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ON GENERALIZED 3-CONNECTIVITY OF THE

STRONG PRODUCT OF GRAPHS

Encarnación Abajo, Roćıo Casablanca, Ana Diánez and Pedro
Garćıa-Vázquez∗

Let G be a connected graph with n vertices and let k be an integer such

that 2 ≤ k ≤ n. The generalized connectivity κk(G) of G is the greatest

positive integer ` for which G contains at least ` internally disjoint trees

connecting S for any set S ⊆ V (G) of k vertices. We focus on the generalized

connectivity of the strong product G1 �G2 of connected graphs G1 and G2

with at least three vertices and girth at least five, and we prove the sharp

bound κ3(G1 �G2) ≥ κ3(G1)κ3(G2) + κ3(G1) + κ3(G2) − 1.

1. INTRODUCTION

Throughout this paper, all the graphs are simple, that is, with neither loops
nor multiple edges. Notations and terminology not explicitly given here can be
found in the books by Chartrand, Lesniak and Zhang [3] and by Hammack, Imrich
and Klavžar [6].

Let G be a graph with vertex set V = V (G) and edge set E = E(G). For
u, v two distinct vertices of V (G), a path from u to v, also called an uv-path in
G, is a subgraph P with vertex set V (P ) = {u = x0, x1, . . . , xr = v} and edge set
E(P ) = {x0x1, . . . , xr−1xr}. This path is usually denoted by P : x0x1 . . . xr, where
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r is the length of the path.

Two uv-paths P and Q are said to be internally disjoint if V (P ) ∩ V (Q) = {u, v}.
A cycle in G of length r is a path C : x0x1 · · ·xr such that x0 = xr. The girth of
G, denoted by g(G), is the length of a shortest cycle in G, and if G contains no
cycles, then g(G) = ∞. The set of adjacent vertices to v ∈ V (G) is denoted by
NG(v). The degree of v is dG(v) = |NG(v)|, whereas δ(G) = minv∈V (G) dG(v) is
the minimum degree of G. A graph is said to be connected if there is a path from
each vertex to any other vertex in the graph.

For connected graphs, Menger [10, 11] states that the maximum number of
pairwise internally disjoint paths between a given pair of non adjacent vertices in
a graph equals the minimum number of vertices whose deletion disconnects the
pair. As a measure of the degree of connectedness of a graph, the connectivity
κ(G) of a connected graph G is the minimum number of vertices whose deletion
produces a disconnected or trivial graph. A graph G for which κ(G) ≥ k is said
to be k-connected. The first characterization of k-connected graphs was given by
Whitney [15] in 1932, who states that a graph G is k-connected if and only if every
pair of vertices in V (G) is connected by k internally disjoint paths. Whitney in [15]
also shows that κ(G) ≤ δ(G) for every connected graph G.

Although Hager worked on a similar concept in [5], the generalized k-connecti-
vity was introduced by Chartrand et al. in [4]. The interest of the generalized
k-connectivity lies in the fact that it is a natural generalization of the connectivity
κ(G) and represents a measure of the capability of a network to connect sets of
vertices. Let G be a connected graph with n vertices and S ⊆ V (G). A tree T is
called an S-tree if S ⊆ V (T ). A family of trees T1, . . . , T` are internally disjoint
S-trees if E(Ti) ∩ E(Tj) = ∅ and V (Ti) ∩ V (Tj) = S, for 1 ≤ i < j ≤ `. For an
integer k, with 2 ≤ k ≤ n, the generalized k-connectivity κk(G) of G is defined as
κk(G) = min{κ(S) : S ⊆ V (G), |S| = k}, where κ(S) is the maximum number of
internally disjoint S-trees in G. Clearly, κ2(G) = κ(G), the classical connectivity of
G. If n < k, κk(G) = 1 is adopted. In [9] the sharp bound κ3(G) ≤ κ(G) is proved
for any connected graph G. The generalized connectivity of complete graphs and
complete bipartite graphs was studied in [4] and [7, 12], respectively.

Since our purpose is to study the 3-generalized connectivity of the strong
product of graphs, let us remember that the strong product G1�G2 of two connected
graphs G1 and G2 is the graph with vertex set V (G1)×V (G2) in which two vertices
(x1, x2) and (y1, y2) are adjacent if x1 = y1 and x2y2 ∈ E(G2), or x1y1 ∈ E(G1)
and x2 = y2, or x1y1 ∈ E(G1) and x2y2 ∈ E(G2). Obviously, the strong product
of two graphs is commutative. Observe that for every v ∈ V (G2), the subgraph
of G1 � G2 induced by the set {(u, v) : u ∈ V (G1)} is isomorphic to G1. For this
reason, this subgraph is called G1-copy and denoted by Gv

1. Analogously, for each
u ∈ V (G1), the set {(u, v) : v ∈ V (G2)} induces a subgraph isomorphic to G2 and
it is called G2-copy and denoted by Gu

2 .

Product graphs provide important methods to construct bigger graphs and
play a key role in design and analysis of network. For a better knowledge of this
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topic, we refer the reader to the book by Hammack, Imrich and Klavžar [6].

Some research on the connectivity of the Cartesian and of the strong product
of graphs can be found in [1, 2, 8, 13, 14, 16]. Regarding the generalized 3-
connectivity of the Cartesian product graph κ3(G1�G2), Li, Li and Sun [8] for
connected graphs G1 and G2 such that κ3(G1) ≥ κ3(G2) obtain the following
sharp bounds
(i) If κ(G1) = κ3(G1), then κ3(G1�G2) ≥ κ3(G1) + κ3(G2)− 1.
(ii) If κ(G1) > κ3(G1), then κ3(G1�G2) ≥ κ3(G1) + κ3(G2).

In this paper, we study the 3-generalized connectivity of the strong product of two
connected graphs.

1.1 A summary of our main results

For connected graphs G1 and G2 with at least three vertices and girth and least
five, we construct internally disjoint trees that connect any three vertices x, y, z ∈
V (G1 � G2). The number of such trees is expressed in terms of the connectivity,
generalized 3-connectivity or minimum degree of the factor graphs. As a direct
consequence, we derive the following result.

Theorem 3.1 Let G1 and G2 be connected graphs with at least three vertices and

girth at least five. Then,

κ3(G1 �G2) ≥ κ3(G1)κ3(G2) + κ3(G1) + κ3(G2)− 1.

The bound is sharp.

The sharpness of this bound is confirmed when the factor graphs also satisfy that
κ3(G1) = δ(G1) and κ3(G2) = δ(G2)

Corollary 3.1 Let G1 and G2 be connected graphs with at least three vertices,

girth at least five and such that κ3(G1) = δ(G1), κ3(G2) = δ(G2). Then,

δ(G1 �G2)− 1 ≤ κ3(G1 �G2) ≤ δ(G1 �G2).

Both bounds are sharp.

2. SPECIFIC NOTATION AND REMARK

Before proceeding with the main results of this work, we need to introduce
some basic definitions, specific notation as well as a useful observation.

Given an {x, y, z}-tree T , where x, y, z ∈ V (T ), simply deleting extra vertices,

we can construct an {x, y, z}-tree T̃ ⊆ T with the minimum number of vertices

(see [8]). This tree T̃ is called a minimal {x, y, z}-tree. In this paper, a minimal
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tree T is called an xyz-path when T is an xz-path with y as an internal vertex, and
T is said an r-rooted {x, y, z}-tree, for r ∈ V (T ), when r is the root of T and x, y, z
are the leaves.

Also, we need to introduce a kind of trees which need an special treatment in this
paper.

Definition 2.1. Let G be a connected graph and x, y, z three distinct vertices of G.

An {x, y, z}-tree T in G is said to be special if either T is an r-rooted tree with

edge set E(T ) = {rx, ry, rz} or T is a path such that dT (x, y) ≤ 2 or dT (y, z) ≤ 2

or dT (x, z) ≤ 2.

Remark 2.1. For distinct vertices x, y, z of a graph G with g(G) ≥ 5 and κ3(G) ≥ 2,

let us notice that:

(i) If G contains the r-rooted tree with edge-set {rx, ry, rz}, then any other

{x, y, z}-tree of G is not special.

(ii) If there exist special xyz-paths T1 and T2 such that dT1(x, y) ≤ 2 and

dT2
(y, z) ≤ 2, combining T1 and T2, we can construct T ′1 and T ′2 another

pair of internally disjoint xyz-paths such that only T ′1 is special (see the first

case in Figure 1).

(iii) If there exist three special paths T1, T2 and T3 in G such that dT1(x, y) ≤ 2,

dT2(y, z) ≤ 2 and dT3(x, z) ≤ 2, combining these paths, we can construct

another set of internally disjoint paths T ′1, T ′2 and T ′3 such that at most two of

these paths are special and satisfying that V (T ′1 ∪ T ′2 ∪ T ′3) = V (T1 ∪ T2 ∪ T3)

(see the second and third cases in Figure 1).

Notice that the third case in Figure 1 is a combination of the two previous ones.
To illustrate some constructions in Section 3 we use the structure of Figure 2 as
the most general way to represent two special paths in a graph with girth at least
five. It must be taken into account that lines between two vertices in Figure 2 may
be edges or paths.

Our goal is to study the maximum number of internally disjoint trees that con-
nect vertices x = (x1, x2), y = (y1, y2) and z = (z1, z2) in G1 � G2, for vertices
x1, y1, z1 ∈ V (G1) and x2, y2, z2 ∈ V (G2). To do that, throughout the proofs
below, P1, . . . , P`1 denote internally disjoint minimal {x1, y1, z1}-trees in G1 and
Q1, . . . , Q`2 internally disjoint minimal {x2, y2, z2}-trees in G2. We always assume
that P1, . . . , P`1 and Q1, . . . , Q`2 contain the minimum number of special trees,
that is, at most two. Without loss of generality, in cases (i) and (ii) of Remark 2.1
we denote by P1 (or Q1, respectively) the unique special tree, whereas in case
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Figure 1: It can be considered that there exist at most two special {x, y, z}-trees

in a connected graph with girth at least five and 3-connectivity at least two.1
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Figure 2: General way to represent two special paths in a graph with girth at least

five.

(iii), we consider that P1 and P2 are the special trees of G1, and the same con-
sideration holds for Q1 and Q2 in G2. When no tree is special, we assume that
|V (P1)| = min{|V (Pi)| : 1 ≤ i ≤ `1} and |V (Q1)| = min{|V (Qj)| : 1 ≤ j ≤ `2}.
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We say that a tree Tij in G1 � G2 is associated to trees Pi in G1 and Qj in G2

when every vertex (u, v) ∈ V (Tij) is such that u ∈ Pi and v ∈ Qj .

Let us also give a general idea of the notation used to describe trees in this paper.
If Pi is an x1y1z1-path, we denote it as Pi : x1x

i
1 . . . y

i
1
y1y

i
1 . . . z

i
1z1 and if Pi is an

ri-rooted {x1, y1, z1}-tree, we write Pi : ri . . . xi1x1 ∪ ri . . . yi1y1 ∪ ri . . . zi1z1 (see Fi-

gure 3). Similarly, we write Qj : x2x
j
2 . . . y

j
2
y2y

j
2 . . . z

j
2z2 when Qj is an x2y2z2-path,

and Qj : sj . . . xj2x2 ∪ sj . . . yj2y2 ∪ sj . . . zj2z2 when Qj is an sj-rooted {x2, y2, z2}-
tree. From the definition of special trees, it follows that xi1 6= yi

1
and yi1 6= zi1,

when Pi is not an special x1y1z1-path, and that at least one element of the set
{xi1, yi1, z

i
1} is distinct to ri, when Pi is not an special ri-rooted {x1, y1, z1}-tree.

Similar considerations follow for a not special tree Qj . 1

b b b
x1 xi

1 yi
1

y1 yi1 zi1 z1

b

x1 y1 z1

xi
1 yi

1 zi1

ri

Figure 3: Description of an x1y1z1-path and an ri-rooted {x1, y1, z1}-tree Pi.

To complete the notation used in the paper, notice that given u ∈ V (G1), every
{x2, y2, z2}-tree Qj of G2 induces an {(u, x2), (u, y2), (u, z2)}-tree Qu

j in the copy
Gu

2 such that V (Qu
j ) = {(u, v) : v ∈ V (Qj)} and E(Qu

j ) = {(u, v1)(u, v2) : v1v2 ∈
E(Qj)}.

3. LOWER BOUNDS ON κ3(G1 �G2)

To estimate κ3(G1 � G2), we construct internally disjoint trees connecting
any three distinct vertices x, y, z ∈ V (G1 �G2).

First, we assume that x, y, z come from a single vertex in G1 and three distinct
vertices in G2 or vice versa.

Lemma 3.1. Let G1 and G2 be connected graphs with at least three vertices and

girth at least five. Let xi, yi, zi ∈ V (Gi) be three distinct vertices, for i = 1, 2. The

following assertions hold:

(i) There exist at least δ(G1)κ3(G2) + δ(G1) + κ3(G2) internally disjoint trees

connecting vertices (x1, x2), (x1, y2), (x1, z2) in G1 �G2.
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(ii) There exist at least κ3(G1)δ(G2) + κ3(G1) + δ(G2) internally disjoint trees

connecting vertices (x1, x2), (y1, x2), (z1, x2) in G1 �G2.

Proof. Due to the commutativity of the strong product of graphs, it suffices to

prove (i). Denote x = (x1, x2), y = (x1, y2) and z = (x1, z2). Since x, y, z be-

long to a unique copy Gx1
2 in G1 � G2 and x2, y2, z2 are connected at least by

`2 = κ3(G2) internally disjoint trees Q1, . . . , Q`2 in G2, trees Qx1
1 , . . . , Qx1

`2
are `2

internally disjoint {x, y, z}-trees in G1 �G2.

To construct other δ(G1)κ3(G2) trees, we next define an {x, y, z}-tree Tu
j for each

u ∈ NG1
(x1) and j ∈ {1, . . . , `2}. To do that, we distinguish if none, one or two

trees of the family Q1, . . . , Q`2 contain direct edges between the vertices of the set

{x2, y2, z2}.
For each tree Qj such that x2y2 /∈ E(Qj), y2z2 /∈ E(Qj) and x2z2 /∈ E(Qj), let us

denote

Q̈u
j : Qu

j − {(u, x2), (u, y2), (u, z2)}.
If Q1 is an x2y2z2-path such that x2y2 or y2z2 belong to E(Q1), then

Q̈u
1 : Qu

1 − {(u, x2), (u, z2)}.
Suppose thatQ2 also contains a direct edge between two vertices of the set {x2, y2, z2}.
For instance, we assume that x2y2 ∈ E(Q1) and x2z2 ∈ E(Q2). Then

Q̈u
2 : Qu

2 − {(u, x2), (u, y2)}.
By the definition of the strong product of graphs, for j ∈ {1, . . . , `2}, each end

vertex of Q̈u
j is adjacent to at least one vertex of the set {x, y, z}. We define Tu

j as

a tree contained in G1 � G2 such that V (Tu
j ) = V (Q̈u

j ) ∪ {x, y, z}. (See the blue

illustration in Figure 4).

Therefore Qx1
1 , . . . , Qx1

`2
, Tu

1 , . . . , T
u
`2

are at least κ3(G2) + δ(G1)κ3(G2) internally

disjoint {x, y, z}-trees in G1 � G2. If there exits a vertex u ∈ NG1(x1) such that

dG1(u) = 1, then dG1(x1) ≥ 2 and the previous bound leads to

(1 + dG1
(x1))κ3(G2) ≥ 3κ3(G2) ≥ 2κ3(G2) + 1 = (1 + δ(G1))κ3(G2) + δ(G1),

which proves (i). Otherwise, for each u ∈ NG1
(x1), we consider a vertex wu ∈

NG1
(u)\{x1}. Since g(G1) ≥ 5, vertices wu 6= wv for u, v ∈ NG1

(x1) with u 6= v.

This fact makes feasible the construction of another {x, y, z}-tree T̃u, for every

u ∈ NG1(x1).

If x2y2 /∈ E(Q1 ∪ Q2), y2z2 /∈ E(Q1 ∪ Q2) and x2z2 /∈ E(Q1 ∪ Q2), then (see the
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Figure 4: Trees Tu
j and T̃u associated to an {x2, y2, z2}-tree Qj such that x2y2 /∈

E(Qj), y2z2 /∈ E(Qj) and x2z2 /∈ E(Qj).

red illustration in Figure 4)

T̃u : Qwu
1 ∪(x1, x2)(u, x2)(wu, x2)∪(x1, y2)(u, y2)(wu, y2)∪(x1, z2)(u, z2)(wu, z2).

In case Q1 is an x2y2z2-path such that x2y2 ∈ E(Q1), then

T̃u : Qwu
1 ∪ (x1, x2)(u, x2)(wu, x2) ∪ (x1, y2)(u, x2) ∪ (x1, z2)(u, z2)(wu, z2).

A similar tree can be constructed in the symmetrical case y2z2 ∈ E(Q1).

If x2y2 ∈ E(Q1) and x2z2 ∈ E(Q2), then the vertex (u, x2) is adjacent to the three

vertices x, y, z, (see Figure 5), and therefore, we define

T̃u : (x1, x2)(u, x2) ∪ (x1, y2)(u, x2) ∪ (x1, z2)(u, x2).
1
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T u
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Figure 5: Five {x, y, z}-trees in G1 �G2 when x2y2 ∈ E(Q1) and x2z2 ∈ E(Q2).

Trees Qx1
1 , . . . , Qx1

`2
, Tu

1 , . . . , T
u
`2
, T̃u for u ∈ NG1(x1) provide the desired result.

Now, we consider that x, y, z come from two different vertices in G1 and from other
two different ones in G2.

Lemma 3.2. Let G1 and G2 be connected graphs with at least three vertices and

girth at least five. For distinct vertices x = (x1, x2), y = (x1, z2) and z = (z1, z2)
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in G1 �G2, there exist at least κ(G1)κ(G2) +κ(G1) +κ(G2)− 1 internally disjoint

{x, y, z}-trees in G1 �G2.

Proof. Notice that x, y ∈ Gx1
2 while z ∈ Gz1

2 . Consider k1 = κ(G1) internally dis-

joint x1z1-paths P1, ..., Pk1
in G1 and k2 = κ(G2) internally disjoint x2z2-paths

Q1, . . . , Qk2
in G2. Assume that |V (P1)| = min{|V (Pi)| : 1 ≤ i ≤ k1} and

|V (Q1)| = min{|V (Qj)| : 1 ≤ j ≤ k2}. It may occur that x1
1 = z1, z1

2 = x2.

(I) First, we construct 2k2 internally disjoint {x, y, z}-trees in G1 �G2.

Associated to paths P1 and Q1, (see Figure 6), we have

T11 : Qx1
1 ∪ (x1, z2) . . . (z1, z2).

T ′11 : Qz1
1 ∪ (x1, x2) . . . (z1, x2) ∪ (x1, z2)(x1

1, z
1
2) . . . (z1

1, z
1
2)(z1, z2).

1

b

b

bc

bc
bc

bc

bc
bc

bc

b

x

y z

Gx1
2 Gz1

2

T11

T ′
11

Figure 6: Trees T11, T
′
11 associated to paths P1 and Q1.

Associated to paths P1 and Qj , we construct trees T1j , T
′
1j for j ∈ {2, . . . , k2},

when k2 ≥ 2. The minimality of Q1 and the hypothesis g(G2) ≥ 5 guarantee that

xj2 6= zj2.

If x1z1 ∈ E(P1), then

T1j : Qx1
j ∪ (x1, z

j
2)(z1, z2).

T ′1j : (x1, x2)(z1, x
j
2) . . . (z1, z2) ∪ (z1, z

j
2)(x1, z2).

If x1z1 /∈ E(P1), (see Figure 7), then

T1j : (x1, x2) . . . (x1, z
j
2
)(x1

1, z
j
2) . . . (z1

1, z
j
2)(z1, z2) ∪ (x1

1, z
j
2)(x1, z2).

T ′1j : (x1, x2)(x1
1, x

j
2) . . . (z1, x

j
2) . . . (z1, z2)∪(x1, z2)(x1, z

j
2)(x1

1, z
j
2
) . . . (x1

1, x
j
2).

Trees T11, . . . T1k2 , T ′11, . . . T
′
1k2

are 2k2 internally disjoint {x, y, z}-trees in G1 �G2

and the result is proved when k1 = 1.

(II) If k1 ≥ 2, we construct the remaining trees associating them to paths Pi and
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Figure 7: Trees T1j , T
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1j associated to paths P1 and Qj when x1z1 /∈ E(P1) and

j ≥ 2.

Qj , for i ∈ {2, . . . , k1} and j ∈ {1, . . . , k2}. Let us notice that xi1 6= zi1 because

g(G1) ≥ 5.

Trees Ti1, T ′i1 have a symmetrical construction to T1j , T
′
1j due to the symmetrical

position of vertices x, y, z in this lemma and to the commutativity of the strong

product of graphs. Hence, the proof is complete when k2 = 1. For i ∈ {2, . . . , k1}
and j ∈ {2, . . . , k2}, we consider

Tij : (x1, x2)(xi1, x
j
2) . . . (xi1, z

j
2)(x1, z2) ∪ (xi1, z

j
2) . . . (zi1, z

j
2)(z1, z2).

Notice that trees Tij , for i ∈ {1, . . . , k1}, j ∈ {1, . . . , k2}, T ′11, . . . , T
′
1k2

and

T ′21, . . . , T
′
k11 prove the result.

Now, we study the number of internally disjoint trees in G1 �G2 that join vertices
x, y, z which come from three vertices in G1 and from two in G2 or vice versa.

Lemma 3.3. Let G1 and G2 be connected graphs with at least three vertices and

girth at least five. Let xi, yi, zi ∈ V (Gi) be distinct vertices, for i = 1, 2. The

following assertions hold:

(i) There exist at least κ(G1)κ3(G2)+κ(G1)+κ3(G2)−1 internally disjoint trees

connecting vertices (x1, x2), (x1, y2), (z1, z2) in G1 �G2.

(ii) There exist at least κ3(G1)κ(G2)+κ3(G1)+κ(G2)−1 internally disjoint trees

connecting vertices (x1, x2), (y1, x2), (z1, z2) in G1 �G2.

Proof. Due to the commutativity of the strong product of graphs, it suffices to

prove (i). Denote x = (x1, x2), y = (x1, y2), z = (z1, z2). Notice that x, y ∈ Gx1
2
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while z ∈ Gz1
2 . Consider k1 = κ(G1) internally disjoint x1z1-paths P1, ..., Pk1 in G1

and `2 = κ3(G2) internally disjoint {x2, y2, z2}-trees Q1, . . . , Q`2 in G2.

Assume that |V (P1)| = min{|V (Pi)| : 1 ≤ i ≤ k1} and that at most Q1 and Q2 are

special trees.

(I) First, we construct 2`2 internally disjoint {x, y, z}-trees in G1 �G2 associated

to P1, Q1, . . . , Q`2 .

If only Q1 is an special tree, we consider

T11 : Qx1
1 ∪ (x1, z2) . . . (z1, z2).

T ′11 : Qz1
1 ∪ (x1, x2) . . . (z1, x2) ∪ (x1, y2) . . . (z1, y2).

If both Q1 and Q2 are special trees, we construct four trees associated to P1, Q1

and Q2. Depending on whether x, y play a symmetrical role or not, Figure 8 depicts

with different color the vertices which belong to each of these four trees. 1
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Figure 8: Four {x, y, z}-trees in G1 � G2 associated to a path P1 in G1 and to

special trees Q1, Q2 in G2

For every not special tree Qj , for j ∈ {1, . . . , `2}, we construct two {x, y, z}-trees

T1j , T
′
1j in G1 � G2 associated to P1 and Qj . First, we focus on a particular

case. Assume that x1z1 /∈ E(P1) and that Qj is an sj-rooted tree such that

dQj (sj , x2) ≥ 2, sjy2 ∈ E(Qj), s
jz2 ∈ E(Qj). It means that Qj : sj . . . xj

2
xj2x2 ∪

sjy2 ∪ sjz2 where xj
2

may be equal to sj . Then
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T1j : (x1, x2)(x1
1, x

j
2)(x1, x

j
2
) . . . (x1, y2) ∪ (x1

1, x
j
2) . . . (z1, x

j
2) . . . (z1, z2).

T ′1j : (x1, x2)(x1, x
j
2)(x1

1, x
j
2
) . . . (x1

1, s
j)(x1, y2) ∪ (x1

1, s
j) . . . (z1

1, s
j)(z1, z2).

Notice that a symmetrical construction holds when sjx2 ∈ E(Qj), dQj (sj , y2) ≥ 2

and sjz2 ∈ E(Qj).

In any other case, we consider trees T1j , T
′
1j in G1 �G2 such that

V (T1j) = {x, y, z} ∪ V (Qx1
j − (x1, z2)) })∪

{(u, v) : u ∈ V (P1 − {x1, z1}), v ∈ NQj
(z2)}.

V (T ′1j) = {x, y, z} ∪ V (Qz1
j − {(z1, x2), (z1, y2) })∪

{(u, v) : u ∈ V (P1 − {x1, z1}), v ∈ NQj
(x2) ∪NQj

(y2)}.
Hence, if k1 = 1, we have constructed 2`2 internally disjoint {x, y, z}-trees in

G1 � G2 and the proof is complete.

(II) If k1 ≥ 2, we construct the remaining trees associating them to paths P2, . . . , Pk1

in G1 and to trees Q1, . . . , Q`2 in G2. We assume i ∈ {2, . . . , k1} and denote

Pi : x1x
i
1 . . . z

i
1z1. Notice that x1 6= xi1 6= zi1 6= z1 due to the minimality of P1 and

that g(G1) ≥ 5.

Associated to Pi, Q1, we construct trees Ti1, T ′i1. If Q1 is an x2y2z2-path such that

x2y2 ∈ E(Q1), then

V (Ti1) = {x, y, z} ∪ V (Q
xi
1

1 − (xi1, x2) ) ∪ {(u, z2) : u ∈ V (Pi − {x1, z1})}.
V (T ′i1) = {x, y, z} ∪ V (Q

zi
1

1 − (zi1, z2) ) ∪ {(u, x2) : u ∈ V (Pi − {x1, z1})}.
In any other case, trees Ti1, T ′i1 have sets of vertices

V (Ti1) = {x, y, z}∪V (Q
xi
1

1 −{(xi1, x2), (xi1, y2)} ) ∪{(u, z2) : u ∈ V (Pi−{x1, z1})}.
V (T ′i1) = {x, y, z}∪V (Q

zi
1

1 −(zi1, z2) ) ∪{(u, v) : u ∈ V (Pi−{x1, z1}), v ∈ {x2, y2}}.
If `2 = 1, trees T11, . . . , Tk11, T

′
11, . . . , T

′
k11 prove the lemma. Finally, we consider

that k1 ≥ 2 and `2 ≥ 2. If Q1 and Q2 are special trees, we construct three {x, y, z}-
trees Ti1, T ′i1, Ti2 associated to Pi, Q1 and Q2 as it is shown in Figure 9.

If Qj is not an special tree, for j ∈ {2, . . . , `2}, we consider a tree Tij such that

V (Tij) = {x, y, z} ∪ V (Q
xi
1

j − {(xi1, x2), (xi1, y2), (xi1, z2)} )∪
{(u, v) : u ∈ V (Pi − {x1, z1}), v ∈ NG2

(z2)}.
Notice that trees Tij , for i ∈ {1, . . . , k1}, j ∈ {1, . . . , `2}, T ′11, . . . , T

′
1`2

and

T ′21, . . . , T
′
k11 prove the result.

Finally, we assume that x, y, z come from three different vertices in G1 and G2.

Lemma 3.4. Let G1 and G2 be connected graphs with at least three vertices and

girth at least five. For distinct vertices xi, yi, zi ∈ V (Gi), with i = 1, 2, there exist
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Figure 9: Three {x, y, z}-trees in G1 � G2 associated to a path Pi in G1 (i ≥ 2)

and to special trees Q1, Q2 in G2.

at least κ3(G1)κ3(G2)+κ3(G1)+κ3(G2)−1 internally disjoint trees joining vertices

x = (x1, x2), y = (y1, y2), z = (z1, z2) in G1 �G2.

Proof. Notice that vertices x, y, z belong to distinct copies Gx1
2 , Gy1

2 , Gz1
2 , respec-

tively. Consider `1 = κ3(G1) internally disjoint {x1, y1, z1}-trees P1, . . . , P`1 in

G1 and `2 = κ3(G2) internally disjoint {x2, y2, z2}-trees Q1, . . . , Q`2 in G2. From

Remark 2.1, we know that at most P1, P2, Q1, Q2 are special trees. For simpli-

city, denote Q̈x1
j = Qx1

j − {(x1, y2), (x1, z2)}, Q̈y1

j = Qy1

j − {(y1, x2), (y1, z2)} and

Q̈z1
j = Qz1

j − {(z1, x2), (z1, y2)}. Without loss of generality, when Pi is a path, we

assume that it is the x1y1z1-path.

(I) First, we construct 2`2 internally disjoint {x, y, z}-trees in G1 �G2 associated

to P1 and Q1, . . . , Q`2 .

a) If at most Q1 is an special tree, we construct trees T11 and T ′11 as follows.

If P1 is a path, we have

T11 : Qx1
1 ∪ (x1, y2) . . . (y1, y2) ∪ (x1, z2) . . . (z1, z2).

T ′11 : Qz1
1 ∪ (x1, x2) . . . (z1, x2) ∪ (y1, y2) . . . (z1, y2).

If P1 is an r1-rooted tree,
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T11 : Qx1
1 ∪ (x1, y2) . . . (r1, y2) . . . (y1, y2) ∪ (x1, z2) . . . (r1, z2) . . . (z1, z2).

T ′11 : (x1, x2) . . . (r1, x2) . . . (y1, x2) . . . (y1, y2) ∪ (r1, x2) . . . (z1, x2) . . . (z1, z2).

b) If both Q1 and Q2 are special trees, we construct four trees associated to P1,

Q1 and Q2. Depending on whether P1 is a path or a tree, Figure 10 or Figure 11

shows with different color the vertices that belong to each tree, respectively.1
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Figure 10: Four {x, y, z}-trees in G1 � G2 associated to a path P1 in G1 and to

special trees Q1, Q2 in G2.

c) For each j ∈ {2, . . . , `2} such that Qj is not an special tree, we construct two

trees T1j , T
′
1j in G1 �G2 associated to trees P1 and Qj as follows.

Consider thatQj is either an x2z2y2-path or an sj-rooted tree such that dP1(x1, y1) ≥ 2

and xj2 = yj
2

= sj , denoting in this last case zj2 = zj2.

V (T1j) = {x, y, z} ∪ (x1, x2) . . . (x1, z
j
2) ∪ (y1, y2) . . . (y1, z

j
2)∪

{(u, v) : u ∈ V (P1 − {x1, z1}), v ∈ NQj (z2)}.

V (T ′1j) = {x, y, z} ∪ V (Q̈z1
j ) ∪ {(u, v) : u ∈ V (P1 − {x1, z1}),

v ∈ NQj (x2) ∪NQj (y2)}.
Similar constructions hold when dP1

(y1, z1) ≥ 2 and zj2 = yj
2

= sj .

In any other case, to unify the description of the trees T1j and T ′1j , without loss of

generality, we denote yj2 = yj
2

when Qj is an sj-rooted tree and provide an specific

role to the vertex y = (y1, y2). Concretely, if P1 is a path, we consider that P1 is an
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Figure 11: Four {x, y, z}-trees in G1 � G2 associated to a path P1 in G1 and to

special trees Q1, Q2 in G2.

x1y1z1-path and if P1 is an r1-rooted tree, we assume either that dQj
(sj , y2) ≥ 2

or that Qj is an x2y2z2-path.

Under these assumptions, to construct the trees T1j , T
′
1j it is enough to consider

that

V (T1j) = {x, y, z} ∪ V (Q̈y1

j ) ∪ {(u, v) : u ∈ V (P1 − {x1, y1, z1}),
v ∈ NQj

(x2) ∪NQj
(z2)}.

V (T ′1j) = {x, y, z} ∪ {(x1, x2), . . . , (x1, y2
)} ∪ {(z1, z2), . . . , (z1, y2)}∪

{(u, v) : u ∈ V (P1 − {x1, y1, z1}), v ∈ NQj
(y2)}.

When `1 = 1, trees T11, . . . , T1`2 , T
′
11, . . . , T

′
1`2

are 2`2 internally disjoint {x, y, z}-
trees, as desired.

(II) Now, we assume that P1 and P2 are special trees. Associated to P1, P2,

Q1, . . . , Q`2 we construct 3`2 + 1 internally {x, y, z}-trees.

The construction of four trees associated to P1, P2, Q1 follows from the one de-
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scribed for P1, Q1, Q2 in (Ib) due to the symmetrical position of the vertices x, y, z

in this lemma and to the symmetry of the strong product of graphs.

If Q1 and Q2 are also special trees, Figures 12 and 13 shows seven internally disjoint

trees associated to special trees P1, P2, Q1, Q2.
1
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Figure 12: Seven {x, y, z}-trees in G1 �G2 associated to special trees P1,P2 in G1

and Q1, Q2 in G2.

Associated to P1, P2, Qj , when Qj is not an special tree for j ≥ 2, we construct

internally disjoint trees T1j , T
′
1j , T2j such that

Q̈x1
j ⊂ V (T1j), Q̈

y1

j ⊂ V (T ′1j), Q̈
z1
j ⊂ V (T2j)

and take into account the equality V (T1j∪T ′1j∪T2j) = V (Q̈x1
j ∪Q̈

y1

j ∪Q̈
z1
j )∪N , where

N = {(u, v) : u ∈ V (P1 ∪ P2)− {x1, y1, z1}, v ∈ NQj (x2) ∪NQj (y2) ∪NQj (z2)}.

The proof is finished when `1 = 2, or symmetrically, when `2 = 2.

(III) Assume that Pi is not an special tree, for i ∈ {2, . . . , `1}. Associated to it, we

construct `2 + 1 internally disjoint {x, y, z}-trees in G1 �G2. To do that, it has to
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Figure 13: Seven {x, y, z}-trees in G1 �G2 associated to special trees P1,P2 in G1

and Q1, Q2 in G2.

be distinguished whether Pi is an ri-rooted tree or a path.

Consider Pi is an ri-rooted tree with leaves x1, y1, z1.

If Q2 is not an special tree, notice that trees Ti1, T
′
i1, associated to Pi and Q1, are

symmetrical to the trees T1j , T
′
1j constructed in (Ic). When both Q1 and Q2 are

special trees, Ti1, T
′
i1, Ti2 are symmetrical to T1j , T

′
1j T2j , constructed in (II). When

Tij is associated to Pi and to a non-special tree Qj , then

V (Tij) = {x, y, z} ∪ V (Qri

j − {(ri, x2), (ri, y2), (ri, z2)})∪
{(u, v) : u ∈ V (Pi − {x1, y1, z1}), v ∈ NQj

(x2) ∪NQj
(y2) ∪NQj

(z2)}.

Finally, consider that Pi is an x1y1z1-path. Notice that, for every u ∈ Pi, all

the trees Qu
1 , . . . , Q

u
`2

contain the three vertices (u, x2), (u, y2), (u, z2), and hence,

we cannot proceed as usual to construct internally disjoint trees associated to

Pi, Q1, . . . , Q`2 .

Instead, as we have mentioned in the Introduction, according to [10, 15] we can
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consider R1, . . . , Rk2 internally disjoint x2y2-paths and S1, . . . , Sk2 internally dis-

joint y2z2-paths in G2.

Since Rj and Sj may not be internally disjoint, they will be used in different copies

of G2. We denote Rj : x2x
j
2 . . . y

j
2
y2 and Sj : y2y

j
2 . . . z

j
2z2 for j ∈ {1, . . . , k2}.

In particular, if R1 and S1 are the shortest ones, it may occur that R1 : x2y2 or

S1 : y2z2.

Associated to Pi, R1, S1, we consider

Ti1 : (x1, x2)(xi1, x
1
2) . . . (xi1, y2) . . . (yi

1
, y2)(y1, y2)(yi1, y

1
2) . . . (yi1, z2) . . . (zi1, z2)(z1, z2).

T ′i1 : (x1, x2)(xi1, x2) . . . (yi
1
, x2) . . . (yi

1
, y1

2
)(y1, y2)(yi1, y2) . . . (zi1, y2) . . . (zi1, z

1
2)(z1, z2).

For paths Pi, Rj , Sj , i ∈ {2, . . . , `1}, j ∈ {2, . . . , `2}, we consider

Tij : (x1, x2)(xi1, x
j
2) . . . (xi1, y

j
2
) . . . (yi

1
, yj

2
)(y1, y2)(yi1, y

j
2) . . . (yi1, z

j
2) . . . (zi1, z

j
2)(z1, z2).

Now, we are ready to prove the main result of the paper.

Theorem 3.1. Let G1 and G2 be connected graphs with at least three vertices and

girth at least five. Then, κ3(G1 �G2) ≥ κ3(G1)κ3(G2) +κ3(G1) +κ3(G2)− 1. The

bound is sharp.

Proof. The bound κ3(G1�G2) ≥ κ3(G1)κ3(G2)+κ3(G1)+κ3(G2)−1 is consequence

of the inequality δ(G) ≥ κ(G) ≥ κ3(G) and Lemmas 3.1, 3.2, 3.3 and 3.4. To see

that the bound is sharp, it is enough to check out that κ3(P � P) = 2, where P
denotes a path with three vertices.

The equality δ(G1 �G2) = δ(G1)δ(G2) + δ(G1) + δ(G2) together with Theorem 3.1
provide an accurate result on κ3(G1 �G2) when the generator graphs also satisfy
that κ3(G1) = δ(G1) and κ3(G2) = δ(G2).

Corollary 3.1. Let G1 and G2 be connected graphs with at least three vertices,

girth at least five and such that κ3(G1) = δ(G1) and κ3(G2) = δ(G2). Then,

δ(G1 �G2)− 1 ≤ κ3(G1 �G2) ≤ δ(G1 �G2).

Both bounds are sharp.
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4. CONCLUSIONS

This paper is the first study of the generalized 3-connectivity on the strong
product graph. For two connected graphs G1 and G2 with the requirements of
having at least three vertices and girth at least five, we have constructed internally
disjoint trees that connect any three vertices x, y, z ∈ V (G1 � G2). They provide
constructive sharp lower bounds on K3(G1�G2) in terms of well known parameters
of the factor graphs.

From these results we have obtained our main Theorem 3.1 where we have showed
that κ3(G1�G2) ≥ κ3(G1)κ3(G2)+κ3(G1)+κ3(G2)−1, for two connected graphs
G1 and G2 with at least three vertices and girth at least five. Moreover, we have
deduced that δ(G1 � G2) − 1 ≤ κ3(G1 � G2) ≤ δ(G1 � G2), when also the factor
graphs verify that κ3(G1) = δ(G1) and κ3(G2) = δ(G2).

Although we do not show it in this paper due to the high number of cases involved,
we have managed to prove that κ3(G1�G2) ≥ κ3(G1)κ3(G2)+κ3(G1)+κ3(G2) for
connected graphs G1 and G2 with at least four vertices and girth at least five. As
consequence of this inequality, it follows that κ3(G1 �G2) = δ(G1 �G2) for graphs
Gi with at least four vertices, girth at least five and such that κ3(Gi) = δ(Gi) for
i ∈ {1, 2}.

As future work, we would like to establish some general results about the generalized
k-connectivity of the strong product of graphs for k ≥ 4. Also, it would also be
interesting to keep exploring the generalized k-connectivity on other kind of product
graphs.
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Universidad de Sevilla,

Avenida de Reina Mercedes, 2,

41012, Sevilla,

Spain.

E-mail: pgvazquez@us.es


