we label as “lazy-shell mode” and “hyperactive-shell
mode,” respectively.

The discrimination between both modes depends on the
electrode positionb. In the tight-electrode limitsb,bo

<e1/2=1.6487d, the boundary layer runs faster than the core;
as we separate the electrode, the lazy-shell mode is recov-
ered. The velocity profile tends to be flatter for long wave-
lengths. In the limitb→` andk→0, an extreme situation is
observed, where the interface is stagnant while the core os-
cillates.

In the above description of a boundary layer, some ele-
ments can be highlighted.

sad Most prior studies concentrate on the boundary layer
arising from the action of an axial electric field. It was
in this case that a free-jet boundary layer was first
reported.11,39 Quasi-inviscid jets can only balance tan-
gential stresses by producing a narrow interfacial band
with high radial gradients.

FIG. 11. Main figure: Axial velocity scaled with the
average velocity, as a function of the wavelengthk, for
different values of the ground locationb in the low-
viscosity limit. Also plotted, with the same scaling, are
the velocity at the axisws0d sdashed curved and the
asymptotic core velocity at the interfacews1−d sdash
and dot curved. Results are insensitive to all other pa-
rameters includingx. Marginal figures: Several repre-
sentative velocity profiles, as a function of the radius,
showing the lazy-shell regimesb=3d and the
hyperactive-shell regimesb=1.25d for long and short
wavelengths, respectively.
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sbd However, from a physical point of view it is not so
obvious that a radial electric field will also give rise to
a boundary layer. It is here shown that this boundary
layer will only become conspicuous when the liquid is
a poor conductor. This is a different result, and the
following observation is added: the distance at which
the electrode is placed gives rise to diverse velocity
profiles, with the interface either running faster or
slower than the core, while the core velocity profile is
insensitive to conductivity and permittivity variables.

scd This type of boundary layer is based on the competition
between the oscillatory acceleration and the viscous
term, whereas the axial field boundary layer is based on
the balancing of axial stress and viscous term. As such,
there is no entrance length nor is there any downstream
thickening of the layers; they do not merge. A uniform
thickness will be observed in all the lengths of the jet.

IV. 1D APPROACH: THE AVERAGE
AND THE PARABOLIC APPROXIMATIONS

One-dimensional models are based on the substitution of
a simplified form of the velocity componentssa truncated
Taylor series in the radial coordinated into the Navier–Stokes
equations. To lowest order inr, such methods provide a sim-
plified set of slice equations, widely used in the qualitative
analysis of jets. As indicated above, the axial velocity profile
tends to become flat ask approaches zero. This is the con-
ceptual basis allowing for an expansion in powers ofr. How-
ever, higher-order approximationssparabolicd are reasonably
accurate even fork,1 provided the real velocity profile does
not exhibit singular patterns such as boundary layers.

Therefore, 1D models fail to converge whenever a
boundary layer is present. Such is the case of slightly viscous
jets, under the condition thatabC1/2 is, at most, of order 1.
The thickness of the boundary layer, assuming long-
wavelength disturbances, is approximatelyfC/B1sb,xdkg1/2

when b.bosxd and fC/B2sb,xdk2g1/2 when b,bosxd. This
implies that, in realistic problemsswhereC cannot be equal
to zerod, given any value ofC!1, a range ofk values close
to the zero limit can be defined where the boundary layer
vanishes and the 1D approximation holds. In spite of this, 1D
models are scarcely useful in theC!1 range, because, in the
range of wavelengths where maximum growth is observed
sca. p /kmd, a distinct boundary-layer pattern is observed.

García and Castellanos49 carried out a detailed examina-
tion of the equations and their range of validity in the 1D
modeling of unelectrified jets. However, their results cannot
be extrapolated to charged jets without a general reassess-
ment of the problem.

In this section we derive one-dimensional expressions
for the conservation equations. We adopt the slice chargeS
=s1+Fz

2d1/2Fse rather than the surface charge densityse. S
represents the charge per unit of dimensionless lengthz. Re-
written in terms ofS, the charge continuity equations23d
becomes

St +
FzU + W

1 + Fz
2 Sz − abFs1 + Fz

2d1/2En
i

−
S

Fs1 + Fz
2d2s1 + 3Fz

2 + 2Fz
4 + FFz

2FzzdU

+
SFz

3

Fs1 + Fz
2d2s1 + Fz

2 + FFzzdW

−
S

1 + Fz
2sUr − FzWrd = 0. s83d

The one-dimensional approximation is obtained by re-
placing the 3D velocitiesU ,W, and pressureP by

Wsr,z,td = wosz,td + 1
2r2w2sz,td + ¯ , s84d

Usr,z,td = − 1
2rwo8sz,td − 1

8r3w28sz,td + ¯ , s85d

Psr,z,td = posz,td + 1
2r2p2sz,td + ¯ , s86d

where axial derivatives are denoted as primes; time deriva-
tives will be indicated with dots.

The tangential stress balance at the interfaces25d is the
key equation linking momentum and electric equations. It is
from this equation that the convergence of the velocity ex-
pansion can be checked. To that end, we observe that axial
derivatives are of orderk: ] /]z,l−1,k. Therefore,

Fw2 − 3wo8F8 −
1

2
Fwo9 +

1

6
F3w4

− H1

8
F3w29 +

7

4
F2F8w28 + 2FF82w2 − 3F83wo8

− FF82wo9J + Osk3d

=
xSEt

FCs1 + F82d1/2. s87d

To leading order, it follows thatw2<xSEt /CF2. Note that
the electric term in Eq.s87d is left intact while the hydrody-
namic part is approximated. This uneven treatment is cus-
tomary in the literature. By keeping the interfacial electric
driving terms unexpanded, an improved accuracy is ob-
tained. The same procedure will be applied to the capillary-
electrical pressure term in the momentum equation below.

In addition, from the Laplace equation in the jet and
under the assumption that the main electric forcing is radial,
the tangential fieldsphysical magnituded can be estimated as

Ēt,Eo/l, so thatEt,k. It can be inferred thatw2/wo,k,
w4/wo,k2, and so on. However, as will be shown later,
p2/po,k2.

This is a weaker convergence as in unelectrified prob-
lems, where it can be shown49 that w2/wo,k2. In fact, k2

convergence is recovered in our case provided the liquid is a
perfect dielectricsS=0d or a perfect conductorsab@1d. In
both cases, the right-hand side of Eq.s87d becomes zero and
the tangential stress balance is the same as in the unelectri-
fied limit. In all other cases,k convergence will be observed,
and this explains why, in some situations involving poor con-
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ductors, lowest-order 1D models fail to give accurate ap-
proximations and at least second-order truncations are re-
quired.

Note that the above equation includes three terms in
curly brackets which can be neglected to ordersk3d. These
terms have been retained just for the sake of comparing re-
sults with available higher-order expressions in the unelectri-
fied limit.49 Indeed, whenx=0, Eq. s87d is accurate with
errorsOsk6d.

A. Parabolic or O„k3
… approximation

In this section, the 1D model is taken to orderk3 by
keeping the first two terms in the velocity expansion. This
amounts to modeling the axial velocity as a parabolic profile.
The continuity equation of the surface charge, the stress bal-
ance in the normal direction, and the kinematic condition
read

Ṡ+ fswo + 1
2F2w2dSg8 = abFs1 + F82d1/2En

i + Osk3d,

s88d

po + 1
2F2p2 = pce− Cswo8 + 3

4F2w28 + 2FF8w2d
+ hCsFF8wo9 + 3F82wo8dj + Osk3d, s89d

Ḟ + swo + 1
2F2w2dF8 + 1

2Fwo8 + 1
8F3w28 + Osk3d; s90d

the pressure equation includesOsk3d terms in curly brackets,
which are retained with the same purpose as before. These
equations are accurate toOsk4d in the unelectrified limit. The
capillary-electrical pressure term is defined as in Eq.s26d.

The momentum equations follow from inserting the ve-
locity r-expansions and equating terms with the same power
in r. To orderOsk2d only three equations are requiredsr0,r2

terms in the axial direction; leading term in the radial
directiond:

ẇo + wowo8 = − po8 + Cswo9 + 2w2d, s91d

ẇ2 + wow28 = − p28 + Csw29 + 4
3w4d , s92d

ẇo8 + wowo9 − 1
2wo8

2 = 2p2 + Cswo- + 2w28d. s93d

The interfacial stress balance equations are fed into the mo-
mentum equations and the pressure componentspo, p2, as
well as w4, are eliminated. As a result, two condensed-
momentum equations are obtained in replacement of Eqs.
s87d, s89d, ands91d–s93d:

ẇo + wowo8 − h 1
4F2fẇo8 + wowo9 − 1

2wo8
2gj8

= − pce8 + Chs2 − 4F82 − FF9dwo9

+ 2s1 + F82 + FF9dw2 − 1
4F2wo

iv − 3
2FF8wo-

+ 1
4F2w29 + 5

2FF8w28 − 6F8F9wo8j , s94d

ẇ2 + wow28 +
1

2
ẇo9 +

1

2
wowo-

=
8xSEt

F4s1 + F82d1/2 +
C

F4H4F2s1 − 2F82dwo9

+ 24FF8s1 − F82dwo8 +
1

2
F4wo

ivJ
+

C

F4h− 8F2s1 − 2F82dw2 + 3F4w29 + 14F3F8w28j.

s95d

Up to this point, the equations hold for arbitrary electric
field, i.e., axial field, radial field, or other situations are en-
compassed in the model. Therefore, the parabolic 1D equa-
tions above can be used in a wide variety of electrohydrody-
namic problems.

Next, we assume small departures of the electric vari-
ables with respect to the static solutionswo andw2 are intrin-
sically smalld; in addition, the radial electric field assumption
is introduced:

1
fosz,r,td
fisz,r,td

Ssz,td
Fsz,td

2 =1
lnsb/rd
lnsbd

1

1
2 +1

f̃osr,z,td

f̃isr,z,td

S̃sz,td

f̃sz,td
2 , s96d

and the perturbation is written as

1
wosz,td
w2sz,td

f̃osr,z,td

f̃isr,z,td

S̃sz,td

f̃sz,td

2 = Re31
− iŵo

− iŵ2

f̂osrd

f̂isrd

Ŝ

f̂

2z4 , s97d

wherez is equal toeVt+ikz. In addition, the electric boundary
conditions are imposedshere, primes denote radial
derivativesd:

− f̂ + f̂os1d = f̂is1d, s98d

− sf̂od8s1d + bsf̂id8s1d = Ŝ, s99d

f̂osbd = 0. s100d

The inner and outer electric fields are exactly modeled as
in the 3D descriptionfsee Eqs.s61d and s62dg. In addition,
the condensed-momentum equations, the charge conserva-
tion equation, and the kinematic condition are linearized. The
result is a linear system M2·x=0, where x
=sŵo,ŵ2, f̂ ,Ae,Be,ŜdT andM2 is a 636 matrix:
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1
4k k 8V 0 0 0

Ck2s8 + k2d + Vs4 + k2d Cs− 8 +k2d 4ks1 − k2 − xd − 4kx 0 0

Cs8k2 − k4d − k2V 2fCs8 + 3k2d + Vg 16kx − 16kGx 0 0

0 0 0 − 1 b − 1

0 0 − 1 G − j 0

k k/2 0 0 ab V

2 , s101d

the rows ofM2 containing the kinematic condition, thewo

andw2 momentum equations, the jump in the normal electric
field at the interface, the continuity of potential at the inter-
face and the charge conservation equation. The dispersion
equation,D2=0, is readily obtained by setting the determi-
nant ofM2 equal to zero.

B. Slice-average approximation

A more simplified 1D model is widespread in the litera-
ture; in this model, the tangential stress balance is truncated
with errorsOsk2d:

Fw2 − H3wo8F8 +
1

2
Fwo9J + Osk2d =

xSEt

FCs1 + F82d1/2, s102d

implying that w2=Oskd. Again, higher-order terms, in curly
brackets, have been kept with the purpose of preserving a

consistent equation valid with errorsOsk4d in the unelectri-
fied case, wherew2=Osk2d. A single condensed-momentum
equation is obtained:

ẇo + wowo8 = − pce8 + 3C
sF2wo8d8

F2 +
2xSEt

F2s1 + F82d1/2 + Osk2d.

s103d

The kinematic condition is truncated atOsk2d. The re-
maining equations, boundary conditions, and linearization
model are identical as in the parabolic case. The average

linear system is nowM1·y=0, wherey=sŵo, f̂ ,Ae,Be,ŜdT

andM1 is a 535 matrix:

1
k 2V 0 0 0

− sV + 3Ck2d ks− 1 +k2 + xd kx 2kxj 0

0 0 − 1 b − 1

0 − 1 G − j 0

k 0 0 ab + xk2j/2C V

2 , s104d

the rows ofM1 containing the kinematic condition, thewo

momentum equation, the jump in the normal electric field at
the interface, the continuity of potential at the interface and
the charge conservation equation. The dispersion equation is
D1=detsM1d=0.

This equation can be written in analogy to the 3D-
dispersion equation.

D1 =
2

k2V2 + 6CV + J1skdS4 + 4Gskd +
1

Gskd
D

+ Tskd = 0, s105d

where the auxiliary functionsGskd andjskd and the driving
term Tskd are defined as in the 3D-dispersion equation, and

J1skd =
xjskd
E1skd

, s106d

E1skd = GskdbS1 +
a

V
D − jskd +

xGskdjskdk2

2VC
. s107d

Apart from the divergentJ definition, the average dispersion
equation,D1=0, can be easily deduced from the general one,
Eq. s63d, by assumingk!1, kv!1, and observing that
k2jskd→2 whenk→0. The same simplifications as in the 3D
case can be obtained in different parametric extremes. For
instance, assuming low viscositysC!1d,

D1 =
2

k2V2 + Tskd = 0; s108d

an identical expression is obtained when the jet is a perfect
conductor sabC1/2@1d. In the opposite limitsC@1d, the
positive real root of the dispersion equation is

s = −
Tskd
6C

. s109d
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C. Assessment of the validity of 1D models

The simplifications inherent to 1D models tend to be-
come unacceptable whenever the axial velocity profile de-
parts significantly from the flat or parabolic curve. Such is
the case of low-C jets, particularly whena andb are small
or moderate. Figure 12 shows the scaled difference between
the 3D and 1D axial velocityfw3Dsrd−w1Dsrdg /w3Dsrd at the
interface sr =1d and at the axissr =0d in the average and
parabolic approximation, for different values ofk and a sb
=3, C=0.1, x=0.6, b@1d. Provideda is small enough, sig-
nificant errors can be noticed in the average model. These
errors are smoothed out with the parabolic approximation.

The maximum relative error Maxhfw3Dsrd
−w1Dsrdg /w3Dsrdj of the 1D approximation atr =0 andr =1,
for arbitraryk and different values ofC andaC1/2 sb=3, x
=0.6,b@1d is shown in Fig. 13. Considerable errors can be
observed in the low-C limit, but the parabolic approximation
achieves a better fit.

Figure 14 shows different radial velocity profiles for
variableaC1/2. The 3D solution exhibits a sharp boundary-
layer pattern, which becomes abortive asaC1/2→`. The

parabolic approximation tries to adhere to the interfacial ve-
locity, and fails to describe intermediate values ofr. Never-
theless, since the key physical phenomena take place at the
interface, the parabolic model will be substantially more ac-
curate than the average model, given its fidelity to the inter-
facial speed.

Finally, Fig. 15 shows growth rate curves as obtained
with the 3D equations and compares them to the average and
parabolic 1D approximations. In the absence of a boundary
layer sC=1d, the parabolic approximation ensures improved
accuracy, particularly in the long-wavelength range. How-
ever, very low Ohnesorge numbers give rise to a double peak
axial velocity profile, and both orders of approximation fail
to describe accurately the growth behavior.

V. CONCLUSIONS

The present paper can be considered as an investigation
on the shortcomings of the perfect-conductor hypothesis in
electrified jets. This is a widely used assumption in most of
the electrospray literature; with perfect conductors, the elec-
tric stress is perpendicular to the interface, a hypothesis that

FIG. 12. Scaled difference between the 3D and 1D axial velocityfwsrd−w1Dsrdg /wsrd at the interfacesr =1d and at the axissr =0d in the average and parabolic
sdashed lined approximation, for different values ofk anda sb=3, C=0.1, x=0.6, b@1d.

FIG. 13. Maximum relative error of the parabolic 1D
approximation at the axissr =0d and at the interfacesr
=1, dashed lined Maxhfw3Dsrd−w1Dsrdg /w3Dsrdj, arbi-
trary k, plotted for different values ofa and aC1/2 sb
=3, x=0.6, b@1d.
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cannot be preserved when dealing with leaky dielectrics.9 In
addition, lowest-order 1D models, assuming a flat axial ve-
locity profile, are assessed and found defective wheneverC
is sufficiently smallsan interfacial boundary layer emergesd
or in cases where the real velocity profile is sharply convex.
This latter situation is enhanced by finite permittivity and
conductivity liquids. Moderate and lowa andb are shown to
be abundant in the literature and applications of electrified
jets. In such cases, the routine adoption of an average model
may be misleading, and parabolic or 3D models become
mandatory.

The following main conclusions are drawn.

sad A general dispersion equation has been obtained for
axisymmetric perturbations modeling the influence of
conductivity, permittivity, electric field, viscosity, sur-
face tension, electrode distance, and ambient velocity.
Different parametric limits are explored: long-
wavelength, high and low viscosity, charge-convection
dominant or negligible. The growth factor is insensitive
to a andb in the low-C limit. In the general case, asa
andb grow, the perfect-conductor limit is recovered.

s1d When the viscosity is sufficiently small,C!V, i.e., the
viscous diffusion time scaletv is much longer than the
disturbance time scaletd, an interfacial boundary layer,
driven by electric shear, is observed. At the inside, the
boundary layer borders with the inviscid jet core, where
the axial velocity profile follows a self-similar trend, in-
sensitive to all electric parametersa , b, andx. In spite
of the increased velocity gradient at the boundary layer,
viscous stresses become vanishingly small in theC→0
limit. The occurrence of a boundary layer is a key event
in interface-driven jets, and it is only through finite con-
ductivity and permittivity that the boundary layer comes
to be fully deployed.

s2d Depending on the location of the ground electrode, the
boundary layer either runs faster than the coresb.b1

<e1/2d or lags behind itsb,b1d. Substantial velocity
differences can be observed, particularly for short-
wavelength disturbances: therefore caution is required
when modeling surface charge transport.

s3d Liquids with high conductivity or high dielectric con-
stant sabC1/2@1d give rise to an electric field perpen-
dicular to the interfaceszero-tangential fieldd and there-
fore weaken the boundary layer. In the perfect-conductor
limit, the boundary-layer velocity jump drops to zero.
This may explain why the boundary layer has been dis-
regarded in most of the state-of-the-art studies on the
subject.

s4d Inviscid jets cannot balance electric shear stresses at the
interface and therefore behave as perfect conductors.
The emergence of a boundary layer gives rise to an axial
velocity profile that cannot be modeled accurately with
low-order expansions in terms of the radius.

s5d Increasing convexity in the axial velocity profile is ob-
served whena or b decrease, inviting adoption of
higher-order expansions rather than average models.

sbd Slice equations, based on the approximation of the
axial velocity profile as an expansion in powers of the
radius, are obtained to lowest ordersaverage 1Dd and
second ordersparabolic 1Dd. The expressions obtained
hold for arbitrary electric field.

s1d Significant errors introduced by the lowest-order 1D ap-
proximation swidely used in the literatured may be
masked by the prevalence of large conductivity and per-

FIG. 14. Radial profiles of the axial velocity, scaled with the average axial
velocity, for several values ofaC1/2. The 3D solution, exhibiting a clear
boundary-layer pattern for moderate or smallaC1/2, ranging from 0.001 to
10, is shown together with the parabolic 1D approximationsdashed lined:
b@1, b=3, k=0.7, x=0.6, andC=0.0001.

FIG. 15. Growth rates vs the wavenumberk for a jet
with b@1, a=0.001,b=3, x=0.6, and several Ohne-
sorge numbersC=1, C=0.0001. The average and para-
bolic approximations are plotted as dot curves.
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mittivity liquids in most reported studies. A realistic as-
sessment ofa andb leads to questioning the validity of
average approximations, especially in their description
of interfacial magnitudes. In effect, the accuracy of the
interfacial velocity as described by the 1D average
model is poor in a wide parametric range provideda and
b are moderate.
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APPENDIX: DERIVATION OF THE DISPERSION
RELATION

The dispersion relation can be routinely obtained by
equating to zero the 737 determinant of the algebraic equa-
tions corresponding to the boundary conditions at the inter-
face s50d–s57d. However, arriving at the simplified expres-
sion reported in this paper is not straightforward. A brief note
on the procedure followedsin the simplified case where the
gas influence can be neglectedd is therefore appended for
reference:

− f̂ + AeGskd = Bejskd, sA1d

ŝe = − s f̂ + Aed + bBe, sA2d

Vŝe = − abBe + Afk2jskd − 1g − Bfkv
2jskvd − 1g, sA3d

A − B − V f̂ = 0, sA4d

AhVjskd + 2Cfk2jskd − 1gj − Bh2Cfkv
2jskvd − 1gj

+ s− 1 +k2d f̂ + xs f̂ + Aed = 0, sA5d

and

A − BS1 +
V

2k2C
D +

x

2C
jskdBe = 0, sA6d

where the auxiliary functionsG andj are defined as ins65d.
Using Eqs.sA1d–sA3d, Ae andBe can be expressed as a

function of A andB

Ae =
f̂

E
FbS1 +

a

V
D + jskdG +

jskd
EV

hAfk2jskd − 1g

− Bfkv
2jskvd − 1gj sA7d

and

Be =
f̂

E
f1 + Gskdg +

Gskd
EV

3hAfk2jskd − 1g − Bfkv
2jskvd − 1gj, sA8d

whereE is defined as ins66d.

Substituting these expressions insA5d and sA6d we get

AFVjskd + S2C +
Jskd

V
Dfk2jskd − 1gG

− BFS2C +
Jskd

V
Dfkv

2jskvd − 1gG
+ f̂Fk2 − 1 + fx + JskdgS1 +

1

Gskd
DG = 0 sA9d

and

AF1 +
Jskd
2CV

Gskdfk2jskd − 1gG
− BF1 +

V

2k2C
+

Jskd
2CV

Gskdfkv
2jskvd − 1gG

+ f̂
Jskd
2C

fGskd + 1g = 0, sA10d

whereJ is defined as ins66d.
A andB can be expressed in terms off̂ usingsA10d and

sA4d

A = f̂

V + 2k2C +
Jskd

V
k2f1 + Gskdkv

2jskvdg

1 +
Jskd
V2 k2Gskdfkv

2jskvd − k2jskdg
sA11d

and

B = f̂

2k2C +
Jskd

V
k2f1 + Gskdk2jskdg

1 +
Jskd
V2 k2Gskdfkv

2jskvd − k2jskdg
, sA12d

and substituting bothsA11d andsA12d in sA9d, the dispersion
relation s63d is obtained.
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