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1. Statement of the Main Theorem
Introduction

Can one characterize the quasi-similarity of contractions in terms of their characteristic functions? Quasi-similarity is
an equivalence relation between Hilbert space bounded operators which, being weaker than similarity, still preserves many
interesting features as the eigenvalues, the spectral multiplicity or the non-triviality of the lattice of invariant subspaces (see
[1,4,7] and references therein).

Two Hilbert space bounded operators T1 € B(H) and T, € B(H;) are said to be quasi-similar if there exist two bounded
operators X :Hq1 — Hy and W :Hy — H7 such that

XT1 =TaX, clos{XH1} = Ha, ker(X) = {0},
T{W =WT,, clos{WHy} =H1, ker(W) = {0}.

Such operators X and W are called quasi-affinities or deformations.

There has been several very deep and interesting approaches to find a characterization of quasi-similarity in terms of
the characteristic functions of the operators involved. Namely, the Jordan model for Cop-contractions, completed by Bercovici,
Sz.-Nagy and Foias and, independently, Miiller, after pioneering work by Sz.-Nagy and Foias (see [1,7]); the Jordan model
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for weak contractions due to Wu [8,9]; and the classification, up to quasi-similarity, of Cip-contractions with finite defects
and Fredholm index equal to —1 due to Makarov and Vasyunin [3]. More recently, we have given necessary and sufficient
conditions for the quasi-similarity of contractions having a 2 x 1 characteristic function [2].

Framework

Let T € B(H) be a completely non-unitary contraction having an n x n characteristic function ®@. This means, in particular,
that T is a Fredholm operator with both defect indices equal to n and that its Fredholm index is 0. If det(®) # 0, then
T is a weak contraction, and the characterization of the operators that are quasi-similar to T was given by Wu in [8,9].
Roughly speaking, if ® is non-singular, then T is quasi-similar to a uniquely determined direct sum of a Jordan chain plus
a finite number of operators of multiplication by the independent variable on spaces of type xoL?, where §2 stands for a
measurable subset of T, the unit circle of the complex plane.

The purpose of this paper is to study, with the help of the coordinate-free function model developed by Nikolski and
Vasyunin [6] (see also [4, Chapter 1]), the quasi-similarity of contractions having a 2 x 2 (non-zero) singular characteristic
function. As we shall see, this case seems to be already somewhat difficult to manage, but we hope that it will provide hints
to tackle the general case when the characteristic function is an n x n singular matrix. So let T € B(H) be a completely
non-unitary contraction having a characteristic function & which is a 2 x 2 singular matrix of functions in H*®. As it is well
known, such a function ® can be written as ® = wm[g][c d], where w,m,a,b,c,d € H® are such that (i) w is an outer
function with |w| < 1, (ii) m is an inner function, (iii) |a|2 + |b|> = |c|®> + |d|* =1, and (iv) aAb=c Ad =1 (here A stands
for the greatest common inner divisor). Associated to these functions we also consider the set

2:={zeT: |w(»)| <1}

and the ideal N*{a, b} generated by a pair of functions a and b from the Smirnov class N :={f/g: f, g€ H* and g is outer},
that is

N*ta, b} :={va+ub: v,ue N}

Let us denote by H3S, and /\/'ZJ’X2 the sets of all 2 x 2 matrices with entries in H*® and, respectively, the Smirnov class N/ *.

For a function f from the Smirnov class, by f' and f° we denote the inner and outer parts of f. Let us also introduce the
following notation: ¥ :=[,], ¢ :=[c d], 9*:=[b —a], ¢ :=] “]and

—C

(2] o et a3 )

5 =B

For a matrix [;‘ f;] the symbol M2 denotes the adjugate matrix [7)/ o J» S0 that the following equalities hold: MM =

M3\ = (det M)I. We fix this notation (with subindices when appropriate) throughout the paper.
Now consider two completely non-unitary contractions T; € B(H;) having 2 x 2 characteristic functions ©@; =

Wimi[Z:][Ci di ] = w;ym;9¥;@;. Our main result in this paper is the following.

Main Theorem. T, is quasi-similar to T if and only if the following conditions hold:

(i) mp=my=m,

(ii) 21 =27 a.e,,
(iii) there exists f € det(2 — 91)' N det(p? — 39! such that f Am =1, and
(iv) there exists g € det(9 — 2)! N det(pa — @39)i such that g Am = 1.

Remarks. We would like to underline at this point that one could think about the possibility of separating the outer and
inner parts of © = wm[g][c d], that is, ®° = w[c d] and ©! :m[g], in order to use the results from [2] to obtain
quasi-similarity of operators having these characteristic functions separately. However, we will see (Proposition 4.1 below)

that, in one of the most simplest cases, when m =1 = w, the operators whose characteristic functions are

“le d1 and |© d
[b]c Ian [b]@[c ]

are quasi-similar if and only if there exist four functions f1, f2, f3, f4 € H* such that af; + bf, + cf3 + dfs is an outer
function; a condition that not always holds. This tells us that, unlike the 1 x 1 case, separating inner and outer parts is not
the right way to tackle the proof.
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Other terminology and notations

In what follows, clos{-} stands for the closure of the linear span of the set within the brackets. In particular, if
T is a bounded operator defined in a Hilbert space H and M is a linear subspace of H, we shall frequently use that
clos[T clos{M}] = clos{TM}. Whenever we write L% or L2(), our underlying measure space is assumed to be the unit cir-
cle T of the complex plane endowed with the Lebesgue measure; in particular, for two sets 21 and §2, we write 21 = £2;
a.e., whenever these sets coincide up to a set of Lebesgue measure zero. We assume 0 =0, 0°=1, and 0 A f = fi.
Otherwise, our terminology and notations are standard. A label (m.n) refers to the nth formula of section m.

2. Quasi-affinities in the coordinate-free function model
The coordinate-free function model

Since we shall make an intensive use of the properties and the notation of the coordinate-free function model for
completely non-unitary contractions given in [6] (see also [4, Chapter 1]), we shall describe it briefly for the convenience of
the reader.

Given a completely non-unitary contraction T € B(H), let Dr = (I — T*T)/2 be its defect operator and Dt = clos{D1H}
be its defect subspace, and take two auxiliary Hilbert spaces £ and &, such that

dim(£) =dim(Dr) and dim(&,) =dim(Drx).

Now, let U € B(K) be the minimal unitary dilation of T. Then U has a triangular matrix with respect to the canonical
decomposition K =G, ®H® G, where G and G, are the so-called outgoing and incoming subspaces, respectively, and there
exists a pair of functional embeddings

=, m): L&) ®L*E) > K

where, among other properties, the operator I7 has dense range in K and 7w and 7, are isometries intertwining U and the
operator M, of multiplication by z in the corresponding L? space. Moreover,

TH2(E) =G L G = m.H2 (&)

and the operator @ =77 € B(L(E), L2(&,)) is the multiplication operator by a contractive-valued analytic function z —
O(z) e B, E,); that is, (O f)(z) = ©(2) f(2), and this analytic function is equivalent to the characteristic function ®1 of T
defined by

O1(2) = (—T + zD71x* (I — ZT*)_lDT)|DT.

We also have that T is unitarily equivalent to the model operator defined as the compression of U to the subspace Hg
of KC defined as the orthogonal complement of the orthogonal sum (7w H2(E) & m, H2 (£,)).

To describe the intertwining lifting theorem that we shall use, we need to introduce some more operators appearing in
this model.

Define A := (I — ®*©®)/2. Then A is the positive part of the polar decomposition 7 — 7, = T A that also provides
us with an isometry T acting from the so-called residual subspace L2(AE) := clos{AL2(E)} to K. Similarly, for A, := (I —
©©*)1/2 there is an isometry 7, defined in L2(A,&,). These operators satisfy a number of relationships [6, p. 237], and
some of them will be used time and again in the sequel, namely

TT* + e (m)* =1, T = A, T*m, =0, %7, = —0OF, T=m.0+TA,

T (T)" +n* =1, (T2) "1 = Ay, (t)*m =0, (T)'T=—-0, m=m0"+T,A,. (2.1)

We also need the following equalities:

G=mH*&), H®G=n.H*E)DTL*(AE),
Gu =T H2 (&),  HOG=mH2(E) ® T L2 (AL (22)

Now let T1 € B(H;) and T € B(H,) be arbitrary completely non-unitary contractions. Let X € 3(H;, H2) be a bounded
operator intertwining T1 and T», that is, T; X = XTy. Then the liftings Y € B(IC{, K3) of X intertwining the minimal unitary
dilations of T and T, and preserving the outgoing and incoming structure, in the sense that YG; C G» and Y*G,» C Gi1,
can be parametrized in either of the following forms [6, pp. 252-258]

Y =T Ax(T:)" + T2A2A7] + 12A0(Te1)™ = M AT} + T2 AwAs1 (Te1)™ + T2A0(T:1) ™,

where z+— A(z) € B(£1,&2) and z+— A, (2) € B(E41, Ex2) are operator-valued, bounded analytic functions such that A,® =
O, A, and z+—> Ag(2) € B(Ax&41, A2E>) is an operator-valued, bounded measurable function, which can be regarded as a
function in B(E41, A2&2) equal to zero on Ker A,q. This parametrization theorem will be essential in our computations.
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Lifting quasi-affinities

The four lemmas that we give now tell us how to relate the conditions that define a quasi-affinity to the parameters of
any of its liftings. Their complete proof can be found in [2].

Lemma 2.1. Let X : H1 — H be a bounded operator such that XT1 = T2 X and let Y = 7,0 A+ (7T41)* + T2 A2 A7{ + T2 Ao(T41)* e
a lifting of X intertwining the minimal unitary dilations of T and T,. Then clos{XH1} = H; if and only if

H2(E.1) ,
A 6, 0 ) H(Ex2)
oSV 0 407 + Aods Ay AvAA; — Ag® HAE) =] 1200,8) |- (23)
2 1 043x%1 2 2 1 01 Lz(Algl) 2¢2

Moreover, in this case the operator [ A, ©- ] defined on H2(E.1) ® H%(&,) is outer, that is, its range is dense in H%(E,2).
The next result gives a condition for the converse of the second part of Lemma 2.1 to hold.

Lemma 2.2. Let X : H1 — H2 be a bounded operator such that XT1 =T X and let Y = .3 A4 (741)* + T2 A2 AT} + T2 Ao(T41)™* be
a lifting of X intertwining the minimal unitary dilations of T1 and T». If

clos{(A2AA1 — AgOL?(A1E1)} = L*(A282). (2.4)

then the claim clos{XH1} = H> is equivalent to the assertion that the function [ A, ©- ] is outer.

Taking into account that ker(X) = {0} if and only if clos{X*H;} = H; and that X* is a compression of Y*, the following
lemmas follow directly from the previous ones.

Lemma 2.3. Let X : {1 — H3 be a bounded operator such that XT = To X and let Y = m3 A§ + a0 Ay A1 (T1)* + T2A0(T41)* be
a lifting of X intertwining the minimal unitary dilations of T and T. Then ker(X) = {0} if and only if

H2 (&)
A* or 0 5 H2 (1)
clos ] . s H= (E41) =, .
A*lAI("QZ + AOAZ Ay A*lA:A*Z - A0@2 2 L (A*lg*l)
L*(Ax2&s2)

Moreover, in this case the operator [@A1 ] defined on H2 (&) is x-outer, that is, the range of its adjoint [ A* ©7 ] defined on H2(&) &
H2 (£,1) is dense in HZ (7).

Lemma 2.4. Let X : H1 — H3 be a bounded operator such that XT1 = To X and let Y = m ATT{ + W42 A A1 (Te1)* + T2 Ao (T41) ™ be
a lifting of X intertwining the minimal unitary dilations of T1 and T». If

clos{(An AL A — AFO3)L* (An€n)} = L2 (A Ea),

then the claim ker(X) = {0} is equivalent to the assertion that the function [ A is x-outer.

O ]
3. Proof of the Main Theorem

Main Theorem. Let T; € B(H;) (i = 1,2) be completely non-unitary contractions having 2 x 2 characteristic functions ©@; =

w,-mi[gf][ci di 1= wim;9@;. T1 is quasi-similar to T, if and only if the following conditions hold:
(i) mp=my=m,

(11) 21 =527 ae,

(iii) there exists f € det(d2 — ¥1)! N det(p? — @39) such that f Am =1,

(iv) there exists g € det(1 — ¥2)! N det(p3d — @39)i such that g Am=1.

The proof of the Main Theorem has been decomposed into a series of lemmas in order to make it more transparent the
role of each condition in the network of implications.
Since our main tool will be the coordinate-free function model, we start by describing the functional representations of

the residual subspaces for the minimal unitary dilation of an operator T with a characteristic function ® = Wm[;][c dl.

If we consider the scalar outer function w as a 1 x 1 characteristic function, then we have A, =+/1 —|w|? and the
corresponding residual subspace can be identified with L2(A,,) = clos{AL?} = xoL?, where 2 :={zeT: |w(z)| < 1} and
Xs2 is the indicator of the set £2, i.e., x2(¢) =1 1if ¢ € £2 and x(¢) =0 otherwise.
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Since © is a 2 x 2 matrix with entries in H*®, we can take as auxiliary spaces £ = &, = CZ, therefore L%(£) = L%(&,) =
L%(C?) =: 13, H*(€) = H?(£,) =: H3 and H2(£) = HX (&) =H3_:=L26H3.
With these, the proof of Lemma 3.1 following below—a straightforward routine computation—is omitted.

Lemma 3.1. For ©® = wm[Z][c d ] the corresponding functions A and A, in the function model are

dl] - _ ¢ " y
A:[—c][d —c]+Aw[a][c d1=¢* (™) + e
and
E a = ad\* gad *
Av=| _|[b —al+ Ay p |1 b1=(9%)"0% + Ay 0™,
—a
and the corresponding residual subspaces are
d c
12(AC?) = [_C] e [d] L*(Aw) = 9™ 1* @ ¢* xal?
and
b

—a

1?(4,C%) = [ ] I’e [Z] [?(Ay) = (0) L2 @ 9 xoL?.

Moreover,
clos{AL2 (ACZ)} = LZ(A(CZ) and clos{A*L2 (A*(Cz)} =12 (A*Cz).

Lemma 3.2. There exists an operator X : H1 — H such that XT1 = T X and clos{XH1} = H if and only if the following conditions
hold:

(i) my divides mq,
(ii) $22 € £21 a.e.,, and A '
(iii) there exist two inner functions f,u € H* such that f € det(¥, — ©1)", f Amy =1 and n”;—;uf € det(<p§‘d — ugogd)‘.

Proof. We suppose that there exists an operator X : Hi{ — H> such that XT1 = T2 X and clos{XH1} = H>. Let

Y = Al + T2 A2AT] + T A0T) = MAT] + T AvAn T + T2A0T)

be a lifting of X intertwining the minimal unitary dilations of T1 and T,. Then the parameters A, A, € HSS, satisfy

(a) ®2A = A,®1 and, according to Lemma 2.1, (b) [A, ©;] is outer. Multiply (a) by z?é*d on the left and use that ﬁ;dﬂz =0
and, consequently, that 023‘1@2 =0, to obtain m1w1ﬂ§dA*171<p1 =0. As ¢ is not a null vector and m; and w; are not zero
a.e., the scalar function z9§‘dA*191 has to be zero. Analogously, multiplying by w?d on the right and using that (p1g0§‘d =0 we
obtain that myw, ¢ Ag3d = A, 01929 = 0, therefore, 9, Ap?? = 0. Since

939A4,91 =0 and @A@} =0,

we can use Lemma 5.2 from [2] with the components of the vectors ﬂgdA*, A1, @2A and A(pi‘d to get four functions
f1, f2, f3, fa € H® such that

0394, = 1924, A= faa,  @A=fip1, and Apd = fip3d. (31)
Thus

(det A0 = ANAD1 = 429, = f1 f20
and

(det A)pi? = AN AP = f4AM 93" = faf303°,
then we have

detA, = f1f> and detA= f3f4.

Making use of the equality

miwq foth1 =mMw1A01901 = AxO1 = O2A =mawath g A =maw; f3th o1,
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we have, multiplying by ©5 on the left, by ¢} on the right and using 9592 =1 = @197, that

miwi f =maw; f3. (3.2)
On the other hand, as c; and d; are relatively prime (i.e. have no common inner factor), we have that [c; d] is outer
(see the properties of inner and outer matrices of functions in [4,5] or [7]) and, consequently, clos{wzgozHﬁ} = H?. Now,
using (b), we have
H3 =clos{[ A, ©;]H3} = clos{A,H3 + ©;H3} = clos{AH3 + maw 0292 H3 }
= clos{A*Hg +myd clos{wz(szf}} =clos{[ A, m ]H%}‘
Therefore, the matrix

a a mya
(A, mzﬁz]:[*" 12 22]

(21 Qy22 Mba

is outer, in consequence, the three 2 x 2 minors are relatively prime or, equivalently, all the components of the vector

[detA, ma(b2as1 — 2i21) Mo (bauiz — G2ai2) | = [det A, mawddA N =[f1fo mafi1939]

are relatively prime. In particular, f; is an outer function and f, A my = 1. Using this in (3.2) we deduce that m; divides
mj. Let us point out here that the function f we are looking for is the inner part of f;,.
Let us see that £2, C £21 a.e. Since clos{XH1} = H>, Lemma 2.1 tells us, using & = &,; = C? for i =1, 2, that

H3 5

As O, 0 5 H3
clos Hj = . (3.3)

A2A0F + AgAs1 Ay AyAA; — AgBq 12(A,C?)
[*(A1C?)
Taking into account that, by Lemma 3.1,
il (AiC?) = i (912 ® ¢} xo,L%) = X, L? fori=1,2, (34)
10 H? H? 7. . 10 .

we have that [ wz][LZ(AZCZ)] = [m2 ;2] is a closed subspace. Therefore, if we apply the operator | wz] to the equality (3.3)

above, we obtain

H2
Ay )] 0 i H%
clos . H3 = 2
©2(82A07 + AoAs1) 242 92(A2AA1 — ApB1) ) , X, L
L(A1C%)
which, using that
9idi = gi(01(#})" + Awipf o) = Awpi fori=1,2,
is equivalent to
H2
o [FCTC AP [ | S
clos = .
* _ 2 2
Aw, 2 AO7 + 02A04:0  Aw, 02 Aw,2AAT — 92A061 2(A,C?) X2, L
Since @A = f3p1 and @1 A1 = Ay, @1, we have
(pzA@T = (pzATﬁ]WﬂpTl?T = fzmiwy 191*
and
AW2¢2AA1 = Awa3<P1A1 = AW2f3AW1¢1’
therefore, the space above can be written as
H3
As 62 0 S
clos . H
Ay, f3MW19] +@2A0lx1 Aw, 02 (Aw, f3Aw, —mMiw1@2A001)¢1

L2(A1C?)
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Now, using that, by (3.4), ¢1L%(A1C?) = x, L2, that the range of Ay is included in L?(A>C?) and, hence, the range of @2 Ag
is included in @2L?(A,C?) = xg,L?, we conclude that

(Aw, f3Aw, —miw192Ag01)@1L%(A1C?) = (Aw, f3Aw, — miw1@2A091) X2, L? € Xaine,L? = X, xar L2

Taking into account the orthogonal decomposition

H2 H2 0
X.QzL X.Qz\(.Q] ﬂQz)L stz Xﬁ] L ’
2

if we apply to the last equality the orthogonal projection from [x Hsz] onto the space
2

r H2 T [ H3 }
L X2\ @02y L2 ] X2, (1= xe)L? ]’

S .
whose matrix is [ (—xo )], we obtain
1

[ S S | s o |1
=clos o ,
L Xe2s\@ineyl? | L0 (1= xe) L Aw, fsmiwi9] + 240441 Aw,¢2 1 LH3

because (Aw, f3Aw, — 92A091)91L2(A1C?) € X2, X, L. Since clos{@,H3} = H? we have

[P E | N |y ")
=clos _
L X2\ (@102 L2 ] L0 1—xa 1 LAw, imMiW19] + ¢2A0As1 Aw,92 ] L H3

M1 0 A, mywy, 7 [ H3
=clos o 51t
L0 1—xo, 1LAw, sMiW1d] + 0240441  Aw, H

If we multiply the matrices and use that 4 19;‘ + (z?lad)*ﬁfd =], that w1H§ is dense in H% and that

(= Xxe)Aa =1 = xe)((379) 97 + Aw, 9197) = (1 — xe) (97¢) 9
the last equality can be written as

[ H? ] | {[ A019F + (939 9] mywa } [leZ]}
= clos
X2\ (21n22) L (1 = x2)(Aw, fsMW10F + 924003 03 (1 - x,)Aw,

maw2 ¥ ] _ [ A (3* ] d ] }
=clos [ famioF 11+ [wip]¢ 0] ,
{|:|: (11— xe)Aw, 5 1- X_Ql)(pon(ﬂfd)*

where we have also used that (1 — XQl)|W1|2 = (1— xgo,) and, from (3.1) and (3.2), that
myws f39,m 19;‘ = W]fzﬂzﬂr =wiA: l?ik.

Since the matrix above acting on H% is the sum of two rank one matrices, its rank must be at most two, thus
X2\ 21N2; L% = {0} or, equivalently, £2, C £2; almost everywhere.

Finally, taking f = fi, the inner part of f,, we have f A my = 1. Moreover, since f; is an outer function, if f2 is the
outer part of f4, we have from (3.1) and (3.2) that

1
A ANy A= and e Agt = figt
4 4
with

(det(flAid>> = (det A¥) = (det A = (fifo)' = fi=f and
1

1 i . . mi . . mq .
det = (detA)' = '=—ffi=—"Ffa
(der( ) ) = cery = s s = Tt = 15
thus f e det(¥, — 91)! and, taking u = ffl, ot uf € det(<p1 — ugoz‘l')1 This finishes the proof that the conditions are neces-
sary.

Now, we suppose that m; divides my, that £2, C £21 a.e., and that there exist two inner functions f,u € H* such that

f e det(d, — 1), fAmy=1, and an]uf € det(q)i‘d — u(pgd)i.
2
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We will prove that there exists a bounded operator X :7H; — H; such that XT; = T2 X and clos{XH1} = H>, by finding an
adequate parametrization to produce a suitable lifting Y of X. According to Lemma 2.2 we need to build a lifting

Y =T Ax(T:1)" + T2 A2AT] + T2A0(Ti1)

whose parameters satisfy the hypothesis of that lemma. Those conditions are:

(1) @2A=A,01,
(2) [Ax ©3] outer,
(3) clos{(A2AA1 — AgO1)L?(A1C?)} = [2(A,C?),

where A, Ay € H3S,.

Since there exists a function f € det(d, — ©1)! such that f Amy =1, it follows that there exists A € /\/'2+ , satisfying

X

A%, =91 and (det A)' = f. Let A, be an outer function such that A, A € H35, and A, det A € H®. If we denote MM =74,

X

we have M9, = 2,0. Let f; = (A, det A)° be the outer part of A, det A. Then

Ay det A = (h,det A) (A, det A)° = ffy,
det M = det M = A2 det A = i, ff1,

and
M, 01) = M(M*9,) = (det M%) 95,
consequently
det M
Mo = ¥ = ff10a.

*
Let h be an inner function such that m; = hm;. Since huf € det(q)i’d — ug()g‘j)i we have, analogously, a matrix
r e./\f2+2 such that F(p?d = ugogd and (detI")' = huf. Thus there exists an outer function A such that N =AI" € HSS,,

X

adetI” € H®, Ng3 = aup3d and detN = A2detI” = A(rdetI") = Ahuff,, where f, = (»detI")°. Moreover, it follows that
N3dg3d = hff,03d and, therefore, 2N = hff2¢1.
We choose A, = w; foM and A = w1 f1N. Let us check that our three conditions hold.
(1) The equality ®;A = A,®1 holds because
AsO1 = w3y fHoMmiwi191@1 =miwiwz fa(M) 1 =miwiwz 2 (ff192)¢1

and

OrA =mywotwr f1N =mawiwy f192(02N) = mawqwy f1da(hf fa¢1).
(2) To prove that [A, ©3] is outer, we will check that
clos{[A, ©,]H;}=H3.
Now, since wy, f, and ¢, are outer functions and A, = w; fo M, we have
clos{[A, ©;1Hi}=clos{[M my0;]H3}.

consequently, it is enough to prove that [M my1, ] is outer or, equivalently, that the three 2 x 2 minors have no common
inner divisors or, in other words, that the components of the vector

[detM myo3?M1=[rffi maad{T=[Affi makiby —mariar]

have no common inner divisors. But this is true because f Amy =1, a; and b; have no common inner divisor, and A,
and fi are outer functions.
(3) To check the third condition we need to specify the parameter Ag. We take Ag = ag xq, 597, where ao is chosen

depending on f, namely, we put ag =0 if f#0 and ao =1 if f = 0. Since L?(4;C?) = L2 ® ¢¥ o, L%, we can rewrite
the required equality as follows

clos{(A2AA1 — AgON@IIL?, (A2AA1 — AgO)@] X0, L2} = 031% @ ¢} X0, L2 (3.5)

Let us consider the first term. Using formulas from Lemma 3.1 and the definition of the functions A and Ag we get

clos{(A2AA1 — Ag©®)@IIL?} = clos{w1 f1 A2N@3IL?} = clos{w1 f1AuA,939L? ) = clos{wq fiaug3L?} = 3912,
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Thus, to prove (3.5) it is sufficient to check that the orthogonal projection of the second term in the left-hand side
of (3.5) onto (pé‘xgsz gives the whole subspace, i.e., that

@3 X2, 92 clos{(A2AA1 — AgON@} X2 L} = 05 X, L2
Let us check this identity:

@3 X2, 92 clos{(A2AA1 — AgO) @} Xy L} = ¢ clos| xa, [(9242) (W1 f1N) (A197) — @2 (a0w3 97 ) (m1w1 9191 | L2}
= @5 clos{ x2,[W1 f1Aw, Aw, ©2Ne] — agmy W]]Lz}
= @5 clos{ x2,[w1 fiAw, Aw, hff2 — ﬂom1W1]L2}~

Note that the function within the brackets is different from zero almost everywhere on £2,. Indeed, since £2, C £2; and
Aj #0 on £2;, all the functions in the first summand are different from zero on £2,, except possibly the function f.If f #0,
then being an analytic function in the unit disc, f is different from zero a.e. on the circle, and we have non-zero first
summand with the second equal to zero, because, in this case, we took ap = 0. If, on the other hand, f =0, then the second
summand is nonzero. In either case we have that ¢; xo, L?, which is what we need. O

Lemma 3.3. There exists an operator X : H1 — Ha such that XT1 = T, X and ker(X) = {0} if and only if the following conditions
hold:

(i) my divides my,
(ii) £21 C §2; a.e,, and ' '
(iii) there exist two inner functions g, v € H* such that g € det(wi‘d — (pgd)', gAmp=1,and 'n';—fvg e det(y — vi)L

Proof. To consider an operator X:H1 — Hy such that XT{ = T, X and ker(X) = {0} we apply Lemma 3.2 to the operator
X*:"Hz — H1, for which we have T} X* = X*TJ and clos{X*H>} = H.

If we denote 2 = {z: z € £2} for a domain £ and Z(z) = A*(2) for any operator-valued analytic function A then the char-
acteristic functions of T} are O; = rﬁf\TvigZ,-ﬁi and, for the corresponding sets §2;, £2; are the supports of the functions Ay,.
According to Lemma 3.2 the existence of such operator X* is equivalent to the conditions:

(1) my divides fiia,
(2) 21 S 2, ae, and ) ~ - - .
(3) there exist two inner functions f,u € H® such that f € det(@; — @), f A1 =1 and %uf e det((92)2 — u(P1)2)i.

It is clear that fil; divides i if and only if m; divides m and that £ € 2, if and only if £21 € £2,. Finally, it is easy to
see that (iii) and (3) are equivalent by taking g= f and v=1. O

Lemma 34. Let T; € B(H;) (i = 1,2) be completely non-unitary contractions having 2 x 2 characteristic functions ©; =
wim,‘[;:][ci di 1 = wim;¥;¢;. There exists a bounded operator X : H1 — H; satisfying

XT1=TyX, clos{XH 1} ="Hy, and ker(X)={0}
if and only if the following conditions hold:

(i) m=my=m,
(ii) 21 =29 =2 a.e, and ' A
(iii) there exists f € det(d2 — ¥1)' N det(w?d — (pgd)' such that f Am=1.

Proof. We suppose that there exists a bounded operator X : 7+ — H; satisfying

XT1=T2X, clos{XH1} =H2, and ker(X)={0}.
Using Lemmas 3.2 and 3.3, we know that
(i) my=my =m,

(ii) £2 = £21 a.e., and ' ‘
(iii) there exist two inner functions f,u € H* such that f e det(2 — 91)!, f Am=1 and uf € det(p3d — upid).

Starting as in the proof of Lemma 3.2, there exist four functions f1, f2, f3, f4 € H* such that the parameters A, A, €
H3S, of the lifting of X satisfy (3.1), i.e,
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9394, = 193, A =fava, A= fipr, and Agid = fa0dd,

where, moreover, u = f}.

Now, according to Lemma 2.3, the matrix [ A

@1] is x-outer, hence

H3 =clos{[AT ©THZ} = clos{ AT H3 +mywq¢] 0] H3}.
As wy is outer and a; A by =1, we have clos{w 9] H3} = H? and, therefore,

H3 =clos{[AT O] |H}} =clos{ATH3 + m1¢{ clos{w 0] H3}} = clos{[AT mye! |H3},
thus the matrix
an dx ma
[AT mpl 1= [ ]
apz axp myd

is outer and, consequently, the three components of the vector

[detAT my(dian —c1a12) mi(diaz —craz) 1 =[detA mi(p)™AT | =[detA m;(Api9T]
=[f3fa mifa(@iH7]

have no common inner divisor. In particular, f4 is an outer function. We conclude that u = ffl =1 and, therefore, f €
det(d; — #)! Ndet(p?? — p39)l. This finishes the proof that the conditions are necessary.

To prove that the conditions are sufficient we will use again the proof of Lemma 3.2. Bearing in mind that u =1 and
% =1, take the parameters for the lifting of X as chosen in that lemma, that is, A, = wyf>M and A = wq f1N, where
M, N € H}S,, satisfy

X
M9, =h,01,  detM=xr.ffi, Mo = ffida,
Npid =139, detN=xrffo, @N=fher,

with f1, f2, A«, A € H® being outer functions.

According to Lemmas 3.2 and 3.4, we have to prove that [ (i]
clos{(Aq A A — A§OL?(A2C?)} = L2(A,q C?), where Ag =agxo @397, and we choose ag = 0 if f is not a null function
and ag = 1 otherwise.

To show that [@A]] is *-outer, it is enough to prove that [AT ©] ] is outer. Now, since f Am=1, c; Ady =1, and the

functions A and f, are outer, it follows that the elements of the vector

is x-outer and that the following equality holds

[detNT m(pD)*NT1=[1ffz mr@@3DHT1=[Aff mrdy —mica]
have no common inner divisor. This implies that
clos{[NT m(plT]Hg} = H3.

Therefore, since A= w1 fiN, wq and f; are outer functions and clos{#"] H2} = H2, we conclude that [AT O] is outer.
Using the functional representations given in Lemma 3.1, we reformulate the required identity clos{(A«1A%fA.« —
A0 (AoC?)} = 13(A,4C?) as follows

clos{ (A1 A% Az — A503) (939) 1%, (A AL A — AGO3) D2 xl?} = (979)°L? ® 01 xo L. (3.6)
For the first term we have
clos{(A.1 AL As — A§O3)(93%) L%} = clos{ A W2 faM* (93%) L2} = clos{ A1 W2 f2(939M) 12}
= clos{ A W2 f2 (L079) L2} = (939)"L2.
And the projection onto the second component of the second term in (3.6) gives us
clos{t1 xo 07 (A AL A — A5O3 )92 x2L?} = 91 xq clos] (Aw, Aw, Wa 207 M*92 — 97 ag01 p2mMWog39502) L2}
=1 xe clos{(Aw, Aw, W2 f2 f1f — aoﬁwz)Lz}
=01 xel®

This finishes the proof of the lemma. O

Finally, let us note that Lemma 3.4 directly implies the Main Theorem.



382 S. Bermudo et al. / J. Math. Anal. Appl. 345 (2008) 372-386

4. Concluding remarks
The conditions (iii) and (iv) in the Main Theorem, namely,

(iii) there exists f e det(d; — ¥1)! Ndet(g3? — 3! such that f Am=1, and
(iv) there exists g € det(1 — 92)' Ndet(g3d — %)} such that gAm =1

are unpleasant because they mix the roles of factors [S:] and [¢; di].

It is obvious that if there exists f € det(d, — ©1)!, then N*{ay, b1} C N T{az, by}. This lead us to conjecture that it
would be possible to substitute conditions (iii) and (iv) by the following pair of conditions:

(iii") N T{a1,b1} =N"*{az, by}, and
(V') NH{cy,di} =NT{cz, da}.

These conditions are the most natural ones for the problem at hand because, according to [2], condition (iii’) is equivalent to
the assertion that the parts of operators corresponding to the inner %-outer factors [Z:] are quasi-similar and condition (iv’)
is equivalent to the assertion that the parts of operators corresponding to the outer *-inner factors [¢; d;] are quasi-similar
as well.

More precisely, we have the following conjecture.
Conjecture. Conditions (iii") and (iv") imply conditions (iii) and (iv) for every inner function m.

If the conjecture is true, the Main Theorem states that the quasi-similarity of the operators is equivalent to the separate
quasi-similarity of each of its parts m;, w;, ¥; and ¢;. However, as we mentioned in the introductory part, our next result
tells us that this would not imply that each operator is quasi-similar to the direct sum of its parts.

Consider the characteristic functions

ma O
ma md 0
O = [we wd]=mvd)(wg), Oy=|mb 0 0 |= , (41)
mb 0 we
0 wc wd

where a,b,c,d € H® are such that aAb=cAd=1 and |a]® + |b|> = |c|* +|d|> = 1, m is inner and w is outer. We can take
the auxiliary spaces as & = &, = C? and &, = £, = C3. Then

A1 =0 (@) + Awgte,  Aa =)0 + A, 009",

|:0 0 ] [(ﬁad)*ﬂad 0 ]
AZ = s A*Z = s
0 A 0 Aw

(&) =" 2@ ¢ xol® [*(An&a)=(0")"1* &0 xel®

ad\x72
0 ] LZ(A*zg*z)I[w U ]

[3(A26) =
(4282) |:¢adL2®(p*XQL2 XQLZ

Proposition 4.1. The operators T and T, with respective characteristic functions given in (4.1) are quasi-similar if and only if
N*t{ma, mb, c,d} = N1, ie, if there exist four functions fi, f2, f3, fa € H™® such that maf; +mbf, +cfs +dfs is an outer function.

Proof. We suppose that T{ and T, are quasi-similar, then there exists an operator X:H{ — H, such that XT{ =T, X,
ker(X) = {0} and clos{XH;} = H>. The parameters A, A, and Ay of its lifting

Y =0 Al + T2 A2AT] + AT = AT + T AcAa T + T2A0T)
satisfy ©®,A = A.©1 and [(;\1] is x-outer.

If we denote A = [:;] and A, = [[’22] with Ay € HS,, Az € HSS 5, A1 € H3S,, Ayp € HYY,, then we have

. mo 0 A1 A*]
A= =A01 = mwd g,
0 W(ﬂ Az A*z

thus
BA1 =wA D, (4.2)
©A; =mALPe. (4.3)
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Multiplying (4.2) by 92 from the left we get 924A,;9 =0 and, by Lemma 5.2 from [2], there exists a function o € H®
such that A9 = «o®, and therefore (4.2) yields

Al =awe. (4.4)
Rewriting (4.3) as @[A; —m(A.®)I] =0 we conclude, again according to Lemma 5.2 from [2], that there exists a function
¥ € H2, such that Ay —m(Aa®)] = ¢y, ie,

Ay =m(Ad)] + @2y (4.5)

Note that [¢dy — (y939)I19? = 0, whence ¢y — (Y¢*)] = 8¢ for some § € HSS ;. Thus, denoting g = mA,o9 + Y
we can rewrite (4.5) in the form A, = BI + 5¢. Together with (4.4) this yields

A= aw 0 4.6
_[8]“’3[1]’ (46)

and therefore

aw 0
[A]— s |o+p|
1 - ¢

mwid 0

Since the first summand is of rank one, all minors of the x-outer matrix [@’1] have a common factor 8, and hence this

function has to be outer. Recalling that 8 =mA.,9 + Wp"d we conclude that A’ {ma, mb, c,d} = N7, i.e, this condition is
necessary for quasi-similarity.

To prove that the condition is sufficient we suppose that for some f;, fi € H*, the function g = fima+ fomb+ fzc+ fad
is outer. We need to find two bounded operators X :’H{ — H> and X’ :Hy — H; such that

XT1 =Ty X, clos{XH1} = Ha, ker(X) = {0},
T1X =X'Ty, clos{X'H,} = H1, ker(X') = {0}.

It will be enough to find two suitable liftings Y = w0 A7) + 12 A2AT{ + 12 A0t} and Y/ = mq ALl + 11 A1A' S + 11 Ap T,
of X and X’, respectively. According to Lemmas 2.2 and 2.4 it is sufficient to find six matrix-valued functions A € HS,,

Ay, e HS,, Ag € LSS, A" e HYS 5, Al € HYS 5, and A € LSS 5 satisfying the following ten conditions:

A =A.01,

[A ®, ] is outer,

[ ]] is x-outer,

clos{(AAA; — Ag()1)L2(A151)}_L2(A282)
C]OS{(A*1A Ay2 — A*O )LZ(A*Zg*Z)} = L (A*lg*l)

)
)
3)
)
)
) ©1A' = AL,
)
)
)
)

4
5
6
7 [A/ @1] is outer,
8 [ ] is x-outer,

9 clos{(AlA Ay — AYO) L2 (A26)} = L2 (A1 &),

(1
2
(
(
(
(
(
(
(
(10 clos{(A*z(A’)*A*1 — (A*ONL2 (A€} = L2 (An€n).

Checking the first five conditions is easy by taking the following matrices:

wc wd 0
A= | fima+ famb+ fad —f3d =|—-f3 <ﬂ+ﬁ[1],
—fac fima + fomb + f3c —f4
1 O 0 0
A 0 1 [ ! } A agat aght [ 0 ]
.= = , o= ao 0 = R
_ __ 9
fi f [fi f2] aoad apbd do¢

where the function ag is chosen as follows: if fia+ fob =0, then ap = 1; otherwise, ag = 0.
(1) Let us compute

<[ 11157 ]e o)=L ][ Jrme=] 0 1 |2
Tlo we —[;] TP Tlws - e fa )P T Lpa e pab )70 T ¢
4 i f

=A.01.
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(2) The matrix
1 0 ma O 0
[Ax, &]=(0 1 mb 0 O
fi fo 0 wc wd
is outer because two of its 3 x 3 minors are the functions wc and wd, which have no common inner divisors.

(3) The matrix [(31] is x-outer because the matrix A is. Indeed, two of its 2 x 2 minors are the functions wcg and

—wdp, which have no common inner divisors.
(4) We have
clos{(A2A41 — AgO1)L?(A1E1)} = clos{(A2AA1 — AgOY L2, (A3AA1 — AgB1)¢* xaL?)

and the first term yields

C'“{[g Aol] ([—[%ﬂ‘”ﬁ[?])ww} B [clos{ﬂAowasz}] B [(pang]'

And the projection onto the orthogonal complement of the second term gives us

0 0 * 2
clos o |(A2A41 = A0O1)@ Xl
0 Xe¢'e

cols el (o R[] o0]) o)

fa
| ° ]
 Ldos{xo@*(A% (B — fsc — fad) — mwao)L?}

0 0
B [clos{xw*mam(fla + fab) — mWﬂo)Lz}] B [xmo*Lz] '

Indeed, in order to see that the function A%Nm(f]a + fob) —mwag is different from zero almost everywhere on £2, simply
consider the cases af; +bf; =0, so that ag =0, and afy + bf, #0, so that ag = 1.
(5) In a similar way, we have
r (§Ad)*L2
clos] (A AL A — A§O3) L (AnE)} = clos { (A ALAs — AO3) 12 ]} .
L Xe
The first component is
ﬁad *LZ ﬂad *LZ
clos {(A*lAIA*z — AjO3) [( 0) ]} =clos :AMA: |:< 0) ] =clos{ A (ﬁad)*Lz} = (ﬁad)*Lz.
And the projection of the second component onto the orthogonal complement is
clos {Xm?ﬂ*(A 1A% Ao — A*@*) [ 0 ]} :clos{(ﬂﬂ*Az [Zl | —[0 apve] [ 0 ]) X_QLZ}
o 0727 xal? Y1Lfal we*
=clos{9 (A2 @f1 +bf2) —doW)xal?} =0 x>

This completes the verification of the first five conditions.

It is a bit more difficult to chose parameters to satisfy conditions (6)-(10). Since the functions a and b are mutually
prime, according to Lemma 5.3 of [2], we can find a pair of numbers y; and y, such that (yja + y2b) Am =1 and,
analogously, another pair 8; and §; such that (81c + 82d) Am = 1. Again by Lemma 5.3 of [2], we can find a number t such
that (cfs +dfs) + t(y1a + y2b)(81¢ + 82d) Am = 1. Then we take

té by 1 0
0. A [f3+ 1(y1a + y2b) ] and

fa+tsr(y1a+y2b) 0 1
A, =0 [wty1(81¢ + 82d) — wmfy  wtya(81¢+ 82d) — wmfy, ml+wp[l 0].

(6) First we check the intertwining relation

AL©y =mwd[t(y1a+ yab)(S1c + 82d) —m(af1 + bfy) @]+ wB[my 0]

=mwd[t(y1a + y2b)(81¢ + 82d) + (cfs +dfs) @]
[f3+61t(y1a+y2b) 1 0

=mwt
Y0 fatsatnatmby 0 1

:| =04
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(7) The matrix [ A, ©q] is outer because the matrix A/ is. Indeed, its three 2 x 2 minors are wzﬂ(t(ma ~+ y2b)(81c +
820) + (cfs +dfs)), —mwaB, mwbp and due to our choice of the parameter t these functions have no common inner factor.
(8) Since the three 3 x 3 minors of the matrix

fa+tdi(rna+y2b) 10
W fa+to(yia+y2b) 0 1
[ } = ma 0 0
&,
mb 0 0
0 we wd

including the first two lines are ma, mb, and t(y1a + y2b)(81¢ + 82d) + (cf3 + dfs), the matrix is x-outer.
(9) We have

0 0
clos{AlA’Asz(Azé'z)} = clos span {AlA’[ ad 2:| LA A Ay [ . 2:|} .
L Y *xel

The first term is

0
clos {A1A’ [ asz]} =clos{A1¢*1?} = 9212,
%

and the projection of the second one onto the orthogonal complement is

clos {w*«JxQAlA’ [ ” = dlos{p*pxo Awg*L*} = ¢* xol®.

QD*XQLZ

Finally, (10) is proven in a similar way. O

Example 1. Consider the characteristic functions

ag az
@1=[ ][C1 di]=%¢1 and @2=[ }[Cz dy ] =22
b] b2

and assume that N *{a;, b;, ¢, d;} = N for i =1, 2. This implies, by direct application of Proposition 4.1, that each opera-
tor Tg, is quasi-similar to the direct sum Ty, @ Ty;.

In this case, the conjecture is true: The conditions N*{ay,b1} = N *{az, by} and N F{cy,d1} = NT{c2,d>} are both
necessary and sufficient for T, to be quasi-similar because, if these conditions hold, then, by our results in [2], Ty, is
quasi-similar to Ty, and Ty, is quasi-similar to T,, so it follows that Ty, @ Ty, is quasi-similar to Ty, ® Ty, and, by the
assumption above, Te, and Tg, are quasi-similar.

On the other hand, as announced in the Introduction, the necessary and sufficient assumption of Proposition 4.1 may
fail, as the following example shows.

Example 2. There exist functions a, b, c,d € H*® such that aAb=1=cAd and |a|?> + |b|?> =1 = |c|> +|d|? that do not satisfy
the conditions of Proposition 4.1: for instance, if we take the functions

1 1+z 1 I —2
a(z) =c(z) = Eexp(—l—_z) and b(z)=d(z) = 7 ]:[(1 _an>,

where A, =1 — 21—,, then, as easily seen, there exist no functions f1, f2, f3, f4 € H*® such that af; + bfy 4+ cf3 + df4 is an
outer function.

Finally, let S be the shift operator of multiplicity one and consider S @ S*. Then we obtain the following nice corollary
of our Main Theorem and Proposition 4.1.

Corollary 4.2. Let © = [g][c d], where a, b, c,d € H® are such that |a> + |b|? =|c|2 + |d*=1,andaAb=cAd=1. Let
further M, denote the multiplication operator by the independent variable in L? and £2 = {z € T: |w(2)| < 1}. Then the operator T
is quasi-similar to S @ S* if and only if N *{a, b} = N {c,d} = N, ie, there exist f, g, h,k € H*® such that af + bg and ch + dk
are outer.
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