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Gradation in Greyscales of Graphs

Natalia de Castro1 Maŕıa A. Garrido-Vizuete1,2, Rafael Robles1,
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Abstract

In this work we present the notion of greyscale of a graph as a colouring
of its vertices that uses colours from the real interval [0,1]. Any greyscale
induces another colouring by assigning to each edge the non-negative dif-
ference between the colours of its vertices. These edge colours are ordered
in lexicographical decreasing ordering and give rise to a new element of the
graph: the gradation vector. We introduce the notion of minimum grada-
tion vector as a new invariant for the graph and give polynomial algorithms
to obtain it. These algorithms also output all greyscales that produce the
minimum gradation vector. This way we tackle and solve a novel vectorial
optimization problem in graphs that may produce more satisfactory solu-
tions than those ones generated by known scalar optimization approaches.
The interest of these new concepts lies in their possible applications for
solving problems of engineering, physics and applied mathematics which
are modeled according to a network whose nodes have assigned numerical
values of a certain parameter delimited by a range of real numbers. The ob-
jective is to minimize the differences between each node and its neighbors,
ensuring that the extreme values of the interval are assigned.
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1 Introduction

Graph colouring problems are among the most important combinatorial optimiza-
tion problems in graph theory because of their wide applicability in areas such as
wiring of printed circuits [4], resource allocation [22], frequency assignment prob-
lem [1, 10, 18], a wide variety of scheduling problems [17] or computer register
allocation [3].

A variety of combinatorial optimization problems on graphs can be formulated
similarly in the following way. Given a graphG(V,E) and a mapping f : V −→ Z,

a new mapping f̂ : E −→ Z is induced by f such that f̂(e) = |f(u)− f(v)| for
every e = {u, v} ∈ E. Then an optimization problem is formulated from several
key elements: mappings f belonging to a mapping subset S, the image of V by f
and the image of E by f̂ . In particular, the classic graph colouring problem, that
is, colouring the vertices of G with as few colours as possible so that adjacent
vertices always have different colours, can be stated in these terms as follows:

χ(G) = min
f∈S
|f(V )| where S = {f : V → Z such that 0 /∈ f̂(E)}.

It is well known that this minimum number χ(G) is called the chromatic number
of the graph G and that its computing is an NP-hard problem [13].

It must be emphasized that the classic graph colouring problem bears in mind
the number of colours used but not what they are. However, there are some
works related to map colouring for which the nature of the colours is essential,
whereas the number of them is fixed. The maximum differential graph colouring
problem [12], or equivalently the antibandwidth problem [14], colours the vertices
of the graph in order to maximize the smallest colour difference between adjacent
vertices and using all the colours 1, 2, . . . , |V |. Under the above formulation, these
problems are posed as follows:

max
f∈S

min f̂(E) for S = {f : V → Z such that f(V ) = {1, 2, . . . , |V |}},

and therefore the complementary optimization case, the bandwidth problem, is
given by

min
f∈S

max f̂(E) for S = {f : V → Z such that f(V ) = {1, 2, . . . , |V |}}.

Note that these problems are concerned with mappings that take values within a
discrete spectrum and with the optimization of a scalar function. Dillencourt et
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al. [6] studied a variation of the differential graph colouring problem under the
assumption that all colours in the colour spectrum are available. This makes the
problem continuous rather than discrete. The well-known frequency assignment
problem is continuous by nature, although its treatment has traditionally been
discrete. However, recent works [16] propose to shift the paradigm from discrete
channel allocation to continuous frequency allocation. On the other hand, the
key issue for process scheduling problems concerns the time representation, and
in order to address real limitations, methods based on continuous-time represen-
tations have attracted a great amount of attention and provide great potential
for the development of more accurate and efficient modeling and solution ap-
proaches [8, 20].

In this line, this paper deals with mappings taking values within the con-
tinuous spectrum [0, 1], where 0 and 1 correspond to white and black colours,
respectively, and the rest of the intermediate values are grey tones. Formally,
given a graph G(V,E), a greyscale f of G is a mapping f : V −→ [0, 1] such
that the white and black colours are reached by f . Every greyscale induces a
mapping f̂ on E by assigning to each edge the non-negative difference between
the values of f on its vertices. Whether the values of f̂ are sorted by decreasing
order, the gradation vector grad(G, f) is obtained and the optimization problem
of finding the minimum one, following the lexicographical order, among all the
gradation vectors of greyscales of G arises in a natural way. Analogously, the
notion of contrast is associated to increasing order and the maximum vector, and
it is widely studied in work [2] by the same authors of this paper.

The bandwidth and antibandwidth problems are interested in optimizing the
extreme colours of the edges of the graph, whereas Dillencourt et al. [6] focus on
maximizing the sum of the colours of all the edges. Under this last approach,
other papers work with different sum functions (for instance, see [15]). Nonethe-
less, both cases, extreme values and sum functions, deal with scalar objective
functions. The notion of gradation vector leads us to a vectorial objective func-
tion which allocates grey tones in a manner which is both local and global: local
due to the fact that the colour of every particular edge belongs to the gradation
vector, and global because all edges of the graph participate in the vectorial objec-
tive function. Figure 1 visually displays an example of the goodness of minimum
gradation vectors versus scalar optimization. Every vertex has been associated
to a big pixel which is coloured with its grey tone and these big pixels are next
to each other according to the adjacencies between vertices (in this construction,
the notion of dual graph is underlying but without considering the external face).
The idea of gradation is clearly better illustrated in Figure 1(a).
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Figure 1: Comparison of minimum greyscales according to different criteria about
the colours of edges: (a) minimum gradation vector, (b) minimax and (c) min-
isum.

Thus, under the formulation given above and following the lexicographical
order, the minimum gradation problem on graphs is stated in the following terms:

min
f∈S

grad(G, f) for S = {f : V → [0, 1] such that {0, 1} ⊂ f(V )}.

At present, although this problem seems to be a natural colouring question,
we have not found the minimum gradation problem studied in these terms in the
literature.

Even though it is not the main goal of this paper to deeply focuss on pos-
sible applications of gradation in graphs, we think that the minimum gradation
greyscale could contribute to interesting progresses on several problems concern-
ing real networks. Next we present two of them.

For a wide variety of systems in different areas such as biological, social,
technological, and information networks the community detection problem has
become extremely useful. This problem consists of identifying special groups of
vertices in a graph with high concentrations of edges within such vertices and
low concentrations between these groups. This feature of real networks is called
community structure [9], or clustering in graphs. For an extensive report on this
topic see [19]. The minimum gradation greyscale solution could be interpreted as a
new similarity measure quantifying some type of affinity between node pairs. This
mapping locally minimizes the differences between each vertex and its neighbours
and takes into account the global distances in the network. Besides, extremal
values would be assigned to antipodal vertices.

It is well known that graph theory is used to modelize many kinds of networks
services. The minimum gradation greyscale solution would model a possible al-
most uniform distribution of a service through a network, from the sources to
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the sinks. For water supply networks, problems such as minimizing the amount
of dissipated power in the water network and establishing pressure control tech-
niques, among others, are studied. In [5] the method of graph partitioning is
proposed to solve them. We guess that for a given water network graph model,
the minimum gradation greyscale solution would help and complement the design
of a good distribution of the water through the network in such a manner that
the water or pressure losses between contiguous pipes would be minimized at the
same time. A source or sink vertex can be modeliced with extreme values prefixed
in the greyscale. Thus, some of the vertices have preassigned grey tones and the
aim is to obtain the minimum gradation vector preserving these fixed grey tones.

The outline of the paper is as follows: Section 2 formally introduces the notion
of gradation on graphs through concepts such as greyscale and gradation vector,
and formulates the two problems for study: minimum gradation and restricted
minimum gradation on graphs. In Section 3, several results about the nature of
the gradation problems are first established, and then the polynomial nature of
both problems is proved by designing algorithms that provide minimum gradation
vectors and all greyscales that give rise to them. Finally, in Section 4 we conclude
with some remarks and highlight some open problems.

2 Preliminaries

This section is devoted to establishing the necessary definitions about gradation
on graphs and to formulating the problems to be studied in this paper. Since the
gradation and contrast notions together arise in greyscales of graphs, the basic
concepts about contrast are also presented. Given a graph1 G(V,E), a greyscale f
of G is a mapping on V to the interval [0, 1] such that f−1(0) 6= ∅ and f−1(1) 6= ∅.
For each vertex v of G, we call f(v) the grey tone of v, or more generally, the
colour of v, and notice that two adjacent vertices can have mapped the same grey
tone. In particular, values 0 and 1 are called the extreme tones, that is, white
and black colours, respectively. In a natural way, the notion of complementary
greyscale arises for each greyscale f such that it maps every vertex v of G to
1− f(v).

Associated to each greyscale f of the graph G(V,E), the mapping f̂ : E →

[0, 1] is defined as f̂(e) = |f(u)− f(v)| for every e = {u, v} ∈ E and represents

1Graphs in this paper are finite, undirected and simple and are denoted by G(V,E), where
V and E are its vertex-set and edge-set, respectively. The number of elements of V and E are
denoted by n and m, respectively. For further terminology we follow [11].
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Figure 2: Two greyscales f and f ′ of the graph K4.

the gap or increase between the grey tones of vertices u and v. The value f̂(e) is
also said to be the grey tone of edge e. Thus, we deal with coloured vertices and
edges by f and f̂ , respectively. Note that the same mapping f̂ associated to the
greyscale f and its complementary one is obtained.

The gradation vector and the contrast vector associated to the greyscale f
of G are vectors grad(G, f) = (f̂(em), f̂(em−1), . . . , f̂(e1)) and cont(G, f) =

(f̂(e1), f̂(e2), . . . , f̂(em)), respectively, where the edges of G are indexed such

that f̂(ei) ≤ f̂(ej) whether i < j, that is, in ascending order of their grey tones.
Thus, it can be noticed that the components of any contrast vector are ordered
in ascending order and those of any gradation vector in decreasing order. For the
sake of clarity and when the graph is fixed, the gradation and contrast vectors
associated to a greyscale f will be denoted by Gf and Cf , respectively. Figure 2
shows two greyscales of the graph K4, f and f ′, whose corresponding gradation
vectors are Gf = (1, 1

2
, 1
2
, 1
2
, 1
2
, 0) and Gf ′ = (1, 2

3
, 2
3
, 1
3
, 1
3
, 1
3
), respectively.

Given two greyscales f and f ′ of a graph G, we say that f has better gradation
than f ′ if the gradation vector Gf is smaller than Gf ′ following the lexicographical
order, that is, Gf < Gf ′ . Thus, the descending order of gradation vectors deter-
mines the goodness in terms of gradation. Then, f is said to be smaller or greater
by gradation than f ′ if Gf < Gf ′ or Gf > Gf ′ , respectively. In a similar way, we
say that f has better contrast than f ′ if the contrast vector Cf is greater than Cf ′

following the lexicographical order, that is, Cf > Cf ′ . Thus, the ascending order
of contrast vectors determines the goodness in terms of contrast. Then, f is said
to be smaller or greater by contrast than f ′ if Cf < Cf ′ or Cf > Cf ′ , respectively.
The greyscale f of Figure 2 is greater than f ′ by both contrast and gradation
and so f has better contrast than f ′ but f ′ has better gradation than f .

Thus, the problems of finding the minimum gradation vector and the maxi-
mum contrast vector naturally arise in the contexts of gradation and contrast on
graphs. From now on, we focus on gradation problem and point out [2] for the
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contrast problem.
Then, a greyscale of a graph G whose gradation vector is minimum is called

a minimum gradation greyscale of G and the following problem is formulated:
Minimum gradation on graphs (migg): given a connected graph G(V,E),

finding the minimum gradation vector and all the minimum gradation greyscales.

min
f∈S

grad(G, f) for S = {f : V → [0, 1] such that {0, 1} ⊂ f(V )}.

We deal with the restricted version of this problem when the grey tones of
some vertices are a priori known and the aim is to obtain the minimum gradation
vector preserving the fixed grey tones. This situation leads to the concept of
incomplete greyscale. Given a graph G(V,E) and a nonempty proper subset Vc

of V , an incomplete Vc-greyscale of G is a mapping on Vc to the interval [0, 1].
Note that this incompleteness means both that the mapping is not defined on
all the vertices of G and that the extreme tones do not necessarily belong to the
range of the incomplete mapping. A greyscale f is compatible with an incomplete
Vc-greyscale g if f(u) = g(u) for all u ∈ Vc.

Restricted minimum gradation on graphs (rmigg): given a connected
graphG(V,E) and an incomplete Vc-greyscale g of G, finding the gradation vector
that is minimum among all the gradation vectors of greyscales compatible with
g, as well as determining all these greyscales.

min
f∈S

grad(G, f) for S = S1 ∩ S2

where S1 = {f : V → [0, 1] / {0, 1} ⊂ f(V )} and

S2 = {f : V → [0, 1] / f is compatible with an incomplete greyscale given of G}.

Resolving each of these problems means finding the appropriate minimum
gradation vector and all their minimum gradation greyscales except the comple-
mentary ones. Note that the migg and rmigg problems are posed for connected
graphs but general graphs can be also considered, and in this case each connected
component has to be considered separately.

3 Minimum gradation problem

In this section several results about the nature of the gradation problems are
first established, which let us prove the correctness of our polynomial procedures.
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These algorithms provide minimum gradation vectors and all greyscales that give
rise to them, all minimum gradation greyscales. Some cases are distinguished in
the rmigg problem due to the special role that the extreme tones 0 and 1 play
in the concept of greyscale and, from a common subroutine, several polynomial
algorithms are designed according to the possible existence of 0’s or 1’s as prefixed
colours. Finally, the migg problem is also solved in polynomial time.

Before giving our results, we make some interesting observations about the
migg problem. Given a greyscale of a connected graph, the components of the
gradation vector are sorted by decreasing order and then, our purpose is to obtain
the minimum gradation vector. Therefore, our question can be considered as a
minimax problem. By other hand, throughout this section we deal with gradation
vectors and the greyscales which are associated to. Notice that, given a graph,
the minimum gradation vector is unique but there can exist different minimum
gradation greyscales which give rise to the same minimum gradation vector (see
an example in Figure 3).

a b

c d

ef

g h

Gf1 = Gf2 = (1
3
, 1
3
, 1
3
, 2
9
, 2
9
, 2
9
, 1

18
, 1

18
, 1

36
)

f2([a, b, . . . , h]) =
[

0, 1
3
, 5
9
, 7
9
, 1, 2

3
, 11
18
, 23
36

]

f1([a, b, . . . , h]) =
[

0, 1
3
, 2
3
, 1, 7

9
, 5
9
, 11
18
, 21
36

]

Figure 3: The minimum gradation vector can be achieved from different
greyscales.

About paths and distance, we follow the terminology of [11]. Given a con-
nected graph G, the distance d(u, v) between two vertices u and v in G is the
length of a shortest path joining them; a u− v path is a path joining the u and v
vertices of G and a u− v geodesic is a shortest u− v path. The diameter d(G) is
the length of any longest geodesic, which is called a diameter geodesic, and two
vertices u and v are antipodal if d(u, v) = d(G).

The two following definitions, support greyscale and edge-colour-increase map-
ping, provide the key tools to solve the migg problem for connected graphs.

Let G = (V,E) be a connected graph of diameter d(G) and let u and v be two
antipodal vertices of G. Then, the support greyscale for u and v is the mapping
on V (G) given by

f〈u, v〉(w) =
d(w, u)− d(w, v) + d(G)

2d(G)
.
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It is straightforward to check that f〈u, v〉 is a greyscale of G, that is, it takes
values from the interval [0, 1] and, in particular, f〈u, v〉(u) = 0 and f〈u, v〉(v) = 1.

The following lemma establishes the values of f̂〈u, v〉.

Lemma 3.1. Let f〈u, v〉 be the support greyscale associated to the pair of antipo-
dal vertices u and v of a connected graph G(V,E) of diameter d(G). Then, the
only components of the gradation vector Gf〈u,v〉 are

1
d(G)

, 1
2d(G)

and 0.

Proof. Let e = {w1, w2} be an edge of G. Due to the adjacency between w1 and
w2, it holds that d(w2, u) = d(w1, u) + k, with k ∈ {−1, 0, 1}. These three values
of k give rise to three cases to analyze associated to u (index i) and, analogously,
three cases for v (index j). That is, from the definition of the support greyscale
and distinguishing these nine Cases i.j, with i, j = 1, 2, 3, the following values for
|f〈u, v〉(w1)− f〈u, v〉(w2)| are reached:

• Cases 1.1, 2.2 and 3.3: |f〈u, v〉(w1)− f〈u, v〉(w2)| = 0.

In particular, the values of f̂〈u, v〉(e) on the edges of any u − v geodesic are
1

d(G)
because of the diameter notion, that is, the longest geodesic in G. So, at

least, the first d(G) components of Gf〈u,v〉 are equal to 1
d(G)

.
However, let us remark that support greyscales do not lead to minimum grada-

tion vectors in general. The support greyscale for u and v of the graph in Figure 4
is f〈u, v〉([u, a, b . . . h, i, v]) = [0, 1

4
, 1
4
, 1
4
, 1
4
, 1
2
, 1
2
, 1
2
, 3
4
, 1], and so its associated gra-

dation vector is given by Gf〈u,v〉 = (1
4
, 1
4
, 1
4
, 1
4
, 1
4
, 0, 0, 0, 0, 0). Nevertheless, the min-

imum gradation vector of this graph of diameter 4 is (1
4
, 1
4
, 1
4
, 1
4
, 1
16
, 1
16
, 1
16
, 1
16
, 0, 0),

that can be obtained from the greyscale

f([u, a, b . . . h, i, v]) = [0,
1

4
,
5

16
,
6

16
,
7

16
,
1

2
,
1

2
,
1

3
,
3

4
, 1].

Then, given two antipodal vertices, a special greyscale has been defined which
maps them to the values 0 and 1. In some sense, Corollary 3.7 will state the
reciprocal of this fact.

On the other hand, given a greyscale f of a connected graph G(V,E), the
edge-colour-increase mapping F is defined as the mapping F : V × V −→ [0, 1]
such that

F (u, v) =

{
|f(u)−f(v)|

d(u,v)
if u 6= v,

0 if u = v.
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Figure 4: The support greyscale for u and v of this graph of diameter 4 is not a
minimum gradation greyscale.

The value of F (u, v) can be viewed as ‘the amount of colour’ that every edge of
any u − v geodesic would be given whether the colour increase between u and
v were fairly distributed along the u − v geodesic. Throughout this section, the
relationship between f̂ and F (u, v) is studied.

Geodesics play an essential role in the migg problem. Our next results are
established on the set of geodesics of the given graph and they state several links
between the values of f , f̂ and F , according to the position of the vertices into
the geodesics.

Lemma 3.2. Let f be a greyscale of a graph G(V,E) and let u and v be a pair
of vertices of G. For each vertex w of each u− v geodesic and different to u and
v, it holds that,

F (u, v) < max{F (u, w), F (w, v)} or F (u, v) = F (u, w) = F (w, v).

Moreover, the above equalities only hold whenever f(w) belongs to the interval
of extremes f(u) and f(v).

Proof. The relative position of f(w) with respect to f(u) and f(v) determines
three cases. For the sake of clarity and without loss of generality we may suppose
that f(u) ≤ f(v). On the other hand, it is clear that d(u, v) = d(u, w) + d(w, v),
and since w is different to u and v, then d(u, w) < d(u, v) and d(w, v) < d(u, v).

1. If f(w) ≤ f(u) ≤ f(v), then

f(v)− f(u)

d(u, v)
≤

f(v)− f(w)

d(u, v)
<

f(v)− f(w)

d(w, v)
.

That is, F (u, v) < F (w, v) and F (u, v) < max{F (u, w), F (w, v)} trivially
follows.

2. If f(u) ≤ f(v) ≤ f(w), it proceeds as in the previous case obtaining the
same inequality.

10



3. If f(u) ≤ f(w) ≤ f(v), we prove that it is not possible F (u, v) >
max{F (u, w), F (w, v)} and if F (u, v) = max{F (u, w), F (w, v)}, then the
three values of F are equal.

Assume to the contrary that F (u, v) > max{F (u, w), F (w, v)}. Hence,

F (u, w) < F (u, v)⇒ f(w)− f(u) < d(u, w)F (u, v) (1)

and
F (w, v) < F (u, v)⇒ f(v)− f(w) < d(v, w)F (u, v) (2)

Adding (1) and (2), we obtain

f(v)− f(u) < (d(u, w) + d(w, v))F (u, v)⇒ f(v)− f(u) < d(u, v)F (u, v)

⇒ F (u, v) < F (u, v),

which is a contradiction.

Next, if F (u, v) = max{F (u, w), F (w, v)} we assume F (u, v) = F (u, w).

F (u, v) = F (u, w)⇒ f(w)− f(u) = (f(v)− f(u))
d(u, w)

d(u, v)
(3)

Now,

F (w, v) =
(f(v)− f(u))− (f(w)− f(u))

d(w, v)

and by (3) and since d(u, v)− d(u, w) = d(w, v),

F (w, v) =
(f(v)− f(u))d(w, v)

d(u, v)d(w, v)
= F (u, v).

So, F (u, v) = F (u, w) = F (w, v).

Under the assumption that F (u, v) = F (w, v) and by similar arguments,
the same result is obtained.

The following two results establish connections between the mappings f̂ and
F on geodesics.
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Corollary 3.3. Let f be a greyscale of a graph G(V,E) and let u and v be a pair
of vertices of G. For each u− v geodesic Pu−v, it holds that

F (u, v) ≤ max
e∈Pu−v

f̂(e).

Proof. We denote Pu−v by {u = w0, e1, w1, e2, w2, . . . , wl−1, el, v = wl} as al-
ternating sequence of vertices and edges and hence l = d(u, v). In order
to prove the result, a stronger assertion will be stated, that is, F (u, v) ≤

max{f̂(e1), . . . , f̂(ei), F (wi, v)} for i = 1, . . . , l − 1.

For i = 1, Lemma 3.2 applied to w1 of Pu−v and the fact that f̂(e1) = F (u, w1)

lead trivially to F (u, v) ≤ max{f̂(e1), F (w1, v)}.

Inductively, suppose F (u, v) ≤ max{f̂(e1), . . . , f̂(ei), F (wi, v)}. Lemma 3.2 is
again applied, in this case to wi+1 as vertex of the path {wi, ei+1, wi+1, . . . , v},
obtaining that

F (wi, v) ≤ max{F (wi, wi+1), F (wi+1, v)} = max{f̂(ei+1), F (wi+1, v)}.

Thus, the induction hypothesis and this inequality about F (wi, v) give rise to the
result for i+ 1.

Lemma 3.4. Let f be a greyscale of a graph G(V,E), let u and v be a pair of

vertices of G and let Pu−v be a u − v geodesic. If F (u, v) = max
e∈Pu−v

f̂(e) then

F (u, v) = f̂(e) for every edge e ∈ Pu−v.

Proof. For the sake of simplicity and without loss of generality, let the alternating
sequence of vertices and edges {u = w0, e1, w1, e2, w2, . . . , wl−1, el, v = wl} be the
u− v geodesic Pu−v where f(u) ≤ f(v). Assume to the contrary that there exists

ej an edge of Pu−v such that f̂(ej) < F (u, v).
The following intervals are considered for 1 ≤ i ≤ l:

Ii =





[f(wi−1), f(wi)] if f(wi−1) < f(wi)
[f(wi), f(wi−1)] if f(wi) < f(wi−1)

∅ if f(wi−1) = f(wi)

Thus, the union of these intervals is a cover of [f(u), f(v)] and therefore the
following contradiction is achieved:

f(v)− f(u) ≤
l∑

i=1

|f(wi−1)− f(wi)| =
l∑

i=1

f̂(ei) = f̂(ej) +
l∑

i=1,i 6=j

f̂(ei) ≤
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≤ f̂(ej) + (l − 1) max
1≤i≤l

f̂(ei) = f̂(ej) + (l − 1)F (u, v) <

< F (u, v) + (l − 1)F (u, v) = lF (u, v) = f(v)− f(u).

The two following results highlight the key role that the maximum value of
the edge-colour-increase mapping F plays in the migg problem.

Corollary 3.5. Let f be a greyscale of a connected graph G(V,E) and let u and
v be a pair of vertices of G such that F (u, v) = max

a,b∈V
F (a, b) and f(u) ≤ f(v).

For each vertex w of a u− v geodesic the following holds:

f(w) = f(u) + d(u, w)F (u, v).

Proof. If w is u or v, then the result holds trivially. Otherwise, since F (u, v) =
max
a,b∈V

F (a, b), in particular, it holds that

F (u, v) ≥ max{F (u, w), F (w, v)}.

Then, by Lemma 3.2, F (u, v) = F (u, w) = F (w, v) and f(w) belongs to the
interval [f(u), f(v)]. Now, from F (u, v) = F (u, w), it is trivial to obtain the
required statement for f(w) in the following way:

F (u, v) = F (u, w) =
f(w)− f(u)

d(u, w)
⇒ f(w) = f(u) + d(u, w)F (u, v).

Note that, if f(v) ≤ f(u), the result states by a similar proof using F (u, v) =
F (w, v) that f(w) = f(v) + d(w, v)F (u, v).

Corollary 3.6. Let f be a greyscale of a connected graph G(V,E) and let u and
v be a pair of vertices of G such that F (u, v) = max

a,b∈V
F (a, b). For each edge e of

a u− v geodesic the following holds:

f̂(e) = F (u, v).

13



Proof. Without loss of generality, f(u) ≤ f(v) can be assumed. Let a and b
be the vertices of the edge e. Corollary 3.5 is applied to a and b, and since
d(u, b) = d(u, a) ± 1, it holds that f(a) = f(u) + d(u, a)F (u, v) and f(b) =
f(u) + (d(u, a)± 1)F (u, v).

Then, f̂(e) = |f(b)− f(a)| = | ± F (u, v)| = F (u, v).

Next, a property for minimum gradation greyscales related to antipodal ver-
tices which are white- and black-coloured is established.

Corollary 3.7. If f is a minimum gradation greyscale of a graph G and u and
v are vertices of G such that f(u) = 0 and f(v) = 1, then u and v are antipodal
vertices.

Proof. By Lemma 3.1, the values of the colour of the edges by any support
greyscale are 1

d(G)
, 1
2d(G)

and 0, sorted by decreasing order. Hence, f̂(e) ≤ 1
d(G)

for

all e ∈ E and so max
e∈E

f̂(e) ≤
1

d(G)
. Furthermore, since f(u) = 0 and f(v) = 1,

F (u, v) = 1
d(u,v)

and by Corollary 3.3 F (u, v) =
1

d(u, v)
≤ max

e∈E
f̂(e) ≤

1

d(G)
.

Then d(u, v) ≥ d(G), that is, d(u, v) = d(G).

The characterization of the minimum gradation vector for paths is a conse-
quence of some of the above-proved results.

Corollary 3.8. The minimum gradation vector of the path of length n is the
vector whose all components are equal to 1

n
.

Proof. Let {u = w0, e1, w1, e2, w2, . . . , wn−1, en, v = wn} be the path of length n
and let f be a greyscale such that Gf is the minimum gradation vector of the path.
There must exist two vertices mapped to 0 and 1 by f , and by Corollary 3.7 the
only option is that they are u and v. Thus, F (u, v) = 1

n
.

By other hand, it is easy to check that f̂〈u, v〉(ei) =
1
n
for i = 1 . . . n, being

f〈u, v〉 the support greyscale for u and v. So, max
1≤i≤n

f̂(ei) ≤
1

n
follows. Moreover,

Corollary 3.3 guarantees that F (u, v) is a lower bound of max
1≤i≤n

f̂(ei).

Hence 1
n
= F (u, v) ≤ max

1≤i≤n
f̂(ei) ≤

1

n
, and by Lemma 3.4 we conclude that

f̂(ei) =
1
n
for i = 1 . . . n.
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Our next aim is to design algorithms which provide all the minimum gradation
greyscales of a connected graph, for both migg and rmigg problems. These
greyscales are obtained in a stepwise manner by incomplete greyscales such that
each of these is compatible with the previous one. Thus, an iterative procedure is
carried out that is based on the operation of deleting coloured edges and isolated
coloured vertices. We proceed first to devise the Vc-Compatible-Complete-

Mapping common subroutine which is applied to solve both the different rmigg
problems according to the possible existence of the extreme tones as prefixed
colours, and the migg problem.

Procedure: Vc-Compatible-Complete-Mapping

Input: An incomplete Vc-greyscale g of a connected graph G(V,E).
Output: A mapping f on V compatible with g.

1. Initialize G1(V
1
1 , E1)← G(V,E)

2. Initialize i← 1

3. Initialize l(1)← 1

4. If u ∈ Vc do f(u) = g(u);

5. While |Vc| < |V | do

(a) Compute the distance matrix Di of Gi;

(b) Compute the finite value Mi = max
1≤j≤l(i)

{F (a, b) : {a, b} ⊆ V j
i ∩ Vc} and

the set Si = {{u, v} ⊆ Vi ∩ Vc : F (u, v) = Mi}, where distances are
taken from Di;

(c) For each {u, v} ∈ Si and considering distances from Di do

i. Compute A = {w ∈ Vi : w ∈ u− v geodesic of Gi};

ii. For each w ∈ A do

f(w) =

{
f(u) + d(w, u) Mi if f(u) ≤ f(v)
f(v) + d(w, v) Mi if f(u) > f(v)

iii. Vc ← Vc ∪A

(d) Let Gi+1(Vi+1, Ei+1) be the subgraph of Gi(Vi, Ei) obtained by deleting
all the edges w1w2 with w1, w2 ∈ A and removing the resulting isolated
vertices. Let V j

i+1 be the vertex-sets of the connected components of
Gi+1 for j = 1 . . . l(i+ 1);
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(e) If Si = ∅, each set V j
i contains exactly one vertex wj in Vc then

i. For j := 1 to l(i) do f(u) = f(wj) with u ∈ V j
i ;

ii. Vc ← Vc ∪ V 1
i ∪ . . . ∪ V

l(i)
i

(f) i← i+ 1;

Note that the mapping generated by Vc-Compatible-Complete-Mapping

procedure and the input incomplete Vc-greyscale have the same range, and there-
fore that mapping is not necessarily a greyscale due to the possible nonexistence
of the extreme tones as values reached by the mapping. It is explanatory to point
out that the grey tone assigned by Step 5(c)ii can be also obtained as follows:

f(w) =

{
f(v)− d(w, v) Mi if f(u) ≤ f(v)
f(u)− d(w, u) Mi if f(u) > f(v)

Next, the rmigg problems are resolved according to the nature of the prefixed
colours, that is, distinguishing whether or not the extreme tones are prefixed
values.

Theorem 3.9. Let g be an incomplete Vc-greyscale of a connected graph G(V,E)
such that the extreme tones 0 and 1 are reached by g. Then it is possible to obtain,
in polynomial time, a greyscale of G compatible with g whose gradation vector is
the minimum one among all gradation vectors of greyscales compatible with g.

Moreover, such greyscale is unique and it is provided by the Vc-Compatible-

Complete-Mapping algorithm.

Proof. In order to state the result, the Vc-Compatible-Complete-Mapping

algorithm is first proved to be finite and polynomial. Then, it is shown to provide
the unique greyscale compatible with g such that its gradation vector is minimum
among all gradation vectors of greyscales compatible with g.

At least one vertex is coloured at every iteration of the while-loop in Step 5,
either by Substeps (e) or (f), and hence it ends after at most |V |−|Vc| iterations.
The time complexity of computing distance matrices (Step 3(c)) dominates the
time complexity of the rest of the steps and that can be done in O(n3) time ap-
plying the Floyd-Warshall algorithm [7, 21]. So, the while-loop and the Step 3(c)
determine the polynomial time of the Vc-Compatible-Complete-Mapping al-
gorithm, that is, O(n4) time.

Now, the algorithm output f is proved to be a well-defined greyscale com-
patible with g. Its values are either the values of g (Step 4) or are assigned
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by Step 5(c)ii to vertices belonging to u − v geodesics such that Mi = F (u, v).
Owing to Step 4, f is compatible with g and since both extreme tones are pre-
fixed colours, its range is the interval [0, 1]. It is necessary to check that the
colour assignment by Step 5(c)ii is consistent, that is, both when a vertex in
Vc is again coloured by Step 5(c)ii in the i-iteration, and in the case of a ver-
tex belonging to different such geodesics. First, let w be a vertex with colour
f(w) belonging to a u − v geodesic such that Mi = F (u, v) (maximum value of
Step 5b); in particular, F (u, v) is greater than F (u, w) and F (w, v). This fact
along with Lemma 3.2 for f , u, v and the subgraph induced by Vi−1 ∩ Vc lead to
F (u, v) = F (u, w) = F (w, v) and f(w) belonging to the interval of extremes f(u)
and f(v). Whether f(u) ≤ f(v) (the reasoning is similar when f(u) > f(v) and
taking into account F (u, v) = F (w, v)), it holds that

F (u, v) = F (u, w)⇒Mi =
f(w)− f(u)

d(w, u)
⇒ f(w) = f(u) + d(w, u)Mi.

In other words, the value assigned to w by Step 5(c)ii and its previous colour are
the same.

On the other hand, let Pu1−v1 and Pu2−v2 be two geodesics such that Mi =
F (u1, v1) = F (u2, v2) (we assume, without loss of generality, f(u1) ≤ f(v1) and
f(u2) ≤ f(v2)) and let w be a vertex in V − Vc belonging to both u1v1 and u2v2.
Suppose on the contrary that f(u1) + d(u1, w)Mi > f(u2) + d(u2, w)Mi (the
arguments are similar if the other inequality is assuming), and therefore

f(u1) > f(u2) + (d(u2, w)− d((u1, w))Mi, (4)

From Mi = F (u1, v1) it holds that

f(v1) = f(u1) + (d(u1, w) + d(w, v1))Mi. (5)

Taking into account (4) and (5),

f(v1) > f(u2) + (d(u2, w)− d((u1, w))Mi + (d(u1, w) + d(w, v1))Mi =

= f(u2) + (d(u2, w) + d(w, v1))Mi ≥ f(u2) + d(u2, v1)Mi ⇒

⇒
f(v1)− f(u2)

d(u2, v1)
≥ Mi,

which is a contradiction.

17



The gradation vector of f is now proved to be

(M1, . . . ,M1,M2, . . . ,M2, . . . ,Mr, . . . ,Mr, 0, . . . , 0),

where r is the number of executions of the while-loop, and the number of zeros
can be null. For every edge of G either its vertices belong to the set A at only one
execution of Step 5c or its colour is white (extreme tone 0) due to the situation
described in Step 5e. In the first case, its colour is Mi by Corollary 3.6 applied
to each pair of vertices in Si and every connected component of Gi at which the
maximum value Mi is reached. Furthermore, it is necessary to guarantee that the
sequence of maximum values computed in Step 5b is strictly decreasing in i. The
value di denotes the distance measured in Gi and is listed in the matrix Di; it is
clear that di(u, v) ≤ di+1(u, v). Let Mi and Mi+1 be the maximum values of the
edge-colour-increase mapping F on Gi and Gi+1 and computed by the iterations
i and i + 1 of Step 5b, respectively. Let also ui+1 and vi+1 be two vertices such
that Mi+1 = F (ui+1, vi+1) on Gi+1. The executions at which the vertices ui+1 and
vi+1 are coloured determine three cases:

1. Both vertices ui+1 and vi+1 are coloured before the i-iteration takes place.
Then, if {ui+1, vi+1} /∈ Si, it follows that

Mi >
|f(ui+1)− f(vi+1)|

di(ui+1, vi+1)
≥
|f(ui+1)− f(vi+1)|

di+1(ui+1, vi+1)
= Mi+1.

Otherwise, the fact that {ui+1, vi+1} ∈ Si leads to di(ui+1, vi+1) <
di+1(ui+1, vi+1) and then

Mi =
|f(ui+1)− f(vi+1)|

di(ui+1, vi+1)
>
|f(ui+1)− f(vi+1)|

di+1(ui+1, vi+1)
= Mi+1.

2. One of the vertices ui+1 and vi+1 is coloured at the i-iteration but the other
one is previously. Without loss of generality, f(ui+1) ≤ f(vi+1) can be
assumed and then we distinguish two possibilities depending on whether
either ui+1 receives its grey tone at the i-iteration or vi+1 does.

(a) If the vertex ui+1 is coloured at the i-iteration, it belongs to some ui−vi
geodesic such that Mi = F (ui, vi) on Gi (the inequality f(ui) ≤ f(vi)
can be assumed) and so it holds that

f(ui+1) = f(ui) + di(ui, ui+1)Mi ⇒ f(ui) = f(ui+1)− di(ui, ui+1)Mi.
(6)
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On the other hand, vi+1 is coloured previously to the i-iteration and
the inequality between Mi and Mi+1 is achieved by distinguishing if
{ui, vi+1} belongs or not to Si. In case that {ui, vi+1} /∈ Si, the equality
in (6) leads to:

Mi >
f(vi+1)− f(ui)

di(ui, vi+1)
≥

f(vi+1)− f(ui)

di(ui, ui+1) + di(ui+1, vi+1)
≥

≥
f(vi+1)− f(ui)

di(ui, ui+1) + di+1(ui+1, vi+1)
=

=
f(vi+1)− f(ui+1) + di(ui, ui+1)Mi

di(ui, ui+1) + di+1(ui+1, vi+1)
=

=
di+1(ui+1, vi+1)Mi+1 + di(ui, ui+1)Mi

di(ui, ui+1) + di+1(ui+1, vi+1)
.

If Mi ≤Mi+1, then

Mi >
[di+1(ui+1, vi+1) + di(ui, ui+1)]Mi

di(ui, ui+1) + di+1(ui+1, vi+1)
= Mi,

which is a contradiction, and therefore Mi > Mi+1.

In case that {ui, vi+1} ∈ Si and since di(ui, vi+1) < di(ui, ui+1) +
di+1(ui+1, vi+1) due to the connection of ui+1 and vi+1 in Gi+1, it follows
that

Mi =
f(vi+1)− f(ui)

di(ui, vi+1)
>

f(vi+1)− f(ui)

di(ui, ui+1) + di+1(ui+1, vi+1)
,

and the reasoning goes on as in the lines above.

(b) If the vertex vi+1 is coloured at the i-iteration, similar arguments lead
to the result taking into account two facts: vi+1 belongs to some ui−vi
geodesic such that Mi = F (ui, vi) on Gi and f(ui) ≤ f(vi), which
implies that f(vi+1) = f(vi) − di(vi, vi+1)Mi, and the membership or
not of {ui+1, vi} in Si.

3. Both vertices ui+1 and vi+1 are coloured by the i-iteration. Therefore,
there exist two pairs of vertices {u1

i , v
1
i } and {u2

i , v
2
i } of Gi such that

Mi = F (u1
i , v

1
i ) = F (u2

i , v
2
i ) and the vertices ui+1 and vi+1 belong to some
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u1
i −v1i and u2

i −v2i geodesic, respectively (without loss of generality we may
suppose that f(ui+1) ≤ f(vi+1), f(u

1
i ) ≤ f(v1i ) and f(u2

i ) ≤ f(v2i )). Then,

f(ui+1) = f(u1
i ) + di(u

1
i , ui+1)Mi ⇒ f(u1

i ) = f(ui+1)− di(u
1
i , ui+1)Mi (7)

f(vi+1) = f(v2i )− di(v
2
i , vi+1)Mi ⇒ f(v2i ) = f(vi+1) + di(v

2
i , vi+1)Mi (8)

Whether {u1
i , v

2
i } /∈ Si and from (7) and (8), it holds that

Mi >
f(v2i )− f(u1

i )

di(u1
i , v

2
i )

≥
f(v2i )− f(u1

i )

di(u1
i , ui+1) + di+1(ui+1, vi+1) + di(vi+1, v2i )

=

=
f(vi+1) + di(v

2
i , vi+1)Mi − f(ui+1) + di(u

1
i , ui+1)Mi

di(u1
i , ui+1) + di+1(ui+1, vi+1) + di(vi+1, v2i )

=

=
di+1(ui+1, vi+1)Mi+1 + di(v

2
i , vi+1)Mi + di(u

1
i , ui+1)Mi

di(u1
i , ui+1) + di+1(ui+1, vi+1) + di(vi+1, v2i )

If Mi ≤Mi+1, then

Mi >
[di(u

1
i , ui+1) + di+1(ui+1, vi+1) + di(vi+1, v

2
i )]Mi

di(u1
i , ui+1) + di+1(ui+1, vi+1) + di(vi+1, v2i )

= Mi,

which is a contradiction, and hence Mi > Mi+1.

Whether {u1
i , v

2
i } ∈ Si, the inequality between Mi and Mi+1 is achieved by

applying that di(u
1
i , v

2
i ) < di(u

1
i , ui+1)+ di+1(ui+1, vi+1)+ di(vi+1, v

2
i ), which

follows from the connection of ui+1 and vi+1 in Gi+1.

Our next and final aim is to prove that f is the only greyscale compatible
with g such that its gradation vector

grad(G, f) = (M1, . . . ,M1,M2, . . . ,M2, . . . ,Mr, . . . ,Mr, 0, . . . , 0)

is minimum among all gradation vectors of such greyscales. For this purpose, let
Ck be the vertex-set of G containing the vertices that have been coloured at any
of the first k executions of the while-loop in Step 5, for k = 1 . . . r, being r the
total number of executions of Step 5. Given a minimum gradation greyscale h
compatible with g we prove by induction on k that h(w) = f(w) for all w ∈ V .

For k = 1, every vertex of C1 belongs to some u − v geodesic Pu−v = {u =
w0, e1, w1, e2, w2, . . . , wl−1, el, v = wl} (alternating sequence of vertices and edges)
such that g(u) = f(u) = h(u) and g(v) = f(v) = h(v). There does not exist
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an edge ei such that ĥ(ei) > M1 due to the minimality of Gh and the existence
of Gf , and the next argument guarantees the non-existence of an edge ei such

that ĥ(ei) < M1, therefore ĥ(ei) = f̂(ei) = M1 for all edge of Pu−v. Both values
of any greyscale on consecutive vertices of Pu−v define intervals whose union is
a cover of the interval [g(u), g(v)] or [g(v), g(u)]. The lengths of these intervals,
that is, the grey tones of the corresponding edges, are all M1 for f , and so, also
for the greyscale h. Thus, if there exists one of them less than M1 there must
exists another one greater than M1, but this fact is not possible owing to the
minimality of Gh and the existence of Gf .

Then, f(wi) = h(wi) for all vertices of Pu−v since f̂(ei) = ĥ(ei) = M1 for all
edges of Pu−v and f(u) = h(u) = g(u) and f(v) = h(v) = g(v).

For the induction step, the same previous reasoning is applied to the elements
of the geodesics taking part in the execution k + 1 of Step 5, since the extreme
vertices of such geodesics belong to Ck and therefore their grey tones assigned by
f and h are equal.

The next result solves the rmigg problem in the case of only one type of
extreme colour, either white or black, among the prefixed values.

Theorem 3.10. Let g be an incomplete Vc-greyscale of a connected graph G(V,E)
such that only one extreme tone, either 0 or 1, is reached by g. Then it is possible
to obtain, in polynomial time, all the greyscales of G compatible with g whose
gradation vector is the minimum one among all gradation vectors of greyscales
compatible with g.

Proof. Without loss of generality, we may suppose that g reaches the white colour
0 but not the black colour 1. There exists a vertex w ∈ V −Vc such that f(w) = 1
for any greyscale f compatible with g, in particular, any minimum gradation
greyscale. Then, for every vertex w ∈ V − Vc a new incomplete greyscale gw is
defined such that gw(u) = g(u) whether u ∈ Vc and gw(w) = 1. In accordance
with Theorem 3.9 for gw, there exists only one greyscale fw compatible with gw
whose gradation vector is minimum among all gradation vectors of greyscales
compatible with gw.

Among these |V −Vc| greyscales fw, those whose gradation vector is minimum
are the solutions of the rmigg problem for only one extreme colour, and they have
been obtained by running the Compatible-Complete-Mapping polynomial
procedure |V − Vc| times. Hence O(n5) is achieved for this problem.

Now, the following result resolves the rmigg problem in case of neither the
black colour nor the white one appears among the prefixed values.
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Theorem 3.11. Let g be an incomplete Vc-greyscale of a connected graph G(V,E)
such that no extreme tone is reached by g. Then it is possible to obtain, in
polynomial time, a greyscale of G compatible with g whose gradation vector is the
minimum one among all gradation vectors of greyscales compatible with g.

Proof. This proof is similar to the proof of Theorem 3.10, but in this case a new
incomplete Vc ∪ {w1, w2}-greyscale is defined for every pair of vertices w1 and
w2 of |V − Vc| such that g{w1,w2}(u) = g(u) whether u ∈ Vc, g{w1,w2}(w1) = 0

and g{w1,w2}(w2) = 1. Since there are
(
|V−Vc|

2

)
of these incomplete greyscales and

the Compatible-Complete-Mapping polynomial procedure provides only one
greyscale for each one of them, this problem can be solved in O(n6) time.

Finally, the following and last theorem solves the migg problem.

Theorem 3.12. The migg problem can be solved in polynomial time, that is,
the minimum gradation vector and all their minimum gradation greyscales are
obtained in polynomial time.

Proof. All possible greyscales can be considered taking all possible pairs of ver-
tices to be coloured with the extreme tones, that is,

(
|V |
2

)
incomplete greyscales.

Theorem 3.9 is applied to each of these incomplete greyscales and hence, the
best greyscales in the sense of gradation have to be selected among a set of

(
|V |
2

)

greyscales, each of them computed in polynomial time. Thus, the minimum gra-
dation vector of the given graph, as well as all their minimum gradation greyscales
are achieved in polynomial time.

In accordance with Corollary 3.7 it is possible to reduce the actual time of the
Vc-Compatible-Complete-Mapping procedure applied to the migg problem
(Vc = ∅) only taking into account the pairs of antipodal vertices to be coloured
with the extreme tones, instead of all the pairs of vertices of the graph. By other
hand, the following observation also reduces the actual time of the algorithms
that solve the migg problem and the rmigg problems when both extreme tones
are not reached by the incomplete greyscale. The Vc-Compatible-Complete-

Mapping procedure has to be applied a quadratic number of times in the worst
case, once for each pair of vertices coloured with black and white. These ex-
ecutions can be performed in parallel and since we are dealing with minimax
problems, after each iteration of the while-loop, it suffices to continue with the
executions that lead to the minimum value for Mi and, moreover, appearing the
minimum number of times in the gradation vector. The rest of these executions
of the Vc-Compatible-Complete-Mapping procedure can be discarded.
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Finally, it is easy to check the following result.

Corollary 3.13. At least, the first d(G) components of the minimum gradation
vector of the migg problem for a graph G with diameter d(G) are 1

d(G)
.

4 Open problems

The new concept of gradation of a graph, related to vertex and edge colourings,
has been introduced, and polynomial algorithms have been designed to solve the
problem of determining the minimum gradation vector depending on whether or
not there exist prefixed colours. Nevertheless, the algorithms developed in this
paper have high time complexity so that the main open problem that immedi-
ately raises by our work is to improve the computational time required to solve
gradation problems. Our time complexities are determined by the computation
of the distance matrix of the graph so different resolution techniques would have
to be investigated in order to reduce the computational times.

It would be also interesting to pose gradation in digraphs, studying the more
suitable way of assigning colours to the directed edges.
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