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Discrete gradient vector fields are combinatorial structures that can be used for 
accelerating the homology computation of CW complexes, such as simplicial or 
cubical complexes, by reducing their number of cells. Consequently, they provide a 
bound for the Betti numbers (the most basic homological information). A discrete 
gradient vector field can eventually reduce the complex to its minimal form, having 
as many cells of each dimension as its corresponding Betti number, but this is 
not guaranteed. Moreover, finding an optimal discrete gradient vector field is an 
NP-hard problem. We describe here a generalization, which we call Homological 
Discrete Vector Field (HDVF), which can overcome these limitations by allowing 
cycles under a certain algebraic condition. In this work we define the HDVF and 
its associated reduction, we study how to efficiently compute a HDVF, we establish 
the relation between the HDVF and other concepts in computational homology and 
we estimate the average complexity of its computation. We also introduce five basic 
operations for modifying a HDVF, which can also be applied to discrete gradient 
vector fields.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Morse theory [1] is a tool in differential topology that deduces some information of the topology of a 
manifold by studying a differentiable function on it. In the late 90s, Robin Forman introduced a discrete 
version, the discrete Morse theory [2,3], which was defined for CW complexes and discrete functions. Several 
theorems of Morse theory were translated into the discrete context but, in our opinion, the most notable 
result was the simplification of a CW complex, which can be used to compute its homology groups.

Homology is an algebraic theory that formalizes the concept of “hole” present in an object. It associates a 
sequence of abelian groups to an object, whose elements correspond to sums of holes. Up to dimension three, 
these elements have an easy interpretation. Zero-dimensional holes (elements of the zeroth homology group) 
correspond to connected components, one-dimensional holes to tunnels or handles and two-dimensional 
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holes to cavities. When computing homology, we usually want to find the number of these holes (called 
the Betti numbers), which are the ranks of the homology groups, and a representative for each hole (called 
representative cycle of a homology generator).

Homology theory was born more than a century ago and, while all kinds of theoretical results in pure 
mathematics have been developed, its practical applications have not been exploited until the last 20 years 
due to its computational complexity. There are applications in dynamical systems [4,5], material science [6,
7], electromagnetism [8,9], geometric modeling [10], image understanding [11–14] and sensor networks [15]. 
The general idea of these applications is that homology is used to analyze and understand high dimensional 
structures in a rigorous way.

The classical method for computing the homology groups is based on the Smith normal form (SNF) [16], 
which has super-cubical complexity [17]. Some advances in the computation of the SNF have been achieved, 
but the best results in computing the homology groups of a complex have been obtained by reducing the 
number of cells in the complex (see [18–20]).

Among other approaches, let us mention the following two, which are closely related to our work: effective 
homology theory [21] and discrete Morse theory [3]. Both of them are explained in Section 3.4 and 3.5. The 
former has the advantage that it “controls” the homology because it contains all the homological information 
[22]; the latter is very concise and easy to implement. Effective homology theory deals with linear maps 
which are typically encoded as enormous matrices; discrete Morse theory handles only graphs, but does not 
always allow us to reduce the complex to its minimal homological expression. The use of reductions (the 
main concept of effective homology theory) has proved to be successful in the context of image analysis 
[23,24,12,25] or in a more general setting providing more advanced topological information [26,22].

We aim at finding an intermediate solution, avoiding the respective drawbacks of both of these methods 
whilst maintaining their advantages. Roughly speaking, discrete Morse theory simplifies a CW complex by 
establishing arrows on it, hence providing a simpler (in terms of number of cells) complex having the same 
homological information as the original one. In this article we allow cycles in this “collection of arrows”, 
which is normally forbidden, so that we can go beyond the limits of the classical discrete Morse theory. 
Moreover, we can control when our approach produces the exact homological information. These allowed 
cycles must not be confused with the ideas found in [27]. The process of adding these arrows must be 
simultaneously accompanied by the computation of the linear maps of the effective homology theory, which 
is unnecessary when there are no cycles. The clearest advantage of our approach over effective homology 
theory is that we only use linear space for saving these maps, instead of quadratic. Also, our framework 
works for any dimension, any kind of CW complex and any ring of coefficients.

This article extends the ideas present in [28] under a different formalism, which allows us to find deeper 
results.

2. Previous works

This article somehow creates a new problem instead of solving an existing one. This justifies the shortness 
of this section.

Discrete Morse theory was introduced in [2,3]. It was then reformulated in terms of matchings in [29,30]. 
Discrete Morse theory is often used for simplifying a CW complex in order to accelerate the computation 
of its homology. Thus, it can be seen as an optimization problem, in which one wants to find a discrete 
gradient vector field (a matching in the Hasse diagram of a CW complex) with as many edges as possible. It 
was proved that this is an NP-hard problem (see [31,32]). Nevertheless, there has been an extensive research 
on this optimization problem without aiming at finding a perfect solution in the general case, such as in 
[31–34]. There has been a parallel and successful research about simplifying a CW complex in [18–20]. These 
works were recently related to discrete Morse theory in [35], which states that reductions and coreductions 
are particular strategies for establishing a discrete gradient vector field.
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3. Preliminaries

3.1. CW complex

Computational topology needs topological spaces that can be described through a finite representation. A 
rigorous presentation of CW complexes would be too long for this article, so we give an intuitive introduction 
and we let the reader satisfy its curiosity by consulting [36].

A CW complex, or cell complex, is a collection of closed unit balls (up to homeomorphism) of different 
dimensions, called cells, that are “glued” together by their boundary: every cell of dimension q ≥ 1 (q-cell) 
has a map from its boundary to the lower dimensional cells. A q-cell σ is denoted σ(q) whenever its dimension 
is not clear from the context. We are certainly interested in the case where the number of cells is finite.

To be honest, we only use the notion of CW complex for comprehending simplicial complexes, cubical 
complexes [37, §2.1] or even polyhedra [38, §1.1]. We could have chosen to work with S-complexes [19] but 
we have preferred the CW complexes, as in [39].

We say that a cell σ is a face of another one τ if it is contained in its boundary. A special case is when 
they have consecutive dimensions, in which we say that it is a primary face and we write σ < τ .

Given a CW complex, we can define its Hasse diagram. It is a directed graph whose vertices represent 
the cells and whose arrows go from each cell to its primary faces. In this article we usually do not make the 
distinction between the vertices and the cells they represent, so we mix these terms.

3.2. Chain complex and homology of a CW complex

Let (R, +, ·) be a ring, which we simply denote R if its operations are clear from the context. We usually 
consider R to be Z2 = Z/2Z or Z. We call 0R and 1R its neutral elements for the addition and the 
multiplication respectively. We say that an element a of R is a unit if it is invertible for the multiplication, 
that is if there exists b ∈ R such that a · b = b · a = 1R, and we write a−1 := b. We denote by R∗ the set of 
the units of R. For instance, Z∗ = {−1, 1}, Z∗

2 = {1} and more generally, R∗ = R \ {0R} if R is a field.
A chain complex (C, d) is a sequence of R-modules C0, C1, . . . (called chain groups) and homomorphisms 

d1 : C1 → C0, d2 : C2 → C1, . . . (called differential or boundary operators) such that dq−1dq = 0, for all 
q > 0, where R is some ring, called the ring of coefficients or ground ring.

Given a CW complex K, we define its associated chain complex C(K) as follows:

• Cq is R[Kq], the free R-module generated by the q-dimensional cells of K;
• dq gives the “algebraic” boundary, which is the linear operator that maps every cell to the sum of its 

primary faces with specific coefficients. These coefficients, which are not unique, can be computed with 
the algorithm present in [39, §3.1].

We will usually use the term complex for the CW complex or for its associated chain complex. This 
chain complex can be seen as a sequence of matrices that express the relation of inclusion between the cells. 
However, note that not every chain complex is the chain complex associated to a CW complex.

The elements of the chain group Cq, which are formal linear combinations of cells, are called q-chains. 
If x =

∑
i∈I λiσi then 〈x, σi〉 := λi denotes the coefficient of σi in the chain x. A q-chain x is a cycle if 

dq(x) = 0, and a boundary if x = dq+1(y) for some (q + 1)-chain y. We do not write the subscripts when 
it is clear from the context. By the property dq−1dq = 0, every boundary is a cycle, but the reverse is not 
true: a cycle which is not a boundary contains a “hole”. The q-th homology group of the chain complex 
(C, d) contains the q-dimensional “holes”: H(C)q = ker(dq)/ im(dq+1). This set is a finitely generated group, 
so there is generating set (a “base”) typically formed by the holes of the complex. By the Fundamental 
Theorem of Finitely Generated Abelian Groups [40, §5.2], there are two different “normalizations”:
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1. The group is isomorphic to Zβq × Z/λ1Z × Z/λ2Z × . . ., where each λi divides λi+1. This is called the 
invariant factor decomposition.

2. The group is isomorphic to Zβq ×Z/λ1Z ×Z/λ2Z × . . ., where each λi is a power of some prime number. 
This is called the primary decomposition.

As most of the literature about computational homology, we use the first decomposition. The number βq is 
called q-th Betti number and λ1, . . . , λt are the torsion coefficients of dimension q. Let us recall that if the 
CW complex is embedded in R3, it has no torsion coefficients.

These homology groups depend on the ring of coefficients, but they can all be deduced from the homology 
groups with coefficients in Z by the Universal Coefficient Theorem [41, §3.A].

The Hasse diagram of a CW complex is actually a weighted graph, whose values over the arrows are 
given by the boundary operators.

There is a dual theory of homology which defines the cohomology groups [16, §5]. Roughly speaking, it 
considers the dual of the differential operators.

3.3. Homological information

Given the definition of the homology groups, we could ask ourselves how much information we want 
to obtain. If we want to use homology as a topological invariant, it should be enough to know its Euler–
Poincaré characteristic or, more generally, its Betti numbers and torsion coefficients. Moreover, if we want to 
use homology to better understand the shape of the complex, we could be interested in knowing a represen-
tative of each class of homology that is a generator. These representatives, which we directly call homology 
generators, are not unique at all, and it is an interesting and ill-defined problem to find a set of well-shaped 
generators. Furthermore, we can decompose a given cycle onto the computed homology generators.

Since not all works in computational homology try to obtain the same information, we propose the 
following classification of homological information:

Level 0: The Euler–Poincaré characteristic [41, p. 146].
Level 1: The Betti numbers. They are the rank of the free part of the homology groups.
Level 2: Invariant factor decomposition of the homology groups.
Level 3: Homology group with generators: 

(
Z [z1] × · · · × Z

[
zβq

])
× Z [t1] /λ1Z [c1] × Z/ [t2]λ2Z [c2] × · · · .

Level 4: Homology group with generators and decomposition of cycles.

Each level of homological information can be trivially deduced from the higher ones. We have decided to 
start from level 0 since the Euler–Poincaré characteristic is the easiest computable homological information. 
Persistent homology usually works at level 1 (in each complex of the filtration), which is equivalent to level 
2 because the ring of coefficients considered is usually a field; Munkres’ original theorem/method arrives to 
level 2 and the modified-SNF [42] reaches the third level. Effective homology theory arrives to the fourth 
level whenever we have a perfect reduction (see Section 3.4), since for a given cycle x ∈ ker(dq), f(x)
decomposes it onto a linear combination of generators.

This classification could be extended with (co)homology operations, the cohomology ring or even the 
homotopy groups.

3.4. Reduction

A reduction is a strong relation between two chain complexes which guarantees that they have isomorphic 
homology groups. This is the main tool in effective homology theory [21]. We typically reduce the initial 
chain complex to another one much smaller (called reduced complex).
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Formally, a reduction between two chain complexes (C, d) and (C′, d′) is a triplet of graded homomor-
phisms ρ = (h, f, g) such that:

• hq : Cq → Cq+1 for every q ≥ 0
• fq : Cq → C′

q is a chain map: fq−1dq = d′qfq
• gq : C′

q → Cq is also a chain map: gq−1d
′
q = dqgq

• gf = 1C − dh − hd

• fg = 1C′

• hh, fh, hg = 0

For instance, consider the following chain complexes (C, d) and (C ′, d′), whose chain groups are freely 
generated with R = Z:

C0 = 〈σ1, σ2, σ3〉, C1 = 〈σ4, σ5, σ6〉, C2 = 〈σ7〉, C3 = 0, · · ·

d1 =

⎡
⎢⎣−1 0 −1

0 −1 1
1 1 0

⎤
⎥⎦ , d2 =

⎡
⎢⎣−1

1
1

⎤
⎥⎦

C ′
0 = 〈τ1, τ2〉, C1 = 〈τ3〉, C2 = 0, · · ·

d′1 =
[
−1
1

]
, d′2 = 0

Hence (h, f, g) is a reduction, where

h0 =

⎡
⎢⎣ 0 0 0

0 0 0
−1 0 0

⎤
⎥⎦ , h1 =

[
−1 0 0

]

f0 =
[

1 1 0
0 0 1

]
, f1 =

[
1 1 0

]

g0 =

⎡
⎢⎣ 0 0

1 0
0 1

⎤
⎥⎦ , g1 =

⎡
⎢⎣ 0

1
0

⎤
⎥⎦

A reduction is perfect if d′ = 0. In such case, H(C) ∼= H(C′) = C′ and thus the homology groups are 
directly obtained. Moreover, g(C′) is a basis for H(C). Also, given a cycle x ∈ Cq, it is a boundary if 
fq(x) = 0 and in that case x = dq+1(y) for the chain y = hq(x). This should justify the interest of having a 
perfect reduction.

Let us point out that if the homology groups of a chain complex have a torsion subgroup then there is no 
perfect reduction, since a perfect reduction involves homology groups freely generated, and hence of the form 
Z
β . Also, a reduction can always be obtained via the Smith normal form computation as described in [43, 

p. 48]. This reduction is perfect if the homology groups are torsion-free. Otherwise, its reduced boundary 
matrices are in the Smith normal form.

If ρ = (h, f, g) is a reduction from (C, d) to (C′, d′), it is easy to prove that ρ∗ = (h∗, g∗, f∗) is a reduction 
between the cochain complexes (C, d∗) and (C′, (d′)∗). Consequently, a perfect reduction also provides a 
basis for the cohomology groups, namely f∗(C).
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Fig. 1. A DGVF over a cubical complex. The critical cells are highlighted in blue. The integral arrows are shown in red. The 
differential arrows are omitted. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

3.5. Discrete Morse theory

Discrete Morse theory was introduced by Robin Forman as a discretization of Morse theory [3]. One of 
the main ideas is to obtain some homological information by means of a function defined on a complex. 
This function is equivalent to a discrete gradient vector field and we rather use this notion.

A discrete vector field (DVF) on a CW complex is a matching on its Hasse diagram, that is a collection 
of edges such that no two of them have a common vertex. From a Hasse diagram and a discrete vector field 
we can define a Morse graph: it is a graph similar to the Hasse diagram except for the arrows contained in 
the matching, which are reversed. These arrows are called integral arrows, and the other ones, differential 
arrows.

Given a DVF over a CW complex K, its cells can be partitioned into the following classes:

Primary (P) The cells having an out-going integral arrow.
Secondary (S) The cells having an in-going integral arrow.
Critical (C) The cells not incident to any integral arrow.

Since a DVF is a matching, it is immediate that K = P � S � C. This notation is inspired by [34, Def. 1], 
but this classification was previously introduced in [35, Def. 3.1] and [44, §5] with a different notation.

A V-path is a path on the Morse graph that alternates between integral and differential arrows. Its length
is the number of integral arrows contained. A discrete gradient vector field (DGVF) is a discrete vector 
field that does not contain any closed V-path. As mentioned above, a critical vertex (or critical cell) is a 
vertex that is not paired by the matching. Fig. 1 shows the usual representation of a DGVF over a cubical 
complex.

One of the main results of discrete Morse theory is that the number of critical q-cells is greater than or 
equal to the q-th Betti number. When they are equal, we say that the DGVF is perfect. An optimal DGVF 
contains the least possible number of critical cells. Every perfect DGVF is obviously optimal, but the 
converse is false. Therefore, a DGVF gives an estimation of the Betti numbers without using any algebraic 
method. We could say that it is a “combinatorial” tool.

Given a DGVF V on a CW complex, we define its Morse complex (R[C], dM ), where R[C] denotes the 
graded free R-module generated by the critical cells of V and dM is the linear map that sends each critical 
(q + 1)-cell σ to the sum of critical q-cells which are connected to σ by a V-path. An accurate definition of 
this map (called reduced boundary) will be given in Section 5.
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Let us point out that starting from a DGVF V, an associated reduction (h, f, g) : (C, d) ⇒ (f(C), d) can 
be defined [2,34]. Firstly, let us define a linear operator V which maps vertices of the Morse graph containing 
an outward integral arrow to the head of this arrow with its sign. Formally,

V (σ) =
{
〈d(τ), σ〉 · τ, (σ, τ) ∈ V
0, otherwise

where 〈·, ·〉 is the inner product associated to the basis of cells. In other words, V maps each primary cell 
to its secondary cell. Then,

h(σ) =
∑
k≥0

V (1 − dV )k(σ)

f(σ) = (1 − dh− hd)(σ)

g(σ) = σ

Notice that the sum in the equation for h is actually finite since a DGVF has no cycles. The image of h can 
be interpreted as the sum of the secondary cells in all the V-paths leaving a primary cell. Furthermore, the 
map f coincides with the stabilization map Φ∞ introduced in [2].

Let us point out that this reduction can be encoded as a matching in the Hasse diagram instead of using 
a sequence of matrices. Thus, the DGVF actually “compresses” the reduction as it can be described in linear 
space, which obviously involves a computational cost for its “decompression”. Actually, this is not a general 
property of reductions, since not all reductions can be represented with a DGVF, as the following example 
shows.

Consider the simplicial complex with one 1-cell (and its two 0-faces) whose boundary matrix is

d1 =
[
−1
1

]

Then there is a reduction (h, f, g) : (C, d) ⇒ (f(C), d|f(C)), where

h0 =
[

2 3
]
, f0 =

[
3 3
−2 −2

]
, f1 =

[
0
]
, g = inc

In this case we cannot find how to “compress” the reduction as a matching, so we can only explicitly encode 
it as a sequence of matrices, hence needing quadratic space.

4. Motivation

The discrete Morse theory approach has a strong interest as it addresses the computation of homology 
as a purely combinatorial problem rather than an algebraic one. The associated reduction can be encoded 
just as a list of pairs of cells. It also provides an approximation of the Betti numbers that can sometimes 
be accurate (depending on the choice of the integral arrows) but that is always wrong for some well known 
spaces as, for instance, the Bing’s house [45] (also called house with two rooms) or the dunce hat [46].

We can increase a DGVF (and thus improve the approximation) by canceling pairs of critical cells: find 
two critical cells τ (q+1) and σ(q) connected by only one V-path and exchange the integral and differential 
arrows in this path. This can be seen as reversing the direction of the V-path. Note that, even though 
this transformation is expressed in combinatorial terms, computing the number of V-paths is equivalent to 
compute the associated reduction.



8 A. Gonzalez-Lorenzo et al. / Topology and its Applications 228 (2017) 1–35
Fig. 2. Left: an iterated Morse decomposition, where the red arrow belongs to the first DGVF and the purple one, to the second 
DGVF. Right: a (standard) DGVF inducing the same reduction. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 3. The same DGVF depicted in Fig. 1. Some differential arrows are shown in purple. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Another approach for reducing the number of critical cells is to compute the Morse complex and to 
establish a new DGVF V ′ on it, which is useful when there is no unique V-path between the critical cells. 
This is known as iterated Morse decomposition [47]. Regarding the associated reduction, reversing the only 
V-path between two critical cells is equivalent to adding an integral arrow between them in the Morse 
complex. Fig. 2 illustrates this.

Thus, reversing a V-path can be seen as pushing an integral arrow from the Morse complex back to the 
original one. However, not all the integral arrows on the Morse complex are equivalent to reverse a V-path: 
this is the case when there are several V-paths between two critical cells. Fig. 3 shows an example where there 
are three V-paths between two critical cells. However, the 1-cell is a face of the 2-cell in the associated Morse 
complex, so we can add an integral arrow which does not correspond to a unique V-path. The motivation 
for our work was to push all the integral arrows in the Morse complex back to the original one.

5. Introducing the HDVF

In the context of discrete Morse theory, we always try to set a DGVF with the maximum number of 
integral arrows (or equivalently, with the minimum number of critical cells) in order to obtain the best 
possible approximation of the Betti numbers. In the language of effective homology theory, the induced 
reduction greatly “reduces” the original chain complex.

Given a DGVF, we can improve it by increasing the number of integral arrows. If we find two critical 
cells σ < τ , such that inserting an integral arrow between them does not create a cycle, adding this integral 
arrow reduces by two the number of critical cells.

More generally, if there is only one V-path between one cell σ′ belonging to the boundary of a critical 
cell τ and another critical cell σ, we can reverse it and add the arrow (σ′, τ). This means that the integral 
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Fig. 4. Three different matchings inducing the same HDVF.

and differential arrows in the V-path are exchanged. This can be considered as the general method for 
improving a DGVF (actually, in the previous case, the V-path has length zero so there is no reversing). 
However, depending on the order in which we cancel the critical cells and on the CW complex itself, we 
can create several V-paths between the other pairs of critical cells, so that we cannot cancel them anymore. 
This gives an intuition on why this optimization problem is NP-hard [31].

In order to avoid this situation, we propose to allow cycles in the DVF, provided that we create them 
“smartly”, so a reduction can still be defined. We cancel pairs of critical cells independently of the number of 
V-paths, but considering the information given by the associated reduction. This means that the reduction 
must be known at every step, but do not panic: finding a V-path amounts also to compute a reduction.

We recall that a DVF induces a partition K = P � S � C of a CW complex.

Definition. A homological discrete vector field (HDVF) on a CW complex K is a pair of disjoint sets of cells 
X = (P, S) of K such that d(Sq+1)|Pq

is an invertible matrix (in R) for every q ≥ 0, where Pq and Sq denote 
the restrictions of P and S to the q-cells and d(Sq+1)|Pq

is the submatrix of the boundary matrix dq+1
consisting in the columns associated to the secondary (q + 1)-cells and the rows associated to the primary 
q-cells.

Note that the DVF is not explicit in the definition of the HDVF. When X is a DGVF, there is a unique 
DVF inducing its partition, but this is not the case for a HDVF. For instance, Fig. 4 depicts three different 
DVFs inducing the same HDVF, since the primary and secondary cells in each complex are the same.

Deducing a DVF from a HDVF requires to find a perfect matching in a bipartite graph. The existence 
of this perfect matching, when the partition is a HDVF, follows from Proposition 5.1.

Proposition 5.1. Let K be a CW complex endowed with a HDVF X = (P, S). Then there exists a discrete 
vector field V that induces the partition K = P � S � C.

Proof. In this proof we do not use the fact that d(Sq+1)|Pq
is invertible, but that det

(
d(Sq+1)|Pq

)

= 0.

Let us fix a dimension q. By the Laplace expansion formula, there is a pair of cells (σ, τ) such that 
〈d(τ), σ〉 
= 0 and det

(
d(Sq+1 \ τ)|Pq\σ

)

= 0. Thus, the discrete vector field V can be found recursively. �

The DVF can be computed using the Hopcroft–Karp algorithm [48] in O(m
√
n) time, where n and m

denote the number of vertices and edges in the Hasse diagram. It is interesting as it allows us to visualize
the HDVF and its computation.

Let us now present the reduction induced by a HDVF. We showed in Section 3.5 a reduction induced by 
a DGVF. Since a DGVF has no cycles, the chain (1 −dV ) is nilpotent and hence the sum 

∑
k≥0 V (1 −dV )k

is well defined. This does not hold for the HDVF, and therefore we must consider an appropriate reduction.
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Note that all the operators of a reduction are linear, so they can be represented by matrices. An appropri-
ate choice of bases can provide nice matrices and we have found a very good one: the basis B = 〈Pq, Sq, Cq〉
for every chain group Cq. In the following we omit the subscripts to facilitate readability.

Theorem 5.2. Let K be a CW complex endowed with a HDVF X. Then X induces the reduction (h, f, g) :
(C, d) ⇒ (R [C] , d′), where R [C] is the chain group generated by the critical cells of the HDVF and the 
operators h, f , g and the reduced boundary d′ are given by

where

H = (d(S)|P )−1

F = −d(S)|C · (d(S)|P )−1

G = −(d(S)|P )−1 · d(C)|P

D = d(C)|C + F · d(C)|P = d(C)|C + d(S)|C ·G

Proof. Let us see that these linear operators satisfy the conditions of a reduction. By developing the matrix 
products by blocks, we can easily check that hh = 0, fh = 0, hg = 0 and fg = 1C . The rest of the conditions 
require more detail.

� gf = 1C − dh − hd: By developing the matrix product, we obtain

⎡
⎢⎣ 0 0 0
GF 0 G

F 0 I

⎤
⎥⎦ =

⎡
⎢⎣ I − d(S)|PH 0 0
−d(S)|SH −Hd(P )|P I −Hd(S)|P −Hd(C)|P

−d(S)|CH 0 I

⎤
⎥⎦

All the equalities can be deduced directly from the definition of H, F and G. The equality GF = −d(S)|SH−
Hd(P )|P is more difficult to see. Let us call

X = GF + d(S)|SH + Hd(P )|P

= Hd(C)|P d(S)|CH + d(S)|SH + Hd(P )|P

Then,

d(S)|PXd(S)|P =
[
d(S)|PH

]
d(C)|P d(S)|C

[
Hd(S)|P

]
+ d(S)|P d(S)|S

[
Hd(S)|P

]
+

[
d(S)|PH

]
d(P )|P d(S)|P

= d(C)|P d(S)|C + d(S)|P d(S)|S + d(P )|P d(S)|P

Then, the reader can check that d(S)|PXd(S)|P = (dd)(S)|P = 0, so X = 0.
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We need now some properties whose proof is direct by developing the matrix product:

d′ = fdg = fd

⎡
⎢⎣ 0

0
I

⎤
⎥⎦ =

[
0 0 I

]
dg (1)

f =
[

0 0 I
]
· (1C − dh) (2)

g = (1C − hd) ·

⎡
⎢⎣ 0

0
I

⎤
⎥⎦ (3)

� d′f = fd. Using (1) and (2),

d′f =
[

0 0 I
]
dgf

=
[

0 0 I
]
d(1C − dh− hd)

=
[

0 0 I
]
(1C − dh)d = fd

� gd′ = dg. Symmetrically,

gd′ = gfd

⎡
⎢⎣ 0

0
I

⎤
⎥⎦

= (1C − dh− hd)d

⎡
⎢⎣ 0

0
I

⎤
⎥⎦

= d(1C − hd)

⎡
⎢⎣ 0

0
I

⎤
⎥⎦ = dg

� d′d′ = 0. Using (2) and (3),

d′d′ = (fdg)(fdg) = fdg(d′f)g = f(dd)gfg = 0 �
The previous theorem allows us to prove the desired property that the number of critical cells approxi-

mates the Betti numbers also in the HDVF.

Theorem 5.3. Let K be a CW complex endowed with a HDVF X. Then, for every q ≥ 0, the number of 
q-critical cells is greater than or equal to its q-th Betti number.

Proof. A HDVF induces a reduction to a chain complex C′ with isomorphic homology groups, whose rank 
in each dimension q is the number of critical q-cells. This proves the theorem. �

Let us point out that this reduction is not directly a generalization of the reduction introduced in [34]. 
Though, it has a similar form if we consider the reduction ρ′ = (h′, f ′, g′) = (h, 1 −dh −hd, ι) between (C, d)
and (f ′(C), d).
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Fig. 5. (a) A DGVF over the Bing’s house. (b) A perfect HDVF obtained on the Bing’s house. There is only one critical 0-cell (in 
blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. (a) A DGVF over the dunce hat with three critical cells in blue. (b) The HDVF obtained after improving the DGVF. The 
only critical cell is the 0-cell denoted by 1. The two cycles in the Morse graph are displayed in green. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

We say that a HDVF is perfect if its associated reduction is perfect. Using the same language as discrete 
Morse theory, the HDVF allows us to find the correct number of critical cells in complexes which do not 
admit a perfect DGVF, such as the Bing’s house or the dunce hat [49]. Instead of providing the explicit 
(and enormous) description of each complex and its HDVF, we prefer to show illustrations and to comment 
the construction of those HDVFs.

The cubical complex version of the Bing’s house has been created by the authors. It contains 60 0-cells, 
129 1-cells and 70 2-cells. The first DGVF defined on it contains 13 critical cells (see Fig. 5-(a)): 1 0-cell, 6 
1-cells and 6 2-cells. Let us comment that it is not the best DGVF possible. Starting from this DGVF, and 
after canceling pairs of critical cells by reversing V-paths, it remains only 1 critical 0-cell, which corresponds 
to the Betti numbers of the complex. Obviously, these V-paths were chosen to preserve the HDVF structure. 
Consequently, the Morse graph contains two cycles.

For the dunce hat we used a simplicial complex from [50] consisting of 8 0-cells, 24 1-cells and 17 2-cells. 
We can set a DGVF containing 3 critical cells (see Fig. 6-(a)): one of each dimension. After reversing one 
V-path between the critical cells of dimension 1 and 2, we obtain a HDVF with only 1 critical 0-cell, which 
is in accordance with the Betti numbers of the complex. The two cycles created in the homological DVF 
are shown in green.
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6. Computing a HDVF

We explain in this section how we can compute a HDVF and its reduction efficiently.

6.1. Computing the reduced complex

Our first proposition states when we can add a pair of cells to a HDVF so that the matrix d(S)|P is still 
invertible.

Proposition 6.1. Let K be a CW complex endowed with a HDVF X = (P, S). Let σ(q) and τ (q+1) be two 
critical cells. If 〈d′(τ), σ〉 is a unit then X ′ = (P ∪ {σ} , S ∪ {τ}) is a HDVF.

Proof. We only need to prove that the matrix d(S′)|P ′ is invertible, where S′ = S ∪ {τ} and P ′ = P ∪ {σ}. 
This matrix has the form

where u = d(S)|σ, v = d(τ)|P and w = d(τ)|σ.
We know that d(S)|P is invertible. Let us prove that w− u(d(S)|P )−1v is also invertible. By hypothesis, 

〈d′(τ), σ〉 = ±1. Since

D = d(C)|C − d(S)|C · (d(S)|P )−1 · d(C)|P (cf. Theorem 5.2)

then, by Lemma A.1 (without specifying the indices),

〈d′(τ), σ〉 = d(τ)|σ − d(S)|σ · (d(S)|P )−1 · d(τ)|P

= w − u · (d(S)|P )−1 · v

Consequently, by the Schur determinant formula (cf. Lemma A.3),

det(d(S′)|P ′) = det(d(S)|P ) · det(w − u(d(S)|P )−1v)

is a unit, so d(S)|P is invertible. �
Once we have added two critical cells to a HDVF, we do not need to compute a new DVF inducing the 

expanded HDVF. Instead of this, we can deduce the corresponding DVF by inverting one of the V-paths 
connecting both critical cells. The following proposition proves that such V-path exists.

Proposition 6.2. Let K be a CW complex endowed with a HDVF X. Let σ(q) and τ (q+1) be two critical cells. 
If 〈d′(τ), σ〉 is a unit then there is a V-path between them.
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Proof. Let V denote the matrix associated with the DVF introduced in Section 3.5. Thus,

d′(C) = d(C)|C − d(S)|C · (d(S)|P )−1 · d(C)|P

= d(C)|C − d(S)|C · V (P )|S · (V (P )|S)−1 · (d(S)|P )−1 · d(C)|P

= d(C)|C − dV (P )|C · (dV (P )|P )−1 · d(C)|P

Hence 〈d′(τ), σ〉 = d′(τ)|σ = −dV (P )|σ · (dV (P )|P )−1 · d(τ)|P + d(τ)|σ. If σ < τ then it is obvious that 
there is a V-path between them. Otherwise, 〈d′(τ), σ〉 = −dV (P )|σ · (dV (P )|P )−1 · d(τ)|P . As this term is 
non-zero, there must be some σi, σj in P such that

dV (σi)|σ 
= 0

d(τ)|σj

= 0

(dV (P )|P )−1
(i,j) 
= 0

The first two inequalities imply that there exist two V-paths σi ↗ b ↘ σ and τ ↘ σj . The third one 
implies that there is a path from σj to σi. Let us see a short proof of this in a more general context.

Let A be the adjacency matrix of a weighted digraph such that det(A) 
= 0. We know that Ak
(i,j) 
= 0, i 
= j

implies that there is a path from the vertex j to i. Following the Cayley–Hamilton theorem [51, §4.4, Thm. 
2],

An + cn−1A
n−1 + · · · c1A + (−1)n det(A)In = 0

⇒ A−1 = (−1)n+1

det(A)
(
An−1 + cn−1A

n−2 + · · · c1In
)

Thus, A−1
(i,j) 
= 0 ⇒ ∃k ≥ 0, Ak

(i,j) 
= 0.
Then, there is a V-path σj ↗ b1 ↘ a2 · · · ↘ σi. By concatenating these paths, we obtain

τ ↘ σj ↗ b1 ↘ a2 · · · ↘ σi ↗ b ↘ σ �
Algorithm 1 gives a general pipeline for computing a HDVF.

Algorithm 1: Compute a HDVF.
Input: A CW complex K
Output: A HDVF X

1 X ← (∅, ∅);
2 repeat
3 Find two critical cells σ, τ such that 〈d′(τ), σ〉 is a unit;
4 Add (σ, τ) to X;
5 Update the boundary matrices D of the reduced chain complex;
6 until idempotency;

If we also want to obtain the DVF, for each pair of cells (σ, τ) that we add to the HDVF we have to find 
a V-path between them and reverse it.

The core of Algorithm 1 lies at line 5. We now present three methods for updating the matrix Dq+1 after 
adding a pair of critical cells (σ(q), τ (q+1)) and we study their complexity.

Let us now point out an important aspect about the complexity. We denote by n the number of cells in 
the CW complex K. If K is a simplicial complex and Dq is its initial (not reduced) boundary matrix, then 
the number of non-zero entries in each column of Dq is q+ 1 (since a q-simplex has q+ 1 faces of dimension 
q− 1). Also, if K is a cubical complex embedded in Rd then each column of Dq has 2q non-zero entries and 
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each row contains at most 2(d − q) non-zero entries. Therefore, it is interesting not only to consider dense 
boundary matrices, but also sparse ones along their columns or along their rows and columns. We denote 
these three types of matrices dense, d-bounded and dd∗-bounded respectively.

A common point between the following three methods is that we must remove the row of τ in Dq+2 and 
the column of σ in Dq.

Method I: inverting H
Given the equations for the reduction associated to a HDVF X (cf. Theorem 5.2), the most trivial way 

to update the boundary matrices is to invert the new matrix d(S′
q+1)|P ′

q
and to compute

D′
q+1 = d(C ′

q+1)|C′
q
− d(S′

q+1)|C′
q
· (d(S′

q+1)|P ′
q
)−1 · d(C ′

q+1)|P ′
q

We estimate the complexity of this operation. Remark that all these matrices have at most n columns 
and n rows. Inverting the matrix d(S′

q+1)|P ′
q

can be done in matrix multiplication time, so it requires O(nω)
operations, where ω ≤ 2.374 [52].

In order to understand the complexity of this method in the context of the three types of boundary 
matrices, we introduce the following notation. A matrix A ∈ Mn×n(Z) is called [r, c]-matrix if each row 
contains at most r non-zero entries and each column contains at most c non-zero entries. Thus, dense 
matrices are [n, n]-matrices, d-bounded matrices are [n, c]-matrices and dd∗-bounded are [r, c]-matrices for 
some constants r and c. Lemma A.6 states the complexity of the sum and the multiplication of [r, c]-matrices.

Let us suppose that the three matrices d(C ′
q+1)|C′

q
, d(S′

q+1)|C′
q

and d(C ′
q+1)|P ′

q
are [r, c]-matrices, where 

K = P ′ � S′ � C ′ denotes the new partition and D′ is the new reduced boundary after adding (σ, τ) to X. 
Thus we can obtain D′

q+1 by performing O(n2 · (c + r)) operations:

D′
q+1 = d(C ′

q+1)|C′
q︸ ︷︷ ︸

[r,c]

− d(S′
q+1)|C′

q︸ ︷︷ ︸
[r,c]

· (d(S′
q+1)|P ′

q
)−1︸ ︷︷ ︸

[n,n]

· d(C ′
q+1)|P ′

q︸ ︷︷ ︸
[r,c]

[r, c] + ([r, c] · [n, n]) · [r, c]

[r, c] + [n, n] · [r, c] (n2c operations)

[r, c] + [n, n] (n2r operations)

[n, n] (n2 operations)

Consequently, if the boundary matrices are dense, d-bounded or dd∗-bounded, the complexity of this 
method is O(n3), O(n3) and O(n2.374) respectively.

Method II: using the Banachiewicz formula for H
Let us see how we can obtain (d(S)|P )−1 without inverting the matrix. In the following we omit the 

subscripts whenever they are clear from the context.

Proposition 6.3. After adding the pair of critical cells (σ, τ), the matrix (d(S′)|P ′)−1 can be obtained within 
O(n2) operations.

Proof. We write

Hq =
[
A
]−1

=: H

Fq = −
[
u

B

]
·Hq = −

[
uH

BH

]
=:

[
F11

F21

]
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Gq+1 = −Hq ·
[
v C

]
= −

[
Hv HC

]
=:

[
G11 G12

]

Dq+1 = −
[
uH

BH

]
·
[
v C

]
+

[
w s

r E

]
=

=
[
−uHv + w −uHC + s

−BHv + r −BHC + E

]
=:

[
D11 D12

D21 D22

]

where

A = d(Sq+1)|Pq

u = d(Sq+1)|σ

v = d(τ)|Pq

w = d(τ)|σ

B = d(Sq+1)|C′
q

C = d(C ′
q+1)|Pq

r = d(τ)|C′
q

s = d(C ′
q+1)|σ

E = d(C ′
q+1)|C′

q

Remark that D11 = 〈d′(τ), σ〉 is a unit, so D−1
11 exists. By the Banachiewicz identity (cf. Lemma A.4),

H ′
q =

[
A v

u w

]−1

=
[
H + HvD−1

11 uH −HvD−1
11

−D−1
11 uH D−1

11

]

=
[
H + G11D

−1
11 F11 G11D

−1
11

D−1
11 F11 D−1

11

]

The complexity of this method is dominated by the computation of the upper-left block, which requires 
O(n2 + n(c + r)) = O(n2) operations:

H + HvD−1
11 uH

[n, n] + ([n, n] · [1, c]) · ([r, 1] · [n, n])

[n, n] + [1, n] · [n, 1] (nc + nr operations)

[n, n] + [n, n] (n2 operations)

[n, n] (n2 operations) �
Thus, the boundary matrices can be obtained within O

(
n2 + n2(c + r)

)
= O

(
n2(c + r)

)
operations. 

Consequently, if the boundary matrices are dense, d-bounded or dd∗-bounded, the complexity of this method 
is O(n3), O(n3) and O(n2) respectively. This means that this method is theoretically better for a cubical 
complex.

Method III: continuing that idea
Following the notation in Proposition 6.3, we can directly obtain Dq+1 without computing Hq.

Proposition 6.4. The matrix Dq+1 can be obtained within O(n2) operations.
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Proof. Following the notation of the proof of Proposition 6.3,

D′
q+1 = d(C ′

q+1)|C′
q
− d(S′

q+1)|C′
q
· (d(S′

q+1)|P ′
q
)−1 · d(C ′

q+1)|P ′
q

= E −
[
B r

] [H + HvD−1
11 uH −HvD−1

11
−D−1

11 uH D−1
11

][
C

s

]

= E −BHC −BHvD−1
11 uHC + rD−1

11 uHC + BHvD−1
11 s− rD−1

11 S

= (E −BHC) − (r −BHv)D−1
11 (s− uHC)

= D22 −D21D
−1
11 D12

Consequently, D′
q+1 can be obtained within O(n2) operations. �

Table 1 compares the three methods against the three possible types of boundary matrices.

Table 1
Comparison of the three methods.

Method I Method II Method III
Dense n3 n3 n2

d-bounded n3 n3 n2

dd∗-bounded n2.373 n2 n2

Thus the third method outperforms the two others for each type of boundary matrix. We can now 
formulate the complexity of Algorithm 1.

Theorem 6.5. Algorithm 1 can be computed within O(n3) operations.

Proof. Let us consider the worst case in which we found a perfect HDVF and no critical cell remains (which 
is impossible since there is at least one connected component). Thus we add n/2 pairs of cells. Finding a 
pair of cells consists in choosing a unit in the boundary matrices, so it can be done within O(n2) operations. 
Then, by using the third method, the complexity of the algorithm is O

(
n
2 (n2 + n2)

)
= O(n3). �

Note that this result does not depend (and does not take advantage) of the boundary matrices type. 
Computing also the DVF does not affect the complexity of the algorithm theoretically. We can find and 
reverse a V-path in O(n2) time, so obtaining the DVF associated to the HDVF requires also at most O(n3)
operations.

In Algorithm 1 we do not propose any rule for choosing the pair of critical cells. It could be convenient 
to choose a pair (σ, τ) such that D12 = 0 or D21 = 0, so updating the reduced boundary D is simpler. 
This corresponds to an elementary reduction (τ is the only coface of σ) or an elementary coreduction (σ is 
the only face of τ) [19]. It has been noted that it is preferable to look for elementary coreductions than for 
elementary reductions [20,39,35,53].

6.2. Computing also the reduction

At some point, it may be interesting to obtain the reduction induced by the HDVF. We have seen with 
the second method that it is better not to invert d(S)|P , so H may be computed at each step using the 
formula in Proposition 6.3. Then, F and G may be computed at the end of the algorithm using the formula 
in Theorem 5.2, which needs O(n3) operations if the boundary matrices are not dd∗-bounded. However, if 
we want to know the operators f and g throughout the computation of the HDVF it is better to use the 
following result.
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Proposition 6.6. After adding the pair of critical cells (σ(q), τ (q+1)) to a HDVF, the matrices F ′
q and G′

q+1
can be obtained within O(n2) operations.

Proof. Using the notation introduced in Proposition 6.3, it is easy to prove that

F ′
q = −

[
B r

]
·H ′

q

=
[
F21 −D21D

−1
11 F11 −D21D

−1
11

]
G′

q+1 = −H ′
q ·

[
C

s

]

=
[
G12 −G11D

−1
11 D12

−D−1
11 D12

]

Thus, we can update f and g within O(n2) operations. �
Consequently, a HDVF and its reduction can be computed within O(n3) operations.

6.3. Some questions about the algorithm

We partially answer some questions concerning Algorithm 1 in this section. For each question, we treat 
separately the case where R is a field and where it is not.

Question 1: does Algorithm 1 return a perfect HDVF?
If R is a field, the answer is yes.

Proposition 6.7. Let K be a CW complex. Then Algorithm 1 returns a perfect HDVF whenever the ring of 
coefficients is a field.

Proof. Note that, if R is a field, every non-zero element is a unit. Thus, Algorithm 1 only stops when the 
reduced boundary matrices are zero, in which case the returned HDVF is perfect. �

This means that we can always obtain a perfect reduction using a HDVF, even for complexes like the 
Bing’s house or the dunce hat, which do not admit a perfect DGVF. Hence, Proposition 6.7 is a fundamental 
property of HDVFs.

If R is not a field, the answer is no. First of all, we recall that a CW complex with a torsion subgroup 
in one of its homology groups does not admit a perfect HDVF, since a perfect reduction involves homology 
groups of the form Rβ.

Moreover, let us show that Algorithm 1 can return a non-perfect HDVF even when the homology groups 
are torsion-free. We consider the ring of coefficients R = Z and the chain complex

0 0−−→ A
d−−→ B

0−−→ 0

where A = 〈a1, . . . , a5〉 ∼= Z
5, B = 〈b1, . . . , b5〉 ∼= Z

5 and the linear operator d is defined by the matrix
⎡
⎢⎢⎢⎣

1 1 −1 1 0
1 0 0 0 1
0 1 −1 0 −1
−1 1 0 1 0

⎤
⎥⎥⎥⎦
0 0 0 −1 1
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If Algorithm 1 adds the pairs (b4, a1), (b3, a5) and (b5, a4) then it stops since the reduced boundary matrix is

D =
[
4 −3
3 0

]

and it does not contain any unit. However, if Algorithm 1 adds the pairs (b1, a1), (b2, a4), (b5, a3), (b3, a5)
and (b4, a2) then it does find a perfect HDVF. Nevertheless, this counterexample consists of a chain complex, 
so the question remains open for simplicial or cubical complexes.

Question 2: can Algorithm 1 compute every HDVF?
If R is a field, the answer is yes.

Proposition 6.8. Any HDVF can be obtained with Algorithm 1 whenever the ring of coefficients is a field.

Proof. Let X be a HDVF. Using the Laplace expansion for the determinant along the first row of A = d(S)|P , 
we get det(d(S)|P ) =

∑
j λ1,j det(A1,j) 
= 0. Thus there exists some j such that det(A1,j) 
= 0, so X can be 

obtained by adding a pair (σ, τ) to a smaller HDVF. The result follows from induction over the size of the 
matrix d(S)|P . �

Proposition 6.8 proves that Algorithm 1 not only computes a perfect HDVF, but any possible perfect 
HDVF over a given CW complex. Hence, if we are looking for a particular perfect HDVF (possibly with 
some property on its associated homology or cohomology generators), we are sure that we can find it by 
choosing the pairs of critical cells in the correct order.

If R is not a field, the answer is no. We provide again a counterexample. Let R = Z and consider the 

chain complex 0 0−−→ Z
6 d−−→ Z

6 0−−→ 0 where the linear operator d is defined by the matrix

⎡
⎢⎢⎢⎢⎣
−1 1 0 1 −1 1
1 0 1 −1 0 −1
1 1 −1 1 1 1
1 1 1 1 0 −1
−1 −1 1 0 1 0
1 1 0 0 1 1

⎤
⎥⎥⎥⎥⎦

One can prove by exhaustion over all the possible sequences of pairs (bi, aj) that Algorithm 1 never finds 
the unique perfect HDVF, which contains all the elements of the bases. Hence, this is also a counterexample 
for the first question.

Question 3: existence of a perfect HDVF
If R is a field, there exists a perfect HDVF for every CW complex since Algorithm 1 always returns one.

If R is not a field, the answer is unknown. The two first questions have been partially answered, since 
we do not have any counterexample involving a simplicial or cubical complex with R = Z. Indeed, they are 
strongly related to the existence of a perfect HDVF. If a CW complex does not admit a perfect HDVF, the 
first question has a negative answer. On the other hand, if a CW complex admits a perfect HDVF and the 
second question has a positive answer, then Algorithm 1 can find a perfect HDVF, though it may not find 
it always.

We have already seen that a CW complex whose homology groups have torsion coefficients does not 
admit a perfect HDVF. In addition, as a consequence of Proposition 6.7, every CW complex admits a 
perfect HDVF whenever R is a field. Nevertheless, we have not addressed what happens when R = Z and 
the homology groups are torsion-free. In order to find a counterexample, we executed Algorithm 1 for all 
the torsion-free simplicial complexes in Benedetti and Lutz’s library of triangulations [54] and we always 
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found a perfect HDVF. Moreover, the HDVFs returned for the simplicial complexes with just one torsion 
coefficient per dimension (i.e., Hom_C5_K4, RP4, RP4#K3_17, RP4#11S2xS2 and RP5_24) had their reduced 
boundary matrix already in SNF. Hence, even if they are not perfect HDVFs, the homology groups can be 
directly read from them.

We point out that the simplicial complex hyperbolic_dodecahedral_space presented an interesting 
behavior. Its 1-dimensional homology group is H1 = (Z5)3. Due to its small size (718 cells), we executed 
Algorithm 1 500 000 times with random choices of pairs of cells and we only found 72 HDVFs whose 
reduced boundary matrices were in SNF. The other simplicial complex with more than one torsion coefficient,
PG128_PG128P7, is much larger (13 462 cells) and we still have not found any HDVF whose reduced boundary 
matrix is in SNF.

6.4. Another algorithm for computing a HDVF

Algorithm 1 consists in iteratively adding a pair of critical cells to the HDVF. Nevertheless, we can also 
add several pairs of cells to a HDVF at the same time.

Let X be a HDVF and Σ = {σ1, . . . , σr} and T = {τ1, . . . , τr} be two sets of critical cells of codimension 
1 (that is, dim(σi) = dim(τi) − 1). If the matrix d′(T )|Σ is invertible in R then X ′ = (P ∪ Σ, S ∪ T ) is a 
HDVF. The proof is similar to that of Proposition 6.1.

As a consequence, Algorithm 1 is not the unique way of computing a HDVF. However, we prefer it for 
its simplicity and we do not study in this work the above alternative approach.

Let us point out that, if we can add several pairs of cells at the same time, then the second question of 
the previous section is true since we can add all the pairs of cells in a HDVF at once.

7. Deforming a HDVF

In Section 6 we described how the reduction changes after adding a pair of critical cells to the HDVF. 
This can be seen as a basic operation on a HDVF, in which two critical cells γ and γ′ are transformed into a 
primary and a secondary cell respectively. In this section we extend this idea to define five basic operations 
that allow us to modify a HDVF.

7.1. Basic operations

Let K be a CW complex endowed with a HDVF X = (P, S). Let σ ∈ P , τ ∈ S and γ, γ′ ∈ C. Thus,

• X ′ = A(X, γ, γ′) = (P ∪ {γ} , S ∪ {γ′}) is a HDVF identical to X except for γ, which is a primary cell, 
and γ′, which is a secondary cell

• X ′ = R(X, σ, τ) = (P \ {σ} , S \ {τ}) is a HDVF identical to X except for σ and τ , which are critical 
cells

• X ′ = M(X, σ, γ) = ((P \ {σ}) ∪ {γ} , S) is a HDVF identical to X except for σ, which is a critical cell, 
and γ, which is a primary cell

• X ′ = W(X, τ, γ) = (P, (S \ {τ}) ∪ {γ}) is a HDVF identical to X except for τ , which is a critical cell, 
and γ, which is a secondary cell

• X ′ = MW(X, σ, τ) = ((P \ {σ}) ∪ {τ} , (S \ {τ}) ∪ {σ}) is a HDVF identical to X except for τ , which is 
a primary cell, and σ, which is a secondary cell

The operation A has been largely explained in Section 6 and R consists in removing a pair of cells from 
the HDVF. M exchanges a primary cell with a critical one, while W exchanges a secondary cell with a critical 
one. MW is like combining M and W except that no critical cell is needed.
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Let us see the conditions under which we can perform each operation.

Proposition 7.1. Let K be a CW complex endowed with a HDVF X. Let σ ∈ P , τ ∈ S and γ, γ′ ∈ C. Thus,

1. A(X, γ, γ′) is a HDVF if 〈d′(γ′), γ〉 is a unit
2. R(X, σ, τ) is a HDVF if 〈h(σ), τ〉 is a unit
3. M(X, σ, γ) is a HDVF if 〈f(σ), γ〉 is a unit
4. W(X, τ, γ) is a HDVF if 〈g(γ), τ〉 is a unit
5. MW(X, σ, τ) is a HDVF if 〈dh(σ), τ〉 and 〈hd(τ), σ〉 are units

Proof. The first statement only rephrases Proposition 6.1.
For the second statement we need to prove that dq(S′

q+1)|P ′
q

is invertible after removing the two cells. In 
the following we omit the subscripts. We write

d(S)|P =
[
A B

C d(S′)|P ′

]
, M =

[
1 0
C d(S′)|P ′

]

where A = d(τ)|σ, B = d(S′)|σ and C = d(τ)|P ′ . Note that det(M) = det
(
d(S′)|P ′

)
. Then

det
(
d(S′)|P ′

)
= det(M)

= det
(
d(S)|P +

[
1 −A −B

0 0

])

= det
(
d(S)|P +

[
1
0

]
·
[

1 −A −B
])

= det
(
d(S)|P

)
·
(

1 +
[

1 −A −B
]
·H ·

[
1
0

])
(cf. Lemma A.7)

= det
(
d(S)|P

)
·
(

1 +
[

1 0
]
·H ·

[
1
0

]
−

[
A B

]
·H ·

[
1
0

])

= det
(
d(S)|P

)
· (1 + H11 − 1) = det

(
d(S)|P

)
·H11

where H11 denotes h(σ)|τ = 〈h(σ), τ〉.
The third statement is also proved using Lemma A.7. We write

dq(S)|P =
[

a

M

]
, dq(S)|P ′ =

[
b

M

]

where a = d(S)|σ and b = d(S)|γ . We note that

F = −
[

b

N

]
·H

where N = d(S)|C\γ and thus

〈f(σ), γ〉 = −b · h

where h = h(σ)|S . Then
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Fig. 7. A HDVF on a cubical complex and the result after applying M, W and MW. Blue cells are those which are exchanged. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

det
(
dq(S)|P ′

)
= det

(
dq(S)|P +

[
1
0

]
· (b− a)

)

= det
(
dq(S)|P ′

)
·
(

1 + (b− a) ·H ·
[

1
0

])

= det
(
dq(S)|P ′

)
· (1 + (b− a) · h)

= det
(
dq(S)|P ′

)
· (1 + b · h− a · h)

= det
(
dq(S)|P ′

)
· (1 − 〈f(σ), γ〉 − 1)

= − det
(
dq(S)|P ′

)
· 〈f(σ), γ〉

dq(S)|P ′ is thus invertible.
We omit the proof of the last two statements since they are similar to the third one. �
All these operations can be applied in terms of the DVF by reversing a V-path between the two cells 

considered. This V-path is not unique, but its existence can be proved using the same argument present in 
Proposition 6.2. In the case of MW, there are two V-paths to reverse. Fig. 7 illustrates the operations M, W
and MW on a cubical complex.

Some of these operations were introduced in [34]. Namely, the arrow reversing is the operation M between 
0-cells, the edge rotation is MW between 1-cells and the face rotation is MW between 2-cells. These three 
operations were announced as local deformations of a DGVF but, since no condition was given, this is in 
general false: applying an edge rotation or a face rotation to a DGVF can produce a non-gradient discrete 
vector field. Only the arrow reversing preserved the structure of DGVF since, in dimension 0, the existence 
of a V-path between a primary cell σ and a critical cell γ implies that 〈f(σ), γ〉 is a unit.

7.2. Delineating (co)homology generators

Given a perfect HDVF, the operations M, W and MW are interesting since they change the reduction and 
thus the generators of the homology and the cohomology groups. The next proposition specifies how a 
generator changes when the operations M or W affect its associated critical cell.
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Proposition 7.2. Let K be a CW complex endowed with a perfect HDVF X = (P, S) with R = Z2. Let σ ∈ P , 
τ ∈ S and γ ∈ C. Then,

1. If 〈f(σ), γ〉 is a unit, the cohomology generators associated to γ in X and σ in M(X, σ, γ) are the same.
2. If 〈g(γ), τ〉 is a unit, the homology generators associated to γ in X and τ in W(X, τ, γ) are the same.

Proof. The proof of these statements is quite lengthy, but it provides a partial description of the reduction 
after perturbing the HDVF.

For the first statement we write

Hq =
[
u

A

]−1

=:
[
H1 H2

]

Fq = −
[
v

B

]
·Hq = −

[
vH1 vH2

BH1 BH2

]
=:

[
F11 F12

F21 F22

]

where u = d(S)|σ, A = d(S)|P\σ, v = d(S)|τ and B = d(S)|C\γ
Then,

H ′ =
(
d(S)|P ′

)−1

=
(
d(S)P +

[
1
0

]
· (v − u)

)−1

(cf. Lemma A.5)

= H + F−1
11

(
H ·

[
1
0

]
· (v − u) ·H

)

= H ·
(
I − F−1

11

[
F11 F12

0 0

]
− F−1

11

[
1 0
0 0

])

= H ·
[
−F−1

11 −F−1
11 F12

0 I

]

=
[
−H1F

−1
11 H2 −H1F

−1
11 F12

]
Consequently,

F ′ = −
[
u

B

]
·
[
−H1F

−1
11 H2 −H1F

−1
11 F12

]

=
[

F−1
11 F−1

11 F12

F21F
−1
11 F22 − F21F

−1
11 F12

]

The proof of the second statement is similar. We write

Hq =
[
u A

]−1
=:

[
H1

H2

]

Gq+1 = −Hq ·
[
v B

]
= −

[
H1v H1B

H2v H2B

]
=:

[
G11 G12

G21 G22

]
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Fig. 8. Example of multiple applications of the operations on a cubical complex. Blue cells are those that have changed. The 
one-dimensional homology generator is depicted in green at the beginning and at the end. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

where u = d(τ)|P , A = d(S \ τ)|P , v = d(γ)|P and B = d(C \ γ)|P . Then it is easy to prove that

H ′ =
[

−G−1
11 H1

H2 −G−1
11 G21H1

]

G′ =
[

G−1
11 G−1

11 G12

G−1
11 G21 G22 −G−1

11 G21G12

]
�

We can thus use these operations to change the shape of the generators. Fig. 8 shows a cubical complex 
endowed with a HDVF. We want to have a one-dimensional homology generator around the hole. For doing 
this, it suffices that all the 1-cells are secondary except for one which is critical. Thus, we use M on the top 
1-cell to put there the critical cell. Then, for the other three 1-cells, we use MW to make them secondary. At 
the end, the homology generator induced by the HDVF stands at the desired location.

It is unclear whether this application is computationally feasible. The problem is: given a perfect HDVF 
X and a set of cycles S, can we find a perfect HDVF X ′ whose homology generators contain this set? We 
may first check that the cycles are linearly independent. This can be done by computing the rank of the 



A. Gonzalez-Lorenzo et al. / Topology and its Applications 228 (2017) 1–35 25
Fig. 9. There exists no HDVF on this simplicial complex whose homology generators are the four triangles consisting of three 1-cells.

matrix f(S). If the rank is maximal, then the cycles can be part of a homology basis. But even if the cycles 
are linearly independent, the HDVF X ′ does not exist in general, and Fig. 9 provides a counterexample. 
Thus, this problem must be studied further in order to find conditions under which such HDVF exists. A 
possible hint to follow is that every cycle must have a cell not included in any other cycle, which is the 
intuition that led to our counterexample.

Assuming that the HDVF X ′ exists, it is possible to find a sequence of operations that transform one 
HDVF into the other: it suffices to successively apply R to X for removing all the pairing in the DVF, 
and then build the other HDVF using A (this is guaranteed if R is a field by Proposition 6.8). Thus, the 
interesting question is to find a minimal sequence of operations that transform X into X ′.

7.3. Connectivity between HDVFs

The new definitions let us state that Algorithm 1 can compute any HDVF which is the result of applying 
only the operation A to an empty HDVF. We explained in Section 6.3 that we have not addressed if every 
HDVF on a simplicial or cubical complex can be found through Algorithm 1. Thus it is natural to wonder 
if any HDVF on a simplicial or cubical complex can be obtained by a sequence of operations (not only A) 
on an empty HDVF. This can also be formulated as follows: are all the HDVF on a simplicial or cubical 
complex connected via a sequence of operations? This is still an open question.

8. Relation with other methods in computational homology

There are several methods for computing homology in the literature which seem to be equivalent. The 
simple formulation of the HDVFs allows us to clearly see these equivalences.

8.1. Iterated Morse decomposition

First, let us prove that the HDVF generalizes the notion of DGVF.

Proposition 8.1. Every DGVF is a HDVF.

Proof. We need to prove that the matrices d(Sq+1)|Pq
are invertible for each q ≥ 0. In the following we omit 

the subscripts since the proof is the same for every dimension q.
Let V = {(σi, τi)}mi=1 be a DGVF. Consider the weighted digraph whose vertices are the primary cells and 

where arrows connect two vertices whenever there is a V-path of length 1 between them. Formally, (σi, σj)
is an arrow if 〈d(τi), σj〉 
= 0 and σi 
= σj . Its weight is the value −〈d(τi), σi〉 · 〈d(τi), σj〉. It is immediate 
to see that the matrix associated to this graph is I − d(S)|PV , where S = {τi}mi=1, P = {σi}mi=1 and the 
diagonal matrix V = (vi,j) is such that for every i, vi,i = 〈d(τi), σi〉 and zero elsewhere. Note that V is 
invertible. Since there are no closed V-paths in the DGVF, the matrix I − d(S)|PV is nilpotent, and thus 
d(S)|PV is invertible. As V is invertible, we deduce that d(S)|P is invertible. �
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A more elaborate tool for computing the homology groups using discrete Morse theory is the iterated 
Morse decomposition [47], which consists in iteratively: (1) computing a DGVF and (2) considering the 
resulting Morse complex for a next DGVF. We prove now that every iterated Morse decomposition is also 
a HDVF.

Proposition 8.2. Every iterated Morse decomposition is a HDVF.

Proof. For clarity, we assume that the iterated Morse decomposition consists of only two DGVFs V1 and 
V2. We recall that the second DGVF is defined on the chain complex consisting of the critical cells of V1

and the boundary operator

d′ = d(C1)|C1 − d(S1)|C1 ·H · d(C1)|P 1 .

If we write

d(S1 ∪ S2)|P 1∪P 2 =
[
A B

C D

]

then

d(S1)|P 1 = A and d′(S2)|P 2 = D − CA−1B

Given the previous proposition, these two matrices are invertible. Thus, by Lemma A.3,

det
(
d(S1 ∪ S2)|P 1∪P 2

)
= det

(
d(S1)|P 1

)
· det

(
d′(S2)|P 2

)
which is a unit. �

It is easy to see that if a HDVF has been created using Algorithm 1, then the list of pairs of cells 
[(σi, τi)]mi=1 is an iterated Morse decomposition. As we showed in Section 6, it is not true in general that 
every HDVF can be computed with Algorithm 1, so we cannot deduce that every HDVF is an iterated 
Morse decomposition. However, this does not mean that it is false. This question remains open.

8.2. The Smith normal form

The classic algorithm for computing homology groups computes the Smith normal form (SNF) [16]. 
We prove in this section that the reduced boundary matrices obtained in Algorithm 1 are similar to the 
diagonalization performed for the computation of the SNF.

Let K be a CW complex and X a trivial HDVF (P = S = ∅). Let us choose some pivot in some boundary 
matrix Dq. For simplicity, we assume that the pivot is the element Dq(1, 1) = 〈dq(τ), σ〉 and we omit the 
subscript. In order to make all the other entries in its row and column into zeros we perform

∀j 
= 1, D(·, j) ← D(·, j) −D(1, j)D(1, 1)−1D(·, 1)

∀i 
= 1, D(i, ·) ← D(i, ·) −D(i, 1)D(1, 1)−1D(i, ·)

Using the notation of Proposition 6.3, this is equivalent to

D′ = D −
[
D11

D21

]
D−1

11

[
0 D12

]
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D′′ = D′ −
[

0
D′

21

]
D−1

11

[
D′

11 D′
12

]

By developing both equations we obtain that the pseudo-diagonalized boundary matrix is[
D11 0
0 D22 −D21D

−1
11 D12

]
,

where the bottom-right block is the reduced boundary computed in Algorithm 1 after inserting the pair of 
cells (σ, τ).

Proposition 8.3. Let K be a CW complex. Then, Algorithm 1 performs a partial diagonalization of the 
boundary matrices of K.

Proof. The proof is direct from the previous argument. �
We have just seen that computing a HDVF is equivalent to compute the SNF of the boundary matrices 

using only the pivot operation, that is, given an invertible entry in the matrix, we make all the entries in its 
row and column into zeros. Computing the SNF needs also another type of operation: if there is no entry 
dividing all the others, we make elementary operations on the rows and columns so such an entry appears. 
For this reason, Algorithm 1 cannot always return a perfect HDVF if R = Z, since in the computation of 
the SNF we can arrive to a matrix without units even if the SNF contains only units in its diagonal (see 
Section 6.3 for an example).

8.3. Persistent homology

Proposition 8.3 also implies that persistent homology can be computed with a variation of Algorithm 1. 
The classical algorithm for persistent homology [55, §4.2] is based on the Smith normal form. The main 
difference with a standard homology computation is that cells are considered in the order given by the fil-
tration. Therefore, Algorithm 2 computes the persistence intervals of a filtration using the same calculations 
as Algorithm 1.

Algorithm 2: Compute a HDVF associated to a filtration.
Input: A CW complex K, a filtration deg and an ordering 

{
σj

}n

j=1
Output: The persistence intervals of deg
for k = 0 to dim(K) do

Lk ← ∅;
X ← (∅, ∅);
for j = 1 to n do

if d′(σj) �= 0 then
i ← max

{
j′ : 〈d′(σj), σj′〉 = 1

}
;

X ← A(X, σi, σj) (and update the boundary matrices D);
Ldim(σj) ← Ldim(σj) ∪

{
(deg(σi), deg(σj))

}
;

for j = 1 to n do
if σj is critical then

Ldim(σj) ← Ldim(σj) ∪
{
(deg(σj),∞)

}
;

Let deg : K → Z be a map on a CW complex defining a filtration, that is for any two cells σ < τ , 
deg(σ) ≤ deg(τ). Let 

{
σj

}n be an ordering of the cells of K respecting the order induced by deg such 

j=1
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that 
{
σj

}i

j=1 is a subcomplex of K for each 1 ≤ i ≤ n. Lk denotes the set of the k-dimensional persistence 
intervals of the map deg.

Algorithm 2 is a mere translation of the algorithm described in [55] into the HDVF framework. The 
purpose of doing so is to show that we can obtain a reduction for every step of the filtration and that we 
can apply the conclusions of Section 9 to the persistent homology theory.

9. Experimental complexity

We fix in this section R = Z2, so we are sure that we obtain a perfect HDVF and thus we compute the 
homology of the CW complex.

Computing the homology groups of a CW complex is considered in general a problem with O(n3) time 
complexity. Only [56] proves that it can be computed in matrix multiplication time, but there is no im-
plementation of this algorithm. Nevertheless, it has been noticed that in practice the execution time is 
linear for homology [39, §4] and persistent homology [55, §4]. We estimated in Theorem 6.5 the complexity 
of our algorithm by bounding the number on non-zero entries in rows and columns by n, obtaining that 
Algorithm 1 can find a HDVF within (n/2) ·n2 = n3/2 operations or (n/2) ·

(
n2 + n2 + n2 + n2) = 2n3 if we 

also want to obtain the associated reduction. Since these bounds are not tight, it should not be surprising 
that the complexity in practice is lower than cubic.

One advantage of the HDVF framework is that we can easily count the number of operations that we 
perform along its computation. At each step of Algorithm 1, updating the matrices H, F, G and D requires 
|F11||G11|, |D21||F11|, |G11||D12| and |D21||D12| operations respectively, where |v| denotes the number of 
non-zero entries in the vector v. Thus, updating the reduced boundary requires

|D21||D12|

operations (plus some operations to remove rows and columns). Moreover, updating all the reduction re-
quires

|F11||G11| + |D21||F11| + |G11||D12| + |D21||D12| = (|F11| + |D12|)(|G11| + |D21|)

operations.
Let us study now the average complexity for two random models.

Random cubical complexes. We introduce a random model for constructing cubical complexes. We denote it 
by K(p, m) and it is similar to the closed faces model introduced in [57]. Let m ∈ Z

+ and p ∈ R, 0 ≤ p ≤ 1. 
A cubical complex in K(p, m) is built by adding each cubical cell σ ⊂ [0,m]3 (with its faces) to the complex 
with probability p. Note that each cell σ belongs to the cubical complex with probability 1 − (1 − p)c, 
where c denotes the number of cofaces (in the full cubical complex [0,m]3) of σ, including itself. Thus, 
lower-dimensional cells are more frequent.

For each cubical complex K we denote by X(K) its number of cells. Also, Y d(K) denotes the number of 
operations performed for computing a HDVF (which is the sum of |D21||D12| along its computation) and 
Y r(K) denotes the number of operations needed for computing a HDVF and its reduction. We thus know 
that for each K,

Y d(K) ≤ 1
2X(K)3 and Y r(K) ≤ 2X(K)3

Let us point out two concerns:
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Fig. 10. We have computed the Betti numbers for 121258 cubical complexes in K(p, 100) with p ∼ U(0, 1). Top: for each cubical 
complex K we plot the points (X(K), β0) (red), (X(K), β1) (green) and (X(K), β2) (blue) divided by the total number of cells 
(2 · 100 + 1)3. Bottom: for each cubical complex K we plot the point (X(K), β0 + β1 + β2) divided by the total number of cells. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1. If K has large Betti numbers then there are several critical cells in the perfect HDVF, so we perform 
less than n/2 steps. The relation between the parameter p and the number of critical cells in a perfect 
HDVF is unknown, and this could help to understand our experiments. Fig. 10 shows the Betti numbers 
for a large number of cubical complexes in K(p, 100) and their sum. We appreciate that the number of 
critical cells is at most 5% of the size of the complex, so it does not seem to be significant.

2. We do not make any smart choice for the pair (σ, τ) in each step of the algorithm. This means that the 
quantities Yd(K) and Yr(K) are not optimized. We could have implemented a better choice that tries 
to minimize these values, but we have chosen not to do it since we want to obtain a really general result 
that can be also applied to compute persistent homology.

In our experiment we fix m = 25 and we build 2217 cubical complexes with probability p uniformly 
distributed in [0, 1]. We want to show that the average complexity of Algorithm 1 is O(nα) for some α ∈ R. 
Note, however, that our sample does not seem to fit to a polynomial function. For achieving this we fit our 
sample 

{
(log(Xi), log(Y d

i ))
}

to a linear function y = b · x. Using R [58] we obtain the 99.99% confidence 
interval [1.372086, 1.384346] for b. Thus, we can (statistically) affirm that b < 1.4. Consequently, Y d < X1.4

and the average-case complexity is O(n1.4). Fig. 11-(top) shows the plot of 
{
(log(Xi), log(Y d

i ))
}

together 
with the fitted linear function passing by the origin.

We repeat this study for Y r (thus computing also the reduction). The 99.99% confidence interval for b is 
[1.940787, 1.959928] so we can affirm that in average, computing a perfect HDVF with its reduction requires 
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Fig. 11. Top: plot of 
{
(log(Xi), log(Y d

i ))
}

for cubical complexes in K(25, p) together with the linear regression model passing by 
the origin. Bottom: the same for {(log(Xi), log(Y r

i ))}.

O(n2). Fig. 11-(bottom) shows the plot of {(log(Xi), log(Y r
i ))} together with the fitted linear function 

passing by the origin.

Random volumes. We may be interested in studying cubical complexes which come from binary volumes. 
We thus introduce the following random model. Let be m ∈ Z

+. We consider an empty binary volume of 
size m ×m ×m and we add �m/10�3 blocks of voxels of size �m/10� ×�m/10� ×�m/10� at random (uniform) 
position. We can see this process as cutting a volume in small pieces and shuffling them. This binary volume 
can be transformed into a cubical complex by substituting each voxel for a cubical 3-dimensional cell and 
its faces. We denote this model by V (m).

When building 1675 cubical complexes with the random model V (25) we obtain very similar results. 
By fitting 

{
(log(Xi), log(Y d

i ))
}

to a linear function y = b · x we obtain the 99.99% confidence interval 
[1.377406, 1.377593] for b. For Y r, the interval is [1.941323, 1.941854]. Both fitted linear functions are de-
picted in Fig. 12.

10. Conclusion and future work

We have introduced a combinatorial structure that can be interpreted as a new class of discrete vector 
field, namely the homological discrete vector field, together with the theorems providing homological results 
for such extended DGVF. We have shown that this extended class of DGVF successfully reaches the correct 
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Fig. 12. Top: plot of 
{
(log(Xi), log(Y d

i ))
}

for cubical complexes in V (25) together with the linear regression model passing by the 
origin. Bottom: the same for {(log(Xi), log(Y r

i ))}.

number of critical cells in complexes for which standard DGVFs cannot, such as the Bing’s house or the 
dunce hat.

We provide a simple sequential algorithm for computing a HDVF in Section 6. The reduction is updated 
by using formulas that depend on the previous step reduction, without inverting the matrix d(S)|P . The 
worst-case complexity of this algorithm is O(n3). Finally, we partially answer some questions about the 
algorithm and the existence of perfect HDVFs.

Section 7 introduces five basic operations that allow us to switch pairs of cells belonging to the sets P , 
S or C of a HDVF. This extends and corrects a similar idea present in [34]. These operations allow us 
to change the shape of the homology (or cohomology) generators of a perfect HDVF. However, we do not 
explore how to do this in practice since there are some theoretical problems that must be solved before 
designing an algorithm, namely the existence of a sequence of operations that transform one HDVF into 
any other.

Section 8 is devoted to the relation between the HDVF framework and other homology algorithms. We 
prove that computing a HDVF is equivalent to compute a DGVF, an iterated Morse decomposition and the 
classical homology algorithm using the Smith normal form. It remains as an open question if every iterated 
Morse decomposition can be computed through a HDVF (the converse is proved). We also show how to 
compute persistence intervals using the HDVF framework. A very interesting task is to do the same for 
zigzag persistent homology [59].
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In Section 9 we study the average-case complexity of our algorithm through an experimental approach. 
The validity of this study can be questioned, since we consider only two random models for cubical complexes 
with fixed parameters which do not sample the whole space of CW complexes. However we show that we 
can use the HDVF framework for giving a more concrete sense to the well accepted idea that homology 
and persistent homology can be computed in practice in almost linear time. We show, using simple linear 
regression, that a perfect HDVF (which provides the Betti numbers of the complex) can be obtained within 
O(n1.4) operations in average. If we also want the reduction (and thus the homology groups), it requires 
O(n2) operations in average. However, we have not used any optimization technique such as reduction and 
coreductions [19], which should give even better estimations.

Appendix A. Some matrix properties

The proofs in this work use several matrix properties that may not be trivial for the reader. We prefer 
to recall some of them in order to ease the reading of the proofs.

Lemma A.1. Let be A = BCD the product of three matrices. Then,

ai,j = Bi,·CD·,j

Proof. ai,j = LiARj , where Li is a row vector with zeros everywhere except for the i-th position, and Rj is 
a column vector with zeros everywhere except for the j-th position. Therefore, ai,j = LiARj = LiBCDRj =
Bi,·CD·,j . �
Lemma A.2. Let be A ∈ Mm×n(Z), B ∈ Mn×n(Z), B invertible and C = A ·B−1. Then,

c(i,j) = 1
det(B) det(B̃),

where B̃ is the matrix identical to B except for the j-th row, which has been replaced by the i-th row of A.

Lemma A.3. (Schur determinant formula) Let be

M =
[
A B

C D

]

a block matrix (A ∈ Mn×n(Z), B ∈ Mn×k(Z), C ∈ Mk×n(Z) and D ∈ Mk×k(Z)). If A is invertible then

det(M) = det(A) · det(D − CA−1B).

Lemma A.4. (The Banachiewicz identity) Let be

M =
[
A B

C D

]

a block matrix (A ∈ Mn×n(Z), B ∈ Mn×k(Z), C ∈ Mk×n(Z) and D ∈ Mk×k(Z)). If A and D −CA−1B are 
invertible, then M is invertible and

M−1 =
[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
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We recall that the transpose of a matrix A is denoted A�.

Lemma A.5 (Sherman–Morrison formula). Let A ∈ Mn×n(Z) and u, v ∈ Z
n. If A is invertible and 1 +

v�Au 
= 0 then

(
A + uv�

)−1 = A−1 − A−1uv�A−1

1 + v�Au
.

Lemma A.6. Let A ∈ Mm×n(Z), we say that it is an [r, c]-matrix if each row contains at most r non-zero 
entries and each column contains at most c non-zero entries. Thus,

• If A ∈ Mm×n(Z) is an [r, c]-matrix and B ∈ Mm×n(Z) is an [r′, c′]-matrix, then A +B is an [r+ r′, c +
c′]-matrix and it can be computed within O (min(m · (r + r′), (c + c′) · n)) operations.

• If A ∈ Mm×n(Z) is an [r, c]-matrix and B ∈ Mn×p(Z) is an [r′, c′]-matrix, then A ·B is an [rr′, cc′]-matrix 
and it can be computed within O (m · min(r, c′) · p) operations.

Lemma A.7. (Matrix inversion lemma) Let A ∈ Mn×n(Z) and u, v ∈ Z
n. If A is invertible then

det(A + uv�) = det(A) ·
(
1 + v�A−1u

)
.

Proof. We write

M =
[

1 −v

u A

]

Since det(M) = det(M t), by the Schur determinant formula (see Lemma A.3),

det(M) = det(M t)

det(1) · det(A + uv) = det(A) · det(1 + vA−1u)

det(A + uv) = (1 + vA−1u) · det(A) �
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