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Abstract

In this work, a new method to determine and correct the linear drift for any crystalline orientation in a single-column-resolved high-res-
olution scanning transmission electron microscopy (HR-STEM) image, which is based on angle measurements in the Fourier space, is pre-
sented. This proposal supposes a generalization and the improvement of a previous work that needs the presence of two symmetrical planes
in the crystalline orientation to be applicable. Now, a mathematical derivation of the drift effect on two families of asymmetric planes in the
reciprocal space is inferred. However, though it was not possible to find an analytical solution for all conditions, a simple formula was
derived to calculate the drift effect that is exact for three specific rotation angles. Taking this into account, an iterative algorithm based
on successive rotation/drift correction steps is devised to remove drift distortions in HR-STEM images. The procedure has been evaluated
using a simulated micrograph of a monoclinic material in an orientation where all the reciprocal lattice vectors are different. The algorithm
only needs four iterations to resolve a 15° drift angle in the image.
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Introduction

The development of the high-angle annular dark-field (HAADF)
technique in scanning transmission electron microscopy (STEM)
that provides incoherent imaging without a wave-phase contribu-
tion has become increasingly important, because it offers intuitive
images whose intensities can be easily interpreted in terms of
chemical composition. In particular, the high-resolution (HR)-
HAADF imaging technique, which allows the study of crystalline
structures at the atomic column scale, helps to clarify the distribu-
tion of different elements in crystalline materials (Pennycook &
Jesson, 1991). Moreover, the analysis of atomic displacements in
HR-HAADF images of a perfect crystal permits the recording
of strain maps that reveal the stress state of the nanostructure.
However, the scanning can provide incorrect images if the sample
holder has a drift during acquisition. This may introduce distor-
tions, expansions, compressions, and shears of the lattice posi-
tions that strongly affect such analyses (Nakanishi et al., 2002;
Rečnik et al., 2005; Braidy et al., 2012). Despite efforts in STEM
microscopes to decrease vibration, air flow/fields, and temperature
fluctuations, the presence of sample drift in the captured images is
sometimes unavoidable (Von Harrach, 1995; Muller & Grazul,
2001; Sang & LeBeau, 2014).

For some time now, a number of authors have tried to detect
and correct the drift effect in crystalline materials with several
approaches, assuming that the images have uniform (Saito et al.,
2009; Sang & LeBeau, 2014; Bárcena-González et al., 2018) or non-
constant (Berkels et al., 2012a; Sang et al., 2017; Ning et al., 2018;
Berkels & Liebscher, 2019) drift rates. Most of them use real-space
solutions needing a defect-free zone of reference in the image such
as Rečnik et al. (2005), Jones & Nellist (2013), and Zuo et al. (2014).
Another major group focuses on the correction of drift in a series of
frames from the same region, such as the works proposed by Saito
et al. (2009), Berkels et al. (2012b), Binev et al. (2012), Sang &
LeBeau (2014), Ophus et al. (2016), Bárcena-González et al.
(2016, 2017), or Berkels & Liebscher (2019).

Very recently, we have proposed a simple methodology to cor-
rect the lineal drift based on angle measurements between Fourier
harmonics in the reciprocal space using a single STEM image
(Bárcena-González et al., 2018). However, this approximation is
only applicable if the selected orientation has two sets of equiva-
lent planes from the crystallographic point of view—two lattice
vectors in the reciprocal space with the same modulus—providing
quasi-exact solutions (error below 1%) for drifts lower than 5°.
Although, these conditions of the methodology make it applicable
for a large number of crystalline materials (cubic and hexagonal in
almost all orientations) and usual values of drift (<3°), this
approach was not valid for every crystalline orientation in any
crystalline system or for large drifts.

In this work, the original formulation using a single STEM
image has been extended to be applied to any pair of reciprocal
lattice vectors. First, a mathematical formulation describing how
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drift and rotation affect the positions of reciprocal lattice vectors
in Fourier space is presented, establishing its limits and possible
errors. Next, a novel iterative algorithm for correcting drift effect,
CDrift, is proposed based on the angle measurements between
two reciprocal lattice vectors in Fourier space. Finally, the accu-
racy of this proposal has been tested in an HR-HAADF-simulated
image of a material that does not have two symmetrical reciprocal
lattice vectors in any orientation, such us Pu, a monoclinic mate-
rial with all the reciprocal lattice vectors of unequal modulus. We
will show that, even for high drift rates, the CDrift algorithm is able
to detect and correct this effect providing very accurate results.

Mathematical Derivation of the Linear Drift Effect

Let us consider a hypothetically drift-free crystal oriented on a
pole where atoms have a columnar projection. The lattice posi-
tions in the real plane may be defined by two vectors, a = (ax,
ay) and b = (bx,by). The reciprocal lattice vectors associated with
green and blue planes are defined by a and b as shown in
Figure 1, where da is the interplanar distance calculated as the dis-
tance from point (bx,by) to the line defined by a (ayx− axy = 0),
being therefore equal to da = ((|axby − aybx|)/( �������������

axax − ayay
√

)).
The reciprocal vector associated with blue planes, a*, is perpen-
dicular to a and has a magnitude equal to 2π/da.

a∗= 2p
‖a‖ · da (ay, − ax) = 2p

|axby − aybx| (ay, − ax). (1)

The same reasoning may be applied to calculate the reciprocal
vector associated with green planes, b∗=((2p)/(|axby − aybx|))
(by, − bx), perpendicular to b and with a module of 2π/db.
Now, let us state c∗1 and c∗2 as the difference between these vectors
(see Fig. 2b).

c∗1=a∗−b∗= 2p
|axby − aybx| (ay − by, − ax + bx), (2)

c∗2=−a∗−b∗= 2p
|axby − aybx| (−ay − by, ax + bx). (3)

Let us consider now γ1 and γ2 to be the angles between vectors
c∗1 and c∗2 and the horizontal axis, respectively (see Fig. 2b),
numerically calculated using the standard atan2( y,x) function
that returns the four-quadrant inverse tangent of a point (x,y)
in the plane. So, γ1 and γ2 can be related to the real-space lattice
coordinates as:

g1 = atan2
−ax + bx

|axby − aybx| ,
ay − by

|axby − aybx|
( )

= atan2(−ax + bx , ay − by), (4)

g2 = atan2
ax + bx

|axby − aybx| ,
−ay − by

|axby − aybx|
( )

= atan2(ax + bx , − ay − by). (5)

This is an important modification with respect to our previous
paper (Bárcena-González et al., 2018), where only those orienta-
tions having two symmetric reciprocal lattice vectors were taken
into account. In that case, γ1 + γ2 was restricted to be an integer
multiple of 90°.

The absolute positions of the reciprocal lattice vectors in this
orientation, which define the particular values for γ1 and γ2, are
taken as references for the measurement of the so-called rotation
angle, ϕ, as 0. However, the sample could generally be rotated
counter-clockwise regarding the reference at an angle ϕ when it
is introduced into the microscope. Now, we have a new pair of
rotated vectors in real space a

′
and b

′
that mathematically

could be described by the corresponding rotation matrix [see
equations (6) and (7)]. In the same way, a∗, b∗, c∗1, and c∗2 are
transformed into a′∗, b′∗, c′∗1 , and c′∗2 , respectively. Remarkably,
g′1 and g′2 angles could be obtained by adding the rotation

Fig. 1. (a) Image space representing the real lattice defined by basis vectors (a and b) and the distances between planes (da and db) used to geometrically derive
the reciprocal vectors a* and b* for blue and green planes, respectively. (b) Reciprocal lattice vectors (a* and b*) associated with the lattice described by the basis
vectors (a and b).
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angle ϕ to γ1 and γ2 angles, respectively (see Figs. 3a, 3b).

a′ = cosf amp;−sinf
sinf amp; cosf

( )
× (ax , ay), (6)

b′ = cosf amp;−sinf
sinf amp; cosf

( )
× (bx , by). (7)

Let us consider now how a linear drift affects the positions of
the reciprocal lattice vectors in rotated Fourier space. Throughout
this work, we will assume that the drift rate is constant along the
x-axis of the image in the real space, so the scanning produces a
cumulative displacement regarding the y-axis that could be
described by a drift angle, α [see Bárcena-González et al.
(2018)]. Therefore, this drift also yields a displacement of the lat-
tice vectors in the reciprocal space with respect to the vertical axis,

Fig. 2. (a) Reciprocal lattice vectors of a hypothetically drift-free crystal. (b) In green, vectors of differences, c∗1 and c∗2 , that form the angles γ1 and γ2 with respect to
the horizontal axis.

Fig. 3. (a) Image of the hypothetical material rotated an angle ϕ regarding the reference (ϕ = 0). The lattice vectors, a* and b*, have been marked with orange
arrows. In blue, the rotated vectors a′∗ and b′∗. (b) The difference vectors c′∗i and the corresponding angles g′1 will be increased by ϕ.
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proportional to the y-component of the vectors and the tangent of
the drift angle (α) in real space, generating a∗ and b∗ vectors (see
Fig. 4a). Again, we can define two new vectors, c∗1 as the differ-
ence between a∗ and b∗ located between fourth and first quad-
rants; and c∗2, as the difference between −a∗ and b∗, located
between fourth and third quadrants (see Fig. 4b).

Let us denote β1 and β2 as the angles of c∗1 and c∗2 with respect
to the horizontal axis. Both angles, β1 and β2, are the input
data obtained from experimental measurements in the
reciprocal space in an experimental image with a drift effect.
The analytical solution for both angles from the previous formu-
lation is:

b1 = atan2 s2∗ −(ax − bx)
cos(a)

( )
+ s1∗

−(ay − by)

cos(a)

( )(
,

(ay − by)∗cos(f)+ (ax − bx)∗sin(f)),
(8)

b2 = atan2 s2∗ (ax + bx)
cos(a)

( )
+ s1∗

(ay + by)

cos(a)

( )(
,

(−ay − by)∗cos(f)+ (−ax − bx)∗sin(f)
)
,

(9)

Where

s1 = sin(a− f), (10)

s2 = cos(a− f). (11)

Some mathematical packages have tried to generate a symbolic
solution for α without success. Nevertheless, this mathematical
derivation could help us to find certain conditions in which the

equation is simpler and where the drift can be calculated in a pre-
cise way. Previously, we demonstrated in Bárcena-González et al.
(2018) that the sum of β1 and β2 could almost provide us a good
approximation of the drift angle under certain conditions (c∗1 and
c∗2 are perpendicular), with some limitations (drift angles below
5°). In this work, we suggest that the sum between (b1 − g′1)
and (b2 − g′2) might allow us to estimate the drift using whatever
material without any restriction in the election of the reference
reciprocal lattice vectors. Furthermore, any possible rotation ϕ is
taken into account using g′1, so a coarse value of α could be
obtained as follows:

a′ ≈ b1 + b2 − g′1 − g′2 = b1 + b2 − g1 − g2 − 2f, (12)

where βi are the angle measurements in the experimental image,
and γi are the ones in the reference drift-free image.

At this point, we can calculate how the drift angle (α) and the
rotation angle (ϕ) affect the position of the spots assuming a pair
of reciprocal lattice vectors, a∗ located in the first or third quad-
rant and b∗ located in the second or fourth quadrant. First, for a
chosen orientation (ϕ = 0), γ1 and γ2 are constant values that are
obtained from equations (4) and (5). Then, α

′
[equation (12)]

could be calculated when β1 and β2 values are known according
to equations (8) and (9). Figure 5 shows the error in degrees as
the difference between real drift, α, and the calculated drift, α′,
versus the rotation angle (ϕ) for different drift angle values (α).
As we can observe, the error is very small for drift angles below
5° at any rotation angle but increases exponentially for higher
drift values, especially for rotation angles that are around multi-
ples of π/4. Regardless, the approach always provides three exact
solutions for each drift value. Two of them are the same for all
the cases, when ϕ = 0 or ϕ = π/2, while the third one depends
on the α-value, as π/4–α/2. The last solution is not useful, as
the unknown α is part of the solution. Therefore, if the drift is

Fig. 4. (a) Displaced peak positions due to the drift effect in the reciprocal space a∗ and b∗ . (b) Vectors c∗ and c∗2 and the angles formed with respect to the
horizontal axis β1 and β2.
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parallel or perpendicular to the y-axis in the image, the approach
has no error. As we have deduced, the drift could be calculated
exactly using equation (12) only for values of ϕ, 0, or π/2.
However, as the first step consists of rotating the image in such
a way that the drift is aligned along the x-axis, ϕ can take any
value regarding the reference orientation (ϕ = 0), which deter-
mines the possible values of γi.

Materials and Methods

Considering everything, we have developed an iterative algorithm
to correct an image affected by a linear drift through a series of
steps. The upper limit is imposed by the resolution and the
pixel density of the image, that is, the algorithm will iterate
until the increase/decrease of the measured drift (α

′
) in the suc-

cessive iterations, does not produce an image deformation of at
least one pixel (Δα). The code for determining the drift angle of
an experimental image (CDrift) is explained in the following
and given at the end of this section. First, we must enter the coor-
dinates of the reference lattice positions in the reciprocal space of
a perfect crystal (a*, b*) for a defined orientation, ϕ = 0, which are
constant for this pole and may be calculated from crystallographic
tables in the case of a well-known material and also from
another drift-free image in the same orientation. To increase
the precision of the angle measurement, it is recommended to
use the position of the second harmonic or beyond, as described
in Bárcena-González et al. (2018). Next, in the real image, which
is probably rotated regarding the reference coordinates at an
angle ϕ, the coordinates of two selected reciprocal lattice
positions (a∗i , b

∗
i ) have to be determined. Then, the algorithm

works by iteratively finding the rotation angle, ϕ. For this, the
image is rotated up to the x-component of the selected spots is
as close as possible to the x-component of the reference. The
precision of the calculation is defined by Δϕ giving the first
approximation to ϕ. In the rotated image, β1 and β2 could be ana-
lytically calculated using equations (8–11). Now, it is possible to
draw the first a′

1 by applying equation (12) and use it to correct
the image. This process is repeated until the correction of α is
null, which directly depends on the pixel resolution of the original
image (Δα).

Algorithm CDrift(a*,b*)

c∗1 � a∗−b∗ c∗2 � −a∗−b∗

g1 � atan2(c∗1y , c
∗
1x ) g2 � atan2(c∗2y , c

∗
2x )

Xo � {a∗x , b∗
x , − a∗x , − b∗

x } Yo � {a∗y , b∗
y , − a∗y , − b∗

y }

while α
′
< =Δα

Pick in the image the spots of the fundamental frequencies

Xd � {a∗ix , b
∗
ix , − a∗ix , − b∗

ix }

Yd � {a∗iy , b
∗
iy , − a∗iy , − b∗

iy }

Calculate the position of the harmonics

ϕ← 0

Do

aux← cos(ϕ)*Xo − sin(ϕ)*Yo

ϕ← ϕ + Δϕ

while
∑ �������������

(aux− Xd)2
√

� 0

Z1← {Xd1–Xd3, Yd1–Yd3} Z2← {Xd3–Xd2, Yd3← Yd2}

β1← atan2(Z1y, Z1x) β2← atan2(Z2y,Z2x)

g′1 � g1 − f g′2 � g2 − f

a′ � b1 + b2 − g′1 − g′2 − 2f

end-while

return ϕ, α
′

Application of CDrift

To show the accuracy and robustness of CDrift as well as its fea-
sibility for any orientation and crystallography, the proposed
methodology has been applied to an HR HAADF-STEM-
simulated image of a Pu crystal along the [010] direction. The
lattice parameters of the unit cell of Pu are a = 6.183, b = 4.822,
c = 10.963 Å; β = 101.79° (Zachariasen & Ellinger, 1963). We
have used this monoclinic material because in that orientation
all of the reciprocal lattice vectors have different magnitudes. A
Pu drift-free image (1,536 × 1,536 pixels with a resolution of

Fig. 5. Error in degrees as the difference between real drift, α, and the calculated drift, α
′
, using equation (12). There exists three algebraic solutions in 0, π/2, and π/

4–α/2 and multiples of π/2 of the same values.
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185 pixels per nanometer) was simulated along [010], with the
following conditions: a 100 kV-dedicated VG Microscope
HB501UX STEM, Cs = −50 μm, C5 = 63 mm, inner detector
angle = 70 mrad, outer detector angle = 200 mrad, and objective
aperture = 27 mrad (Fig. 6a). The chosen reference orientation
(ϕ = 0) is that in which the y direction of the image corresponds
to the [100] direction of the unit cell. Figure 6b displays the fast

Fourier transform (FFT) of this perfect crystal in this reference
orientation. The first inputs to the CDrift procedure are the coor-
dinates of the selected spots in Figure 6b (Xo, Yo) that allow
calculating the corresponding γi. These coordinates, which corre-
spond to two sets of planes, are constants that could be obtained
from the crystallographic tables of the material (Chateigner et al.,
2020).

Fig. 6. (a) Simulated image of a perfect crystal of Pu along [010]. The y direction of the image corresponds to [001]. That is the reference orientation, ϕ = 0. (b) FFT of
this perfect crystal. The coordinates of the selected spots (circles in red and blue) are the first inputs to CDrift. (c) Image of Pu with a rotation of 21.63° and dis-
torted with a drift angle of 15°. (d) FFT of the previous image and the corresponding spots. (e and f) Final image after applying CDrift and the corresponding FFT,
respectively.
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In Figure 6c, the simulated image has been rotated an angle ϕ
= 21.63° regarding the reference and a drift effect of α = 15.01°
included, corresponding to a sample drift of 0.023 nm/s for a
pixel dwell time of 40 μs. The linear drift effect was simulated
shifting to the right a pixel every few rows of pixels in each row
of the image that is proportional to the distance from the upper
left corner of the image. Certainly, the drift profile is not exactly
continuous but with discrete changes. However, given the pixel
density used (185 pixels/nm), we consider this effect to be

negligible. Figure 6d shows the corresponding FFT of this simu-
lated image that represents the experimental image.

The algorithm starts by asking for the reference lattice vectors
in the real space in the reference orientation, then these vectors
are used to calculate γi values. Next, in order to apply an FFT
to the experimental image, the user must select the spots corre-
sponding to the reference vectors. To improve the accuracy of
the calculations, it is recommended to use the spots correspond-
ing to the second or higher harmonics. In each iteration, the drift
effect αi is corrected, and the reconstructed image is progressively
closer to the drift-free image (see Figs. 6e, 6f). Only four iterations
have been needed to obtain a lineal drift of 15.226° and a rotation
angle of 21.506°, as shown in Table 1.

The errors with respect to the initial values of ϕ and α are
0.124° and 0.216°, respectively. In addition, the reconstructed
step-by-step image is better than the one obtained in one step.
The algorithm will finish iterating when the value of the drift cal-
culated in that iteration is less than a step value. This value would
be the minimum angle that produces any change in the image,
that is, the drift that produces at least one pixel shift in the image.

In order to analyze the drift effect as well as the quality of the
drift correction, the use of histograms of the distances between
neighboring atom-columns gives an accurate picture (Sang &
LeBeau, 2014). For this, we define two atomic distances between
the bases, as shown in the inset of Figure 7a, and represent the
distances obtained for the whole image using histograms. The
atom column positions are defined using a normalized cross-
correlation approach and Gaussian peak fitting (Zuo et al.,
2014). Figure 7 shows the histograms of the drift-free simulated
image, the drift-distorted simulated image, and the drift-corrected
image. For the case of a perfect image without drift (Fig. 6a), two
thin peaks are clearly formed in Figure 7a. In contrast, the atom
distance histogram (Fig. 7b) obtained from the image with drift
distortion (Fig. 6c) has not maximized distances. Finally, the
atom distance histogram in Figure 7c, which corresponds to the
drift-corrected image using CDrift, is very similar to that obtained
from a perfect crystal. Our methodology has achieved a quasi-
perfect correction of large linear drifts (greater than 15°) in a
monoclinic crystal where the reciprocal network vectors are all
different.

Conclusions

In this paper, we have developed the mathematical derivation of
the lineal drift effect in an HAADF-STEM image, analyzing
how affects the positions of the reciprocal lattice positions in
the Fourier space. As there is not a manageable analytical equa-
tion to deduce drift angle, we have proposed an iterative algo-
rithm to detect and correct linear drift using a single
HAADF-STEM image, CDrift, based on rotation calculations
and the measurements of the displaced reciprocal vectors. This
method generalizes and outperforms our previous scheme for
any crystalline material and orientation.

Table 1. Iterations Of CDrift In Order To Calculate α and ϕ Angles.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Sum

α 13.007° 2.037° 0.167° 0.015° 15.226°

ϕ 21.606° 21.506° 21.506° 21.506°

α is calculated as the sum of the values obtained in each iteration and ϕ as the value obtained in the last iteration.

Fig. 7. (a) Distance histogram of the reference image of Figure 6a. The selected dis-
tances between the atomic columns are pointed in the inset. Two thin peaks are
clearly defined. (b) Atom distance histogram of the drifted image of Figure 6c. The
drift distortion deeply flattens the distance histogram. (c) The corresponding atom
distance histogram of the reconstructed image of Figure 6e. Atomic distances have
less dispersion and are again defined in two peaks in the histogram.
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