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In this study, Mn silicate (MnSiO3) barrier layers were formed on thermally grown SiO2 using both

metallic Mn and oxidized Mn films, in order to investigate the role of oxygen in determining the

extent of the interaction between the deposited Mn and the SiO2 substrate. Using x-ray photoelectron

spectroscopy, it has been shown that a metallic Mn film with an approximate thickness of 1 nm

cannot be fully converted to Mn silicate following vacuum annealing to 500 �C. Transmission

electron microscopy (TEM) analysis suggests the maximum MnSiO3 layer thickness obtainable using

metallic Mn is �1.7 nm. In contrast, a �1 nm partially oxidized Mn film can be fully converted to

Mn silicate following thermal annealing to 400 �C, forming a MnSiO3 layer with a measured

thickness of 2.6 nm. TEM analysis also clearly shows that MnSiO3 growth results in a corresponding

reduction in the SiO2 layer thickness. It has also been shown that a fully oxidized Mn oxide thin film

can be converted to Mn silicate, in the absence of metallic Mn. Based on these results it is suggested

that the presence of Mn oxide species at the Mn/SiO2 interface facilitates the conversion of SiO2 to

MnSiO3, in agreement with previously published studies. VC 2011 American Institute of Physics.

[doi:10.1063/1.3630123]

INTRODUCTION

Copper has now replaced aluminum as the metal of

choice for interconnects in microelectronic devices, due to its

lower resistivity and increased resistance to electomigration.1,2

However, studies have shown that a physical barrier is

required to surround the Cu interconnect and prevent both the

diffusion of Cu into the insulating SiO2 based dielectric mate-

rials, and the diffusion of O and H2O into the Cu.3 Self form-

ing diffusion barrier layers have been proposed as a scalable

alternative to Ta/TaN barrier layers for future interconnect

generations.2 Both manganese silicate and manganese oxide

barrier layers have been the subject of considerable study due

to favorable alloying properties4 and improved copper adhe-

sion compared to other barrier layer candidates such as TaN.1

In a recent high resolution photoemission study, Casey et al.5

have shown that Mn silicate (MnSiO3) layers, free from Mn

oxide, can be formed through ultra high vacuum (UHV)

annealing of metallic Mn on thermally grown SiO2 surfaces.

However, it was also shown that this Mn silicate growth

method is self limiting at high temperature, with the maxi-

mum thickness of the MnSiO3 layer calculated to be approxi-

mately 2 nm, resulting in the presence of residual metallic Mn

on the surface following annealing. Previous studies6 have

shown that unreacted metallic Mn remaining after barrier

layer formation can diffuse to the surface of the deposited Cu

interconnect during high temperature annealing and can be

subsequently removed using an oxidation process. However,

it has also been suggested that the presence of Mn within Cu

during thermal annealing restricts Cu grain growth, leading to

an increase in the final resistance of the interconnect.1,6 There-

fore, it would be preferable if the Mn silicate growth reaction

could be controlled more accurately in order to determine the

thickness of the MnSiO3 layer and prevent the presence of re-

sidual metallic Mn.

Ablett et al.7 have previously discussed the factors

which determine the initial stages of Mn silicate growth on

silica based dielectrics. It was suggested that absorbed water

on dielectric surfaces leads to the presence of -OH groups,

which interact with deposited Mn to form Mn oxide, with

these Mn oxide species in turn reacting with silicon in the

SiO2 to form MnSiO3. It has also been suggested that the ab-

sence of absorbed water species on thermally grown SiO2

layers reduces Mn oxide formation, hence limiting the maxi-

mum thickness of Mn silicate layers which can be formed on

the surface. However, the precise role of SiO2, metallic Mn

and Mn oxide species within the Mn silicate formation pro-

cess has not been investigated experimentally. Therefore, the

focus of this study is to determine if the thickness of MnSiO3

barrier layers grown on thermally grown SiO2 surfaces is

limited by the presence of additional oxygen species, beyond

that found within the SiO2 layer.

The chemical interactions between metallic Mn, par-

tially oxidized Mn and fully oxidized Mn thin films on ther-

mally grown SiO2 were systematically investigated using in
situ x-ray photoelectron spectroscopy (XPS). The formation

of Mn oxide species on the surface of dielectric materials

through the presence of surface -OH groups, as described by

Ablett et al.,7 would be very difficult to control experimen-

tally. Therefore, the experimental approach adopted in this

study was to form partially oxidized and fully oxidized Mn

thin films in UHV conditions through the evaporation of me-

tallic Mn in a controlled oxygen background pressure. Also,
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given that barrier layer formation and XPS analysis was per-

formed fully in situ in the UHV analysis system, this allowed

the role of both oxidized and metallic species to be investi-

gated without the complicating influence of ambient oxida-

tion effects. Following the completion of XPS analysis, a

protective copper capping layer (20–30 nm) was deposited

on selected samples before they were removed from vacuum

and subsequently analyzed by transmission electron micros-

copy (TEM), in order to accurately determine the thickness

and uniformity of the MnSiO3 layers.

EXPERIMENTAL DETAILS

High quality thermally grown SiO2 layers on silicon,

with a thickness of 5.4 nm, were grown using the Semitool

dry oxidation process in a Thermoco 9002 series furnace at

850 �C. The thickness of the thermal oxide was chosen so

that the Si substrate (Si�) and SiO2 component peaks of the Si

2p core level profile could be observed throughout all experi-

mental stages. This allowed the extent of SiO2 to MnSiO3

conversion to be approximated by expressing the integrated

area of the MnSiO3 component peak as a percentage of the

SiO2 component peak area. The SiO2 surfaces were prepared

using a standard degreasing procedure of successive dips in

acetone, methanol and isopropyl alcohol before being loaded

into a UHV deposition and analysis system. Samples were

then degassed at �200 �C for 2 hs, with the UHV chamber

reaching a maximum pressure of 5� 10�9 mbar during

degassing. The XPS analysis was carried out using a VG

Microtech electron spectrometer at a base pressure of

1� 10�9 mbar. The photoelectrons were excited with a con-

ventional Mg Ka (h�¼ 1253.6 eV) x-ray source and an elec-

tron energy analyzer operating at a 20 eV pass energy,

yielding an overall resolution of 1.2 eV. High temperature

annealing studies were carried out in vacuum at a pressure of

5� 10�9 mbar, with samples kept at the target temperature

for 60 mins. Hydrochloric acid etched Mn chips, with a purity

of �99.9%, were used as a source material for the deposition

of oxygen free metallic Mn thin films using electron beam

evaporation. Metallic manganese thin film deposition was

performed at elevated substrate temperature (150 �C) using

an Oxford Applied Research EGC04 mini electron-beam

evaporator, at a chamber pressure of 5� 10�9 mbar. The dep-

osition of both partially and fully oxidized Mn films was car-

ried out by the controlled introduction of O2 gas into the

UHV chamber during metallic Mn deposition. The XPS core

level spectra were curve fitted using Voigt profiles composed

of Gaussian and Lorentzian line shapes in a 3:1 ratio and

using a Shirley-type background. The full width at half maxi-

mum (FWHM) of the Si 2p bulk peak was 0.9 eV, with SiO2

and Mn silicate component peaks in the range 1.1 to 1.2 eV.

The FWHM of the O 1s SiO2 component was 1.2 eV with

Mn silicate and Mn oxide peaks in the range of 1.2 to 1.1 eV.

It should be noted that curve fitting of the Mn 2p spec-

trum could not be performed given that XPS ghost peaks8

emanating from the Mn 2p1/2 are present within the peak

profile of the Mn 2p3/2 component. As such, only non-curve

fitted Mn 2p spectra are included in this study. The Mn 2p

spectra are primarily used to identify the presence of metallic

Mn and oxidized Mn species on the sample surface as these

component peaks are easily identified from the Mn 2p3/2

peak profile without curve fitting. However, Mn 2p spectra

could not be used to conclusively identify the presence of

differing oxidized Mn species such as Mn silicate and Mn

oxide, therefore these chemical species are identified in this

study using curve fitted O 1s and Si 2p spectra.

High resolution transmission electron microscopy

(HRTEM) studies were performed using a JEOL-JEM 3000 F

and JEOL-JEM 4000EX electron microscopes operating at

300 and 400 kV, respectively. Samples in cross section geom-

etry were prepared by the conventional method of grinding

and polishing followed by Arþ milling in a Gatan PIPS until

electron transparent. The HRTEM micrographs were cali-

brated using the silicon (111) planes spacing as a reference.

EXPERIMENTAL RESULTS AND DISCUSSION

Curve fitted O 1s and Si 2p core level spectra taken

from the 5.4 nm thermal SiO2 surface are shown in Fig. 1.

The corresponding spectra taken following the deposition of

a� 1 nm metallic Mn thin film onto the SiO2 surface at ele-

vated substrate temperature (150 �C) are also shown in

Fig. 1. Curve fitting analysis shows small changes to the core

levels profiles suggesting that Mn deposition resulted in the

growth of additional component peaks in both the O 1s and

Si 2p spectra separated from the SiO2 components by 1.4

and 1.3 eV, respectively. These peaks are attributed to the

presence of the Mn silicate species MnSiO3, in agreement

with previous photoemission results.5 A series of high tem-

perature vacuum anneals between 300 �C and 500 �C were

then performed on the sample. The spectra in Fig. 1 show

evidence for further Mn silicate formation following these

anneals, and this is supported by changes in the Mn 2p spec-

trum in Fig. 2 which show the growth of an oxidized Mn

component peak on the higher binding energy side of the

FIG. 1. Curve fitted O 1s and Si 2p spectra showing the growth of Mn sili-

cate (MnSiO3) following the deposition of metallic Mn (�1 nm) onto SiO2

thermal oxide surface and subsequent UHV annealing.
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metallic Mn peak.9 The presence of residual metallic Mn fol-

lowing the 500 �C anneal suggests that the interaction of me-

tallic Mn with SiO2 is self limiting at this temperature, in

agreement with previous results.5,7 Rudimentary peak fitting

(not shown) of the Mn 2p spectra in Fig. 2 suggests that only

�0.5 nm of the deposited Mn film was converted to Mn sili-

cate following the 500 �C anneal. This limited scale of Mn

silicate growth can also be seen from the corresponding Si

2p spectrum which shows that only �12% of the SiO2 com-

ponent peak was converted to Mn silicate. The results shown

in Figs. 1 and 2 suggest that the thickness of manganese sili-

cate barrier layers formed through the deposition of purely

metallic Mn is self limiting at high temperature. Based on

photoemission thickness calculations10 the limiting thickness

of the MnSiO3 was calculated to be approximately 2 nm fol-

lowing the 500 �C vacuum anneal. It should be noted that

while the SiO2 surfaces used in this study were degassed

prior to Mn deposition at a temperature of �200 �C for 2 hs,

the work of Proost et al.11 suggests that this may not have

been sufficient to remove all of the chemisorbed water pres-

ent on the surface. As stated previously, Ablett et al.7 have

suggested that the interaction of metallic Mn and absorbed

water on silica surfaces may promote the growth of Mn ox-

ide species, with these Mn oxide species subsequently react-

ing with SiO2 to form Mn silicate. Therefore, it is suggested

that the presence of chemisorbed water may have contributed

to the partial conversion of metallic Mn to Mn silicate seen

in Figs. 1 and 2. However, this has not been shown conclu-

sively in this study.

In order to determine if the chemical reactivity of metal-

lic Mn on SiO2 surfaces is limited by the presence of addi-

tional oxygen species, specifically in the form of Mn oxide, a

partially oxidized Mn film was deposited onto the SiO2

surfaces and annealed to high temperature. Figure 3 shows

Mn 2p spectra taken following the deposition of metallic Mn

in an O2 partial pressure of 5� 10�8 mbar onto the SiO2 sur-

face at elevated substrate temperature (150 �C), leading to an

O2 exposure of �30 Langmuir (L). The Mn 2p spectrum

clearly shows the presence of both metallic Mn and oxidized

Mn spectral components, with curve fitting analysis suggest-

ing a metallic Mn:oxidized Mn ratio of 5:1. Angular resolved

Mn 2p spectra (not shown) indicate no evidence for spatial

segregation between the oxidized and metallic species,

which suggests that the oxygen content is homogenously dis-

tributed throughout the deposited film. While detailed chemi-

cal analysis of Mn species cannot be achieved by curve

fitting the Mn 2p spectrum as mentioned previously, the

curve fitted O 1s and Si 2p spectra in Fig. 4 can be used to

determine the chemical species present on the SiO2 surface

following deposition of the partially oxidized Mn film. It can

be seen from Fig. 4 that O 1s spectra show the presence of

two additional component peaks on the lower binding energy

(LBE) side of the SiO2 component following deposition. The

peak at 531.3 eV is again attributed to the presence of Mn

silicate which formed upon deposition, which is confirmed

by the growth of a Mn silicate component peak in the corre-

sponding Si 2p spectrum at 102.6 eV (Fig. 4). In addition to

this, the O 1s spectrum also shows evidence for a third com-

ponent peak at a binding energy position of 530.0 eV, which

is attributed to the presence of Mn oxide in agreement with

previous studies.12 The formation of Mn oxide species fol-

lowing �30 L O2 exposure is in agreement with the work of

Lescop13 who has shown that the oxidation of Mn can occur

at oxygen exposure levels less than 20 L. Based on this anal-

ysis, it is apparent that the chemical species present on the

surface prior to high temperature annealing are metallic Mn,

Mn oxide, Mn silicate, and SiO2. The sample was subse-

quently annealed to a maximum temperature of 400 �C in

UHV and the corresponding photoemission spectra are also

FIG. 2. Mn 2p spectra, corresponding to Fig. 1, show the presence of resid-

ual metallic Mn on the surface following 500 �C annealing. This result sug-

gests that the interaction of metallic Mn and SiO2 is self limiting at high

temperature.

FIG. 3. Mn 2p spectra taken following the deposition of partially oxidized

Mn (�1 nm) onto SiO2 show the presence of both metallic Mn and oxidized

Mn component peaks. Spectra taken following 400 �C annealing show the

complete conversion of metallic Mn to Mn silicate.
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shown in Figs. 3 and 4. It can be seen from Fig. 4 that

annealing to 400 �C has resulted in considerable growth of

Mn silicate, as evidenced by growth of the MnSiO3 compo-

nent peaks in both the O 1s and Si 2p spectra. Curve fitting

of the Si 2p spectrum following annealing suggests that 48%

of the SiO2 component peak was converted to Mn silicate,

which is a considerably larger value than that seen following

the deposition of metallic Mn in Fig. 1. XPS thickness calcu-

lations10 suggest that the thickness of this silicate layer is

�3 nm. It is suggested that this increased thickness may be

attributed to an increase in the chemical reactivity of the par-

tially oxidized Mn species on SiO2, compared to that of the

purely metallic Mn film. This increased chemical reactivity

of the partially oxidized Mn film is also shown by the Mn 2p

spectra in Fig. 3 which show no evidence for the presence of

residual metallic Mn following 400 �C annealing, again in

contrast to the results seen following the deposition of metal-

lic Mn in Fig. 2.

Figure 5 shows HRTEM images taken from the 5.4 nm

thermal SiO2 surface [Fig. 5(a)], as well as images taken fol-

lowing the growth of barrier layers using partially oxidized

Mn [Fig. 5(b)] and metallic Mn [Fig. 5(c)]. The images are

used to more accurately quantify the thickness of the barriers

layers formed on both samples, and as such offer further

evidence for the increased chemical reactivity of partially

oxidized Mn. The HRTEM measured thickness values in

Table I indicate that the thickness of the barrier layer formed

using purely metallic Mn is 1.7 nm [Fig. 5(c)], while the Mn

silicate layer formed using partially oxidized Mn is measured

to be 2.6 nm [Fig. 5(b)]. It should be noted that the TEM

thickness values shown in Table I are in close agreement

with the corresponding values calculated using XPS, sug-

gesting the photoemission calculations used in this study are

accurate. It should also be noted that XPS thickness calcula-

tions suggest that the deposited thickness of Mn in both films

was the same (�1 nm). Therefore, the increased thickness of

the Mn silicate layer shown in Fig. 5(b) is attributed to an

increase in the chemical reactivity of the partially oxidized

Mn film compared to that of the purely metallic Mn film.

It should also be noted that while the partially oxidized

Mn film consisted of �15% oxidized Mn, the remaining oxy-

gen required to form the fully oxidized MnSiO3 layer must

come from the conversion of SiO2 to Mn silicate, given that

all experimental stages were carried out in UHV. The con-

version of SiO2 to MnSiO3 during barrier layer growth is

confirmed by the HRTEM images in Fig. 5 which clearly

show that the increased barrier layer thickness seen in Fig.

5(b) results in a corresponding reduction in the thickness of

the underlying SiO2. This observation is analogous to a com-

parable study by Copel et al.14 who investigated the interac-

tion of La2O3 films on SiO2 surfaces and reported that the

growth of La silicate through thermal annealing resulted in a

corresponding reduction in SiO2 thickness. The reduction of

SiO2 thickness during the conversion of SiO2 to MnSiO3 is

quantified in Table I, with TEM thickness values suggesting

that the presence of Mn oxide species within the partially

oxidized film allowed for increased levels of SiO2 conver-

sion. Therefore, it is suggested that the presence of Mn oxide

allows Mn silicate layers of increased thickness to be formed

by facilitating the conversion of both SiO2 and Mn to

MnSiO3. Based on these results it can be stated that the pres-

ence of additional oxygen within a metallic Mn film is essen-

tial in order to form Mn silicate films with a thickness

greater than �2 nm on thermally grown SiO2.

It should be noted that the shift to LBE seen in the SiO2

component of the Si 2p spectra in Fig. 4 is attributed to the

thinning of the SiO2 layer following Mn silicate growth. It

FIG. 5. HRTEM images taken from the as grown SiO2 thermal oxide (a),

the barrier layer formed using partially oxidized Mn (b), and the barrier

layer formed using metallic Mn (c). Images clearly show that the MnSiO3

layer formed using partially oxidized Mn is considerably thicker than that

formed using metallic Mn. It can also be seen that MnSiO3 growth has

resulted in a corresponding reduction in SiO2 thickness, indicating the con-

version of SiO2 to MnSiO3 during barrier layer formation.

FIG. 4. Curve fitted O 1s and Si 2p spectra corresponding to Fig. 3. Spectra

show the complete conversion of both metallic Mn and Mn oxide to form

MnSiO3, resulting in higher levels of silicate growth than that seen in Fig. 1

which indicates the increased reactivity of partially oxidized Mn films on

SiO2.

TABLE I. HRTEM thickness values corresponding to the images shown in

Fig. 5.

SiO2

thickness (nm)

Mn barrier layer

thickness (nm)

Thermally grown SiO2 (5a) 5.4 –

Partially oxidized Mn (5b) 4.1 2.6

Metallic Mn (5c) 4.5 1.7
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has been shown by Iwata et al.15 that the binding energy

(BE) separation between the Si� and SiO2 components of the

Si 2p profile may be increased as a function of increasing

SiO2 thickness, due to the buildup of surface electronic

charge during the photoemission process. In agreement with

this, curve fitting techniques suggest that the Si�-SiO2 BE

separation is reduced from an initial value of 4.4 eV for the

5.4 nm SiO2 surface to a value of 4.0 eV following the

growth of Mn silicate and corresponding reduction in SiO2

thickness. The affects of surface charging are accommodated

for during the peak fitting process by linking the B.E. posi-

tion of the Mn silicate component to that of the SiO2 compo-

nent, using a BE separation of 1.4 eV in agreement with

previous studies.5

Along with the conversion of metallic Mn, the O 1s spec-

tra in Fig. 4 also show evidence for the complete conversion

of Mn oxide to Mn silicate following high temperature anneal-

ing. This result indicates that MnSiO3 layers free from metal-

lic Mn and Mn oxide can be formed by the thermal annealing

of partially oxidized Mn on SiO2 surfaces. The conversion of

Mn oxide to Mn silicate is in contrast to the finding of Gordon

et al.1,3 who have suggested that Mn oxide is unreactive on

SiO2 surfaces. However, the chemical reactivity of Mn oxide

species within a metallic Mn matrix may be different to that

of fully oxidized Mn oxide films. Therefore, a metal free Mn

oxide layer, with a thickness of�1 nm, was deposited in order

to determine the chemical stability of fully oxidized Mn on

SiO2. The fully oxidized Mn film was formed by evaporation

of metallic Mn in an O2 oxygen background pressure of

1� 10�7 mbar at elevated substrate temperature of 150 �C. A

post deposition anneal at the same temperature and O2 back-

ground pressure was then performed leading to a total O2

exposure of �400 L. The Mn 2p spectrum taken following

post-deposition annealing (not shown) displays no evidence

for the presence of metallic Mn on the surface, showing that

the film is fully oxidized. The corresponding O 1s spectrum in

Fig. 6 shows the presence of a Mn oxide component at a bind-

ing energy position of 530.2 eV, which is close to that previ-

ously attributed to the Mn oxide species MnO.12 Given the

difficulty in curve fitting Mn 2p spectra obtained using con-

ventional non-monochromated XPS, the exact stoichiometry

of the Mn oxide species deposited in this study cannot be

established. However, it can be clearly stated that the film is

fully oxidized and free from metallic Mn.

A series of high temperature vacuum anneals between

300 �C and 500 �C were then performed on the sample. In

agreement with the results of the partially oxidized Mn film, it

can be seen from both the O 1s and Si 2p spectra in Fig. 6 that

high temperature annealing results in the conversion of Mn

oxide to Mn silicate. Given that there is no evidence for the

presence of metallic Mn on the surface of this sample, this ex-

perimental result shows that fully oxidized Mn can also be

converted to Mn silicate following high temperature annealing

on SiO2 surfaces. This result is in agreement with recent pub-

lications16,17 which have reported that Mn oxide layers

formed on SiO2 surface using chemical vapor deposition can

be converted to Mn silicate following thermal annealing. In

addition to this, it has also been shown that other metal oxide

species such as La2O3
14 and MgOx

18 can be converted to

metal silicate species following thermal annealing on SiO2

surfaces. The scale of Mn silicate growth is again quantified

using curve fitting techniques, with the Si 2p spectra in Fig. 6

showing that 36% of the SiO2 component peak being con-

verted to Mn silicate. It should be noted that the SiO2 compo-

nent of the Si 2p spectrum in Fig. 6 does not show the same

shift to LBE previously observed in Fig. 4 following the

reduction of SiO2 thickness, and the corresponding reduction

of surface electronic charging effects. It is suggested that

these charging effects were not reduced to the same extent in

Fig. 6, given that lower of levels of SiO2 conversion to

MnSiO3 were observed in this sample. Also, the presence of

Mn oxide species, with comparatively high resistivity, on the

SiO2 surface in Fig. 6 may have also increased the level of

photoemission surface charging affects compared to that seen

in Fig. 4.

Further experiments (not shown) involving the deposi-

tion of partially oxidized Mn films of greater thickness (>1.5

nm) were also carried out in order to determine if the depos-

ited film thickness is also a limiting factor in Mn silicate

growth. Spectra taken after 500 �C annealing showed evi-

dence for greater levels of Mn silicate growth than that seen

in Figs. 3 and 4, however, there was also evidence for the

presence of residual metallic Mn which had not been con-

verted to Mn silicate at this temperature. Therefore, based on

the results of this study it is suggested that even when suffi-

cient levels of Mn oxide are present on the surface the thick-

ness of Mn silicate layers formed on SiO2 is still self limiting

at high temperature.

CONCLUSIONS

The results of this study show that the growth of Mn sili-

cate barrier layers on SiO2 surfaces is self limited by the

FIG. 6. Curve fitted O 1s and Si 2p spectra taken following the deposition

of a fully oxidized Mn oxide layer (�1 nm) and subsequent UHV annealing,

showing the conversion of Mn oxide to Mn silicate. Spectra taken from the

5.4 nm SiO2 surface prior to Mn oxide deposition are not shown, but are

identical to those shown in Figs. 1 and 4.
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availability of additional oxygen, beyond that which is pres-

ent within the SiO2 layer. It has been shown that a �1 nm

metallic Mn film cannot be fully converted to Mn silicate

following 500 �C annealing. As a result, Mn silicate layers

with a thickness greater than 1.7 nm cannot be formed fol-

lowing the deposition of purely metallic Mn and subsequent

UHV annealing on a thermally grown SiO2 layer. It has also

been shown that a partially oxidized Mn film of similar

thickness (�1 nm), containing approximately 15% Mn ox-

ide, can be fully converted to form a Mn silicate layer of

greater thickness (2.6 nm) which is free from metallic Mn

and Mn oxide. HRTEM images taken from these samples

show that MnSiO3 growth causes a corresponding reduction

in the SiO2 layer thickness. This result is attributed to the

conversion of SiO2 to Mn silicate during UHV annealing and

suggests that while the presence of Mn oxide is required to

achieve full conversion of 1 nm Mn films to Mn silicate, the

remaining oxygen required for silicate growth can be

obtained from the SiO2 film. Therefore, only low levels of

additional oxygen are required to increase film reactivity.

This may be of relevance for the practical implementation of

MnSiO3 barrier layer formation processes in device fabrica-

tion, given that the integration of excess oxygen into the Mn

layer may decrease the reportedly high diffusivity of metallic

Mn within Cu layers,7 one of the main factors which has led

to the investigation of Mn based barriers layers for Cu inter-

connects. It has also been shown in this study that fully oxi-

dized Mn films, free from metallic Mn, can be converted to

Mn silicate using thermal annealing on SiO2 surfaces. Given

that conformal deposition techniques such as atomic layer

deposition are more suited to the deposition of metal oxide

species than contaminant free metallic films, the use of fully

or partially oxidized Mn films may offer a route to integrate

Mn silicate structures into ultrathin barrier layer formation.

However, it should be noted that the chemical reactivity of

Mn oxide films on SiO2 may depend greatly on factors such

as oxide stoichiometry and film deposition method.
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