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Abstract: We consider some optimal control problems for systems governed by linear parabolic
PDEs with local controls that can move along the domain region Ω of the plane. We prove the
existence of optimal paths and also deduce the first order necessary optimality conditions, using the
Dubovitskii–Milyutin’s formalism, which leads to an iterative algorithm of the fixed-point kind. This
problem may be considered as a model for the control of a mosquito population existing in a given
region by using moving insecticide spreading devices. In this situation, an optimal control is any
trajectory or path that must follow such spreading device in order to reduce the population as much
as possible with a reasonable not too expensive strategy. We illustrate our results by presenting some
numerical experiments.

Keywords: optimal control; optimality conditions; Dubovitskii–Milyutin formalism; computation of
optimal solutions

1. Introduction

In this paper, we present and solve theoretically and numerically some optimal control
problems concerning the extinction of mosquito populations by using moving devices
whose main role is to spread insecticide. The controls are the trajectories or paths followed
by the devices and the states are the resulting mosquito population densities. Thus,
the unknowns in the considered problems are couples (γ, u), where γ is a curve in the
plane (see Figure 1), and u indicates how many mosquitoes there are and where they
stay. The goal is to compute a trajectory leading to a minimal cost, measured in terms of
operational costs and total population up to a final time.

The main simplifying assumptions for the model are the following:

Assumption 1. Mosquitoes grow at a not necessarily constant known rate a = a(x, t) and diffuses
at a known constant rate α.

Assumption 2. The insecticide immediately kills a fixed fraction of the population at a rate that
decreases with the distance to the spreading source.

Assumption 3. There are no obstacles for the admissible trajectories.
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Figure 1. Scheme of the considered problem in a rectangular domain Ω with dimensions L and H.
The trajectory γ with initial and final points O1, O1, respectively, follows a path connecting the sets
B1 and B2 where an initial mosquito population density is concentrated.

These assumptions can be relaxed in several ways.
For the problems considered in this paper, we prove the existence of an optimal

solution, that is, a trajectory that leads to the best possible status of the system. We also
characterize the optimal control–state pairs by appropriate first order optimality condi-
tions. As usual, this is a coupled system that must be satisfied by any optimal control, its
associated state, and an additional variable (the adjoint state) and must be viewed as a
necessary condition for optimality.

In this paper, this characterization is obtained by using the so-called Dubovitskii–
Milyutin techniques (see, for instance, Girsanov [1]). This relies on the following basic
idea: on a local minimizer, the set of descent directions for the functional to minimize
must be disjoint to the intersection of the cones of admissible directions determined by the
restrictions. Accordingly, in view of Hahn-Banach’s Theorem, there exist elements in the
associated dual cones, not all zero, whose sum vanishes. This algebraic condition is in fact
the Euler–Lagrange equation for the problem in question. In order to be applied in our
context, we must carry out the task of identifying all these (primal and dual) cones.

This formalism has been applied with success to several optimal control problems
for PDEs, including the FitzHugh–Nagumo equation Brandao et al. [2]; solidification
Boldrini et al. [3], the evolutionary Boussinesq model Boldrini et al. [4]; the heat equation
Gayte et al. [5] and, also, some ecological systems that model the interaction of three species
Coronel et al. [6].

We remark that part of the results presented here have their origin in ones in the
Ph.D. thesis of Araujo [7].

This paper is organized as follows: Section 2 is devoted to describe the main achieve-
ments. The next two sections will be devoted to the rigorous proof of the optimality
conditions; Section 3 contains some preparatory material and Section 4 deals with the main
part of the proof. In Section 5, we deduce optimality conditions for a problem similar
to the previous one, including in this case a restriction on the norm of the admissible
trajectories. Once the optimality conditions are established, they can be used to devise
numerical schemes to effectively compute suitable approximations of optimal trajectories;
this will be explained in detail in Section 6. In Section 7, we present the results of numeri-
cal experiments performed with the numerical scheme described in the previous section.
Finally, in Section 8, we present our conclusions and comment on further possibilities
of investigation.

2. Main Achievements

Let Ω ⊂ R2 be a non-empty bounded connected open set with boundary ∂Ω such that
either ∂Ω is of class C2 or Ω is a convex polygon and let T > 0 be a given time. We want to
find a curve γ∗ : [0, T] 7→ R2 such that

F(γ∗) = min
γ∈V

F(γ), (1)
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where V := { γ ∈ H1(0, T)2 : γ(0) = 0 } is the space of admissible controls, and F is the
following cost functional:

F(γ) := µ0

∫ T

0
|γ|2 dt + µ1

∫ T

0
|γ̇|2 dt + µ2

∫∫
Q
|u|2 dx dt, (2)

where γ̇ is the time derivative of γ, and u = u(x, t) is the associated state, that is, the unique
solution to the problem

ut − α∆u = a(x, t)u− bk(x− γ(t))u, in Q := Ω× (0, T),
∂u
∂n

= 0, on S := ∂Ω× (0, T),

u(x, 0) = u0, in Ω.

(3)

Parameters µ0 ≥ 0, µ1 > 0, and µ2 > 0 are given constants. Concerning the interpreta-
tion of the cost functional (2), we observe that it can also be written in the form

F(γ) := µ0‖γ‖2
L2(0,T)2 + µ1‖γ̇‖2

L2(0,T)2 + µ2‖u‖2
L2(Q).

The function γ determines the trajectory of the device and γ̇ is its corresponding velocity;
moreover, the same path (geometric locus of the trajectory) can be traveled with different
speeds leading to different operational costs. Since ‖γ‖L2(0,T) is a measure of the size of
γ and ‖γ̇‖L2(0,T) is a measure of the velocity γ̇, the quantity µ0‖γ‖2

L2(0,T) + µ1‖γ̇‖2
L2(0,T)

can be regarded as a measure of the operational costs associated with the trajectory γ.
Parameters µ0 and µ1 weight the relative importance being attributed to the size and the
velocity of a trajectory in those operational costs. On the other hand, ‖u‖L2(Q) is a measure
of the size of the mosquito population and µ2 is a constant parameter that weights the
importance that is attributed to the decrease of such population.

It is expected that an improvement of the operational costs implies an increase of
the effectiveness of the process and consequently leads to a reduction of the mosquito
population, while a decrease of the operational costs leads to an increase of the mosquito
population. Therefore, the minimization of F, once the parameters µ0, µ1, and µ2 are given,
leads to a trajectory that balances the reduction of the mosquito population and the amount
of operational costs. We remark that the values of µ0, µ1 and µ2 have a large influence on
the shape of a possible optimal trajectory.

In short, F(γ) is thus the sum of three terms, respectively related (but not coincident)
to the length of the path travelled by the device, its speed along (0, T) and the resulting
population of insects. A maybe more realistic cost functional is indicated in Section 8.

In (3), α > 0, b > 0, a = a(x, t) is a non-negative function and k : R2 7→ R is a
positive C1-function. The coefficient a is related to insect proliferation. It is standard in
dynamics of population. In fact, in (3), the mosquito population u is assumed to have a
space-time dependent Malthusian growth; this means that the population growth rate at
each position and time is proportional to the number of individuals. The model admits a
non-constant a to cope with the possibility of geographical places and times with different
effects; for instance, more favorable growth rates occur in places with the presence of
bodies of water or during rainy seasons.

As we mentioned in the Introduction, we assume that the insecticide immediately
kills a fraction of the mosquito population present at a position x and time t, with a rate
that is proportional to the insecticide concentration at that same position and time. At time
t, the spreading device is at position γ(t) and spreads a cloud of insecticide around it;
the resulting insecticide concentration at any point x then depends on the position of x
relative to γ(t) (we expect that such concentration decays with the distance from the
device). The spatial distribution of this concentration is then mathematically described as
k(x− γ(t))cmax, where cmax is the maximal spreading concentration capacity of the device,
and k is a known C1-function such that 0 ≤ k ≤ 1 and k(0) = 1. Then, the associated
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effective killing rate of the mosquito population is proportional to the product of insecticide
concentration and the mosquito population. That is, f k(x − γ(t))cmaxu(x, t) for some
proportionality factor f . By introducing b = f cmax, we get that the killing rate at position x
and time t is b k(x− γ(t))u(x, t).

In our present analysis, it is not strictly needed but is natural to view k as an approxi-
mation of the Dirac distribution. For instance, it is meaningful to take

k(z) := k0e−|z|
2/σ

for some k0, σ > 0; this means that the device action in (3) at time t is maximal at x = γ(t)
and negligeable far from γ(t). To this respect, see the choice of k in the numerical experi-
ments in Section 7.

Of course, we can consider more elaborate models and include additional (nonlinear)
terms in (3) related to competition; this is not done here just for simplicity of exposition.

Any solution (γ∗, u∗) to (1) provides an optimal trajectory and the associated popula-
tion of mosquitoes. The existence of such a pair (γ∗, u∗) is established below, see Section 4.

As already mentioned, we also provide in this paper a characterization of optimal
control–state pairs. It will be seen that, in the particular case of (1), the main consequence
of the Dubovitskii–Milyutin method is the following: if γ∗ is an optimal control and u∗ is
the associated state, there exists p∗ (the adjoint state), such that the following optimality
conditions are satisfied:

u∗t − α∆u∗ = a(x, t) u∗ − b k(x− γ∗)u∗, in Q,
∂u∗

∂n
= 0, on S,

u∗(x, 0) = u0, in Ω,

(4)


−p∗t − α∆p∗ = a(x, t) p∗ − b k(x− γ∗)p∗−2µ2u∗, in Q,
∂p∗

∂n
= 0, on S,

p∗(x, T) = 0, in Ω

(5)

and  −2µ1γ̈∗ + 2µ0γ∗ − b
∫

Ω
p∗u∗∇k(x− γ∗) dx = 0, in (0, T),

γ∗(0) = 0, γ̇∗(T) = 0.
(6)

3. Preliminaries

As usual, D(Ω) will stand for the space of the functions in C∞(Ω) with compact
support in Ω and Wr,p(Ω) and Hm(Ω) = Wm,2(Ω) will stand for the usual Sobolev spaces;
see Adams [8] for their definitions and properties. The gradient and Laplace operators will
be respectively denoted by ∇ and ∆.

The constants µ0 ≥ 0, µ1 > 0, µ2 > 0, α > 0 and b > 0 and the functions k, u0 and a
are given, with

k ∈ C1
b(R

2), 0 ≤ k ≤ 1, u0 ∈ H1(Ω) and a ∈ L∞(Q).

In the sequel, C will denote a generic positive constant and the symbol 〈· ·〉 will stand
for several duality pairings.

Very frequently, the following spaces will be needed:

W2,1
2 (Q) := { u ∈ L2(Q) : Dσu ∈ L2(Q) ∀1 ≤ |σ| ≤ 2, ut ∈ L2(Q) }

and
W2,1

2,N(Q) := { u ∈W2,1
2 (Q) :

∂u
∂n

= 0 on S }.
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For the main results concerning these spaces, we refer, for instance, to [9]. Let us just
recall one of them that is sometimes called the Lions–Peetre Embedding Theorem, see ([10],
p. 13):

Lemma 1. The embedding W2,1
2 (Q) ↪→ Lr(Q) is compact for all 1 ≤ r < +∞.

For any Banach space B, we will denote by ‖ · ‖B the corresponding norm. Its topolog-
ical dual space will be denoted by B′. Recall that, if K ⊂ B is a cone, the associated dual
cone is the following:

K∗ = { f ∈ B′ : f (e) ≥ 0 ∀e ∈ K}.

Let A ⊂ B be given and let us assume that e0 ∈ A. It will be said that a nonzero linear
form f ∈ B′ is a support functional for A at e0 if

f (e) ≥ f (e0) ∀e ∈ A.

Let Z be a Banach space and let M : B 7→ Z be a mapping. For any e0, e1 ∈ B, we will
denote by M′(e0)e1 the Gateaux-derivative of M at e0 in the direction e1 whenever it exists.
For obvious reasons, in the particular case Z = R, this quantity will be written in the
form 〈M′(e0), e1〉.

The following result is known as Aubin–Lions’ Immersion Theorem. In fact, this version
was given by Simon in [11], see p. 85, Corollary 4:

Lemma 2. Let X, B, and Y be Banach spaces such that X ↪→ B ↪→ Y with continuous embeddings,
the first of them being compact and assume that 0 < T < +∞. Then, the following embeddings
are compact:

1. Lq(0, T; X) ∩ {φ : φt ∈ L1(0, T; Y)} ↪→ Lq(0, T; B) for all 1 ≤ q ≤ ∞.
2. L∞(0, T; X) ∩ {φ : φt ∈ Lr(0, T; Y)} ↪→ C0([0, T]; B) for all 1 < r ≤ ∞.

The following result guarantees the existence and uniqueness of a state for each control
γ in the space of admissible controls V :

Theorem 1. For each γ ∈ V , there exists a unique solution u ∈W2,1
2,N(Q) of problem (3) satisfying

the estimate
‖u‖W2,1

2 (Q)
≤ C‖u0‖H1(Ω).

The constant C only depends on T, α, ‖a‖L∞(Q), b, ‖k‖L∞(R2) and Ω.

For completeness, let us also recall an existence–uniqueness result for the adjoint system:

Theorem 2. Let γ ∈ V and u ∈ L2(Q) be given. The linear system
−pt − α∆p = a(x, t) p− b k(x− γ)p + 2µ2u, in Q,
∂p
∂n

= 0, on S,

p(x, T) = 0, in Ω,

(7)

possesses exactly one solution p ∈W2,1
2,N(Q) such that

‖p‖W2,1
2 (Q)

≤ C‖u0‖H1(Ω),

with C as in Theorem 1.

We finish this section by recalling the Dubovitskii–Milyutin method. The presentation
is similar to that in Boldrini et al. [3].
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Let X be a Banach space and let J : X 7→ R be a given function. Consider the
extremal problem

J(e∗) = min
e∈Q=⋂n+1

`=1 Q`

J(e) (8)

where the Q` (` = 1, . . . , n + 1) are by definition the restriction sets. It is assumed that

IntQi 6= ∅ ∀1 ≤ i ≤ n and IntQn+1 = ∅. (9)

There are many situations where (9) holds In particular, the following holds:

• For any 1 ≤ i ≤ n, Qi is an inequality restriction set of the form

Qi = { e ∈ X : pi(e) ≤ ai },

where the pi : X 7→ R are continuous seminorms and the ai > 0.
• Qn+1 is the equality restriction set

Qn+1 = { e ∈ X : M(e) = 0 },

where M : X 7→ Z is a differentiable mapping (Z is another Banach space).

The following theorem is a generalized version of the Dubovitskii–Milyutin principle
and will be used in Sections 4 and 5:

Theorem 3. Let e0 ∈ ∩n+1
`=1 Qi be a local minimizer of problem (8). Let DC0 be the decreasing cone

of the cost functional J at e0, let FCi be the feasible (or admissible) cone of Qi at e0 for 1 ≤ i ≤ n,
and let TC be the tangent cone to Qn+1 at e0. Suppose that

1. The cones DC0 and FCi (1 ≤ i ≤ n) are non-empty, open, and convex.
2. The cone TC is non-empty, closed, and convex.

Then

DC0 ∩
(

n⋂
i=1

FCi

)
∩ TC = ∅.

Consequently, there exist G0 ∈ [DC0]
∗, Gi ∈ [FCi]

∗ (1 ≤ i ≤ n) and Gn+1 ∈ [TC]∗, not all zero,
such that

G0 +
n

∑
i=1

Gi + Gn+1 = 0.

In order to identify the decreasing, feasible, and tangent cones, we will use the
following well known definitions and facts:

• Assume that J : X 7→ R is Fréchet-differentiable. Then, for any e ∈ X, the decreasing
cone of J at e is open and convex and is given by

DC = { h ∈ X : 〈J′(e), h〉 < 0 },

where 〈· ·〉 stands for the usual duality product associated with X and X′.
• Suppose that the set Q ⊂ X is convex, IntQ 6= ∅ and e ∈ Q. Then, the feasible cone

of Q at e is open and convex and is given by

FC = { µ(e′ − e) : e′ ∈ IntQ, µ > 0 }.

• Finally, we have the celebrated Ljusternik Inverse Function Theorem; see, for instance, ([12],
p. 167). The statement is the following: suppose that X and Y are Banach spaces,
M : X 7→ Y is a mapping and the set

Q := { e ∈ X : M(e) = 0 }
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is non-empty; in addition, suppose that e0 ∈ Q, M is strictly differentiable at e0 and
R(M′(e0)) = Y; then, M maps a neighborhood of e0 onto a neighborhood of 0 and the
tangent cone to Q at e0 is the closed subspace:

TC = N(M′(ξ)) = { h ∈ X : M′(e0)h = 0 }.

4. A First Optimal Control Problem

In this section, we will consider the optimal control problem (1)–(3). We will introduce
an equivalent reformulation as an extremal problem of the kind (8). Then, we will prove
that there exist optimal control–state pairs. Finally, we will use Theorem 3 to deduce
appropriate (first order) necessary optimality conditions.

Our problem is the following:

min
(γ,u)∈Uad

J(γ, u), (10)

where J is given by (2) for any (γ, u) ∈ V × L2(Q), and the set of admissible control–state
pairs Uad is defined by

Uad := { (γ, u) ∈ V ×W2,1
2,N(Q) : M(γ, u) = 0 }. (11)

Here,
M : V ×W2,1

2,N(Q) 7→ L2(Q)× H1(Ω)

is the mapping defined by M(γ, u) = (ψ, ϕ), with{
ψ = M1(γ, u) := ut − α∆u− a u + b k(x− γ)u

ϕ = M2(γ, u) := u(· 0)− u0.
(12)

Theorem 4. The extremal problem (10) possesses at least one solution.

Proof. Let us first check that Uad is non-empty.
Let γ ∈ V be given. Then, from Theorem 1, there exists a unique solution u ∈W2,1

2,N(Q)
to (3) that, in particular, satisfies M(γ, u) = 0. Thus, we have (γ, u) ∈ Uad.

Let us now see that Uad is sequentially weakly closed in V × L2(Q). Thus, assume that
(γn, un) ∈ Uad for all n and

γn → γ weakly in V and un → u weakly in L2(Q). (13)

Then, γn converges uniformly to γ in [0, T]. Since un is the unique solution to (3) with γ
replaced by γn, we necessarily have that u is the state associated with γ, that is, (γ, u) ∈ Uad
and Uad are certainly sequentially weakly closed.

Obviously, J(γ, u) is a well defined real number for any (γ, u) ∈ Uad. Furthermore,
J : V × L2(Q) 7→ R is continuous and (strictly) convex. Consequently, J is sequentially
weakly lower semicontinuous in V × L2(Q).

Finally, J is coercive, i.e., it satisfies

J(γn, un)→ +∞ as ‖(γn, un)‖V×L2(Q) → +∞.

Therefore, J attains its minimum in the weakly closed set Uad, and the result holds.

Remark 1. Note that, although J is strictly convex, we cannot guarantee the uniqueness of solution
to (10), since the admissible set Uad is not necessarily convex. See, however, Remark 3 for a
discussion on uniqueness.

In the next result, we specify the optimality conditions that must be satisfied by any
solution to the extremal problem (10):
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Theorem 5. Let (γ∗, u∗) ∈ V ×W2,1
2,N(Q) be an optimal control–state pair for (10). Then, there

exists p∗ ∈W2,1
2,N(Q) such that the triplet (γ∗, u∗, p∗) satisfies (4)–(6).

We will provide a proof based on the Dubovitskii–Milyutin’s formalism, i.e., Theorem 3.
Before, let us establish some technical results.

First of all, the functional J : V × L2(Q) 7→ R is obviously C∞ and the derivative of J
at (γ, u) in the direction (β, v) is given by 〈J

′(γ, u), (β, v)〉 = 2µ0

∫ T

0
γ · β dt + 2µ1

∫ T

0
γ̇ · β̇ dt + 2µ2

∫∫
Q

uv dx dt

∀(γ, u), (β, v) ∈ V × L2(Q).
(14)

Consequently, we have the following:

Lemma 3. For each (γ, u) ∈ V × L2(Q), the cone of decreasing directions of J at (γ, u) is

DC(γ, u) = { (β, v) ∈ V × L2(Q) : 〈J′(γ, u), (β, v)〉 < 0 }.

The associated dual cone is

[DC(γ, u)]∗ = {−λJ′(γ, u) : λ ≥ 0 }.

Lemma 4. Let (γ, u) ∈ V ×W2,1
2,N(Q) be given.

(i) Then, M is G-differentiable at (γ, u). The G-derivative of M at (γ, u) in the direction (β, v)
is given by

M′(γ, u)(β, v) = (M′1(γ, u)(β, v), M′2(γ, u)(β, v)),

where {
M′1(γ, u)(β, v) := vt−α∆v−av+bk(x−γ)v−b(∇k(x−γ) · β)u,

M′2(γ, u)(β, v) := v(0).
(15)

(ii) The mapping M is C1 in a neighborhood of (γ, u). Furthermore, M′(γ, u) is surjective.

Proof. In order to prove (i), we use the definition of the Gâteaux-derivative. First, note that

1
h
(M1(γ + hβ, u + hv)−M1(γ, u))−M′1(γ, u)(β, v)

= b[k(x− (γ + hβ))− k(x− γ)]v

+ b
(

1
h
[k(x− (γ + hβ))− k(x− γ)]−∇k(x−γ) · β

)
u,

while
1
h
(M2(γ + hβ, u + hv)−M2(γ, u))−M′2(γ, u)(β, v) ≡ 0.

Therefore, in view of the assumptions on k, (15) and Lebesgue’s Theorem, it follows that

1
h
(M(γ + hβ, u + hv)−M(γ, u))−M′(γ, u)(β, v)→ 0 as h→ 0

strongly in L2(Q)× H1(Ω), which proves (i).
We will now prove (ii). It is clear that, for any (γ, u) ∈ V ×W2,1

2,N(Q), M′(γ, u) is a well

defined continuous linear operator on V ×W2,1
2,N(Q). Let (β, v) ∈ V ×W2,1

2,N(Q) be given
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and let us assume that (γn, un) ∈ V ×W2,1
2,N(Q) for all n and (γn, un) → (γ, u) strongly

in V ×W2,1
2,N(Q) as n→ +∞. Then,

‖M′1(γn, un)(β, v)−M′1(γ, u)(β, v)‖L2(Q)

≤ b‖(k(·−γn)− k(·−γ))v‖L2(Q) + b‖(un∇k(·−γn)− u∇k(·−γ)) · β)‖L2(Q).

In the last line, the first norm can be bounded as follows:

‖(k(·−γn)− k(·−γ))v‖L2(Q) ≤
(

sup
Q
|k(x−γn(t))− k(x−γ(t))|

)
‖v‖L2(Q).

Hence, from the hypotheses on k and the fact that γn → γ uniformly in [0, T], we find that

‖(k(·−γn)− k(·−γ))v‖L2(Q) ≤ εn‖v‖L2(Q), with εn → 0. (16)

On the other hand, we can deduce the following inequalities:

‖(un∇k(·−γn)− u∇k(·−γ)) · β)‖L2(Q)

≤ ‖(un − u)∇k(·−γn) · β)‖L2(Q) + ‖u(∇k(·−γn)−∇k(·−γ)) · β)‖L2(Q)

≤
(

sup
Q
|∇k(x−γn(t)) · β(t)|

)
‖un − u‖L2(Q)

+

(
sup

Q
|(∇k(x−γn(t))−∇k(x−γ(t))) · β(t)|

)
‖u‖L2(Q)

≤ C

[
‖un−u‖L2(Q)+

(
sup

Q
|∇k(x−γn(t))−∇k(x−γ(t))|

)
‖u‖L2(Q)

]
‖β‖H1(0,T)2 .

Consequently, using again the hypotheses on k and the uniform convergence of γn, we can
also write that

‖(un∇k(·−γn)− u∇k(·−γ)) · β)‖L2(Q) ≤ ε′n‖β‖H1(0,T)2 , with ε′n → 0. (17)

From (16) and (17), we find that

‖M′1(γn, un)(β, v)−M′1(γ, u)(β, v)‖L2(Q) ≤ C(εn+ε′n)‖(β, v)‖H1(0,T)2×L2(Q).

Since M′2(γ, u) is independent of (γ, u), we deduce that (γ, u) 7→ M′(γ, u), regarded as a
mapping from V ×W2,1

2,N(Q) into L(V ×W2,1
2,N(Q); L2(Q)× H1(Ω)), is continuous.

Let us finally see that M′(γ, u) is surjective.
Thus, let (ϕ, ψ) be given in L2(Q)× H1(Ω). We have to find (β, v) such that

M′(γ, u)(β, v) = (ϕ, ψ), (β, v) ∈ V ×W2,1
2,N(Q). (18)

However, this is easy: it suffices to first choose β ∈ V arbitrarily and then solve the linear
problem: 

vt − α∆v = a(x, t) v− b k(x− γ)v+b(∇k(x− γ) · β)u + ϕ in Q
∂v
∂n

= 0 on S

v(x, 0) = ψ in Ω.

(19)

Obviously, the couple (β, v) satisfies (18).

From this lemma and Ljusternik’s Theorem, we obtain the following characterization
of any tangent cone to Uad:



Mathematics 2021, 9, 1762 10 of 25

Lemma 5. Let (γ, u) be given in Uad. Then, the tangent cone to Uad at (γ, u) is the set

TC(γ, u) = N(M′(γ, u))
:= { (β, v) ∈ V ×W2,1

2,N(Q) : M′(γ, u)(β, v) = 0 }.

The associated dual cone is given by

[TC(γ, u)]∗={ (η, ζ) ∈ V ′×W2,1
2,N(Q)′ : 〈(η, ζ), (β, v)〉=0 ∀(β, v)∈TC(γ, u) }.

We can now present the proof of Theorem 5.

Proof of Theorem 5. Let (γ∗, u∗) ∈ V ×W2,1
2 (Q) be a solution to (10). The cone of decreas-

ing directions of J at (γ∗, u∗) is

DC := DC(γ∗, u∗) = { (β, v) ∈ V ×W2,1
2,N(Ω) : 〈J′(γ∗, u∗), (β, v)〉 < 0 }

and
[DC]∗ = {−λJ′(γ∗, u∗) : λ ≥ 0 }.

In addition, (γ∗, u∗) ∈ Uad, the cone of tangent directions to Uad at this point is

TC := TC(γ∗, u∗) = { (β, v) ∈ V ×W2,1
2,N(Q) : M′(γ∗, u∗)(β, v) = 0 }

and
[TC]∗ = { (η, ζ) ∈ V ′ ×W2,1

2,N(Q)′ : 〈(η, ζ), (β, v)〉=0 ∀(β, v) ∈ TC }.

From Theorem 3, we know that

DC ∩ TC = ∅,

whence there must exist G0 = −λ0 J′(γ∗, u∗) ∈ [DC]∗ and also G = (η, ζ) ∈ [TC]∗,
not simultaneously zero, such that

G0 + G = 0.

Since λ0 ≥ 0 and G0 and G cannot be simultaneously zero, we necessarily have λ0 > 0,
and it can be assumed that λ0 = 1.

Accordingly,
G = −G0 = J′(γ∗, u∗)

and

〈(η, ζ), (β, v)〉 = 2
(∫ T

0

[
µ0γ∗ · β + µ1γ̇∗ · β̇

]
dt + µ2

∫∫
Q

u∗v dx dt
)

for all (β, v) ∈ V ×W2,1
2,N(Q). In particular, we see that

∫ T

0

[
µ0γ∗ · β + µ1γ̇∗ · β̇

]
dt + µ2

∫∫
Q

u∗v dx dt = 0 ∀(β, v) ∈ TC. (20)

Now, let γ ∈ V be an arbitrary admissible control. Let w be the unique solution to the
linear system:

wt − α∆w = a w− b k(x− γ∗)w+b(∇k(x− γ∗) · γ)u∗ in Q
∂w
∂n

= 0 on S

w(x, 0) = 0 in Ω.

(21)
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It follows from Lemma 5 that (γ, w) ∈ TC, whence∫ T

0
[µ0γ∗ · γ + µ1γ̇∗ · γ̇] dt + µ2

∫∫
Q

u∗w dx dt = 0. (22)

Let us introduce the adjoint system (5) and let us denote by p∗ its unique solution.
By multiplying (21) by −p∗ and (5) by w, summing, integrating with respect to x and t and
performing integrations by parts, we easily get that

b
∫∫

Q
p∗u∗(∇k(x− γ∗) · γ) dx dt + 2µ2

∫∫
Q

u∗w dx dt = 0. (23)

Taking into account (22), we thus find that
∫ T

0
[2µ0γ∗ · γ + 2µ1γ̇∗ · γ̇] dt− b

∫∫
Q

p∗u∗∇k(x− γ∗) · γ dx dt = 0

∀γ ∈ V ; γ∗ ∈ V .
(24)

However, this is just the weak formulation of the boundary problem (6). Indeed,
standard arguments show that γ∗ solves (24) if and only if γ∗ ∈ H1(0, T)2, the second-
order integro-differential equation

−2µ1γ̈∗ + 2µ0γ∗ − b
∫

Ω
p∗(x, t)u∗(x, t)∇k(x− γ∗(t)) dx = 0

holds in the distributional sense in (0, T), γ∗(0) = 0 and γ̇∗(T) = 0. Thus, the triplet
(γ∗, u∗, p∗) satisfies (4)–(6).

This ends the proof.

Remark 2. There are other ways to prove Theorem 5. For instance, it is possible to apply an
argument relying on Lagrange multipliers, starting from the Lagrangian

L(γ, u, p) := J(γ, u) + 〈p, M(γ, u)〉.

That (γ∗, u∗) is an optimal control–state pair, and p∗ is an associated adjoint state (resp. that
(γ∗, u∗, p∗) satisfies the optimality conditions (4)–(6)) is formally equivalent to say that the
triplet (γ∗, u∗, p∗) is a saddle point (resp. a stationary point) of L.

Remark 3. As already said, in general, there is no reason to expect uniqueness. However, in view
of Theorem 5, it is reasonable to believe that, under appropriate assumptions on b and k, the solution
is unique. Indeed, taking into account that k′ is uniformly bounded in R2, if b is sufficiently small,
(γi, ui) is an optimal pair for i = 1, 2 and one sets γ := γ1 − γ2, u := u1 − u2, the following is
not difficult to prove:

• The ui are uniformly bounded (for instance) in L2(Q) by a constant of the form eC(1+b).
• u and p are bounded in L2(Q) by a constant of the form beC(1+b)‖γ‖L∞ .
• γ is bounded in L∞(0, T) by a constant of the form beC(1+b)‖γ‖L∞ .

In these estimates, C depends on ‖k‖W1,∞(R2) and the other data of the problem but is in-
dependent of b. Consequently, if b is small enough, the solution to the optimal control problem
is unique.

5. A Second Optimal Control Problem

This section deals with a more realistic second optimal control problem. Specifically,
we will analyze the constrained problem

F(γ∗) = min
γ∈B

F(γ), (25)



Mathematics 2021, 9, 1762 12 of 25

where
B := { γ ∈ H1(0, T)2 : γ(0) = 0, ‖γ‖H1(0,T)2 ≤ R0 } (26)

and F is given by (2). Here, R0 > 0 is a prescribed constant. We can interpret the constraint
γ ∈ B as a limitation on the positions and the speed of the device; roughly speaking,
a solution to (25) furnishes a strategy that leads to a minimal insect population (in the
L2 sense) with few resources.

For this problem, we will also prove the existence of optimal controls, and we will
also find the optimality conditions furnished by the Dubovitskii–Milyutin formalism.

Thus, let γ∗ be an optimal control for this new problem, let u∗ and p∗ be the associated
state and adjoint state and let us introduce the notation

m(γ, β) :=
∫ T

0

(
2µ0γ · β + 2µ1γ̇ · β̇

)
dt. (27)

Then, it will be shown that the associated optimality conditions of first order are (4), (5) and m(γ∗, γ− γ∗)− b
∫∫

Q
u∗p∗∇k(x− γ∗)(γ− γ∗) dx dt ≥ 0

∀γ ∈ B; γ∗ ∈ B.
(28)

The problem can be rewritten in the form

min
(γ,u)∈Zad

J(γ, u), (29)

where J is given by (2) and the set of admissible pairs Zad is

Zad := { (γ, u) ∈ V ×W2,1
2,N(Q) : M(γ, u) = 0, ‖γ‖H1(0,T)2 ≤ R0 }. (30)

Recall that M = (M1, M2) is given by (12).
One has:

Theorem 6. The extremal problem (29) possesses at least one solution.

The proof is similar to the proof of Theorem 4. Indeed, it is easy to check that Zad is
a non-empty weakly closed subset of V × L2(Q). Since J : V × L2(Q) 7→ R is continuous,
(strictly) convex and coercive, it also attains its minimum in Zad, and this proves that (29)
is solvable.

Theorem 7. Let (γ∗, u∗) ∈ V ×W2,1
2 (Q) be an optimal control–state pair for (29). Then, there

exists p∗ ∈W2,1
2 (Q) such that the triplet (γ∗, u∗, p∗) satisfies (4), (5) and (28), where the bilinear

form m(· ·) is given by (27).

Proof. We will argue as in the proof of Theorem 5.
First, notice that Zad can be written in the form

Zad = Uad ∩
(
B × L2(Q)

)
.

Let (γ∗, u∗) ∈ V ×W2,1
2 (Q) be a solution to (29). Then, the feasible cone of B × L2(Q)

at (γ∗, u∗) is the set

FC := FC(γ∗, u∗) = { (µ(γ− γ∗), v) : γ ∈ IntB, µ > 0, v ∈ L2(Q) }

and
[FC]∗ = { (h, 0) : h is a support functional of B at γ∗ }.



Mathematics 2021, 9, 1762 13 of 25

Recall that the latter means that h ∈ V ′ and

〈h, γ〉 ≥ 〈h, γ∗〉 ∀γ ∈ B. (31)

From Theorem 3, we now have

DC ∩ TC ∩ FC = ∅,

whence there exist G0 = −λ0 J′(γ∗, u∗) ∈ [DC]∗, G = (η, ζ) ∈ [TC]∗ and
H = (h, 0) ∈ [FC]∗, not simultaneously zero, such that

G0 + G + H = 0.

As before, we necessarily have λ0 > 0. Indeed, if λ0 = 0, then

〈(η, ζ), (γ, w)〉+ µ〈h, γ〉 = 0 ∀(β, v) ∈ V ×W2,1
2,N(Q).

However, for any γ ∈ V , we can always construct w in W2,1
2,N(Q) such that (γ, w) ∈ TC.

Hence, we would have 〈(η, ζ), (γ, w)〉 = 0 and µ〈h, γ〉 = 0 for all γ ∈ V , which is impossible.
We can thus assume that λ0 = 1 and

G + H = −G0 = J′(γ∗, u∗).

In particular, we get:∫ T

0

[
µ0γ∗ · β + µ1γ̇∗ · β̇

]
dt + µ2

∫∫
Q

u∗v dx dt = 〈h, β〉 ∀(β, v) ∈ TC. (32)

Let us consider again the adjoint system (5) and let us denote by p∗ its unique solution.
Let γ ∈ B be an arbitrary admissible control and let w be the unique solution to (21). Since
(γ, w) ∈ TC and we still have (23), we get:∫ T

0
[2µ0γ∗ · γ + 2µ1γ̇∗ · γ̇] dt− b

∫∫
Q

p∗u∗∇k(x− γ∗) · γ dx dt = 〈h, γ〉. (33)

Taking into account that γ is arbitrary in B and (31) holds, we deduce that (28) is satisfied,
and the result is proved.

6. A Numerical Scheme

In this section, we present a numerical scheme to find an approximate solution
to (1)–(3). To this purpose, we will use the optimality conditions (4)–(6).

Obviously, we will have to approximate the equations in time and space. With respect
to the time variable, we will incorporate finite differences taking into account the following:

• Since the equation (4) is parabolic, in order to guarantee unconditional stability, we dis-
cretize in time by using a backward Euler method. For the same reason, we discretize
M in time in by using a forward Euler method.

• Since (6) is a second order two-point boundary value problem, we approximate there
the time derivatives with a standard (centered) finite difference scheme.

Let N be a positive (large) integer and let us consider a partition ΛN = {0 =
t0, t1, . . . , tN = T} of the time interval [0, T] in N subintervals. For simplicity, we assume
that this partition is uniform, with time step ∆t := T/N.

On the other hand, the approximation in space will be performed via a finite element
method. Thus, let Th be a triangular mesh of a polynomial approximation Ωh of Ω and let
us denote by Vh a suitable finite element space associated with Th. For instance, Vh can be
the usual P1-Lagrange space, formed by the continuous piecewise linear functions on Ωh.
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Then, given an approximation uh(· 0) ∈ Vh of u0, we must compute functions uN
h (ti)

and pN
h (ti) and vectors γN

h (ti) = (γN
h,1(ti), γN

h,2(ti)) such that:

∫
Ω

uN
h (ti)− uN

h (ti−1)

∆t
v dx +

∫
Ω

α∇uN
h (ti) · ∇v dx

=
∫

Ω
a(x, ti) uN

h (ti)v dx−
∫

Ω
b k(x− γN

h (ti))uN
h (ti)v dx ∀v ∈ Vh

uN
h (t0) = uh(x, 0),

(34)



∫
Ω
−

pN
h (ti)− pN

h (ti−1)

∆t
q dx +

∫
Ω

α∇pN
h (ti−1) · ∇q dx

=
∫

Ω
a(x, t) pN

h (ti−1)qdx−
∫

Ω
b k(x− γN

h (ti−1))pN
h (ti−1)q dx

−
∫

Ω
2µ2uN

h (ti−1)q dx ∀q ∈ Vh

pN
h (tN) = 0,

(35)



−2µ1
γN

h (tk−1)− 2γN
h (tk) + γN

h (tk+1)

(∆t)2 + 2µ0γN
h (tk)

−b
∫

Ω
pN

h (tk)uN
h (tk) · ∇k(x− γN

h (tk)) dx = 0

for k = 2, . . . , N − 1

γN
h (t0) = 0, DhγN

h (tN) = 0.

(36)

In the last line of (36), Dh denotes a suitable discrete operator associated with the
time derivative. In our code, to preserve second order approximation in time, we took
DhγN

h (tN) := [γN
h (tN−1)− γN

h (tN+1)]/2∆t, where tN+1 = tN + ∆t is an additional time-
mesh point. This implies that γN

h (tN−1) = γN
h (tN+1) and, thus, the required Neumann

boundary condition can be imposed just using a reduced form of the finite difference opera-
tor at tN , that is, [γN

h (tN−1)− 2γN
h (tN)+γN

h (tN+1)](∆t)2 = [2γN
h (tN−1)− 2γN

h (tN)]/(∆t)2.

6.1. An Iterative Algorithm for Fixed N and Th

The previous finite dimensional system is nonlinear and, consequently, cannot be
solved exactly. Accordingly, an iterative algorithm has been devised to obtain a solution.
It is the following:

Base step:

Choose tolerances εouter > 0 and εinner > 0; by starting with γN
h,0 ≡ 0, proceed

recursively for n = 1, 2, . . . in an outer iteration scheme as follows:

First step: Find uN
h,n.

Since γN
h,n−1(ti) is known, advance in time to find uN

h,n(ti), for i = 1, . . . , N, by succes-
sively solving the linear problems

∫
Ω

uN
h,n(ti)− uN

h,n(ti−1)

∆t
v dx +

∫
Ω

α∇uN
h,n(ti) · ∇v dx

=
∫

Ω
a(x, ti)uN

h,n(ti)v dx−
∫

Ω
bk(x−γN

h,n−1(ti))uN
h,n(ti)v dx ∀v ∈ Vh

uN
h,n(t0) = uh(t0).

(37)

Second step: Find pN
h,n.

Since γN
h,n−1(ti) and uN

h,n are known, proceed backwards in time to find pN
h,n(ti),

for i = N − 1, . . . , 0, by solving the problems
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

∫
Ω
−

pN
h,n(ti)− pN

h,n(ti−1)

∆t
q dx +

∫
Ω

α∇pN
h,n(ti−1) · ∇q dx

=
∫

Ω
a(x, t) pN

h,n(ti−1)q dx−
∫

Ω
b k(x− γN

h,n−1(ti−1))pN
h,n(ti−1)q dx

−
∫

Ω
2µ2uN

h,n(ti−1)q dx ∀q ∈ Vh

pN
h,n(tN) = 0.

(38)

Third step: Find γN
h,n.

This is done by applying an inner iteration scheme. Thus, by starting with γ̃0 = γN
h,n−1,

find recursively {γ̃m}∞
m=1 by repeating the following for m = 1, 2, . . .:

−2µ1
γ̃m(tk−1)− 2γ̃m(tk) + γ̃m(tk+1)

(∆t)2 + 2µ0γ̃m(tk)

−b
∫

Ω
pN

h (tk)uN
h (tk) · ∇k(x− γ̃m−1(tk)) dx = 0

for k = 2, . . . , N − 1

γ̃m(t0) = 0, Dhγ̃m(tN) = 0,

(39)

with a meaning similar to above for Dhγ̃m(tN) = 0. This is a finite linear system for
γ̃m = [γ̃m(t1), . . . , γ̃m(tN)]

′ where the coefficient matrix is independent of m and can thus
be inverted only once, at the beginning of the process.

The relative stopping criterion for the iteration process is

max
{
‖γ̃m − γ̃m−1‖
‖γ̃m‖

,
‖γ̃m − γ̃m−1‖
‖γ̃m−1‖

}
≤ εinner.

where ‖ · ‖ denotes the usual discrete L2-norm. When this stopping criterion is satisfied,
take γN

h,n = γ̃n and proceed to the next step.

Fourth step: Compare γN
h,n and γN

h,n−1.

When the overall relative stopping criterion

max

‖u
N
h,n − uN

h,n−1‖
‖uN

h,n‖
,
‖pN

h,n − pN
h,n−1‖

‖pN
h,n‖

,
‖γN

h,n − γN
h,n−1‖

min
(
‖γN

h,n‖, ‖γ
N
h,n−1‖

)
 ≤ εouter

is satisfied, stop the iterative process and take

uN
h = uN

h,n, pN
h = pN

h,n and γN
h = γN

h,n

as the computed approximated solutions. Otherwise, increase n by one and go back to the
First step.

Acceleration of Algorithm

To accelerate the process, εinner can be taken larger than εouter. In addition, to get
a better resolution, in the final iterative scheme, we have allowed for a decrease of the
time-step by increasing the number of time intervals N.

The resulting iterates are as follows:

Base step:

Give tolerances εγ > 0, εouter > 0, εinner > 0 and an initial number of discrete time
intervals N0 ≥ 1.
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First step:

Take N = N0 and apply the previous iterative algorithm, to obtain uN
h , pN

h and γN
h .

Define γbefore = γN0
h .

Second step:

Double the value of N and apply the previous algorithm to obtain new uN
h , pN

h and γN
h .

Third step:

Compare γN
h and γbefore. If the convergence criterion

‖γN
h − γbefore‖
‖γN

h ‖
≤ εγ

is satisfied, stop the iterates and take as approximated solutions

u∗ = uN
h,n, p∗ = pN

h,n and γ∗ = γN
h,n.

Otherwise, go back to the Second step and repeat the process.

7. Numerical Experiments

In order to illustrate the behavior of the previous algorithm, let us present the results
of some experiments with Ω = [−2.5, 2.5]× [−2.5, 2.5].

Let us denote by 1ω the indicator function of ω for any ω ⊂ Ω; we consider an initial
mosquito population given by

u0(x) ≡ 10.0× 1B1(x, y) + 10.0× 1B2(x, y),

where B1 and B2 are, respectively, the circle of center (−1.5, 1.5) and radius 0.5 and the
circle of center (1.0, 1.0) and radius 0.5. This means that the mosquito population is
initially concentrated in two disjoint circles with the same radius and the same amount of
population, see Figure 2.

Figure 2. The initial state u with 0 ≤ u ≤ 10.

We also consider the following values for the parameters and functions in (3):

α = 1.0, b = 10.0, k(x, y) ≡ exp[−(x2 + y2)/(0.5)2].

For the stopping criteria, we have taken

εouter = 0.05 and εinner = 0.2.

The computations have been performed by using the software FreeFem++, [13] and all
figures were made with Octave [14].
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7.1. Convergence Behavior

In this section, we test the convergence of the algorithm described in Section 6.1.
We take a(x, t) ≡ 1.0 in (3) and µ0 = µ1 = µ2 = 1. The numerical solution of the
optimality system (4)–(6) is computed for several values of the final time T and the number
of subintervals N:

T = 2, 4, 6;

N = 50, 100, 200.

Moreover, we consider three different regular meshes Thk
, k = 1, 2, 3, with m×m lateral

nodes. Table 1 shows the size hk, the number of vertices nv, and the number of triangles nT
for each mesh.

Table 1. Details of the meshes.

Number of
Lateral

Mesh Nodes
m×m

Number of Size
hk

Number of
Vertices nv

Triangles nT

Mesh 1 20× 20 0.3536 441 800
Mesh 2 40× 40 0.1768 1681 3200
Mesh 3 80× 80 0.0884 6561 12,800

With no control, i.e., b = 0 in (3), the solution evolves to a final state that is displayed
in Figure 3a,c,e for T = 2, 4 and 6, respectively. In these figures, we observe that the
mosquito population spreads and increases in Ω. When we apply the control, due to the
initial distribution of population, it is expected to obtain a solution that starts traveling in
the direction of the nearest herd of mosquitos (the circle B2 in the present case) and, then,
changes course in the direction of the farthest herd (B1). This is what is found in each case,
as can be seen respectively in Figure 3b,d,f), where, besides the trajectories, the respective
computed optimal states are also shown at the final time.

Table 2 reports the minimal and maximal values of the control u in all cases depicted
in Figure 3; Table 3 presents the required number of outer iterations and the obtained
values of the cost functional F for the three considered meshes.

From the results in Table 3, we can observe that, for T = 2, 4, the change in the cost is
lower to 4% for the third mesh and N = 200. For this reason, we select these parameters
to perform the simulations in the following sections. To keep the computational cost at a
reasonable level, we also use the same parameters for T = 6, where the relative change is
about 13%.

Table 2. Minimal and maximal values of the state u at T = 2, 4, 6 for Figure 3.

Values for T = 2
Figure 3a Figure 3b

umin umax umin umax

1.6517 8.3723 0.8906 3.4263

Values for T = 4
Values for Figure 3c Values for Figure 3d

umin umax umin umax

24.0696 46.0825 2.9007 13.5890

Values for T = 6
Values for Figure 3e Values for Figure 3f

umin umax umin umax

229.9722 305.1255 16.3627 77.1129
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(a) Uncontrolled state u at T = 2. (b) Trajectory γ and state u at T = 2.

(c) Uncontrolled state u at T = 4. (d) Trajectory γ and state u at T = 4.

(e) Uncontrolled state u at T = 6. (f) Trajectory γ and state u at T = 6.

Figure 3. Uncontrolled state u (a,c,e) and Trajectory γ and controlled state u (b,d,f) at different times
T with a minimal and a maximal value detailed in Table 2.

Table 3. Number of outer iterations (o.i.) and cost for each final time T, time subintervals N
and meshes.

N Mesh
T = 2 T = 4 T = 6

o.i. Cost o.i. Cost o.i. Cost

50

20× 20 10 72.2095 8 923.973 12 34,349.7

40× 40 11 109.81 10 1603.25 11 65,883.5

80× 80 11 117.87 10 1765.48 11 73,208.5

100

20× 20 9 72.1707 8 828.703 12 25,471.3

40× 40 11 110.059 11 1426.18 11 48,688.7

80× 80 11 118.189 11 1566.38 11 54,065

200

20× 20 9 72.0812 8 816.119 11 22,673.7

40× 40 11 110.172 9 1398.03 11 42,226.1

80× 80 11 118.333 11 1516.09 11 46,869.8
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7.2. Influence of the Functional Weights

In this section, we study the influence of the functional weights. As in the previous
section, we take a(x, t) ≡ 1.0. Table 4 presents the required number of outer iterations, and
the values of the cost functional in four cases I, II, III, and IV for three values of the final
time: T = 2, 4, and 6. Calculations were made by using N = 200 time steps and the third
spatial mesh of Table 1.

Table 4. Number of outer iterations (o.i.) and cost for three final times T and four cases.

T = 2 T = 4 T = 6
µ0 µ1 µ2 o.i. Cost o.i. Cost o.i. Cost

Case I 1 1 10 12 799.843 11 14,175.4 11 467,884

Case II 10 1 1 11 157.0 11 1589.28 11 46,938.6

Case III 1 10 1 8 179.831 10 1969.46 11 47,592.8

Case IV 10 10 1 5 201.137 10 2043.81 11 47,662.2

From the results in Table 4, we see that the cost is larger in case I for small T. This seems
to indicate that, when we assign major relevance to the remaining population, short time
operations are not satisfactory. For larger T, the device cost becomes more important.
We see, however, that, as T grows, the costs have a tendency to equalize (and the particular
values of the µi seem to lose relevance).

Figures 4–6 depict the trajectories and states u, respectively, at T = 2, 4, 6 for all cases
described in Table 4. The minimal and maximal values of the mosquito population u for
each case are reported in Table 5.

Table 5. Minimal and maximal values of the controlled state u at T = 2, 4, 6 for cases I, II, III, and IV
depicted in Figures 4–6.

Values for T = 2 Values for T = 4 Values for T = 6
Figure 4 Figure 5 Figure 6

umin umax umin umax umin umax

(a) 0.7468 2.9680 2.8730 13.5205 16.3729 77.1137

(b) 0.8214 4.9817 3.0829 13.5843 16.5243 77.0914

(c) 1.2411 4.7836 3.2204 14.2664 16.2753 77.1378

(d) 1.1635 6.6453 3.2603 14.2821 16.3462 77.1164
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(a) Trajectory γ and state u for Case I. (b) Trajectory γ and state u for Case II.

(c) Trajectory γ and state u for Case III. (d) Trajectory γ and state u for Case IV.

Figure 4. Trajectory γ and state u at T = 2 for the considered four cases with a minimal and a
maximal value detailed in Table 5.

(a) Trajectory γ and state u for Case I. (b) Trajectory γ and state u for Case II.

(c) Trajectory γ and state u for Case III. (d) Trajectory γ and state u for Case IV.

Figure 5. Trajectory γ and state u at T = 4 for the considered four cases with a minimal and a
maximal value detailed in Table 5.
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(a) Trajectory γ and state u for Case I. (b) Trajectory γ and state u for Case II.

(c) Trajectory γ and state u for Case III. (d) Trajectory γ and state u for Case IV.

Figure 6. Trajectory γ and state u at T = 6 for the considered four cases with a minimal and a
maximal value detailed in Table 5.

7.3. Two Examples with a(·, ·) Variable

In this section, we present the calculations obtained by considering the following two
different definitions of the function a:

a(x, t) = a0 max
{

1−
√

x2 + y2, 0
}

, (40)

a(x, t) = a0 max{1− t, 0}. (41)

with a0 a positive constant associated with the proliferation velocity of the insect population.
With these choices, we will study separately the influence of a in the spatial and time
behavior of the state u and the control γ.

Calculations were carried out by considering T = 2 with N = 200 time steps, the third
spatial mesh of Table 1 and the following values for a0, and the weights of the functional F:

a0 = 1, 2, 4, µ0 = µ1 = µ2 = 1.

Table 6 details the values of the number of outer iterations and the respective values
of the cost functional in the case of a(x, t) defined in (40) and (41) by considering three
different values of a0.

Table 6. Number of outer iterations (o.i.) and values of the cost functional.

a0
a(x, t) = a0 max

{
1−

√
x2 + y2, 0

}
a(x, t) = a0 max{1− t, 0}

o.i. Cost o.i. Cost

1 4 28.2127 5 50.0751

2 3 28.5942 13 92.2256

4 3 29.4916 12 350.886
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Figure 7 depicts the uncontrolled state, the controlled state, and the respective trajec-
tory γ for T = 2 in the case of a(x, t) defined in (40) by considering three different values of
a0: 1 (Figure 7a,b), 2 (Figure 7c,d), and 4 (Figure 7e,f). We observe that the optimal control
trajectories are qualitatively similar in all cases and stay close to the initial point. This
is because the non-zero values of a (where the insects proliferate) depend on the spatial
coordinate and are located in the unit ball centered at this point.

Figure 8 depicts the uncontrolled state, the controlled state, and the respective trajec-
tory γ for T = 2 in the case of a(x, t) defined in (41) by considering three different values
of a0: 1 (Figure 8a,b), 2 (Figure 8c,d), and 4 (Figure 8e,f). In these cases, we can observe the
influence of the time coordinate t: the length of the trajectory γ increases when the value of
a0 does, giving a similar behavior for the case a = 1 studied in Section 7.1.

The respective minimal and maximal values of the uncontrolled and controlled states
corresponding to Figures 7 and 8 are reported in Table 7. The influence of the control γ on
the state u by decreasing their minimal and maximal values is clearly observed.

(a) Uncontrolled state u with a0 = 1. (b) Trajectory γ and stated u with a0 = 1.

(c) Uncontrolled state u with a0 = 2. (d) Trajectory γ and state u with a0 = 2.

(e) Uncontrolled state u with a0 = 4 (f) Trajectory γ and state u with a0 = 4.

Figure 7. Uncontrolled state u (a,c,e) and Trajectory γ and controlled state u (b,d,f) at T = 2 for a(x, t)
in (40) with a0 = 1, 2, 4 with minimum and maximal values given in Table 7.
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Table 7. Minimal and maximal values of the state u at T = 2 for Figures 7 and 8.

Values for Figure 7 Values for Figure 8
umin umax umin umax

(a) 0.2341 1.1472 0.3595 1.8495

(b) 0.1579 0.9652 0.2517 1.4524

(c) 0.2547 1.1726 0.5950 3.0458

(d) 0.1678 0.9859 0.3769 1.5651

(e) 0.3181 2.3765 1.6465 8.3448

(f) 0.1982 1.0071 0.8043 3.6763

(a) Uncontrolled state u with a0 = 1. (b) Trajectory γ and state u with a0 = 1.

(c) Uncontrolled state u with a0 = 2. (d) Trajectory γ and state u with a0 = 2.

(e) Uncontrolled state u with a0 = 4. (f) Trajectory γ and state u with a0 = 4.

Figure 8. Uncontrolled state u (a,c,e) and Trajectory γ and controlled state u (b,d,f) at T = 2 for a(x, t)
in (41) with a0 = 1, 2, 4 with minimum and maximal values given in Table 7.

8. Conclusions

We have performed a rigorous analysis of an optimal control problem concerning the
spreading of mosquito populations; the optimality conditions have been used to devise a
suitable numerical scheme and compute an optimal trajectory.
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The success in completing these tasks with the help of appropriate theoretical and
numerical tools seems to indicate that a similar analysis can be performed in other more
complex cases. Thus, it can be more natural to consider, instead of (2), the cost functional

F(γ) := µ0

∫ T

0
|γ| dt + µ1

∫ T

0
|γ̇| dt + µ2

∫∫
Q

u dx dt.

Indeed, in this functional, the three terms can be respectively viewed as measures of the
true length of the path traveled by the device, the total fuel needed in the process, and the
total mosquito population along (0, T). The L1 norms of γ, γ̇ and u represent quantities
more adequate to the model, although the analysis of the corresponding control problem is
more involved.

Other realistic situations can also be taken into account. For instance, a very interesting
setup appears when there are obstacles to the admissible trajectories. In addition, instead
of the Malthusian growth rate for the mosquito population assumed in the present work,
we could assume a Verhustian or Gomperzian growth rate. The corresponding models and
their associated control problems are being investigated at present.
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