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a b s t r a c t

This paper is concerned with the strong product G⊠H of two graphs, G and H , and bounds
on the Wiener index, Hosoya polynomial and the average eccentricity in this family of
graphs. We first introduce the distance sequence of a connected graph. It is defined as
the sequence of the distances between all unordered pairs of vertices. We prove that the
distance sequence of any connected graph of given order and size is dominated by the
distance sequence of the so-called path-complete graph. This is the main tool to prove
general results as, among others, that, ifG is a connected graph of given order and size, then
the Wiener index of G ⊠ H , for every fixed connected graph H , and the Hosoya polynomial
W (G, x), for every x ∈ R with x ≥ 1, are maximised if G is a path-complete graph. We
also investigate the average eccentricity of G ⊠ H . We show that for fixed H , and G chosen
from among all connected graphs of given order n, it is maximised if G is a path of the same
order.We also determine a graph Gn,δ of order n andminimum degree δ such that for every
connected graphG of order n andminimumdegree δ, the average eccentricity ofG⊠H never
exceeds the average eccentricity of Gn,δ ⊠ H by more than 3.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Distances between the different points of a network are of great importance in the analysis of the network, and so distance
measures are important indicators for communication efficiency in a network. In this paper we consider two distance
measures: the Wiener index and the average eccentricity. The Wiener index of a connected graph G with vertex set V is
defined by

W (G) =

∑
{u,v}⊆V

d(u, v),

where d(u, v) denotes the distance between u and v vertices in G and the sum is taken over all unordered pairs of
vertices. The Wiener index found numerous applications in chemistry [25] and it is currently much investigated (see for
example [1,14,19,20]).

The Wiener index is closely related to the average distance µ(G) of G, defined as
(

|V |

2

)−1
W (G). The Hosoya polynomial

(also called Wiener Polynomial), introduced by Hosoya in [18] is the polynomial W (G, x) =
∑

{u,v}⊆V x
d(u,v), which has been

and recently studied [8,9,26,30].

✩ This research was supported by the Ministry of Economy and Competitiveness, Spain, under project MTM2014-60127-P, the University of Seville,
Spain and the University of Johannesburg, South Africa.
* Corresponding author.

E-mail addresses: rociomc@us.es (R.M. Casablanca), pdankelmann@uj.ac.za (P. Dankelmann).

https://doi.org/10.1016/j.dam.2018.07.009
0166-218X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.dam.2018.07.009
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2018.07.009&domain=pdf
mailto:rociomc@us.es
mailto:pdankelmann@uj.ac.za
https://doi.org/10.1016/j.dam.2018.07.009


106 R.M. Casablanca and P. Dankelmann / Discrete Applied Mathematics 263 (2019) 105–117

The average eccentricity (see, for example, [6]) is defined as the arithmetic mean of the eccentricities of the vertices,

avec(G) = |V |
−1

∑
v∈V

ecc(v),

where the eccentricity ecc(v) of a vertex v is defined as the distance to a vertex farthest from v.
Graph products play an important role in the design of networks since they often allow us to build larger versions of a

network preserving certain desirable properties. For designing large-scale interconnection networks, the graph products are
useful methods to obtain large graphs from smaller ones whose invariants can be easily calculated. For more information on
this topic we refer the reader to the book by Hammack, Imrich and Klavžar [16]. We have focused on the strong product of
graphs, which is one of the classical graph products, and there is an extensive literature on it. The strong product G ⊠ H of
two connected graphs G and H is the graph with vertex set V (G) × V (H) in which two vertices (a, u) and (b, v) are adjacent
if a = b and uv ∈ E(H), or ab ∈ E(G) and u = v, or ab ∈ E(G) and uv ∈ E(H). From the definition, it clearly follows that the
strong product of two graphs is commutative and that it is connected if and only if both graphs are connected.

While the Wiener index of the cartesian product and some other products of graphs can be expressed relatively easily
in terms of the Wiener index and other basic information of the two component graphs (see [32]), expressing the Wiener
index of the strong product of graphs seems to be less simple (see [3,23]). The same holds true for the average eccentricity
(see [7,12]). Hence it is reasonable to consider bounds on theWiener index and the average eccentricity of the strong product
of graphs.

The following basic result on theWiener index has been proved independently by Doyle and Graver [10], Lovász [22] and
Plesník, [24].

Theorem 1 ([10,11,22,24]). Let G be a connected graph of order n. Then

W (G) ≤
n(n + 1)(n − 1)

6
.

Equality holds if and only if G is a path.

The starting point of our investigations is a generalisation by Casablanca, Favaron and Kouider [3], showing that for every
fixed, connected graphH , theWiener index ofG⊠H , whereG ranges over all connected graphs of given order n, is maximised
if G is the path Pn. The special case H = K1 in Theorem 2 is Theorem 1.

Theorem 2 ([3]). Let H be a connected graph. If G is a connected graph of order n, then

W (G ⊠ H) ≤ W (Pn ⊠ H),

with equality only if G is a path.

We strengthen this result in different ways. In Section 3 we present some results on the distance sequence of a graph,
defined as the non-decreasing sequence of the distances between all unordered pairs of vertices. These form the basis for
the following two sections. In Section 4 we generalise Theorem 2, showing that if we prescribe not only the order but also
the size of G, then for every fixed, connected graph H , the Wiener index of G ⊠ H is maximised if G is the so-called path-
complete graph PKn,m, defined in Section 2. We also strengthen Theorem 2 for G being a 2k-connected graph. In this case
W (G ⊠ H) is maximised if G is the kth power of a cycle. We also determine graphs G that minimise W (G ⊠ H) for every
fixed, connected graph H for G being a graph of given order and size, a tree, a planar graph, an outerplanar graph, a graph
with no clique Kr where r ∈ N, or a graph of given order and diameter. In Section 5 we apply the results from Section 2 to
derive some properties of the Hosoya polynomial W (G, x). We show that every connected graph G and for x ∈ R we have
W (G, x) ≤ W (Pn, x) if x ≥ 1 and W (G, x) ≥ W (Pn, x) for x ≤ 1. We show similar relations with Pn replaced by PKn,m if G has
order n and sizem, with Pn replaced by Ck

n if G has order n and is 2k-connected. We also show that the opposite inequalities
hold for certain graphs. In Section 6 we obtain results for eccentric sequences of graphs, similar to those for the distance
sequence in Section 3. In the final section, Section 7 we obtain results for the average eccentricity of G ⊠ H , similar to those
for the Wiener index in Section 4 by determining graphs G that maximise avec(G ⊠ H) where G is a graph of given (i) order,
(ii) order and (even) connectivity, and (iii) order and minimum degree.

2. Notation

Our notation is as follows. If G is a graph, thenwe denote its vertex and edge set by V (G) and E(G), respectively. We use nG
andmG for the order and size of G, respectively. If v is a vertex, then NG(v) and NG[v] are the neighbourhood of v, i.e., the set
of vertices adjacent to v, and the closed neighbourhood, i.e., the set NG(v) ∪ {v}, respectively. The distance dG(u, v) between
two vertices u and v is theminimumnumber of edges on a (u, v)-path in G. The diameter of G, d(G), is themaximumdistance
between two vertices of G. If v is a vertex of G and k ∈ N, then Nk(v) denotes the set of vertices at distance exactly k from v.
By N≤k(v) we mean the set

⋃k
i=1Ni(v). The distance between a vertex v and a set W ⊆ V (G) is defined as minw∈WdG(v, w).

Let degG(v) be the degree of v, i.e., the cardinality of NG(v), and δ(G) is the minimum degree of G. If there is no ambiguity we
often drop the subscript or argument G.
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By Pn, Cn, Kn and Ka,b we denote the path, cycle, complete graph and complete bipartite graph with partite sets of
cardinality a and b, respectively, of order n. The graph with n vertices and no edges is denoted by Kn. The kth power Gk

of a graph G is the graph with vertex set V (G) in which two vertices are adjacent if their distance is not more than k. If G1 and
G2 are two graphs, then their sum G1 + G2 (also called their join) is the graph obtained from their disjoint union by adding
edges joining every vertex of G1 to every vertex of G2.

If X = (x1, . . . , xm) and Y = (y1, . . . , yn) are two sequences of integers and c ∈ N, then the sequence (x1, . . . , xm, y1, . . . ,
yn) is the concatenation of X and Y , denoted by X ◦Y , and X c denotes the sequence obtained from X by repeating every entry
c times, (x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xm, xm, . . . , xm), and cX is the sequence (cx1, . . . , cxm). Ifm = n, then X + Y is the
sequence (x1 + y1, . . . , xm + ym).

3. Distance sequences of graphs

The main tool in our investigations of the Wiener index of the strong product of graphs is the distance sequence, defined
below. It is closely related to the distance distribution of a graph, which was introduced by Buckley and Superville [2] and
further investigated in [4,27,31].

Definition 1. Let G be a connected graph of order n. The distance sequence D(G) is the non-decreasing sequence
(d1, d2, . . . , d( n

2 )
) of the distances between all unordered pairs of distinct vertices of G. If A is a set of pairs of vertices of

G, then D(G)|A denotes the non-decreasing sequence of the distances between all the unordered pairs of vertices in A. The
distance degree of a vertex v of G, denoted by D(G, v), is the non-decreasing sequence of the distances between v and all
other vertices of G.

Definition 2. Let A = (a1, a2, . . . , ak) and B = (b1, b2, . . . , bk) be two sequences of the same length. We say that A
dominates B if ai ≥ bi for i = 1, 2, . . . , k, and we write A ≥ B.

In this section we show that certain graphs that are known to have maximum Wiener index among all graphs of given
order in a particular class of graphs possess a much stronger property: their distance sequence dominates, or is dominated
by, the distance sequence of every connected graph of the same order within their particular class of graphs. We make
extensive use of this property in Sections 4 and 5.

Our first result of this kind shows that the distance sequence of a path-complete graph (defined below) dominates the
distance sequence of all connected graphs of the same order and size. Path-complete graphs were introduced by Harary
in [17].

Definition 3 ([17]). A graph is path-complete if it can be obtained from the union of a path and a clique by joining one end
of the path to at least one vertex of the clique. For given n,m ∈ Nwith n − 1 ≤ m ≤

(n
2

)
there is a unique path-complete of

order n and sizem, which is denoted by PKn,m.

Šoltés [28] showed that the path-complete graph PKn,m has maximum average distance among all connected graphs of
order n and size m. A simple expression for the Wiener index of PKn,m was given by Gutman and Šoltés in [15]. In his proof,
Šoltés made use of a stronger property of path-complete graphs, which we use to show that the distance sequence of PKn,m
dominates that of any connected graph of order n and sizem. For k ∈ N define sk(G) to be the number of all unordered pairs
of non-adjacent vertices of G at distance at most k.

Lemma 1 ([28]). Let G be a connected graph of order n, size m and diameter d, where d ≥ 3. Then, for all k with 2 ≤ k ≤ d − 1,

sk(G) ≥ sk(PKn,m).

Lemma 2. If G is a connected graph of order n and size m, then

D(G) ≤ D(PKn,m).

Proof. Let d = diam(G) and let D(G) = (d1, d2, . . . , d(n2)) and D(PKn,m) = (d′

1, d2, . . . , d
′

(n2)
). So it suffices to show that

di ≤ d′

i for i = 1, 2, . . . ,
(
n
2

)
. (1)

Suppose to the contrary that there exists j ∈ {1, 2, . . . ,
(n
2

)
} with dj > d′

j . Let j be the smallest number with this property.
Since both, G and PKn,m have size m, we have di = d′

i = 1 for i = 1, 2, . . . ,m, and thus j > m and d′

j ≥ 2. This implies in
particular that d ≥ 3.

It is immediate from the definition of sk that for kwith 2 ≤ k ≤ d − 1,

di = k ⇔ m + sk−1(G) + 1 ≤ i ≤ m + sk(G). (2)
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Now let dj = k and d′

j = k′ < k. From (2) we get

m + sk−1(G) + 1 ≤ j ≤ m + sk(G)

and

m + sk′−1(PKn,m) + 1 ≤ j ≤ m + sk′ (PKn,m).

Comparing the left hand side of the first and the right hand side of the second of these inequalities, we conclude that

sk−1(G) + 1 ≤ sk′ (PKn,m).

By k′
≤ k − 1 and the fact that the sequence si(PKn,m) is increasing in i, we get

sk−1(G) < sk−1(PKn,m).

Since 2 ≤ d′

j = k′
≤ k − 1, as observed above, we have a contradiction to Lemma 1. This proves (1). □

Corollary 1. Let G be a connected graph of order n. Then

D(G) ≤ D(Pn).

Proof. Let T be a spanning tree of G. Clearly, D(G) ≤ D(T ). Applying Lemma 2 withm = n − 1 and noting that PKn,n−1 = Pn
we get D(T ) ≤ D(Pn). Combining these two inequalities yields the corollary. □

Remark 1. It is natural to ask if it is true that, whenever G and G′ are connected graphs of the same order, thenD(G) ≤ D(G′)
if and only ifW (G) ≤ W (G′). While clearlyD(G) ≤ D(G′) impliesW (G) ≤ W (G′), the converse is not true in general. Consider
the graphs F and F ′ below:

F F ′

Then D(F ) = (3, 27, 17) and D(F ′) = (210, 15), and soW (F ) = 24 andW (F ′) = 25. Clearly,W (F ) ≤ W (F ′) but D(F ) ̸≤ D(F ′).

Lemma 3. Let G be a 2k-connected graph of order n, where k ∈ N. Then

D(G) ≤ D(Ck
n ).

Proof. It suffices to show that for every vertex v of G and every vertex w of Ck
n ,

D(G, v) ≤ D(Ck
n , w).

Let v be an arbitrary vertex of G and let D(G, v) = (a1, a2, . . . , an−1). Since G is 2k-connected, v has at least 2k vertices at
distance i for i = 1, 2, . . . , ecc(v)− 1. It follows that a1, a2, . . . , a2k ≤ 1, a2k+1, a2k+2, . . . , a4k ≤ 2, a4k+1, a4k+2, . . . , a6k ≤ 3
and so on. Hence

D(G, v) ≤ (1, 2, . . . ,
⌈n − 1

2k
− 1

⌉
)2k ◦ (

⌈n − 1
2k

⌉
)b

where b = n − 1 − 2k
⌈

n−1
2k − 1

⌉
.

Letw be an arbitrary vertex of Ck
n . It is easy to verify thatw has exactly 2k vertices at distance i for i = 1, 2, . . . ,

⌈
n−1
2k −1

⌉
and the remaining vertices have distance

⌈
n−1
2k

⌉
. It follows that

D(Ck
n , w) = (1, 2, . . . ,

⌈n − 1
2k

− 1
⌉
)2k ◦ (

⌈n − 1
2k

⌉
)b,

where b = n − 1 − 2k
⌈

n−1
2k − 1

⌉
as above. Hence D(G, v) ≤ D(Ck

n , w), as desired. □

We now present graphs of given order and diameter whose distance sequence is dominated by every graph with the
same order and diameter.
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Definition 4. Let G be a graph of order n and diameter d. Let Gn,d be the graph obtained from the disjoint union of a path
Pd+1 : v0, v1, . . . , vd and a clique Kn−d−1 by joining every vertex in the clique to v⌊d/2⌋−1, v⌊d/2⌋ and v⌊d/2⌋+1.

Lemma 4. Let G be a graph of order n and diameter d and Gn,d be the graph described in Definition 4. Then

D(G) ≥ D(Gn,d).

Proof. Let v0 and vd be two vertices of G at distance d, and let P : v0, v1, . . . , vd be a shortest (v0, vd)-path in G. We partition
the set of all unordered pairs of vertices of G into three sets, A, B and C , where A is the set of pairs of vertices that are both
on P , B the set of pairs of vertices that are both not on P , and C the set of pairs where one vertex is on P and the other one is
not. Clearly,

D(G)|A = D(P) = D(Pd+1). (3)

and

D(G)|B ≥ (1)
(
n−d−1

2

)
. (4)

We now consider the distances between pairs in C . Let u ∈ V (G) − V (P) and let k := dG(u, v0). Then dG(u, vk) ≥ 1. Since
d(u, vi) ≥ |k − i| for i = 0, 1, . . . , d, the distances from u to vk−1, vk−2, . . . , v0 are at least 1, 2, . . . , k, and the distances for
u to vk+1, vk+2, . . . , vd are at least 1, 2, . . . , d − k. Hence, with j := min(k, n − k) and j′ := max(k, n − k), the distances
from u to the vertices of P are at least (1, 1, 1, 2, 2, 3, 3, . . . , j, j, j+ 1, j+ 2, . . . , j′ − 1, j′). Observe that the latter dominates
(1, 1, 1, 2, 2, 3, 3, . . . , n−2

2 , n−2
2 , n

2 ) when n is even, but in the case that n is odd, (1, 1, 1, 2, 2, 3, 3, . . . , n−1
2 , n−1

2 ). Hence

D(G, v) ≥

⎧⎪⎨⎪⎩
(1, 1, 1, 2, 2, 3, 3, . . . ,

n − 2
2

,
n − 2
2

,
n
2
) if n is even,

(1, 1, 1, 2, 2, 3, 3, . . . ,
n − 1
2

,
n − 1
2

) if n is odd.

= 1 ◦ D(Pd+1, c), (5)

where c is a central vertex of the path Pd+1.
Now for Gn,d, (3), (4), and (5) hold with equality. Let A′, B′ and C ′ be the set of all unordered pairs of vertices of Gn,d that

have both vertices are in Pd+1, both vertices are in Kn−d−1, and one vertex in Pd+1 and one vertex in Kn−d−1, respectively.
Hence

D(Gn,d)|A′ ≤ D(G)|A, D(Gn,d)|B′ ≤ D(G)|B, D(Gn,d)|C ′ ≤ D(G)|C .

Hence we conclude that D(Gn,d) ≤ D(G), as desired. □

We conclude this section by showing that among the graphs of given order and size, the distance sequences of those of
diameter two are dominated by all such graphs. Applying this result to some classes of graphs, we get that in those classes, a
graph that has maximum size relative to its order and also diameter at most two, has a distance sequence that is dominated
by every other graph of the same order in this class.

Proposition 1. Let G be a connected graph of order n and size not more than m. If G′ is a graph of order n, size m, and diameter
at most two, then

D(G) ≥ D(G′),

with equality if and only if diam(G) ≤ 2 and G has size m.

Proof. LetD(G) = (d1, d2, . . . , d( n
2 )
). Since G has size notmore thanm, we have d1, d2, . . . , dm ≥ 1 and dm+1, dm+2 . . . , d( n

2 )
≥ 2. Hence,

D(G) ≥ (1)m ◦ (2)(
n
2 )−m,

Clearly, equality holds if and only if diam(G) ≤ 2 and G has size m. The proposition follows. □

Corollary 2. Let G be a connected graph of order n.
(a) If G is a tree then D(G) ≥ D(K1,n−1).
(b) If G is a planar graph then D(G) ≥ D(K2 + Pn−2).
(c) If G is an outerplanar graph then D(G) ≥ D(K1 + Pn−1).
(d) If G has no k-clique then D(G) ≥ D(Tn,k), where Tn,k is the Turán graph, i.e., the balanced, complete (k − 1)-partite graph.
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4. Bounds on the Wiener index of the strong product

Several upper and lower bounds on the Wiener index of graphs of given order with certain properties are known. The
following upper and lower bounds are relevant for this section. The graphs in these two theorems were defined in Section 3.

Theorem 3. Let G be a connected graph of order n.
(a) ([28]) If G has size m then W (G) ≤ W (PKn,m).
(b) ([13]) If G is 2k-connected then W (G) ≤ W (Ck

n ).

Theorem 4. Let G be a connected graph of order n.
(a) ([24]) If G has diameter d, then W (G) ≥ W (Gn,d).
(b) ([24]) If G has size m then W (G) ≥ n(n − 1) − m, with equality if diam(G) ≤ 2.
(c) ([24]) If G is a tree then W (G) ≥ W (K1,n−1).
(d) ([24]) If G is a planar graph then W (G) ≥ W (K2 + Pn−2).
(e) ([24]) If G is an outerplanar graph then W (G) ≥ W (K1 + Pn−1).
(f) ([24]) If G has no k-clique then W (G) ≥ W (Tn,k).

In this section we use the results of Section 3 to show that the graphs in Theorems 3 and 4 do not only maximise or
minimise W (G), but have the stronger property of maximising or minimising the strong product with any connected graph
in the same sense as in Theorem 2. The following Lemma allows us to derive these results from the results on distance
sequences in the preceding section.

Lemma 5. Let G and G′ be two connected graphs of the same order. If D(G) ≥ D(G′) then

W (G ⊠ H) ≥ W (G′ ⊠ H)

for every connected graph H. If equality holds for some connected graph H, then we have D(G) = D(G′).

Proof. Let H , G and G′ be as in the hypothesis of the lemma. Let n be the order of G and G′, and let D(G) = (d1, d2, . . . , d( n
2 )
)

andD(G′) = (d′

1, d
′

2, . . . , d
′

( n
2 )
). Then di ≥ d′

i for i = 1, 2, . . . ,
( n
2

)
. Making use of the fact that for a, b ∈ V (G) and u, v ∈ V (H),

we have dG⊠H ((a, u), (b, v)) = max
(
dG(a, b), dH (u, v)

)
, we obtain

W (G ⊠ H) =
1
2

∑
a,b∈V (G)

∑
u,v∈V (H)

dG⊠H ((a, u), (b, v))

=
1
2

∑
a,b∈V (G)

∑
u,v∈V (H)

max
(
dG(a, b), dH (u, v)

)

= nW (H) +

(n2)∑
i=1

∑
u,v∈V (H)

max
(
di, dH (u, v)

)
(6)

≥ nW (H) +

(n2)∑
i=1

∑
u,v∈V (H)

max
(
d′

i, dH (u, v)
)

(7)

=
1
2

∑
a,b∈V (G′)

∑
u,v∈V (H)

max
(
dG′ (a, b), dH (u, v)

)
=

1
2

∑
a,b∈V (G′)

∑
u,v∈V (H)

dG′⊠H ((a, u), (b, v))

= W (G′ ⊠ H),

as desired.
To see that (6) holds note the following. If (a, u), (b, v) are two vertices of G ⊠ H with a ̸= b, then the vertices are in

distinct copies of H , and so dG⊠H ((a, u), (b, v)) appears twice in the sum
∑

a,b∈V (G)
∑

u,v∈V (H) max
(
dG(a, b), dH (u, v)

)
but only

once in
∑(n2)

i=1
∑

u,v∈V (H) max
(
di, dH (u, v)

)
. If (a, u) and (b, v) are two vertices of G ⊠ H with a = b, then dG⊠H ((a, u), (a, v)) is

not counted in
∑(n2)

i=1
∑

u,v∈V (H) max
(
di, dH (u, v)

)
but in nW (H).

Assume thatW (G⊠H) = W (G′⊠H) for some connected graphH . Thenwe have equality in (7), and somax(di, dH (u, v)) =

max(d′

i, dH (u, v)) for all u, v ∈ V (H) and all i. If uv ∈ E(H), then dH (u, v) = 1, and so di = d′

i for all i. Hence D(G) = D(G′), as
desired. □
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Remark 2. It is natural to ask if it is true that whenever G and G′ are connected graphs with W (G) ≤ W (G′), then
W (G ⊠ H) ≤ W (G′ ⊠ H) for every connected graph H . The graphs F and F ′ defined in Section 3 show that this is not the
case.

As observed, we have W (F ) < W (F ′). Substitute F for G, F ′ for G′, and F ′ for H . But it is easy to check that D(F ⊠ F ′) =

(336, 2452, 1142) and D(F ′ ⊠ F ′) = (2520, 1110) and so W (F ⊠ F ′) = 1154 and W (F ′ ⊠ F ′) = 1150, implying that W (F ⊠ F ′) >
W (F ′ ⊠ F ′).

Lemma 5 combined with Lemmas 2–4, Proposition 1 and Corollary 2 yields the following theorems.

Theorem 5. Let H be a connected graph. If G is a connected graph of order n and size m, then

W (G ⊠ H) ≤ W (PKn,m ⊠ H).

The special casem = n − 1 yields Theorem 2.

Theorem 6. Let H be a connected graph. If G is a 2r-connected graph of order n where r ∈ N, then

W (G ⊠ H) ≤ W (C r
n ⊠ H).

Theorem 7. Let G be a connected graph of order n and diameter d and Gn,d be the graph described in Definition 4. Then, for every
connected graph H,

W (G ⊠ H) ≥ W (Gn,d ⊠ H).

Theorem 8. Let G be a connected graph of order n and size not more than m. If G′ is a graph of order n, size m, and diameter at
most two, then

W (G ⊠ H) ≥ W (G′ ⊠ H).

with equality if and only if diam(G) ≤ 2.

Corollary 3 (a). Let T be a tree of order n. Then for every connected graph H,

W (T ⊠ H) ≥ W (K1,n−1 ⊠ H).

(b) Let G be a connected planar graph of order n, where n ≥ 5. Then for every connected graph H,

W (G ⊠ H) ≥ W ((K2 + Pn−2) ⊠ H).

(c) Let G be a connected outerplanar graph of order n, where n ≥ 5. Then for every connected graph H,

W (G ⊠ H) ≥ W ((K1 + Pn−1) ⊠ H).

(d) Let k ∈ N with k ≥ 3. Let G be a connected graph of order n with no complete subgraph of order k. Then for every connected
graph H,

W (G ⊠ H) ≥ W (Tn,k ⊠ H).

5. On the Hosoya polynomial of graphs with certain properties

In this section we apply the results on the distance sequence proved in Section 2 to Hosoya polynomials. The key
observation on which the results in this section rest is the following lemma.

Lemma 6. Let G and G′ be two connected graphs of the same order. If D(G) ≥ D(G′) then, for x ∈ R,

W (G, x) ≥ W (G′, x) if x ≥ 1,

W (G, x) ≤ W (G′, x) if 0 ≤ x ≤ 1.

Proof. Let G and G′ be connected graphs of order n with distance sequence (d1, d2, . . . , d( n
2 )
) and (d′

1, d
′

2, . . . , d
′

( n
2 )
),

respectively. By the hypothesis of the theorem we have di ≥ d′

i for i = 1, 2, . . . ,
( n
2

)
. Hence for x ∈ R,

W (G, x) − W (G′, x) =
(
n +

( n
2 )∑

i=1

xdi
)
−

(
n +

( n
2 )∑

i=1

xd
′
i
)

=

( n
2 )∑

i=1

(xdi − xd
′
i ).

Hence, since di ≥ d′

i we have xdi − xd
′
i ≥ 0 for x ≥ 1, and xdi − xd

′
i ≤ 0 for 0 ≤ x ≤ 1, and the lemma follows. □
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Applying Lemma 6 to the results in Chapter 2, specifically to Lemmas 2–4, Proposition 1 and Corollaries 1 and 2we obtain
the following results.

Theorem 9. For every connected graph G of order n we have

W (G, x) ≤ W (Pn, x) for all x ∈ R with x ≥ 1,

W (G, x) ≥ W (Pn, x) for all x ∈ R with 0 ≤ x ≤ 1.

Theorem 10. For every connected graph G of order n and size m we have

W (G, x) ≤ W (PKn,m, x) for all x ∈ R with x ≥ 1,

W (G, x) ≥ W (PKn,m, x) for all x ∈ R with 0 ≤ x ≤ 1.

Theorem 11. For every 2k-connected graph G of order n we have

W (G, x) ≤ W (Ck
n , x) for all x ∈ R with x ≥ 1,

W (G, x) ≥ W (Ck
n , x) for all x ∈ R with 0 ≤ x ≤ 1.

Theorem 12. If Gn,d is the graph described in Definition 4, for every connected graph G of order n and diameter d we have

W (G, x) ≥ W (Gn,d, x) for all x ∈ R with x ≥ 1,

W (G, x) ≤ W (Gn,d, x) for all x ∈ R with 0 ≤ x ≤ 1.

Theorem 13. Let G be a connected graph of order n and size at least m, and let G′ be a connected graph of order n, size m, and
diameter at most two. Then

W (G, x) ≥ W (G′, x) for all x ∈ R with x ≥ 1,

W (G, x) ≤ W (G′, x) for all x ∈ R with 0 ≤ x ≤ 1.

Theorem 14 (a). Let G be a tree of order n. Then

W (G, x) ≥ W (K1,n−1, x) for all x ∈ R with x ≥ 1,

W (G, x) ≤ W (K1,n−1, x) for all x ∈ R with 0 ≤ x ≤ 1.

(b) Let G be a connected planar graph of order n. Then

W (G, x) ≥ W (K2 + Pn−2, x) for all x ∈ R with x ≥ 1,

W (G, x) ≤ W (K2 + Pn−2, x) for all x ∈ R with 0 ≤ x ≤ 1.

(c) Let G be a connected outerplanar graph of order n. Then

W (G, x) ≥ W (K1 + Pn−1, x) for all x ∈ R with x ≥ 1,

W (G, x) ≤ W (K1 + Pn−1, x) for all x ∈ R with 0 ≤ x ≤ 1.

(d) Let G be a connected graph of order n with no complete subgraph of order k. Then

W (G, x) ≥ W (Tn,k, x) for all x ∈ R with x ≥ 1,

W (G, x) ≤ W (Tn,k, x) for all x ∈ R with 0 ≤ x ≤ 1.

We note that essentially the same proof yields similar statements for the kth derivative of the Hosoya polynomial and all
x ∈ Rwith x ≥ 1.
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6. On eccentric sequences of graphs

In this section we consider eccentric sequences of graphs, introduced by Lesniak [21] and our aim is to prove results on
the eccentric sequence similar to those in Section 3 on the distance sequence. Recall that the eccentricity of a vertex v in a
connected graph G is defined as the distance from v to a vertex farthest from v.

Definition 5. Let G be a connected graph of order n. The eccentric sequence E(G) is the non-increasing sequence
(e1, e2, . . . , en) of the eccentricities of the vertices of G. If A ⊆ V (G) is a set of vertices of G, then E(G)|A is the non-increasing
sequence of the eccentricities in G of the vertices in A.

Lesniak [21] characterised sequences that are eccentric sequences of trees. The problem of finding a characterisation of
eccentric sequences of graphs seems hard, and a solution remains elusive. To date, the only graph class other than trees
for which a characterisation of their eccentric sequences is known are maximal outerplanar graphs (see [5]). The following
result shows that eccentric sequence of any connected graph is dominated by the eccentric sequence of a path, when both
graphs have the same order.

Lemma 7. Let G be a connected graph of order n. Then

E(G) ≤ E(Pn).

Proof. Let (e1, e2, . . . , en) be the eccentric sequence of a connected graph G of order n. We show that

ei ≤ n −

⌈ i
2

⌉
for i = 1, 2, . . . , n. (8)

Let T be a spanning tree of G. It suffices to prove (8) for T since the eccentricity of a vertex in a spanning tree of G is not less
than its eccentricity in G.

The proof is by induction on n. Inequality (8) clearly holds for n = 2 and n = 3. Now let n ≥ 4. Let u and v be two
vertices of T at distance diam(T ), and let T ′

= T − {u, v}. Since u and v are end-vertices of T , the graph T ′ is connected and
thus a tree. Let e∗

1, e
∗

2, . . . , e
∗

n−2 be the eccentric sequence of T ′. By our induction hypothesis we have e∗

i ≤ n − 2 −

⌈
i
2

⌉
for

i = 1, 2, . . . , n − 2. The eccentricity of u and v is at most n − 1, and removing u and v has reduced the eccentricities of the
remaining vertices of T by at most one. Hence

e1 ≤ n − 1, e2 ≤ n − 1

and

ei ≤ e∗

i−2 + 1 ≤ n − 2 −

⌈ i − 2
2

⌉
+ 1 = n −

⌈ i
2

⌉
,

for i = 1, . . . , n, which implies (8).
It is easy to verify that if G = Pn, then we have equality in (8) for all i. Hence the lemma follows. □

Lemma 8. Let G be a 2k-connected graph of order n, where k ∈ N. Then

E(G) ≤ E(Ck
n ).

Proof. Since G is 2k-connected, the eccentricity of any vertex cannot exceed
⌈

n−1
2k

⌉
. Hence

E(G) ≤ (
⌈n − 1

2k

⌉
,

⌈n − 1
2k

⌉
, . . . ,

⌈n − 1
2k

⌉
).

It is easy to verify that

E(Ck
n ) = (

⌈n − 1
2k

⌉
,

⌈n − 1
2k

⌉
, . . . ,

⌈n − 1
2k

⌉
).

Hence the Lemma follows. □

We now consider graphs of given order and minimum degree δ. Below we define a graph Gn,δ whose eccentric sequence
‘almost dominates’ that of every connected graph of order n and minimum degree δ. More precisely, we show that no term
in the eccentric sequence of a graph of order n and minimum degree δ exceeds the corresponding term in E(Gn,δ) by more
than 3.

Example 1. Consider the graph Pℓ,δ , obtained from a path P3ℓ : v0, v1, . . . , v3ℓ−1 by adding sets Vi of δ − 2 new vertices
which form a clique and are adjacent to vi−1, vi and vi+1 for i = 1, 4, 7, . . . , 3ℓ − 2. Fig. 1 shows P5,4.
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Fig. 1. The graph P5,4 .

If n ≥ ℓ(δ+1)+2 then letG(ℓ)
n,δ be the graph obtained from Pℓ,δ by adding a vertex adjacent to all vertices in {v0, v1, v2}∪V1,

and a clique on n − ℓ(δ + 1) − 1 vertices, all adjacent to the vertices in {v3ℓ−3, v3ℓ−2, v3ℓ−1} ∪ V3ℓ−2. We now determine the
eccentric sequence of G(ℓ)

n,δ . Let A = {v1, v4, v7, . . . , v3ℓ−2}. Then it is easy to verify that

E(Pℓ,δ)|A = 3E(Pℓ) + (1)ℓ.

Let Bi = N[v3i−2] for i = 1, 2, . . . , ℓ. Then |Bi| = δ + 1 and |ecc(v)− ecc(v3i−2)| ≤ 1 for i = 1, 2, . . . , ℓ, and V (Gℓ
n,δ) is the

disjoint union of the Bi. Hence

E(Pℓ,δ) =
(
3E(Pℓ) + (1)ℓ

)δ+1
+ ϵℓ(δ+1),

where ϵℓ(δ+1) is a sequence of length ℓ(δ + 1) whose entries are in {−1, 0, 1}. Since the vertices added to Pℓ,δ to obtain G(ℓ)
n,δ

have eccentricity 3ℓ − 1 we get

E(G(ℓ)
n,δ) = (3ℓ − 1)n−ℓ(δ+1)

◦

((
3E(Pℓ) + (1)ℓ

)δ+1
+ ϵℓ(δ+1)

)
. (9)

It is easy to see that if ℓ1 ≤ ℓ2 and n ≥ ℓ1(δ + 1) + 2, then E(G(ℓ1)
n,δ ) ≤ E(G(ℓ2)

n,δ ). We define the graph Gn,δ as E(G(ℓ)
n,δ) with

the largest possible value for ℓ, i.e., with ℓ =

⌊
n−2
δ+1

⌋
. Then

E(G(ℓ)
n,δ) ≤ E(Gn,δ). (10)

Lemma 9. Let G be a connected graph of order n and minimum degree δ. Then

E(G) ≤ E(Gn,δ) + (3)n,

where Gn,δ is as defined in Example 1.

Proof. We first construct a maximal packing A of G as follows. Choose a vertex a1 of G. If G contains a vertex at distance
exactly three from {a1} then let a2 be such a vertex. If G contains a vertex at distance exactly three from {a1, a2} then let a3
be such a vertex. If G contains a vertex at distance exactly three from {a1, a2, a3} then let a4 be such a vertex. We repeat this
step until there is no vertex at distance three from, say, {a1, a2, . . . , aℓ}. Hence we obtain a packing {a1, a2, . . . , aℓ} =: A
such that every vertex of G is within distance two of some vertex of A.

It follows from the process in which we obtain A that every vertex ai ∈ A is within distance three of some vertex in
{a1, a2, . . . , ai−1}, and so the graph G3

[A] =: H is connected. By Lemma 7 we have

E(H) ≤ E(Pℓ). (11)

Since in G each vertex of A is within distance at most 3eccH (ai) of ai, and since each vertex of G is within distance two of
some vertex of A, we have

E(G)|A ≤ 3E(Pℓ) + (2)ℓ. (12)

For each vertex ai ∈ A define a set Bi of order δ +1 containing ai and exactly δ of its neighbours, and let B =
⋃ℓ

i=1Bi. For each
v ∈ Bi we have |eccG(v) − eccG(ai)| ≤ 1. Hence, by (12) we get

E(G)|B ≤ 3E(Pℓ)δ+1
+ (3)ℓ(δ+1). (13)

Now each vertex of G is within distance two of some vertex in A, so diam(G) ≤ 4+maxi,jdG(ai, aj) = 3diam(H)+4 ≤ 3ℓ+1.
Hence the n − ℓ(δ + 1) vertices not in B have eccentricity at most 3ℓ + 1. It follows that

E(G) ≤ (3ℓ + 1)n−ℓ(δ+1)
◦ E(G)|B

≤ (3ℓ + 1)n−ℓ(δ+1)
◦

(
3E(Pℓ)δ+1

+ (3)ℓ(δ+1)
)
.

Making use of (9) we can thus express the right hand side of the last inequality in terms of E(G(ℓ)
n,δ) as follows.

E(G) ≤ E(G(ℓ)
n,δ) + (3)n.
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By (10) we thus conclude that

E(G) ≤ E(Gn,δ) + (3)n,

as desired. □

Proposition 2 (a). Let G be a tree of order n, where n ≥ 2. Then

E(G) ≥ (2)n−1
◦ (1)1.

(b) Let G be a planar graph of order n, where n ≥ 6. Then

E(G) ≥ (2)n−2
◦ (1)2.

(c) Let G be an outerplanar graph of order n, where n ≥ 5. Then

E(G) ≥ (2)n−1
◦ (1)1.

(d) Let G be a connected graph of order n and size m. Then

E(G) ≥ (2)n−a
◦ (1)a,

where a =

⌊
2n−1−

√
(2n−1)2−8m
2

⌋
.

Equality holds in (a) for K1,n−1, in (b) for K2 + Pn−2, in (c) for K1 + Pn−1, and in (d) for the graph Gn,m, defined as the graph
obtained from Ka + Kn−a by adding edges until the graph has m edges.

Proof. Clearly, if G has at most k vertices of eccentricity 1, then

E(G) ≥ (2)n−k
◦ (1)k.

Then, if G is a tree, it has at most one vertex of eccentricity 1, so (a) follows. Now, assume that G is planar. To prove (b) it
suffices to show thatG has atmost two vertices of eccentricity 1. Indeed, otherwise, ifG has three vertices of eccentricity one,
these vertices together with any three other vertices would induce a subgraph containing K3,3, a contradiction to G being
planar. Lastly, if G is outerplanar, it has at most one vertex of eccentricity 1. Otherwise, if G has two vertices of eccentricity
one, these vertices together with any three other vertices would induce a subgraph containing K2,3, a contradiction to G
being outerplanar, and (c) follows. To prove (d) it suffices to show that G contains at most a vertices of degree n − 1. If G
contains k vertices of degree n − 1, then G contains a spanning subgraph Kk + Kn−k, and som ≥

( k
2

)
+ k(n − k). It is easy to

verify that a is the largest value of k satisfying this inequality. □

7. Bounds on the average eccentricity of the strong product of graphs

In this section we consider the average eccentricity of strong products. In our proofs wemake extensive use of the results
on the eccentric sequence in Section 6. In order to avoid fractions, we consider in our proofs the total eccentricity ζ (G),
defined as the sum of the eccentricities of all vertices of G, rather than the average eccentricity. The first result provides a
link between eccentric sequences and the average eccentricity of the strong product of graphs.

Lemma 10. Let G and G′ be two connected graphs of the same order nG, and let H be a connected graph.
(a) If E(G) ≥ E(G′) then

avec(G ⊠ H) ≥ avec(G′ ⊠ H).

(b) If E(G) + (c)nG ≥ E(G′) where c ∈ R, then

avec(G ⊠ H) + c ≥ avec(G′ ⊠ H).

Proof. Let nG be the order of G and G′, and let nH be the order of H . Let E(G) = (e1, e2, . . . , enG ) and E(G′) = (e′

1, e
′

2, . . . , e
′
nG ).

(a) It suffices to prove the equivalent statement

ζ (G ⊠ H) ≥ ζ (G′ ⊠ H).

We make use of the fact that eccG⊠H ((a, u)) = max{eccG(a), eccH (u)} for all a ∈ V (G) and u ∈ V (H). Since E(G) ≥ E(G′) we
have ei ≥ e′

i for i = 1, 2, . . . , nG. Hence

ζ (G ⊠ H) =

∑
a∈V (G)

∑
u∈V (H)

eccG⊠H (a, u)

=

∑
a∈V (G)

∑
u∈V (H)

max
(
eccG(a), eccH (u)

)
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=

nG∑
i=1

∑
u∈V (H)

max
(
ei, eccH (u)

)
≥

nG∑
i=1

∑
u∈V (H)

max
(
e′

i, eccH (u)
)

=

∑
a∈V (G′)

∑
u∈V (H)

max
(
eccG′ (a), eccH (u)

)
=

∑
a∈V (G′)

∑
u∈V (H)

eccG′⊠H (a, u)

= ζ (G′ ⊠ H),

as desired.
(b) It suffices to prove the equivalent statement

ζ (G ⊠ H) + c nG nH ≥ ζ (G′ ⊠ H).

Since E(G) + (c)nG ≥ E(G′) we have ei + c ≥ e′

i for i = 1, 2, . . . , nG, and so, as in the proof of (a),

ζ (G ⊠ H) + c nG nH =

∑
a∈V (G)

∑
u∈V (H)

{
max

(
eccG(a), eccH (u)

)
+ c

}
=

nG∑
i=1

∑
u∈V (H)

{
max

(
ei, eccH (u)

)
+ c

}
≥

nG∑
i=1

∑
u∈V (H)

max
(
ei + c, eccH (u)

)
≥

nG∑
i=1

∑
u∈V (H)

max
(
e′

i, eccH (u)
)

= ζ (G′ ⊠ H),

as desired. □

Lemma 10 in conjunction with Lemmas 7–9 and Proposition 2 imply the following theorems.

Theorem 15. Let H be a connected graph. If G is a connected graph of order n, then

avec(G ⊠ H) ≤ avec(Pn ⊠ H).

Setting H = K1 yields the following.

Corollary 4 ([6]). Let G be a connected graph of order n. Then

avec(G) ≤ avec(Pn).

Lemma 8 in conjunction with Lemma 10 yields the following.

Theorem 16. Let H be a connected graph. If G is a 2r-connected graph of order n where r ∈ N, then

avec(G ⊠ H) ≤ avec(C r
n ⊠ H).

In [6] it was shown that for every graph of order n and minimum degree δ,

avec(G) ≤
9n

4δ + 4
+

15
4

.

This is generalised by the following theorem.

Theorem 17. Let H be a connected graph. If G is a connected graph of order n and minimum degree δ, then

avec(G ⊠ H) ≤ avec(Gn,δ ⊠ H) + 3.

Proposition 2 in conjunction with Lemma 10 yields the following proposition.
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Proposition 3. Let G and H be connected graphs, n and m the order and the size of G. Then,
(a) avec(G ⊠ H) ≥ avec(K1,n−1 ⊠ H).
(b) avec(G ⊠ H) ≥ avec((K2 + Pn−2) ⊠ H).
(c) avec(G ⊠ H) ≥ avec((K1 + Pn−1) ⊠ H).
(d) avec(G⊠H) ≥ avec(Gn,m⊠H), being Gn,m the graph obtained from Ka +Kn−a by adding edges until the graph has m edges.

Corollary 5 ([29]). Let G be a connected graph of order n and size m. Then

avec(G) ≥ 2 −
a
n
,

where a =

⌊
2n−1−

√
(2n−1)2−8m
2

⌋
.
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