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A B S T R A C T

In this paper, we present an analysis of the vulnerability of a distributed model predictive control (DMPC)
scheme in the context of cyber-security. We consider different types of the so-called insider attacks. In
particular, we consider the situation where one of the local controllers sends false information to others to
manipulate costs for its own advantage. Then, we propose a popular scenario-based mechanism to protect or,
at least, relieve the consequences of the attack in a typical DMPC negotiation process. The theoretical and
algorithmic properties of this defense mechanism are also analyzed. A real case study based on a four tank
plant is provided to illustrate both the consequences of the attacks and the defense mechanisms.
. Introduction

Model predictive control (MPC) has become a popular control strat-
gy due to the advantages it offers in comparison with other control
pproaches. An MPC controller can consider explicitly constraints on
he manipulated variables and system states, nonlinearities on the
odel, delays, multiple objectives, etc. For this reason, this technique

s widely used in numerous industrial applications, see, e.g., Camacho
nd Bordons (2004) and references therein. The main idea behind MPC
s to calculate a control input sequence by solving a finite-horizon
ptimization problem (FHOP), based on the system model and its
volution, at each time instant. Only the first component of the control
equence is applied to the system at the current time; then the FHOP is
olved again at the next time step (Grosso, Velarde, Ocampo-Martinez,
aestre, & Puig, 2017).

Nevertheless, geographically disperse systems such as road-traffic,
ogistics, transportation, water, and electrical networks may not allow
o apply centralized MPC due to computational burden, issues with cen-
ralized modeling, data collection, and so on Negenborn and Maestre
2014). An alternative to deal with this kind of problems is to divide
he whole system into subsystems, each one governed by a local MPC
ontroller (or agent) that takes decisions and exchanges information
ith the other controllers under a negotiation process to obtain a
ossibly optimal global solution. This approach is called distributed
PC (DMPC) and has advantages such as ease of implementation, low

omputational effort in comparison with centralized MPC, modularity
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R.R. Negenborn).

of the system, among others. In this regard, there are many types of
possible implementations that can be adapted to the specific features of
each problem (Negenborn & Maestre, 2014), e.g., sequential and par-
allel solutions, iterative and non-iterative methods, etc. For example,
sequential and iterative architectures for DMPC are discussed in Liu,
Chen, Muñoz de la Peña, and Christofides (2010). Tutorial reviews
including design methods, algorithmic details, and an extensive discus-
sion of the applications of DMPC are given in Christofides, Scattolini,
de la Peña, and Liu (2013) and Maestre and Negenborn (2014).

A topic that deserves attention is the regular exchange of informa-
tion during the negotiation process among the local DMPC controllers.
Most DMPC schemes have been designed considering a coordinated
negotiation process where all controllers work in a reliable way. How-
ever, a malicious controller could exploit the vulnerabilities of the
network by sharing false information with other controllers, producing
an undesirable behavior in the optimization process. At this point,
it is possible to speak about cyber-security in the context of DMPC.
Well-known examples include Stuxnet (Kushner, 2013), which was the
first known worm designed to reprogram Siemens programmable logic
controllers, forcing various shutdowns at the Natanz (Iran) nuclear
plant (Albright, Brannan, & Walrond, 2010), and Crash Override, which
caused massive blackouts in Ukraine in 2016 (Bindra, 2017). For this
reason, in recent years, numerous investigations have devoted their
efforts to finding solutions to these problems (Cheng, Shi, & Sinop-
oli, 2017). The goal of cyber-security is to protect systems against
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threat by preserving the confidentiality, availability, and integrity of
the exchanged information (Radvanovsky & Brodsky, 2016). Classical
application areas are protection systems (Sheng, Chan, Li, Xianzhong,
& Xiangjun, 2007), Internet users (Kritzinger & Von Solms, 2010),
logistics (Li, Negenborn, & De Schutter, 2015; Nabais, Negenborn, Car-
mona, & Ayala, 2015; van Riessen, Negenborn, Lodewijks, & Dekker,
2015), power systems (Barreto, Giraldo, Cardenas, Mojica-Nava, &
Quijano, 2014; Chakhchoukh & Ishii, 2015; Mc Namara, Negenborn,
De Schutter, Lightbody, & McLoone, 2016; Soudbakhsh, Chakrabortty,
& Annaswamy, 2017), among others. Control systems are not exempt
from possible cyber-attacks (Teixeira, Sou, Sandberg, & Johansson,
2015; Zhu & Basar, 2015), with consequences ranging from perfor-
mance loss to instability. A resilient multivariable control framework
for large-scale urban traffic networks subject to several types of cyberat-
tacks is addressed in Mercader and Haddad (2021). Also, Dhal and Roy
(2013) presents cyber-security risk assessment for supervisory control
and data acquisition (SCADA) and distributed control system networks.

In this context, cyber-security does not deal with security from
a computer or telecommunications viewpoint, but with providing an
additional layer of defense once attackers have already penetrated the
control system. By exploiting the knowledge of the system dynamics,
controllers can detect and isolate themselves from these threats, or at
least mitigate their consequences. For example, in Ananduta, Maestre,
Ocampo-Martinez, and Ishii (2020) Bayesian inference is used to detect
noncompliant controllers in a distributed MPC setting so that negotia-
tions can be stopped accordingly. In Maestre, Trodden, and Ishii (2018),
the issue of noncompliance is addressed using a passive approach that
allows agents to be protected against a limited amount of noncompli-
ances in a distributed tube MPC setting. In Braun, Albrecht, and Lucia
(2020) and Pierron, Árauz, Maestre, Cetinkaya, and Maniu (2020),
stochastic MPC is used to build a tree and improve the controller
performance in case of packet losses/attacks. This is also the approach
followed in Yang, Li, Dai, and Xia (2019), where denial-of-service (DoS)
attacks are considered, although in a setting where only one subsystem
is allowed to optimize at each time step. DoS attacks are also dealt
with within the framework of Sun, Zhang, and Shi (2019), where
conditions are derived to guarantee exponential stability of the closed-
loop system. A different strategy is followed in Romagnoli, Krogh, and
Sinopoli (2019), where the control software is periodically reinstalled
to mitigate the impact of cyber agressions. Another interesting line of
work is given in Trodden, Maestre, and Ishii (2020), which studies
the extent of the control input set that can be gained by an attacker
before relevant properties such as the existence of invariant sets is lost.
Other proposed methods include encryption and coding schemes as
a means to secure communication (Darup, Redder, Shames, Farokhi,
& Quevedo, 2017; Miao, Zhu, Pajic, & Pappas, 2016) and the use
of artificial intelligence methods such as neural-networks (Wu et al.,
2018) and machine learning (Chen, Wu, & Christofides, 2020) to detect
cyber-attacks.

In this paper, we explore cyber-security issues in Lagrange-based
DMPC schemes. Recent studies in this direction include the schemes,
e.g., for dual (Velarde, Maestre, Ishii, & Negenborn, 2018), and Jacobi–
Gauss decomposition (Chanfreut, Maestre, & Ishii, 2018), where
anomalies can be detected during the negotiation process. Moreover,
some works discuss techniques to reject malicious agents during the
consensus process (Ananduta et al., 2020; Ishii et al., 2020; Ono-
gawa et al., 2019; Yang et al., 2019). This work analyzes Lagrange
based DMPC and, following Velarde, Maestre, Ishii, and Negenborn
(2017), shows how a malicious controller can take advantage of the
vulnerabilities of the scheme to increase its own benefit at the cost
of other controllers. To mitigate the consequences of the attacks,
scenario-based techniques are proposed to gain robustness (Calafiore
& Fagiano, 2013). In particular, scenarios taken from trustworthy
historical price information are used to robustify the control network
against malicious controllers. As a matter of a fact, scenario-based MPC
has been extensively used to deal with external uncertainties affecting
2

control systems. For instance, multi-scenario MPC (MS-MPC) optimizes
a single control sequence valid for all potential scenarios taking into
account their probability of occurrences, e.g., in the context of water
systems (Grosso et al., 2017; van Overloop, Weijs, & Dijkstra, 2008;
Tian et al., 2019; Velarde, Tian, Sadowska, & Maestre, 2019) and smart
grids control (Olivares, Lara, Cañizares, & Kazerani, 2015). Based on
this background, we propose to incorporate this approach in the DMPC
formulation as a way to secure dual decomposition DMPC and deal with
the internal threats from the distributed network. Also, as a case study
to illustrate the proposed defense method, we carry out experiments in
a real four tank plant.

The remainder of this paper is organized as follows. First, dual
decomposition based MPC is briefly introduced in Section 2. Sec-
tion 3 presents a number of threat schemes in the context of Lagrange
based DMPC, where a malicious controller can exploit the algorithm.
Section 4 provides a secure dual decomposition technique based on
MS-DMPC to mitigate the impact that an attacker can cause to the
other controllers. Section 5 analyzes the impact of the proposed scheme
regarding the satisfaction of algorithmic and theoretical properties of
interest. In Section 6, the aforementioned case study is presented to
show the effects of potential attacks and how the proposed mechanisms
relieve this issue. Finally, conclusions are drawn in Section 7.

A preliminary version of this paper has appeared as Velarde et al.
(2017); the current paper analyzes theoretical and algorithmic proper-
ties of the scenario based defense mechanism and moreover the results
of the experiments based on the four tank plant are presented.

2. Dual decomposition based DMPC

In this section, we present a commonly used distributed optimiza-
tion algorithm based on dual decomposition (Biegel, Stoustrup, & An-
dersen, 2014; Giselsson & Rantzer, 2014). Let us consider a distributed
system composed of 𝑁 subsystems defined by discrete-time linear
time-invariant models. The dynamics of subsystem 𝑖 are given by

𝑥𝑖[𝑘 + 1] = 𝐴𝑖𝑥𝑖[𝑘] + 𝐵𝑖𝑢𝑖[𝑘], (1)

here 𝑥𝑖 ∈ R𝑛𝑥,𝑖 and 𝑢𝑖 ∈ R𝑛𝑢,𝑖 denote the states and input of the
ystem, respectively. 𝐴𝑖 ∈ R𝑛𝑥,𝑖×𝑛𝑥,𝑖 is the state matrix and 𝐵𝑖 ∈
𝑛𝑥,𝑖×𝑛𝑢,𝑖 represents the input matrix. Moreover, 𝑛𝑥,𝑖 and 𝑛𝑢,𝑖 represent

the number of states and the number of inputs of the subsystem
𝑖, respectively. Each subsystem is subject to convex state and input
constraints

𝑥𝑖[𝑘] ∈ 𝑖, ∀𝑘 ∈ Z+, (2a)

𝑖[𝑘] ∈ 𝑖, ∀𝑘 ∈ Z+, (2b)

here Z+ denotes the set of non-negative integer numbers. Let the
ggregated vectors of states and inputs be 𝑥[𝑘] =

[

𝑥1[𝑘]T ⋯ 𝑥𝑁 [𝑘]T
]T

nd 𝑢[𝑘] =
[

𝑢1[𝑘]T ⋯ 𝑢𝑁 [𝑘]T
]T, respectively, where 𝑥 ∈ R𝑛𝑥 , 𝑛𝑥 =

∑𝑁
𝑖=1 𝑛𝑥,𝑖, 𝑢 ∈ R𝑛𝑢 , and 𝑛𝑢 =

∑𝑁
𝑖=1 𝑛𝑢,𝑖. The 𝑁 subsystems are also subject

to constraints coupling the inputs:

𝐶𝑢[𝑘] =
𝑁
∑

𝑖=1
𝐶𝑖𝑢𝑖[𝑘] ≤ 𝑐, (3)

where 𝐶 ∈ R𝑛𝑐×𝑛𝑢 , 𝐶𝑖 ∈ R𝑛𝑐×𝑛𝑢𝑖 and 𝑐 ∈ R𝑛𝑐 . Note that this
formulation can easily cover typical coupling constraints in the states
and in the inputs.

We assume that a convex stage cost function for each subsystem is
given by

𝓁𝑖(𝑥𝑖[𝑘 + 1], 𝑢𝑖[𝑘]). (4)

Each subsystem 𝑖 is controlled by a local MPC controller. The main
idea of (centralized and distributed) MPC is to obtain a control signal
by solving, at each time step, an FHOP that takes into account the
prediction model of each subsystem. In particular, (1) is used to predict
the evolution of the system along a given horizon 𝑁 as a function
p
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of the sequence of inputs provided. In this way, it is possible to
calculate a control sequence 𝑢∗𝑖 [𝑘 ∶ 𝑘 + 𝑁p − 1] that optimizes (4)
along the horizon. The first component of the optimal control sequence
obtained is implemented at the current time step, and the problem is
solved at the next time step following a receding horizon strategy. The
optimization problem over a fixed time prediction horizon 𝑁p ∈ Z+ can
be written as

𝑢∗𝑖 [𝑘 ∶ 𝑘 +𝑁p − 1] = arg min
𝑢𝑖[𝑘∶𝑘+𝑁p−1]

𝑘+𝑁p−1
∑

𝑗=𝑘
𝓁𝑖(𝑥𝑖[𝑗 + 1], 𝑢𝑖[𝑗]), (5)

subject to (1)–(3), assuming that the predicted control actions and
states of the rest of the subsystems are known.

From an overall perspective, the stage cost function becomes

𝓁(𝑥[𝑘 + 1], 𝑢[𝑘]) =
𝑁
∑

𝑖=1
𝓁𝑖(𝑥𝑖[𝑘 + 1], 𝑢𝑖[𝑘]). (6)

In this way, the optimization problem, from a global viewpoint, is given
by

min
𝑢[𝑘∶𝑘+𝑁p−1]

𝑘+𝑁p−1
∑

𝑗=𝑘
𝓁(𝑥[𝑗 + 1], 𝑢[𝑗]), (7)

subject to (1)–(3).
Due to the coupling in (3), controllers have to share information.

It is necessary to consider the role played by coupling variables ex-
plicitly. Hence, the controllers have to coordinate their actions using a
negotiation process.

The dual decomposition approach consists of converting the coupled
variables into local versions and then incentivize via cost the obtain-
ment of a coordinated value. In this sense, the performance index is
reformulated by means of the associated Lagrange multipliers as

𝐿(𝜂[𝑘], 𝛬[𝑘]) =
𝑘+𝑁p−1
∑

𝑗=𝑘
(𝓁(𝑥[𝑗 + 1], 𝑢[𝑗]) + 𝜆[𝑗]T(𝐶𝑢[𝑗] − 𝑐)), (8)

where 𝜂[𝑘] =
[

𝑥[𝑘 + 1 ∶ 𝑘 +𝑁p]T, 𝑢[𝑘 ∶ 𝑘 +𝑁p − 1]T
]T is defined as the

vector composed of the states and inputs along the horizon 𝑁p, 𝜆[𝑗] ∈
R𝑛𝑐 are the multipliers associated with the coupling constraints (3), and
𝛬[𝑘] = 𝜆[𝑘 ∶ 𝑘+𝑁p−1] is the sequence of the Lagrange multipliers along
the horizon.

Remark 1. Lagrange multipliers can be interpreted as prices that are
used to coordinate the subsystems regarding the fulfillment of coupling
constraints (Biegel et al., 2014).

The optimal value of the problem for a given sequence of prices is
defined as

𝑔(𝛬[𝑘]) = min
𝑢[𝑘∶𝑘+𝑁p−1]

𝑘+𝑁p−1
∑

𝑗=𝑘
(𝓁(𝑥[𝑗 + 1], 𝑢[𝑗]) + 𝜆[𝑗]T(𝐶𝑢[𝑗] − 𝑐)), (9)

subject to (1) and (2), and allows to deal with (7) in a distributed
manner by solving its dual problem

maximize 𝑔(𝛬[𝑘]), (10)
subject to 𝛬[𝑘] ⪰ 0,

by using a distributed gradient search, where ⪰ represents component-
wise inequality. The distributed control problem solved by dual decom-
position is summarized in Algorithm 1 (Biegel et al., 2014).

Dual decomposition has been used in several applications, e.g.,
building temperature regulation (Yushen, Shuai, Xie, & Johansson,
2014), coordinating a network of households (Larsen, Van Foreest, &
Scherpen, 2014), ships (Zheng, Negenborn, & Lodewijks, 2017), and

logistics (Li, Negenborn, & De Schutter, 2017).

3

Algorithm 1 Dual decomposition based DMPC.
1: Each controller initializes its prices (Lagrange multipliers) 𝛬[𝑘] ⪰ 0.

All agents have the same initial values for the Lagrange multipliers.
2: repeat
3: Each controller solves its local optimization problem with the

current value of 𝛬[𝑘], i.e.,

min
𝑢𝑖[𝑘∶𝑘+𝑁p−1]

𝑘+𝑁p−1
∑

𝑗=𝑘
(𝓁𝑖(𝑥𝑖[𝑗 + 1], 𝑢𝑖[𝑗]) + 𝜆[𝑗]𝑇𝐶𝑖𝑢𝑖[𝑗]), (11a)

subject to

𝑥𝑖[𝑗 + 1] = 𝐴𝑖𝑥𝑖[𝑗] + 𝐵𝑖𝑢𝑖[𝑗], ∀𝑗 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1], (11b)

𝑥𝑖[𝑗] ∈ 𝑖, ∀𝑗 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1], (11c)

𝑢𝑖[𝑗] ∈ 𝑖, ∀𝑗 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1]. (11d)

The solution of the optimization problem is denoted as 𝑥∗𝑖 [𝑘 + 1 ∶
𝑘 +𝑁p], 𝑢∗𝑖 [𝑘 ∶ 𝑘 +𝑁p − 1]. Then these values are exchanged with
other controllers.

4: Each controller 𝑖 determines the violations of the coupling con-
straints 𝑠[𝑘] ≜ ∑𝑁

𝑖=1 𝐶𝑖𝑢∗𝑖 [𝑘]−𝑐, 𝑆[𝑘] = 𝑠[𝑘 ∶ 𝑘+𝑁p−1] ∈ R𝑁p×𝑛𝑐 and
calculates the new prices along the horizon 𝛬[𝑘] ∶= max[0, 𝛬[𝑘] +
𝛾𝑆[𝑘]], where 𝛾 is the step size.

5: until max(𝑆[𝑘]) < 𝜖, where 𝜖 is a prespecified threshold, or the
maximum number of iterations reached.

6: Each subsystem implements the first component of the control
sequence 𝑢∗𝑖 [𝑘 ∶ 𝑘 +𝑁p − 1].

7: Let 𝑘 = 𝑘 + 1 and return to step 1.

3. Attacks in Lagrange-based DMPC

Algorithm 1 works in a reliable information exchange setting. If one
of the controllers is malicious, the whole system can fail. In particular,
we consider situations where one of the controllers is an attacker
that uses false information affecting performance. For example, the
attacker may manipulate the information shared with others to steer the
overall negotiation process. This situation can be seen as a Stackelberg
game (Başar & Srikant, 2002), where the attacker is the leader, and the
rest of the local controllers become followers. Three different ways in
which an attacker can take advantage by exchanging false information
with other controllers of the subsystems are presented in this section.

3.1. False reference

A fake reference attack consists of the strategic use of the reference
so as to steer the negotiation process. Any agent performing this attack
is setting the local reference in a way that does not correspond to its true
preference. Instead, it uses the altered reference as a means to make the
controlled signal follow its desired value more closely at the expense
of the rest of the controllers.

Let us consider that a controller 𝑚 ∈ {1,… , 𝑁} attacks the rest of
the controllers by using a false reference (𝑥𝑚∗

ref ) to bias the negotiation.
Therefore, the stage cost function optimized by controller 𝑚 is given by

𝓁∗
𝑚(𝑥𝑚[𝑘 + 1], 𝑢𝑚[𝑘]) = 𝓁𝑚(𝑥𝑚[𝑘 + 1] − 𝑥𝑚

∗
ref , 𝑢𝑚[𝑘]). (12)

The use of a false reference can steer the negotiation process to-
wards a result that is more beneficial for the attacker. In this sense,
there is no incentive for the controllers to be honest regarding their
real references because they can be better off in this way from a local
perspective. Therefore, other controllers could follow the same type
of strategic behavior, i.e., they could hide their preferences to bias

the negotiation. The resulting situation would be that of a dynamic
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non-cooperative game where malicious agents use their references
strategically to attain better local costs at the expense of those con-
trollers that set their optimization problems using values that reflect
their actual preferences. Therefore, compliant agents would behave in
a cooperative manner that would be exploited by malicious agents
pursuing their self-interest.

Finally, Figs. 1 and 2.b show the case of the false reference attack
for simple academic examples. Note that these figures are provided only
for illustration purposes and therefore details regarding the numerical
values employed are omitted.

3.2. Fake constraints

Another way in which the attacking controller 𝑚 can take advantage
rom its neighbor subsystem carrying out the optimization problem is
o use fake constraints, e.g.,

𝑚[𝑗] ∈ ∗
𝑚, ∀𝑗 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1], (13a)

𝑚[𝑗] ∈  ∗
𝑚 , ∀𝑗 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1], (13b)

here ∗
𝑚 and  ∗

𝑚 are the modified sets with fake constraints.
The remaining subsystems optimize their objective functions by

onsidering their original constraints while the attacker uses constraints
hat steer the negotiation process by reducing its own cost function.

Fig. 2.c illustrates the effect of this attack, in terms of the cost using
simple academic example with two agents and two shared variables.
s can be seen, the attack has a very strong impact on the negotiation
ecause it limits the set of feasible values of the negotiated variables.

.3. Fake prices

To obtain a better local cost, agent 𝑚 can modify its performance
ndex by including a new coefficient denoted as 𝛼 by solving

min
𝑢𝑚[𝑘∶𝑘+𝑁p−1]

𝑘+𝑁p−1
∑

𝑗=𝑘

(

𝓁𝑚(𝑥𝑚[𝑗 + 1]; 𝑢𝑚[𝑗]) +
𝜆[𝑗]𝑇

𝛼
𝐶𝑚𝑢𝑚[𝑗]

)

(14)

with 𝛼 > 1, subject to (11)(b)–(11)(d). The solution is biased towards
the interests of agent 𝑚 because (14) is equivalent to

min
𝑢𝑚[𝑘∶𝑘+𝑁p−1]

𝑘+𝑁p−1
∑

𝑗=𝑘

(

𝛼𝓁𝑚(𝑥𝑚[𝑗 + 1]; 𝑢𝑚[𝑗]) + 𝜆[𝑗]𝑇𝐶𝑚𝑢𝑚[𝑗]
)

, (15)

so that the global stage cost becomes

𝓁∗(𝑥[𝑘 + 1], 𝑢[𝑘]) =
∑

𝑗≠𝑚
𝓁𝑗 (𝑥𝑗 [𝑘 + 1], 𝑢𝑗 [𝑘]) + 𝛼𝓁𝑚(𝑥[𝑘 + 1], 𝑢[𝑘]), (16)

prioritizing the local cost of agent 𝑚 by 𝛼 during the execution of
Algorithm 1.

Again, Fig. 2.d shows the effect of this attack on the trajectory
followed by the negotiated variables and the corresponding local costs.
As can be seen, the scaling factor 𝛼 has a great power to promote the
local interest of the malicious agent in the negotiation.

3.4. Attack tuning

All the considered attacks correspond to malicious modifications of
local optimization problems so as to improve the corresponding utility
at the expense of the rest of the system. This is possible because the
distributed control algorithm considered, which is very popular due to
its simplicity, does not discourage this type of strategical behavior to
increase local performance.

How to optimize these modifications is problem specific and adjust-
ments may be required depending on the reactions of other subsystems.
Nevertheless, the local reference can be increased (decreased) above
its current value to force the raise (decrease) of the corresponding
controlled variable. Likewise, the constraints can be modified so as to
restrict the optimization to certain values which result more beneficial
for its local cost function. Finally, whenever the Lagrangian multipliers
are divided, the overall optimization will be driven towards the local
goal, with increased effects on local performance as 𝛼 grows.
4

4. Secure scenario-based DMPC

As seen in the previous section, the negotiation process can be
manipulated so that the values of the prices in the coordination mech-
anism deviate from their optimal values. It is necessary to implement a
method that relieves the potential effects of an intentional attack when-
ever this situation is detected. To this end, we propose a scenario-based
approach to robustify the control network against malicious controllers.
In particular, trustworthy (possibly audited) price information based on
historical data will be used to generate scenarios.

Since it is not possible to be certain about the type and number of
attacks that can occur, we must first set the target attack levels to apply
security measures, and then make sure that the actual attack level of the
system to be protected falls within the level of the measure applied with
some safety margins. To this end, the detection of attacks to activate the
defense mechanism is based on two simple criteria that can be easily
implemented.

Let 𝛬[𝑘] be the vector of prices calculated at time step 𝑘 and 𝛬[𝑘]
be a vector of prices with nominal values for the current situation of
the system obtained from historical data. The triggers proposed for the
activation of the defense mechanism are the following:

• Abnormal price values: this condition can be expressed as

|𝛬[𝑘] − 𝛬[𝑘]| ≥ 𝜅, (17)

where 𝜅 is a threshold that establishes a bound on the norm of
the deviation of the prices with respect to their expected values.

• Abnormal performance: if the performance of the overall system
with the current prices is worse than that with nominal prices,
the coordination is not working properly. Hence, the following
condition can be checked based on (9):

𝑔(𝛬[𝑘]) − 𝑔(𝛬[𝑘]) > 0. (18)

Note that (18) can be checked in a distributed fashion. Also, the
fact that the local version of (18) is satisfied for many agents can
be an indication that the coordination mechanism is under attack.

It must be noted that the conditions (17) and (18) are a little
onservative and it is possible that some attacks are not detected. For
xample, it may happen that

(𝛬[𝑘]) − 𝑔(𝛬[𝑘]) ≤ 0 (19)

ith the system being under attack. Such situation corresponds to the
ase where the attack leads to an increase of cost that is below the
ncrease generated by the use of nominal prices. Therefore, the effect
f the attack is not significant enough to be detected. Likewise, any
ttack whose effect on the prices satisfies

𝛬[𝑘] − 𝛬[𝑘]| < 𝜅, (20)

ith some constant 𝜅 > 0, will not be detected.

.1. Scenario generation

Scenario generation is necessary to relieve the effects of an at-
acker inside the network. The availability of audited historical data
s demanding for some problem settings, but is also reasonable for
ystems with periodic exogenous inputs such as power grids and water
etworks, where clear patterns can be identified depending on factors
uch as time, day of the week and weather. It might also be performed
sing a stochastic model to generate synthetic data (Schildbach &
orari, 2015), which is the approach we follow. Details are given

elow.
In order to generate different scenario evolutions, we assume a

ominal state is available at time step 𝑘 for a system with periodic state
rajectories. The initial value of the model used for the MPC problem
t each step is then perturbed by white noise as

[𝑘] = 𝐱 [𝑘] + 𝚗[𝑘], (21)
𝐢 𝐢
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Fig. 1. Result of the negotiation process carried out by two integrators that share the same manipulated variable: 𝑈1 and 𝑈2 represent the minimizer of the corresponding local
cost function, which penalizes quadratically the control effort and the reference tracking error. The use of a false reference by agent 1 modifies its true cost function (red line),
displacing it to the left (green dashed line), and the same happens with its minimizer, which becomes 𝑈 ∗

1 . As a consequence, the negotiated value is steered from 𝑈𝐷𝑀𝑃𝐶 to 𝑈 ∗
𝐹𝑅,

which is indeed closer to 𝑈1, attaining an improved local cost with respect to its true preferences (red line). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. Local cost level curves and trajectories of negotiated variables for a simple system with two input-coupled agents. The negotiation is performed under different conditions
over the manipulated variables 𝑢1 and 𝑢2 (prediction horizon 𝑁p = 1): (a) standard DMPC (upper-left); (b) false reference (upper-right); (c) fake constraints (lower-left); and (d)
fake prices (lower-right). In all the attacks considered, the negotiation outcome is closer to the minimizer of agent 1, resulting in increased costs for agent 2.

5



J.M. Maestre, P. Velarde, H. Ishii et al. Control Engineering Practice 114 (2021) 104879

a
a

h
𝛬
f
m

R
p
E
b
i
i
c

R
t
p
a
b
b
b

5
n

b
t
v

t
a
s
p
H
n
b
r
f
m

where �̃�𝐢[𝑘] represents the perturbed measurement of each state con-
taining noise 𝚗[𝑘] ∼  (𝜇, 𝜎2), i.e., a Gaussian distribution with mean 𝜇
nd standard deviation 𝜎. In this way, several experiments are repeated,
nd the price information 𝜆𝑖[𝑘] is collected as a scenario for each

state variable. Starting from the state 𝑥𝑖[𝑘], the FHOP provides us with
predictions of the state, input, and Lagrange multipliers. In particular,
the scenario generation FHOP is formulated as follows:

min
𝑢𝑖[𝑘∶𝑘+𝑁p−1]

𝑘+𝑁p−1
∑

𝑙=𝑘
(𝓁𝑖(𝑥𝑖[𝑙 + 1], 𝑢𝑖[𝑙]) + 𝜆[𝑙]𝑇𝐶𝑖𝑢𝑖[𝑙]), (22a)

subject to

𝑥𝑖[𝑙 + 1] = 𝐴𝑖𝑥𝑖[𝑙] + 𝐵𝑖𝑢𝑖[𝑙], ∀𝑙 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1], (22b)

𝑥𝑖[𝑙] ∈ 𝑖, ∀𝑙 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1], (22c)

𝑢𝑖[𝑙] ∈ 𝑖, ∀𝑙 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1]. (22d)

Note that 𝜆𝑖[𝑘 ∶ 𝑘+𝑁p−1] is computed at each time instant 𝑘. Hence, the
set of trustworthy price scenarios of each controller 𝑖 can be expressed
as

𝛬𝑖[𝑘] = {𝜆1𝑖 [𝑘 ∶ 𝑘+𝑁p−1], 𝜆2𝑖 [𝑘 ∶ 𝑘+𝑁p−1],… , 𝜆𝑁𝑠
𝑖 [𝑘 ∶ 𝑘+𝑁p−1]}, (23)

where 𝑁𝑠 is the number of scenarios generated, 𝜆𝑠𝑖 ∈ R𝑛𝑐 corresponds
to the 𝑠th scenario of the controller 𝑖 for 𝑠 ∈ [1, 𝑁𝑠]. These scenarios are
stored in a database. Note that offline training is carried out to store
that information in a database to be used in an online way.

Remark 2. Since our method relies on using data from previous
executions, it is more suitable for periodic systems and repetitive tasks.
Non-periodic-behavior systems could be considered as well if enough
information from the past is available so that prices can be analyzed
for any possible system state.

4.2. Multi-scenario DMPC (MS-DMPC)

MS-DMPC provides robustness by computing a unique control input
that ensures the satisfaction of the local constraints for all the potential
trajectories determined by the set of scenarios.

One issue that deserves special attention is the number of scenarios
(𝑁𝑠) that guarantees the robustness of the whole system. A higher
number of scenarios results in an over conservative control input and
may lead to significant computation burden. The problem formulation
of MS-DMPC for each controller 𝑖 ∈ [1, 𝑁] at each time instant 𝑘 is
expressed as

min
𝑢𝑖[𝑘∶𝑘+𝑁p−1]

𝑁𝑠
∑

𝑠=0
𝜌𝑠𝑖

𝑘+𝑁p−1
∑

𝑗=𝑘
(𝓁𝑖(𝑥𝑠𝑖 [𝑗 + 1], 𝑢𝑖[𝑗]) + 𝜆𝑠𝑖 [𝑗]

𝑇𝐶𝑖𝑢𝑖[𝑗]), (24a)

subject to

𝑥𝑠𝑖 [𝑗 + 1] = 𝐴𝑠
𝑖𝑥

𝑠
𝑖 [𝑗] + 𝐵𝑖𝑢𝑖[𝑗], (24b)

𝑥𝑠𝑖 [𝑗] ∈ 𝑖, ∀𝑗 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1], ∀𝑠 ∈ [0, 𝑁𝑠], (24c)

𝑢𝑖[𝑗] ∈ 𝑖, ∀𝑗 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1], (24d)

where 𝜌𝑠𝑖 is the probability of occurrence of each scenario 𝑠, which
depends on how frequently it appears in the scenario database. Hence,
∑𝑁𝑠

𝑠=0 𝜌
𝑠
𝑖 = 1. The set of scenarios for each controller under the defense

mechanism is formulated as
{

𝜆0𝑖 [𝑘 ∶ 𝑘 +𝑁p − 1]
}

∪ 𝛬𝑖[𝑘],

where 𝜆0𝑖 [𝑘 ∶ 𝑘 + 𝑁p − 1] results from the price update at each inner
iteration of the dual decomposition DMPC algorithm. Therefore, the
negotiation process when the defense mechanism is active combines
at each inner iteration the current value of the sequence 𝜆0𝑖 and the
trustworthy price scenarios. Note that the combination is weighted
and the weights need not be constant, i.e., they could be updated at

each time step to allow for the modulation of the defense mechanism.

6

Table 1
Parameters of the Plant.

Parameter Value Parameter Value

ℎ0
1 0.57 m 𝑎1 1.31 × 10−4 m2

ℎ0
2 0.62 m 𝑎2 1.507 × 10−4 m2

ℎ0
3 0.58 m 𝑎3 9.627 × 10−5 m2

ℎ0
4 0.64 m 𝑎4 8.31 × 10−5 m2

𝑞0𝐴 1.63 m3∕h 𝛾𝑎 0.30

𝑞0𝐵 2.00 m3∕h 𝛾𝑏 0.40

𝑆{1,2,3,4} 0.03 m2

Therefore, the weight 𝜌𝑠𝑖 assigned to the sequence of current prices
𝜆0𝑖 [𝑘 ∶ 𝑘+𝑁p −1] can be reduced as long as abnormal behavior persists
or restored as current prices converge again to their expected values.
In particular, 𝜌𝑠𝑖 = 0 reflects that current prices cannot be trusted
whereas 𝜌𝑠𝑖 = 1 indicates that the coordination system is working as
expected. In this work, we consider an abrupt transition of 𝜌𝑠𝑖 between
the previously mentioned extreme cases once an attack is detected, but
smoother update rules are also possible.

Remark 3. The scenarios in �̂�𝑖[𝑘 ∶ 𝑘+𝑁p−1] are based on trustworthy
istorical data obtained in similar situations. For this reason, the set
̂𝑖[𝑘] may change with time. How to retrieve the most appropriate 𝛬𝑖[𝑘]
or the current state of the system is a matter of future study. At this
oment, the topic goes beyond the scope of this work.

emark 4. The probability for each scenario can be modified de-
ending on how much the local agent suspects that it is under attack.
ach agent can learn based on previous behaviors and when it has
een attacked. In this manner, the confidence of the information from
ts neighbors is reduced in the event of an attack. Otherwise, it is
ncreased. For example, 𝜌0𝑖 = 0 if there is no confidence in the
oordination process.

emark 5. The defense mechanism is based on prices, which capture
he interlocking influence from the rest of the system. From this view-
oint, prices may be abnormal due to the influence of more than one
gent. The only issue here comes if one agent modifies its constraints,
ut even this can be mitigated by switching to a decentralized operation
ased on historical prices (e.g., if the probability of the current scenario
ecomes zero).

. Theoretical and algorithmic properties of the defense mecha-
ism

The proposed method has been designed as a defense mechanism to
e used when attacks are detected. In this section, we briefly discuss
he consequences that follow from its utilization from a theoretical
iewpoint.

In the first place, we recall that dual decomposition is a coordina-
ion mechanism that allows solving a centralized control problem in

distributed fashion. In particular, it provides a way of decoupling
hared constraints so that the computation of the solution of the control
roblem can be performed by different entities in the control network.
ence, any theoretical property such as stability or robustness that
eeds to be guaranteed must be derived from the optimization problem
eing distributed. Nevertheless, any modification of the prices with
espect to their optimal values makes the distributed solution different
rom the centralized one. For this reason, the impact of the defense
echanism is as follows:

• Feasibility of the local optimization problems: prices enter as
additional linear terms on the cost of the optimization problem.

Hence, they do not affect the domain of the value function of
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the local control law. For this reason, the feasibility of local
quadratic programming problems is not endangered by the use
of the defense mechanism.

• Convergence of the DMPC algorithm: this property depends on
the update of the prices, which is performed by means of a
gradient search. However, to ensure convergence, the probability
𝜌0𝑖 assigned to 𝜆0𝑖 [𝑘 ∶ 𝑘+𝑁p −1] has to be greater than zero. Note
that if 𝜌0𝑖 = 0, the agent using the defense mechanism becomes
disconnected from the updates of the prices. This will steer the
coupled variables towards the values set by the defender. Hence,
if the attacker is using a fake constraint set that excludes the
values of the shared variables used by the defender, convergence
will be lost and the algorithm will terminate when the maximum
number of iterations is reached. In order to avoid issues in this
regard, we will assume that all coupled variables are subject to
the same set of constraints and 𝜌0𝑖 > 0.

• Coupled constraints satisfaction: in dual decomposition, when-
ever the iterations are stopped before convergence has been
attained, the value of the local variables related with the cou-
pling constraints may differ. In other words, iterates need not
be feasible regarding the satisfaction of coupling constraints. In
this situation, a projection onto the feasible set to fulfill these
constraints is necessary. Given that dual decomposition typi-
cally converges slowly, it is not rare that iterations have to be
stopped prematurely due to the timing constraints imposed by
the sampling rate. Here, the same situation may occur and the
same solutions used in standard dual decomposition have to be
employed, e.g., a coordinator layer makes the projection, agents
agree to implement a mean value of their shared variables, and
so on. Nevertheless, note that there is no problem regarding the
satisfaction of coupled constraints when convergence is attained.
Hence, from a practical viewpoint, there is no impact of the
defense mechanism in this regard.

• Local constraints satisfaction: these constraints are satisfied be-
cause they depend only on local optimization variables. Given
that the local problems are feasible, they will be satisfied.

• Stability: this property is inherited from the centralized control
problem being distributed. Depending on how it is achieved,
the attacks and the defense mechanism may have an impact
on it. In particular, there is a high risk of losing the stability
guarantees of the DMPC scheme if the property depends on the
fulfillment of coupled constraints, as was shown before, e.g., a
terminal region/terminal cost approach. In the case where the
satisfaction of this property is critical, it is advisable to use robust
formulations of the local controllers with respect to the value of
the shared variables. Also, the use of a coordination layer or a
supervisor may help to guarantee stability.

• Optimality: given that the distributed solution is not computed
with optimal price values, there is a loss of optimality with the
defense mechanism. Nevertheless, note that the attack generates
a loss of optimality as well, so this property was lost in any case.
The loss of optimality can be quantified. To this end, let us define

𝑔𝑖(𝜆𝑖) = min
𝑢𝑖[𝑘∶𝑘+𝑁p−1]

𝑘+𝑁p−1
∑

𝑗=𝑘
(𝓁𝑖(𝑥𝑖[𝑗 + 1], 𝑢𝑖[𝑗]) + 𝜆𝑖[𝑗]𝑇𝐶𝑖𝑢𝑖[𝑗])

(25)

subject to (11)(b)–(11)(d), where 𝜆𝑖[𝑗] is the price used by agent
𝑖 at time 𝑗. Here, we take

𝜆𝑖[𝑗] =
𝑁𝑠
∑

𝑙=0
𝜌𝑠𝑖𝜆

𝑙
𝑖[𝑗] (26)

if agent 𝑖 is implementing the defense mechanism. Note that the
attacker may be using fake prices. It can be easily checked that
7

the following inequalities must hold:
𝑁
∑

𝑖=0
𝑔𝑖(𝜆𝑖[𝑗]) ≥

𝑁
∑

𝑖=0
𝑔𝑖(𝜆𝑖[𝑗]) ≥

𝑁
∑

𝑖=0
𝑔𝑖(𝜆∗𝑖 [𝑗]) ≥

𝑁
∑

𝑖=0
𝑔𝑖(𝟎), (27)

where 𝜆∗𝑖 [𝑘] is the optimal price obtained by standard dual decom-
position when no attack is performed and 𝜆𝑖[𝑘] are nominal values
according to (18). As can be seen, the global cost in case of attack
is greater than the nominal cost (according to the trigger for the
activation of the defense mechanism) and the optimal global cost,
which in turn is greater than the sum of local costs when they
are optimized selfishly. Note that the first, second, and fourth
expressions in (27) can be easily calculated during the iterations
of the DMPC scheme. Hence, (27) provides us with a means
to calculate a suboptimality bound of the dual decomposition
scheme when the defense mechanism is implemented.

6. Case study and results

In this section, we present a case study based on experiments with
the four tanks system (Johansson, 2000), which can be partitioned into
two subsystems. The case study is used to test the effects of attacks with
standard dual decomposition DMPC and the aforementioned scenario
based approaches to robustify the overall system. We must remark
that the attacks and defense mechanisms applied are only given for
illustration purposes. The attacks are relatively simple and have not
been optimized by any means. The same holds for the defense mecha-
nism proposed. Instead, we have used a reduced set of the scenarios to
show the effectiveness of the defense mechanism even if it is applied
empirically.

6.1. Description of the four tank plant

The four tank plant used consists of a modification to the four
interconnected water tanks presented by Johansson (2000) to test
control techniques using industrial-type instrumentation and control
systems (Alvarado et al., 2011). A picture of the plant used in our
experiment is shown in Fig. 3a. A plant diagram can be seen in Fig. 3b.
It is composed of four tanks: two top tanks (3 and 4), which discharge
into two bottom ones (1 and 2). Each tank is filled with the flow from
a storage tank situated at the bottom of the plant by two pumps (𝑞𝐴
and 𝑞𝐵). The input flows are regulated by three-way valves.

The system is modeled as follows:
𝑑ℎ1
𝑑𝑡

= −
𝑎1
𝑆1

√

2𝑔ℎ1 +
𝑎3
𝑆3

√

2𝑔ℎ3 +
𝛾𝑎
𝑆1

𝑞𝐴, (28)

𝑑ℎ2
𝑑𝑡

= −
𝑎2
𝑆2

√

2𝑔ℎ2 +
𝑎4
𝑆4

√

2𝑔ℎ4 +
𝛾𝑏
𝑆2

𝑞𝐵 , (29)

𝑑ℎ3
𝑑𝑡

= −
𝑎3
𝑆3

√

2𝑔ℎ3 +
(1 − 𝛾𝑏)

𝑆3
𝑞𝐵 , (30)

𝑑ℎ4
𝑑𝑡

= −
𝑎4
𝑆4

√

2𝑔ℎ4 +
(1 − 𝛾𝑎)

𝑆4
𝑞𝐴, (31)

here 𝑥𝑖 is the flow level of each 𝑖th tank, 𝑆𝑖 is the cross section, 𝑎𝑖
s the discharge constant, 𝑔 is the value of the gravity, and 𝛾𝑗 is the
atio of the three-way 𝑗th valve, with 𝑗 ∈ {𝑎, 𝑏}. The values of these
arameters are given in Table 1.

The centralized discrete-time linear time-invariant model was ob-
ained at operating point (𝑞0𝐴, 𝑞0𝐵 , and ℎ0𝑖 ), with a sample time of 5 s.
he system is defined as

[𝑘 + 1] =

⎡

⎢

⎢

⎢

⎢

⎣

0.9325 0 0.0419 0
0 0.9297 0 0.0390
0 0 0.9566 0
0 0 0 0.9595

⎤

⎥

⎥

⎥

⎥

⎦

𝑥[𝑘]

+

⎡

⎢

⎢

⎢

⎢

0.0134 0.0006
0.0006 0.0179

0 0.0272

⎤

⎥

⎥

⎥

⎥

𝑢[𝑘], (32)
⎣

0.0317 0
⎦
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Fig. 3. The four tank system.
Fig. 4. Water levels and cumulative costs by using standard DMPC approach.
where 𝑥𝑖[𝑘] = ℎ𝑖[𝑘] − ℎ0𝑖 for 𝑖 ∈ {1, 2, 3, 4} and 𝑢𝑗 [𝑘] = 𝑞𝑗 [𝑘] − 𝑞0𝑗 for
𝑗 ∈ {𝐴,𝐵}, for each time instant 𝑘 ∈ Z+. Also, Table 1 shows the
parameters employed in the water-tank process.

In order to ensure the correct performance of the plant and its
equipment, the system is subject to constraints given by

0.2m ≤ ℎ1[𝑘], ℎ3[𝑘] ≤ 1.36m, (33a)

0.2m ≤ ℎ2[𝑘], ℎ4[𝑘] ≤ 1.36m, (33b)

0m3∕h ≤ 𝑞𝐴[𝑘] ≤ 3.26m3∕h, (33c)

0m3∕h ≤ 𝑞 [𝑘] ≤ 4m3∕h. (33d)
𝐵

8

The optimization problem for this system is given by

𝐽 (𝑥[𝑘], 𝑢[𝑘]) = (34)

min
𝑢[𝑘∶𝑘+𝑁p−1]

𝑘+𝑁p−1
∑

𝑙=𝑘

(

𝑥[𝑙 + 1] − 𝑥ref
)𝑇 𝑄

(

𝑥[𝑙 + 1] − 𝑥ref
)

+ 𝑢𝑇 [𝑙]𝑅𝑢[𝑙],

subject to (33). Here, 𝑥ref is the given reference level for the state, and

𝑄 ∈ R𝑛𝑥×𝑛𝑥 and 𝑅 ∈ R𝑛𝑢×𝑛𝑢 are the weights for the states and the

control inputs, respectively.
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Fig. 5. Water levels and cumulative costs by using a false reference attack.
.2. Standard dual decomposition DMPC

The overall system can be decomposed into two input-coupled sub-
ystems following the partitioning proposed in Alvarado et al. (2011),
hich accounts for its structure and the coupling between subsystems
hen pumps are activated. In particular, the first subsystem is com-
osed of tanks 1 and 3, and the second one is composed of tanks 2 and
. The optimization problem for each subsystem 𝑖 is expressed as

𝑖 ∶ 𝐽𝑖(𝑥𝑖, 𝑢𝑖) = (35a)

min
𝑢𝑖[𝑘∶𝑘+𝑁p−1]

𝑘+𝑁p−1
∑

𝑙=𝑘

(

𝑥𝑖[𝑙 + 1] − 𝑥𝑖ref
)𝑇 𝑄𝑖

(

𝑥𝑖[𝑙 + 1] − 𝑥𝑖ref
)

+ 𝑢𝑇𝑖 [𝑙]𝑅𝑖𝑢𝑖[𝑙],

subject to

𝑥𝑖[𝑙 + 1] = 𝐴𝑖𝑥[𝑙] + 𝐵𝑖𝑢𝑖[𝑙], ∀𝑙 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1], (35b)

𝑥𝑖[𝑙] ∈ 𝑖, ∀𝑙 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1], (35c)

𝑢𝑖[𝑙] ∈ 𝑖, ∀𝑙 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1]. (35d)

Also, both subsystems are subject to the coupling constraint

𝑢1[𝑙] = 𝑢2[𝑙], ∀𝑙 ∈ [𝑘 ∶ 𝑘 +𝑁p − 1]. (36)

Here 𝑥1[𝑘] = [ℎ𝑖[𝑘] − ℎ0𝑖 ]𝑖∈{1,3}, 𝑥2[𝑘] = [ℎ𝑖[𝑘] − ℎ0𝑖 ]𝑖∈{2,4}, and 𝑢1[𝑘] and
𝑢2[𝑘] correspond to 𝑞𝐴[𝑘] − 𝑞0𝐴 and 𝑞𝐵[𝑘] − 𝑞0𝐵 , respectively. Moreover,
𝐴1, 𝐴2, 𝐵1, and 𝐵2 are time invariant matrices of the system.

The experiments were carried out by using a prediction horizon of
𝑁p = 5 along a test time of 20 min, i.e., 240 time steps. The reference
levels were established as ℎ1ref = 0.5 m, ℎ2ref = 0.6 m, ℎ3ref = 0.7 m,
and ℎ4ref = 0.8 m. Moreover, 𝑄 and 𝑅 were respectively set as 𝐼2×2
and 0.01𝐼2×2 for both subsystems to prioritize the reference tracking
over the control effort, with 𝐼2×2 being the unit matrix of corresponding
dimension.

In our experiments, the setpoint has been intentionally set to make

it difficult for the agents to control the system. Even if no attacks are

9

performed, the control system is unable to reach its target, forcing local
controllers to negotiate in order to attain a trade-off between their
corresponding goals. In this condition, it is easier to see how one agent
can take advantage of the other one by manipulating the negotiation
process. Likewise, the four-tank plant is very versatile and the problem
setup has been slightly modified so as to increase the coupling between
the subsystems. In particular, we have included a reference value for
each tank, whereas it is usual to focus only on the two bottom tanks,
which are considered as the outputs of the plant (Alvarado et al., 2011;
Johansson, 2000).

Remark 6. A reachable setpoint might seem a better choice for the
experiments, but it brings several complications. To begin with, what
is the selfish incentive that the attacker has to modify its local problem
if it is at equilibrium? At equilibrium it reaches the lowest possible cost
according to its true preferences, and therefore there is no possibility to
be better off by altering its local problem. Clearly, it might attempt to
modify the transient so as to attain a better trajectory and accumulated
cost as it reaches its target, but this requires dynamically optimizing
the attack in a way that is beyond the scope of our work. Another
possibility is to consider that the attacker has a purely malicious
behavior and desires to disrupt the normal operation of the system,
maintaining its attack at all times. While this will surely modify the
steady-state values (as it is illustrated for example in Figs. 1 and 2),
it deviates from the assumption of rationality in the attacks that is
considered in our work. All things considered, and given that the focus
of the article is on the effects of the attacks and the defense mechanism,
the setpoint was intentionally set unreachable to avoid these issues and
make it difficult for the agents to control the system. Nevertheless,
if this would not be the case, our experiments show that the system
variables of the agents using the defense mechanism will tend to their
nominal values.

Fig. 4 shows the results for both agents obtained by using the

standard dual decomposition based DMPC. Note that once convergence
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Fig. 6. Water levels and cumulative costs by using a ‘‘fake constraints’’ approach.
Fig. 7. Water levels and cumulative costs by using a fake prices approach.
l

6

is attained, the performance of the distributed control system becomes

that of centralized MPC. The water level of each tank and the cumu-

lative cost for each agent are shown in this figure. Notice that the

cumulative cost of agent 1 is higher than that of agent 2. The final

water levels in each tank were: ℎ = 0.64 m, ℎ = 0.70 m, ℎ = 0.73
1 2 3 p

10
m, and ℎ4 = 0.72 m. The red dashed lines represent the given reference
evels for each tank.

.3. Attacks in the control network

Fig. 5 shows the results by carrying out a false reference ap-
roach by agent 1. The false reference for the controller 1 was set
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Fig. 8. Water levels and cumulative costs by using a MS-DMPC and fake prices approaches.
Fig. 9. Input signal evolution at time instant 𝑘 = 30 for standard DMPC, attacker agent,
and MS-DMPC during the negotiation process.

as [ℎ∗1ref ;ℎ
∗
3ref ] = [0; 0.58]. This false reference cheats agent 2 and

akes advantage from the coordination algorithm. As can be seen, the
umulative cost for agent 1 is reduced remarkably at expenses of agent
, which sees its cumulative cost increased. The final water levels for
gent 1 are closer to the original references.

The results obtained by using the fake constraints approach are
hown in Fig. 6. The fake constraints for control inputs which corre-
pond to the controller 1 were set as

∈  ∗, (37)
1 1

11
Fig. 10. Cumulative cost by using standard DMPC, attacks, and defense scenario-based
methods.

where  ∗
1 = 0.5 × 1. As can be seen, the optimization process

is affected and reduces the cost for agent 1. The water level that
corresponds to tank 1 is closer to the given reference level (|ℎ1 − ℎ1ref |
= 0.039 m) compared to the standard DMPC (|ℎ1 − ℎ1ref | = 0.124 m).
In this way, controller 1 takes advantage of the negotiation process and
obtains benefits at the cost of performance losses in the other controller.

Fig. 7 shows the water levels of each tank and the cumulative cost
for both subsystems by carrying out a fake prices approach. This attack
was performed by using the coefficient 𝛼 = 10 into the optimization
problem of controller 1. Notice that the cumulative cost for agent 2 is
higher than that obtained by the attacker. Also, the water levels in tank
4 is farther from its original reference.
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Fig. 11. Evolution of control actions using standard DMPC, attacks, and defense scenario-based methods.
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As it has been shown, the malicious controller always increases the
umulative cost of the second agent. The malicious modifications of the
irst agent’s problem lead to a new minimizer, generating an increase
f costs with respect to the original overall cost function. Nevertheless,
he net impact on the trajectory of each specific variable of the second
gent is uncertain, and some of them might even improve despite the
ncrease in local costs. For example, Figs. 5 and 7 show that under the
alse reference and fake prices attacks, the trajectory of the level of
ank 2 reduces its steady-state error, while in tank 4, it is increased.
his results in a higher cumulative cost of agent 2 due to the effect
f the attacker. Moreover, in a problem with multiple agents, it might
ven happen that some subsystems different from the malicious one
ecrease their costs despite the increase of overall cost. Therefore,
hile the malicious agent will degrade global performance pursuing

ts self interest, it is necessary to evaluate carefully its effect in the rest
f the subsystem’s variables and costs.

.4. Defense mechanism

In this subsection, the scenario defense mechanism described in
ection 4 is applied to obtain a certain robustness in the attacked
gent. In particular, agent 2 carries out the optimization problem
y considering a collection of 𝑁𝑠 = 9 trustworthy price scenarios
btained from historical data, where each scenario has a probability
f occurrence of 𝜌𝑠 = 1∕10. Also, the corresponding prices have been
isturbed by a Gaussian noise with mean and standard deviation values
eing 0.087 and 0.0045, respectively. Fig. 8 shows the water levels for
ach tank and the cumulative costs when agent 2 uses the MS-DMPC
echanism to reduce the impact of the fake prices attack of agent 1. In

omparison to the vulnerable case in Fig. 7, the cumulative costs and
lots are closer to those obtained under a reliable negotiation process
n Fig. 4.

To highlight the advantages of the MS-DMPC approach behind the

onsensus process, Fig. 9 shows the evolution of the input signal for c

12
the standard DMPC, the attack performed by fake prices attack, and
the proposed MS-DMPC mechanism at time instant 𝑘 = 30. At this time
tep, the negotiation between the controllers to attain an agreement
egarding the value of the control action converges after 63 iterations.
s can be seen in the figure, the agreed value can be steered by the
ttacker. However, the MS-DMPC mechanism creates a consensus close
o that under the normal operation.

Fig. 10 shows the cumulative cost for each agent and the cumulative
ost of the overall system for the attack schemes and the results
btained with the MS-DMPC. Notice that the consequences of the
ttacks regarding cumulative costs are reduced. In this sense, agent
increases its cumulative cost while the cumulative cost function of

gent 2 is reduced remarkably compared with the cumulative costs
btained under attack.

Fig. 11 presents the evolution of the control signals during the
ifferent situations assessed. In particular, the upper row shows how
ontrol signals 1 and 2 deviate from standard operation in case of
ttack. The lower row presents the results when the proposed heuristic
efense mechanism is applied. Taking into account that the control
ctions are the outcome of the distributed method – they are generated
rom the minimizer of the overall constrained optimization problem
, it is clear that larger deviations happen when no defensive mea-
urements are implemented. These effects are evident both during the
nitial transient phase and the steady-state values that result from
he negotiation between local controllers. In particular, only the fake
onstraints attack seems to succeed in steering control signal 2 in both
ituations. However, this is no surprise given the previously explained
easons, i.e., active constraints limit the value that control signals can
ave during the negotiation.

Regarding the moment when the proposed defensive mechanism is
mplemented, an attack detection trigger can be activated using the
uboptimality bounds of the dual decomposition scheme in (27). In this
egard, costs are very revealing. As shown by Fig. 10, the cumulative
ost of the overall system when using standard DMPC is 9.59, whereas
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this value increases to 35.39 when the system is under a false price
attack. Once this abnormal behavior is detected, the defensive method
is able to mitigate the harm, decreasing the cumulative cost to 11.89.

7. Conclusions and future directions

In this paper, cyber-security issues in DMPC have been considered.
An analysis of the vulnerability of a popular Lagrange-based DMPC
scheme has been presented. In particular, we have shown how a mali-
cious agent can use false information in its local optimization problem
or in the information exchange to steer the coordination when dual
decomposition is used. By a case study involving a real distributed
system as the four tank plant, we have carried out and illustrated the
potential of these attack mechanisms. We have also addressed the prob-
lem of providing robustness to DMPC for defending it from a malicious
controller by implementing scenario-based mechanisms. Moreover, we
have also analyzed the main theoretical and algorithmic properties of
dual decomposition when this defense mechanism is applied.

From a local viewpoint, prices capture the interlocking influence of
the rest of the system and are the means through which coordination
is canalized. The proposed defense mechanism is triggered by the
detection of abnormal performance and/or prices for the current state
of the system. After an attack has been detected, the defense method
starts employing price scenarios from previous executions of the system
to mitigate its impact. To this end, current prices are weighted and
combined with historical price scenarios. Moreover, it is also possible
to have local subsystems working solely based on price scenarios to
obtain a nominal level of coordination, thus ignoring the attempts of
the malicious agent to steer the negotiation. Therefore, the proposed
method has the potential to deal with attacks different than those
that have been explicitly considered in our experiments. For example,
it could handle a situation in which the attacker combines two of
the considered attacks (e.g., fake reference and fake prices) and also
scenarios with more than one malicious subsystem.

Finally, we have considered in this work the case of insider attacks,
i.e., the case where one agent within the distributed system becomes
malicious. We believe that the proposed defense mechanism might
deal with other type of attacks as well, e.g., jamming attacks that
disrupt the communication between local controllers, but this topic
deserves careful research to define first the main attacks of interest
and later on a proper benchmark with appropriate key performance
indicators. Indeed, this is a very relevant topic that has not been ex-
plicitly addressed in the DMPC literature in a systematic and structured
way. Therefore, we plan to explore in the future the mitigation power
of the proposed method against other common cyberattacks and also
in different situations, e.g., systems with many agents that include
several attackers. Likewise, it will be interesting to confirm whether
the defense mechanism implemented in one agent can protect other
affected subsystems that are not using this method. Furthermore, the
regulation of the parameter 𝜌𝑙𝑖 as an index of trustworthiness of each
scenario will be investigated. It can be considered as a confidence
index given by the neighbors based on their experiences in previous
consensus processes.Likewise, future research will focus on formalizing
more attack models and defense mechanisms, analyzing their effects,
and considering other case studies in the domains of power systems
and logistics.
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