Quasi-similarity of contractions having a 2×2 singular characteristic function ${ }^{\text {N }}$

Sergio Bermudo ${ }^{\text {a }}$, Carmen H. Mancera ${ }^{\text {b }}$, Pedro J. Paúl ${ }^{\text {b,* }}$, Vasily Vasyunin ${ }^{\text {c }}$
${ }^{\text {a }}$ Universidad Pablo de Olavide, Departamento de Economía, Métodos Cuantitativos e Historia Económica, Carretera de Utrera, Km. 1, 41013 Seville, Spain
${ }^{\text {b }}$ Universidad de Sevilla, Departamento de Matemática Aplicada II, Camino de los Descubrimientos $s / n, 41092$ Seville, Spain
${ }^{\text {c }}$ Russian Academy of Sciences, Petersburg Department of Steklov Institute of Mathematics, Fontanka 27, 191011 St. Petersburg, Russia

A R TICLE I N F O

Article history:

Received 9 May 2007
Available online 8 April 2008
Submitted by J.A. Ball

Keywords:

Quasi-similarity
Contractions
Characteristic functions
Function models

Abstract

Let $T_{1}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ be a completely non-unitary contraction having a 2×2 singular characteristic function Θ_{1}; that is, $\Theta_{1}=\left[\theta_{i, j}\right]_{i, j=1,2}$ with $\theta_{i j} \in H^{\infty}$ and $\operatorname{det}\left(\Theta_{1}\right)=0$. As it is well known, Θ_{1} is a singular matrix if and only if Θ_{1} can be written as $\Theta_{1}=$ $w_{1} m_{1}\left[\begin{array}{l}a_{1} \\ b_{1}\end{array}\right]\left[\begin{array}{cc}c_{1} & d_{1}\end{array}\right]$ where $w_{1}, m_{1}, a_{1}, b_{1}, c_{1}, d_{1} \in H^{\infty}$ are such that (i) w_{1} is an outer function with $\left|w_{1}\right| \leqslant 1$, (ii) m_{1} is an inner function, (iii) $\left|a_{1}\right|^{2}+\left|b_{1}\right|^{2}=\left|c_{1}\right|^{2}+\left|d_{1}\right|^{2}=1$, and (iv) $a_{1} \wedge b_{1}=c_{1} \wedge d_{1}=1$ (here \wedge stands for the greatest common inner divisor). Now consider a second completely non-unitary contraction $T_{2}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ having also a 2×2 singular characteristic function $\Theta_{2}=w_{2} m_{2}\left[\begin{array}{l}a_{2} \\ b_{2}\end{array}\right]\left[\begin{array}{ll}c_{2} & d_{2}\end{array}\right]$. We give necessary and sufficient conditions for T_{1} and T_{2} to be quasi-similar.

© 2008 Elsevier Inc. All rights reserved.

1. Statement of the Main Theorem

Introduction

Can one characterize the quasi-similarity of contractions in terms of their characteristic functions? Quasi-similarity is an equivalence relation between Hilbert space bounded operators which, being weaker than similarity, still preserves many interesting features as the eigenvalues, the spectral multiplicity or the non-triviality of the lattice of invariant subspaces (see [$1,4,7$] and references therein).

Two Hilbert space bounded operators $T_{1} \in \mathcal{B}\left(\mathcal{H}_{1}\right)$ and $T_{2} \in \mathcal{B}\left(\mathcal{H}_{2}\right)$ are said to be quasi-similar if there exist two bounded operators $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ and $W: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ such that

$$
\begin{aligned}
& X T_{1}=T_{2} X, \quad \operatorname{clos}\left\{X \mathcal{H}_{1}\right\}=\mathcal{H}_{2}, \quad \operatorname{ker}(X)=\{0\}, \\
& T_{1} W=W T_{2}, \quad \operatorname{clos}\left\{W \mathcal{H}_{2}\right\}=\mathcal{H}_{1}, \quad \operatorname{ker}(W)=\{0\} .
\end{aligned}
$$

Such operators X and W are called quasi-affinities or deformations.
There has been several very deep and interesting approaches to find a characterization of quasi-similarity in terms of the characteristic functions of the operators involved. Namely, the Jordan model for C_{0}-contractions, completed by Bercovici, Sz.-Nagy and Foiaş and, independently, Müller, after pioneering work by Sz.-Nagy and Foiaş (see [1,7]); the Jordan model

[^0]for weak contractions due to $\mathrm{Wu}[8,9]$; and the classification, up to quasi-similarity, of C_{10}-contractions with finite defects and Fredholm index equal to -1 due to Makarov and Vasyunin [3]. More recently, we have given necessary and sufficient conditions for the quasi-similarity of contractions having a 2×1 characteristic function [2].

Framework

Let $T \in \mathcal{B}(\mathcal{H})$ be a completely non-unitary contraction having an $n \times n$ characteristic function Θ. This means, in particular, that T is a Fredholm operator with both defect indices equal to n and that its Fredholm index is 0 . If $\operatorname{det}(\Theta) \neq 0$, then T is a weak contraction, and the characterization of the operators that are quasi-similar to T was given by Wu in $[8,9]$. Roughly speaking, if Θ is non-singular, then T is quasi-similar to a uniquely determined direct sum of a Jordan chain plus a finite number of operators of multiplication by the independent variable on spaces of type $\chi_{\Omega} L^{2}$, where Ω stands for a measurable subset of \mathbb{T}, the unit circle of the complex plane.

The purpose of this paper is to study, with the help of the coordinate-free function model developed by Nikolski and Vasyunin [6] (see also [4, Chapter 1]), the quasi-similarity of contractions having a 2×2 (non-zero) singular characteristic function. As we shall see, this case seems to be already somewhat difficult to manage, but we hope that it will provide hints to tackle the general case when the characteristic function is an $n \times n$ singular matrix. So let $T \in \mathcal{B}(\mathcal{H})$ be a completely non-unitary contraction having a characteristic function Θ which is a 2×2 singular matrix of functions in H^{∞}. As it is well known, such a function Θ can be written as $\Theta=w m\left[\begin{array}{l}a \\ b\end{array}\right]\left[\begin{array}{ll}c & d\end{array}\right]$, where $w, m, a, b, c, d \in H^{\infty}$ are such that (i) w is an outer function with $|w| \leqslant 1$, (ii) m is an inner function, (iii) $|a|^{2}+|b|^{2}=|c|^{2}+|d|^{2}=1$, and (iv) $a \wedge b=c \wedge d=1$ (here \wedge stands for the greatest common inner divisor). Associated to these functions we also consider the set

$$
\Omega:=\{z \in \mathbb{T}:|w(z)|<1\}
$$

and the ideal $\mathcal{N}^{+}\{a, b\}$ generated by a pair of functions a and b from the Smirnov class $\mathcal{N}^{+}:=\left\{f / g: f, g \in H^{\infty}\right.$ and g is outer $\}$, that is

$$
\mathcal{N}^{+}\{a, b\}:=\left\{v a+\mu b: v, \mu \in \mathcal{N}^{+}\right\} .
$$

Let us denote by $H_{2 \times 2}^{\infty}$ and $\mathcal{N}_{2 \times 2}^{+}$the sets of all 2×2 matrices with entries in H^{∞} and, respectively, the Smirnov class \mathcal{N}^{+}. For a function f from the Smirnov class, by f^{i} and f^{0} we denote the inner and outer parts of f. Let us also introduce the following notation: $\vartheta:=\left[\begin{array}{l}a \\ b\end{array}\right], \varphi:=\left[\begin{array}{ll}c & d\end{array}\right], \vartheta^{\text {ad }}:=\left[\begin{array}{ll}b & -a\end{array}\right], \varphi^{\text {ad }}:=\left[\begin{array}{c}d \\ -c\end{array}\right]$ and

$$
\operatorname{det}\left(\left[\begin{array}{l}
a \\
b
\end{array}\right] \rightarrow\left[\begin{array}{l}
c \\
d
\end{array}\right]\right)^{\mathrm{i}}:=\left\{(\operatorname{det} \Lambda)^{\mathrm{i}}: \Lambda \in \mathcal{N}_{2 \times 2}^{+} \text {and } \Lambda\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
c \\
d
\end{array}\right]\right\}
$$

For a matrix $\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]$ the symbol $M^{\text {ad }}$ denotes the adjugate matrix $\left[\begin{array}{cc}\delta & -\beta \\ -\gamma & \alpha\end{array}\right]$, so that the following equalities hold: $M M^{\text {ad }}=$ $M^{\text {ad }} M=(\operatorname{det} M) I$. We fix this notation (with subindices when appropriate) throughout the paper.

Now consider two completely non-unitary contractions $T_{i} \in \mathcal{B}\left(\mathcal{H}_{i}\right)$ having 2×2 characteristic functions $\Theta_{i}=$ $w_{i} m_{i}\left[\begin{array}{c}a_{i} \\ b_{i}\end{array}\right]\left[\begin{array}{cc}c_{i} & d_{i}\end{array}\right]=w_{i} m_{i} \vartheta_{i} \varphi_{i}$. Our main result in this paper is the following.

Main Theorem. T_{1} is quasi-similar to T_{2} if and only if the following conditions hold:
(i) $m_{1}=m_{2}=m$,
(ii) $\Omega_{1}=\Omega_{2}$ a.e.,
(iii) there exists $f \in \operatorname{det}\left(\vartheta_{2} \rightarrow \vartheta_{1}\right)^{\mathrm{i}} \cap \operatorname{det}\left(\varphi_{1}^{\text {ad }} \rightarrow \varphi_{2}^{\text {ad }}\right)^{\mathrm{i}}$ such that $f \wedge m=1$, and
(iv) there exists $g \in \operatorname{det}\left(\vartheta_{1} \rightarrow \vartheta_{2}\right)^{\mathrm{i}} \cap \operatorname{det}\left(\varphi_{2}^{\mathrm{ad}} \rightarrow \varphi_{1}^{\mathrm{ad}}\right)^{\mathrm{i}}$ such that $g \wedge m=1$.

Remarks. We would like to underline at this point that one could think about the possibility of separating the outer and inner parts of $\Theta=w m\left[\begin{array}{ll}a \\ b\end{array}\right]\left[\begin{array}{ll}c & d\end{array}\right]$, that is, $\Theta^{0}=w\left[\begin{array}{ll}c & d\end{array}\right]$ and $\Theta^{\mathrm{i}}=m\left[\begin{array}{l}a \\ b\end{array}\right]$, in order to use the results from [2] to obtain quasi-similarity of operators having these characteristic functions separately. However, we will see (Proposition 4.1 below) that, in one of the most simplest cases, when $m=1=w$, the operators whose characteristic functions are

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]\left[\begin{array}{ll}
c & d
\end{array}\right] \text { and }\left[\begin{array}{l}
a \\
b
\end{array}\right] \oplus\left[\begin{array}{ll}
c & d
\end{array}\right]
$$

are quasi-similar if and only if there exist four functions $f_{1}, f_{2}, f_{3}, f_{4} \in H^{\infty}$ such that $a f_{1}+b f_{2}+c f_{3}+d f_{4}$ is an outer function; a condition that not always holds. This tells us that, unlike the 1×1 case, separating inner and outer parts is not the right way to tackle the proof.

Other terminology and notations

In what follows, clos $\{\cdot\}$ stands for the closure of the linear span of the set within the brackets. In particular, if T is a bounded operator defined in a Hilbert space \mathcal{H} and \mathcal{M} is a linear subspace of \mathcal{H}, we shall frequently use that $\operatorname{clos}[T \operatorname{clos}\{\mathcal{M}\}]=\operatorname{clos}\{T \mathcal{M}\}$. Whenever we write L^{2} or $L^{2}(\mathcal{H})$, our underlying measure space is assumed to be the unit circle \mathbb{T} of the complex plane endowed with the Lebesgue measure; in particular, for two sets Ω_{1} and Ω_{2} we write $\Omega_{1}=\Omega_{2}$ a.e., whenever these sets coincide up to a set of Lebesgue measure zero. We assume $0^{\mathrm{i}}=0,0^{\circ}=1$, and $0 \wedge f=f^{\mathrm{i}}$.

Otherwise, our terminology and notations are standard. A label (m.n) refers to the nth formula of section m.

2. Quasi-affinities in the coordinate-free function model

The coordinate-free function model
Since we shall make an intensive use of the properties and the notation of the coordinate-free function model for completely non-unitary contractions given in [6] (see also [4, Chapter 1]), we shall describe it briefly for the convenience of the reader.

Given a completely non-unitary contraction $T \in \mathcal{B}(\mathcal{H})$, let $D_{T}=\left(I-T^{*} T\right)^{1 / 2}$ be its defect operator and $\mathcal{D}_{T}=\operatorname{clos}\left\{D_{T} \mathcal{H}\right\}$ be its defect subspace, and take two auxiliary Hilbert spaces \mathcal{E} and \mathcal{E}_{*} such that

$$
\operatorname{dim}(\mathcal{E})=\operatorname{dim}\left(\mathcal{D}_{T}\right) \quad \text { and } \quad \operatorname{dim}\left(\mathcal{E}_{*}\right)=\operatorname{dim}\left(\mathcal{D}_{T^{*}}\right)
$$

Now, let $U \in \mathcal{B}(\mathcal{K})$ be the minimal unitary dilation of T. Then U has a triangular matrix with respect to the canonical decomposition $\mathcal{K}=\mathcal{G}_{*} \oplus \mathcal{H} \oplus \mathcal{G}$, where \mathcal{G} and \mathcal{G}_{*} are the so-called outgoing and incoming subspaces, respectively, and there exists a pair of functional embeddings

$$
\Pi=\left(\pi_{*}, \pi\right): L^{2}\left(\mathcal{E}_{*}\right) \oplus L^{2}(\mathcal{E}) \rightarrow \mathcal{K}
$$

where, among other properties, the operator Π has dense range in \mathcal{K} and π and π_{*} are isometries intertwining U and the operator M_{z} of multiplication by z in the corresponding L^{2} space. Moreover,

$$
\pi H^{2}(\mathcal{E})=\mathcal{G} \perp \mathcal{G}_{*}=\pi_{*} H_{-}^{2}\left(\mathcal{E}_{*}\right)
$$

and the operator $\Theta:=\pi_{*}^{*} \pi \in \mathcal{B}\left(L^{2}(\mathcal{E}), L^{2}\left(\mathcal{E}_{*}\right)\right)$ is the multiplication operator by a contractive-valued analytic function $z \mapsto$ $\Theta(z) \in \mathcal{B}\left(\mathcal{E}, \mathcal{E}_{*}\right)$; that is, $(\Theta f)(z)=\Theta(z) f(z)$, and this analytic function is equivalent to the characteristic function Θ_{T} of T defined by

$$
\Theta_{T}(z):=\left(-T+z D_{T^{*}}\left(I-z T^{*}\right)^{-1} D_{T}\right) \mid \mathcal{D}_{T}
$$

We also have that T is unitarily equivalent to the model operator defined as the compression of U to the subspace \mathcal{H}_{Θ} of \mathcal{K} defined as the orthogonal complement of the orthogonal sum $\left(\pi H^{2}(\mathcal{E}) \oplus \pi_{*} H_{-}^{2}\left(\mathcal{E}_{*}\right)\right)$.

To describe the intertwining lifting theorem that we shall use, we need to introduce some more operators appearing in this model.

Define $\Delta:=\left(I-\Theta^{*} \Theta\right)^{1 / 2}$. Then Δ is the positive part of the polar decomposition $\pi-\pi_{*} \Theta=\tau \Delta$ that also provides us with an isometry τ acting from the so-called residual subspace $L^{2}(\Delta \mathcal{E}):=\operatorname{clos}\left\{\Delta L^{2}(\mathcal{E})\right\}$ to \mathcal{K}. Similarly, for $\Delta_{*}:=(I-$ $\left.\Theta \Theta^{*}\right)^{1 / 2}$ there is an isometry τ_{*} defined in $L^{2}\left(\Delta_{*} \mathcal{E}_{*}\right)$. These operators satisfy a number of relationships [6, p. 237], and some of them will be used time and again in the sequel, namely

$$
\begin{array}{ll}
\tau \tau^{*}+\pi_{*}\left(\pi_{*}\right)^{*}=I, & \tau^{*} \pi=\Delta, \quad \tau^{*} \pi_{*}=0, \quad \tau^{*} \tau_{*}=-\Theta^{*}, \quad \pi=\pi_{*} \Theta+\tau \Delta, \\
\tau_{*}\left(\tau_{*}\right)^{*}+\pi \pi^{*}=I, \quad\left(\tau_{*}\right)^{*} \pi_{*}=\Delta_{*}, \quad\left(\tau_{*}\right)^{*} \pi=0, \quad\left(\tau_{*}\right)^{*} \tau=-\Theta, \quad \pi_{*}=\pi \Theta^{*}+\tau_{*} \Delta_{*} . \tag{2.1}
\end{array}
$$

We also need the following equalities:

$$
\begin{array}{lr}
\mathcal{G}=\pi H^{2}(\mathcal{E}), & \mathcal{H} \oplus \mathcal{G}=\pi_{*} H^{2}\left(\mathcal{E}_{*}\right) \oplus \tau L^{2}(\Delta \mathcal{E}), \\
\mathcal{G}_{*}=\pi_{*} H_{-}^{2}\left(\mathcal{E}_{*}\right), & \mathcal{H} \oplus \mathcal{G}_{*}=\pi H_{-}^{2}(\mathcal{E}) \oplus \tau_{*} L^{2}\left(\Delta_{*} \mathcal{E}_{*}\right) \tag{2.2}
\end{array}
$$

Now let $T_{1} \in \mathcal{B}\left(\mathcal{H}_{1}\right)$ and $T_{2} \in \mathcal{B}\left(\mathcal{H}_{2}\right)$ be arbitrary completely non-unitary contractions. Let $X \in \mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ be a bounded operator intertwining T_{1} and T_{2}, that is, $T_{2} X=X T_{1}$. Then the liftings $Y \in \mathcal{B}\left(\mathcal{K}_{1}, \mathcal{K}_{2}\right)$ of X intertwining the minimal unitary dilations of T_{1} and T_{2} and preserving the outgoing and incoming structure, in the sense that $Y \mathcal{G}_{1} \subset \mathcal{G}_{2}$ and $Y^{*} \mathcal{G}_{* 2} \subset \mathcal{G}_{* 1}$, can be parametrized in either of the following forms [6, pp. 252-258]

$$
Y=\pi_{* 2} A_{*}\left(\pi_{* 1}\right)^{*}+\tau_{2} \Delta_{2} A \pi_{1}^{*}+\tau_{2} A_{0}\left(\tau_{* 1}\right)^{*}=\pi_{2} A \pi_{1}^{*}+\pi_{* 2} A_{*} \Delta_{* 1}\left(\tau_{* 1}\right)^{*}+\tau_{2} A_{0}\left(\tau_{* 1}\right)^{*},
$$

where $z \mapsto A(z) \in \mathcal{B}\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)$ and $z \mapsto A_{*}(z) \in \mathcal{B}\left(\mathcal{E}_{* 1}, \mathcal{E}_{* 2}\right)$ are operator-valued, bounded analytic functions such that $A_{*} \Theta_{1}=$ $\Theta_{2} A$, and $z \mapsto A_{0}(z) \in \mathcal{B}\left(\Delta_{* 1} \mathcal{E}_{* 1}, \Delta_{2} \mathcal{E}_{2}\right)$ is an operator-valued, bounded measurable function, which can be regarded as a function in $\mathcal{B}\left(\mathcal{E}_{* 1}, \Delta_{2} \mathcal{E}_{2}\right)$ equal to zero on $\operatorname{Ker} \Delta_{* 1}$. This parametrization theorem will be essential in our computations.

Lifting quasi-affinities

The four lemmas that we give now tell us how to relate the conditions that define a quasi-affinity to the parameters of any of its liftings. Their complete proof can be found in [2].

Lemma 2.1. Let $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a bounded operator such that $X T_{1}=T_{2} X$ and let $Y=\pi_{* 2} A_{*}\left(\pi_{* 1}\right)^{*}+\tau_{2} \Delta_{2} A \pi_{1}^{*}+\tau_{2} A_{0}\left(\tau_{* 1}\right)^{*}$ be a lifting of X intertwining the minimal unitary dilations of T_{1} and T_{2}. Then $\operatorname{clos}\left\{X \mathcal{H}_{1}\right\}=\mathcal{H}_{2}$ if and only if

$$
\operatorname{clos}\left\{\left[\begin{array}{ccc}
A_{*} & \Theta_{2} & 0 \tag{2.3}\\
\Delta_{2} A \Theta_{1}^{*}+A_{0} \Delta_{* 1} & \Delta_{2} & \Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}
\end{array}\right]\left[\begin{array}{c}
H^{2}\left(\mathcal{E}_{* 1}\right) \\
H^{2}\left(\mathcal{E}_{2}\right) \\
L^{2}\left(\Delta_{1} \mathcal{E}_{1}\right)
\end{array}\right]\right\}=\left[\begin{array}{c}
H^{2}\left(\mathcal{E}_{* 2}\right) \\
L^{2}\left(\Delta_{2} \mathcal{E}_{2}\right)
\end{array}\right]
$$

Moreover, in this case the operator [$A_{*} \quad \Theta_{2}$] defined on $H^{2}\left(\mathcal{E}_{* 1}\right) \oplus H^{2}\left(\mathcal{E}_{2}\right)$ is outer, that is, its range is dense in $H^{2}\left(\mathcal{E}_{* 2}\right)$.

The next result gives a condition for the converse of the second part of Lemma 2.1 to hold.

Lemma 2.2. Let $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a bounded operator such that $X T_{1}=T_{2} X$ and let $Y=\pi_{* 2} A_{*}\left(\pi_{* 1}\right)^{*}+\tau_{2} \Delta_{2} A \pi_{1}^{*}+\tau_{2} A_{0}\left(\tau_{* 1}\right)^{*}$ be a lifting of X intertwining the minimal unitary dilations of T_{1} and T_{2}. If

$$
\begin{equation*}
\operatorname{clos}\left\{\left(\Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}\right) L^{2}\left(\Delta_{1} \mathcal{E}_{1}\right)\right\}=L^{2}\left(\Delta_{2} \mathcal{E}_{2}\right) \tag{2.4}
\end{equation*}
$$

then the claim $\operatorname{clos}\left\{X \mathcal{H}_{1}\right\}=\mathcal{H}_{2}$ is equivalent to the assertion that the function $\left[\begin{array}{lll}A_{*} & \Theta_{2}\end{array}\right]$ is outer.
Taking into account that $\operatorname{ker}(X)=\{0\}$ if and only if $\operatorname{clos}\left\{X^{*} \mathcal{H}_{2}\right\}=\mathcal{H}_{1}$ and that X^{*} is a compression of Y^{*}, the following lemmas follow directly from the previous ones.

Lemma 2.3. Let $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a bounded operator such that $X T_{1}=T_{2} X$ and let $Y=\pi_{2} A \pi_{1}^{*}+\pi_{* 2} A_{*} \Delta_{* 1}\left(\tau_{* 1}\right)^{*}+\tau_{2} A_{0}\left(\tau_{* 1}\right)^{*}$ be a lifting of X intertwining the minimal unitary dilations of T_{1} and T_{2}. Then $\operatorname{ker}(X)=\{0\}$ if and only if

$$
\operatorname{clos}\left\{\left[\begin{array}{ccc}
A^{*} & \Theta_{1}^{*} & 0 \\
\Delta_{* 1} A_{*}^{*} \Theta_{2}+A_{0}^{*} \Delta_{2} & \Delta_{* 1} & \Delta_{* 1} A_{*}^{*} \Delta_{* 2}-A_{0}^{*} \Theta_{2}^{*}
\end{array}\right]\left[\begin{array}{c}
H_{-}^{2}\left(\mathcal{E}_{2}\right) \\
H_{-}^{2}\left(\mathcal{E}_{* 1}\right) \\
L^{2}\left(\Delta_{* 2} \mathcal{E}_{* 2}\right)
\end{array}\right]\right\}=\left[\begin{array}{c}
H_{-}^{2}\left(\mathcal{E}_{1}\right) \\
L^{2}\left(\Delta_{* 1} \mathcal{E}_{* 1}\right)
\end{array}\right]
$$

Moreover, in this case the operator $\left[\begin{array}{c}A \\ \Theta_{1}\end{array}\right]$ defined on $H^{2}\left(\mathcal{E}_{1}\right)$ is $*$-outer, that is, the range of its adjoint $\left[\begin{array}{ll}A^{*} & \Theta_{1}^{*}\end{array}\right]$ defined on $H_{-}^{2}\left(\mathcal{E}_{2}\right) \oplus$ $H_{-}^{2}\left(\mathcal{E}_{* 1}\right)$ is dense in $H_{-}^{2}\left(\mathcal{E}_{1}\right)$.

Lemma 2.4. Let $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a bounded operator such that $X T_{1}=T_{2} X$ and let $Y=\pi_{2} A \pi_{1}^{*}+\pi_{* 2} A_{*} \Delta_{* 1}\left(\tau_{* 1}\right)^{*}+\tau_{2} A_{0}\left(\tau_{* 1}\right)^{*}$ be a lifting of X intertwining the minimal unitary dilations of T_{1} and T_{2}. If

$$
\operatorname{clos}\left\{\left(\Delta_{* 1} A_{*}^{*} \Delta_{* 2}-A_{0}^{*} \Theta_{2}^{*}\right) L^{2}\left(\Delta_{* 2} \mathcal{E}_{* 2}\right)\right\}=L^{2}\left(\Delta_{* 1} \mathcal{E}_{* 1}\right)
$$

then the claim $\operatorname{ker}(X)=\{0\}$ is equivalent to the assertion that the function $\left[\begin{array}{c}A \\ \Theta_{1}\end{array}\right]$ is $*$-outer.

3. Proof of the Main Theorem

Main Theorem. Let $T_{i} \in \mathcal{B}\left(\mathcal{H}_{i}\right)$ ($i=1,2$) be completely non-unitary contractions having 2×2 characteristic functions $\Theta_{i}=$ $w_{i} m_{i}\left[\begin{array}{c}a_{i} \\ b_{i}\end{array}\right]\left[\begin{array}{cc}c_{i} & d_{i}\end{array}\right]=w_{i} m_{i} \vartheta_{i} \varphi_{i} . T_{1}$ is quasi-similar to T_{2} if and only if the following conditions hold:
(i) $m_{1}=m_{2}=m$,
(ii) $\Omega_{1}=\Omega_{2}$ a.e.,
(iii) there exists $f \in \operatorname{det}\left(\vartheta_{2} \rightarrow \vartheta_{1}\right)^{\mathrm{i}} \cap \operatorname{det}\left(\varphi_{1}^{\mathrm{ad}} \rightarrow \varphi_{2}^{\mathrm{ad}}\right)^{\mathrm{i}}$ such that $f \wedge m=1$,
(iv) there exists $g \in \operatorname{det}\left(\vartheta_{1} \rightarrow \vartheta_{2}\right)^{\mathrm{i}} \cap \operatorname{det}\left(\varphi_{2}^{\text {ad }} \rightarrow \varphi_{1}^{\text {ad }}\right)^{\mathrm{i}}$ such that $g \wedge m=1$.

The proof of the Main Theorem has been decomposed into a series of lemmas in order to make it more transparent the role of each condition in the network of implications.

Since our main tool will be the coordinate-free function model, we start by describing the functional representations of the residual subspaces for the minimal unitary dilation of an operator T with a characteristic function $\Theta=w m\left[\begin{array}{l}a \\ b\end{array}\right]\left[\begin{array}{ll}c & d\end{array}\right]$.

If we consider the scalar outer function w as a 1×1 characteristic function, then we have $\Delta_{w}=\sqrt{1-|w|^{2}}$ and the corresponding residual subspace can be identified with $L^{2}\left(\Delta_{w}\right)=\cos \left\{\Delta_{w} L^{2}\right\}=\chi_{\Omega} L^{2}$, where $\Omega:=\{z \in \mathbb{T}:|w(z)|<1\}$ and χ_{Ω} is the indicator of the set Ω, i.e., $\chi_{\Omega}(\zeta)=1$ if $\zeta \in \Omega$ and $\chi_{\Omega}(\zeta)=0$ otherwise.

Since Θ is a 2×2 matrix with entries in H^{∞}, we can take as auxiliary spaces $\mathcal{E}=\mathcal{E}_{*}=\mathbb{C}^{2}$, therefore $L^{2}(\mathcal{E})=L^{2}\left(\mathcal{E}_{*}\right)=$ $L^{2}\left(\mathbb{C}^{2}\right)=: L_{2}^{2}, H^{2}(\mathcal{E})=H^{2}\left(\mathcal{E}_{*}\right)=: H_{2}^{2}$ and $H_{-}^{2}(\mathcal{E})=H_{-}^{2}\left(\mathcal{E}_{*}\right)=H_{2-}^{2}:=L_{2}^{2} \ominus H_{2}^{2}$.

With these, the proof of Lemma 3.1 following below-a straightforward routine computation-is omitted.
Lemma 3.1. For $\Theta=w m\left[\begin{array}{ll}a \\ b\end{array}\right]\left[\begin{array}{ll}c & d\end{array}\right]$ the corresponding functions Δ and Δ_{*} in the function model are

$$
\Delta=\left[\begin{array}{c}
d \\
-c
\end{array}\right]\left[\begin{array}{ll}
\bar{d} & -\bar{c}
\end{array}\right]+\Delta_{w}\left[\begin{array}{l}
\bar{c} \\
\bar{d}
\end{array}\right]\left[\begin{array}{ll}
c & d
\end{array}\right]=\varphi^{\mathrm{ad}}\left(\varphi^{\mathrm{ad}}\right)^{*}+\Delta_{w} \varphi^{*} \varphi
$$

and

$$
\Delta_{*}=\left[\begin{array}{c}
\bar{b} \\
-\bar{a}
\end{array}\right]\left[\begin{array}{ll}
b & -a
\end{array}\right]+\Delta_{w}\left[\begin{array}{l}
a \\
b
\end{array}\right]\left[\begin{array}{ll}
\bar{a} & \bar{b}
\end{array}\right]=\left(\vartheta^{\mathrm{ad}}\right)^{*} \vartheta^{\mathrm{ad}}+\Delta_{w} \vartheta \vartheta^{*},
$$

and the corresponding residual subspaces are

$$
L^{2}\left(\Delta \mathbb{C}^{2}\right)=\left[\begin{array}{c}
d \\
-c
\end{array}\right] L^{2} \oplus\left[\begin{array}{l}
\bar{c} \\
\bar{d}
\end{array}\right] L^{2}\left(\Delta_{w}\right)=\varphi^{\mathrm{ad}} L^{2} \oplus \varphi^{*} \chi_{\Omega} L^{2}
$$

and

$$
L^{2}\left(\Delta_{*} \mathbb{C}^{2}\right)=\left[\begin{array}{c}
\bar{b} \\
-\bar{a}
\end{array}\right] L^{2} \oplus\left[\begin{array}{l}
a \\
b
\end{array}\right] L^{2}\left(\Delta_{w}\right)=\left(\vartheta^{\mathrm{ad}}\right)^{*} L^{2} \oplus \vartheta \chi_{\Omega} L^{2}
$$

Moreover,

$$
\operatorname{clos}\left\{\Delta L^{2}\left(\Delta \mathbb{C}^{2}\right)\right\}=L^{2}\left(\Delta \mathbb{C}^{2}\right) \quad \text { and } \quad \operatorname{clos}\left\{\Delta_{*} L^{2}\left(\Delta_{*} \mathbb{C}^{2}\right)\right\}=L^{2}\left(\Delta_{*} \mathbb{C}^{2}\right)
$$

Lemma 3.2. There exists an operator $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that $X T_{1}=T_{2} X$ and $\cos \left\{X \mathcal{H}_{1}\right\}=\mathcal{H}_{2}$ if and only if the following conditions hold:
(i) m_{2} divides m_{1},
(ii) $\Omega_{2} \subseteq \Omega_{1}$ a.e., and
(iii) there exist two inner functions $f, u \in H^{\infty}$ such that $f \in \operatorname{det}\left(\vartheta_{2} \rightarrow \vartheta_{1}\right)^{\mathrm{i}}, f \wedge m_{2}=1$ and $\frac{m_{1}}{m_{2}} u f \in \operatorname{det}\left(\varphi_{1}^{\text {ad }} \rightarrow u \varphi_{2}^{\text {ad }}\right)^{\mathrm{i}}$.

Proof. We suppose that there exists an operator $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that $X T_{1}=T_{2} X$ and $\operatorname{clos}\left\{X \mathcal{H}_{1}\right\}=\mathcal{H}_{2}$. Let

$$
Y=\pi_{* 2} A_{*} \pi_{* 1}^{*}+\tau_{2} \Delta_{2} A \pi_{1}^{*}+\tau_{2} A_{0} \tau_{* 1}^{*}=\pi_{2} A \pi_{1}^{*}+\pi_{* 2} A_{*} \Delta_{* 1} \tau_{* 1}^{*}+\tau_{2} A_{0} \tau_{* 1}^{*}
$$

be a lifting of X intertwining the minimal unitary dilations of T_{1} and T_{2}. Then the parameters $A, A_{*} \in H_{2 \times 2}^{\infty}$ satisfy (a) $\Theta_{2} A=A_{*} \Theta_{1}$ and, according to Lemma 2.1, (b) $\left[A_{*} \Theta_{2}\right]$ is outer. Multiply (a) by $\vartheta_{2}^{\text {ad }}$ on the left and use that $\vartheta_{2}^{\text {ad }} \vartheta_{2}=0$ and, consequently, that $\vartheta_{2}^{\text {ad }} \Theta_{2}=0$, to obtain $m_{1} w_{1} \vartheta_{2}^{\text {ad }} A_{*} \vartheta_{1} \varphi_{1}=0$. As φ_{1} is not a null vector and m_{1} and w_{1} are not zero a.e., the scalar function $\vartheta_{2}^{\text {ad }} A_{*} \vartheta_{1}$ has to be zero. Analogously, multiplying by $\varphi_{1}^{\text {ad }}$ on the right and using that $\varphi_{1} \varphi_{1}^{\text {ad }}=0$ we obtain that $m_{2} w_{2} \vartheta_{2} \varphi_{2} A \varphi_{1}^{\text {ad }}=A_{*} \Theta_{1} \varphi_{1}^{\text {ad }}=0$, therefore, $\varphi_{2} A \varphi_{1}^{\text {ad }}=0$. Since

$$
\vartheta_{2}^{\text {ad }} A_{*} \vartheta_{1}=0 \quad \text { and } \quad \varphi_{2} A \varphi_{1}^{\text {ad }}=0
$$

we can use Lemma 5.2 from [2] with the components of the vectors $\vartheta_{2}^{\text {ad }} A_{*}, A_{*} \vartheta_{1}, \varphi_{2} A$ and $A \varphi_{1}^{\text {ad }}$ to get four functions $f_{1}, f_{2}, f_{3}, f_{4} \in H^{\infty}$ such that

$$
\begin{equation*}
\vartheta_{2}^{\text {ad }} A_{*}=f_{1} \vartheta_{1}^{\text {ad }}, \quad A_{*} \vartheta_{1}=f_{2} \vartheta_{2}, \quad \varphi_{2} A=f_{3} \varphi_{1}, \quad \text { and } \quad A \varphi_{1}^{\text {ad }}=f_{4} \varphi_{2}^{\text {ad }} \tag{3.1}
\end{equation*}
$$

Thus

$$
\left(\operatorname{det} A_{*}\right) \vartheta_{1}=A_{*}^{\mathrm{ad}} A_{*} \vartheta_{1}=f_{2} A_{*}^{\mathrm{ad}} \vartheta_{2}=f_{1} f_{2} \vartheta_{1}
$$

and

$$
(\operatorname{det} A) \varphi_{1}^{\mathrm{ad}}=A^{\mathrm{ad}} A \varphi_{1}^{\mathrm{ad}}=f_{4} A^{\mathrm{ad}} \varphi_{2}^{\mathrm{ad}}=f_{4} f_{3} \varphi_{1}^{\mathrm{ad}}
$$

then we have

$$
\operatorname{det} A_{*}=f_{1} f_{2} \quad \text { and } \quad \operatorname{det} A=f_{3} f_{4} .
$$

Making use of the equality

$$
m_{1} w_{1} f_{2} \vartheta_{2} \varphi_{1}=m_{1} w_{1} A_{*} \vartheta_{1} \varphi_{1}=A_{*} \Theta_{1}=\Theta_{2} A=m_{2} w_{2} \vartheta_{2} \varphi_{2} A=m_{2} w_{2} f_{3} \vartheta_{2} \varphi_{1},
$$

we have, multiplying by ϑ_{2}^{*} on the left, by φ_{1}^{*} on the right and using $\vartheta_{2}^{*} \vartheta_{2}=1=\varphi_{1} \varphi_{1}^{*}$, that

$$
\begin{equation*}
m_{1} w_{1} f_{2}=m_{2} w_{2} f_{3} \tag{3.2}
\end{equation*}
$$

On the other hand, as c_{2} and d_{2} are relatively prime (i.e. have no common inner factor), we have that [$c_{2} d_{2}$] is outer (see the properties of inner and outer matrices of functions in [4,5] or [7]) and, consequently, $\operatorname{clos}\left\{w_{2} \varphi_{2} H_{2}^{2}\right\}=H^{2}$. Now, using (b), we have

$$
\begin{aligned}
H_{2}^{2} & =\operatorname{clos}\left\{\left[\begin{array}{ll}
A_{*} & \Theta_{2}
\end{array}\right] H_{4}^{2}\right\}=\operatorname{clos}\left\{A_{*} H_{2}^{2}+\Theta_{2} H_{2}^{2}\right\}=\operatorname{clos}\left\{A_{*} H_{2}^{2}+m_{2} w_{2} \vartheta_{2} \varphi_{2} H_{2}^{2}\right\} \\
& =\operatorname{clos}\left\{A_{*} H_{2}^{2}+m_{2} \vartheta_{2} \operatorname{clos}\left\{w_{2} \varphi_{2} H_{2}^{2}\right\}\right\}=\operatorname{clos}\left\{\left[\begin{array}{ll}
A_{*} & m_{2} \vartheta_{2}
\end{array}\right] H_{3}^{2}\right\} .
\end{aligned}
$$

Therefore, the matrix

$$
\left[\begin{array}{ll}
A_{*} & m_{2} \vartheta_{2}
\end{array}\right]=\left[\begin{array}{lll}
a_{* 11} & a_{* 12} & m_{2} a_{2} \\
a_{* 21} & a_{* 22} & m_{2} b_{2}
\end{array}\right]
$$

is outer, in consequence, the three 2×2 minors are relatively prime or, equivalently, all the components of the vector

$$
\left[\operatorname{det} A_{*} \quad m_{2}\left(b_{2} a_{* 11}-a_{2} a_{* 21}\right) \quad m_{2}\left(b_{2} a_{* 12}-a_{2} a_{* 22}\right)\right]=\left[\begin{array}{lll}
\operatorname{det} A_{*} & m_{2} \vartheta_{2}^{\mathrm{ad}} A_{*}
\end{array}\right]=\left[\begin{array}{ll}
f_{1} f_{2} & m_{2} f_{1} \vartheta_{1}^{\mathrm{ad}}
\end{array}\right]
$$

are relatively prime. In particular, f_{1} is an outer function and $f_{2} \wedge m_{2}=1$. Using this in (3.2) we deduce that m_{2} divides m_{1}. Let us point out here that the function f we are looking for is the inner part of f_{2}.

Let us see that $\Omega_{2} \subseteq \Omega_{1}$ a.e. Since $\cos \left\{X \mathcal{H}_{1}\right\}=\mathcal{H}_{2}$, Lemma 2.1 tells us, using $\mathcal{E}_{i}=\mathcal{E}_{* i}=\mathbb{C}^{2}$ for $i=1$, 2, that

$$
\operatorname{clos}\left\{\left[\begin{array}{ccc}
A_{*} & \Theta_{2} & 0 \tag{3.3}\\
\Delta_{2} A \Theta_{1}^{*}+A_{0} \Delta_{* 1} & \Delta_{2} & \Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}
\end{array}\right]\left[\begin{array}{c}
H_{2}^{2} \\
H_{2}^{2} \\
L^{2}\left(\Delta_{1} \mathbb{C}^{2}\right)
\end{array}\right]\right\}=\left[\begin{array}{c}
H_{2}^{2} \\
L^{2}\left(\Delta_{2} \mathbb{C}^{2}\right)
\end{array}\right] .
$$

Taking into account that, by Lemma 3.1,

$$
\begin{equation*}
\varphi_{i} L^{2}\left(\Delta_{i} \mathbb{C}^{2}\right)=\varphi_{i}\left(\varphi_{i}^{\text {ad }} L^{2} \oplus \varphi_{i}^{*} \chi_{\Omega_{i}} L^{2}\right)=\chi_{\Omega_{i}} L^{2} \quad \text { for } i=1,2 \tag{3.4}
\end{equation*}
$$

we have that $\left[\begin{array}{ll}1 & 0 \\ 0 & \varphi_{2}\end{array}\right]\left[\begin{array}{c}H^{2} \\ L^{2}\left(\Delta_{2} \mathbb{C}^{2}\right)\end{array}\right]=\left[\begin{array}{c}H^{2} \\ \chi_{\Omega_{2}} L^{2}\end{array}\right]$ is a closed subspace. Therefore, if we apply the operator $\left[\begin{array}{cc}1 & 0 \\ 0 & \varphi_{2}\end{array}\right]$ to the equality (3.3) above, we obtain

$$
\operatorname{clos}\left\{\left[\begin{array}{ccc}
A_{*} & \Theta_{2} & 0 \\
\varphi_{2}\left(\Delta_{2} A \Theta_{1}^{*}+A_{0} \Delta_{* 1}\right) & \varphi_{2} \Delta_{2} & \varphi_{2}\left(\Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}\right)
\end{array}\right]\left[\begin{array}{c}
H_{2}^{2} \\
H_{2}^{2} \\
L^{2}\left(\Delta_{1} \mathbb{C}^{2}\right)
\end{array}\right]\right\}=\left[\begin{array}{c}
H_{2}^{2} \\
\chi_{\Omega_{2}} L^{2}
\end{array}\right]
$$

which, using that

$$
\varphi_{i} \Delta_{i}=\varphi_{i}\left(\varphi_{i}^{\mathrm{ad}}\left(\varphi_{i}^{\mathrm{ad}}\right)^{*}+\Delta_{w_{i}} \varphi_{i}^{*} \varphi_{i}\right)=\Delta_{w_{i}} \varphi_{i} \quad \text { for } i=1,2,
$$

is equivalent to

$$
\operatorname{clos}\left\{\left[\begin{array}{ccc}
A_{*} & \Theta_{2} & 0 \\
\Delta_{w_{2}} \varphi_{2} A \Theta_{1}^{*}+\varphi_{2} A_{0} \Delta_{* 1} & \Delta_{w_{2}} \varphi_{2} & \Delta_{w_{2}} \varphi_{2} A \Delta_{1}-\varphi_{2} A_{0} \Theta_{1}
\end{array}\right]\left[\begin{array}{c}
H_{2}^{2} \\
H_{2}^{2} \\
L^{2}\left(\Delta_{1} \mathbb{C}^{2}\right)
\end{array}\right]\right\}=\left[\begin{array}{c}
H_{2}^{2} \\
\chi_{\Omega_{2}} L^{2}
\end{array}\right] .
$$

Since $\varphi_{2} A=f_{3} \varphi_{1}$ and $\varphi_{1} \Delta_{1}=\Delta_{w_{1}} \varphi_{1}$, we have

$$
\varphi_{2} A \Theta_{1}^{*}=\varphi_{2} A \bar{m}_{1} \bar{w}_{1} \varphi_{1}^{*} \vartheta_{1}^{*}=f_{3} \bar{m}_{1} \bar{w}_{1} \vartheta_{1}^{*}
$$

and

$$
\Delta_{w_{2}} \varphi_{2} A \Delta_{1}=\Delta_{w_{2}} f_{3} \varphi_{1} \Delta_{1}=\Delta_{w_{2}} f_{3} \Delta_{w_{1}} \varphi_{1}
$$

therefore, the space above can be written as

$$
\operatorname{clos}\left\{\left[\begin{array}{ccc}
A_{*} & \Theta_{2} & 0 \\
\Delta_{w_{2}} f_{3} \bar{m}_{1} \bar{w}_{1} \vartheta_{1}^{*}+\varphi_{2} A_{0} \Delta_{* 1} & \Delta_{w_{2}} \varphi_{2} & \left(\Delta_{w_{2}} f_{3} \Delta_{w_{1}}-m_{1} w_{1} \varphi_{2} A_{0} \vartheta_{1}\right) \varphi_{1}
\end{array}\right]\left[\begin{array}{c}
H_{2}^{2} \\
H_{2}^{2} \\
L^{2}\left(\Delta_{1} \mathbb{C}^{2}\right)
\end{array}\right]\right\} .
$$

Now, using that, by (3.4), $\varphi_{1} L^{2}\left(\Delta_{1} \mathbb{C}^{2}\right)=\chi_{\Omega_{1}} L^{2}$, that the range of A_{0} is included in $L^{2}\left(\Delta_{2} \mathbb{C}^{2}\right)$ and, hence, the range of $\varphi_{2} A_{0}$ is included in $\varphi_{2} L^{2}\left(\Delta_{2} \mathbb{C}^{2}\right)=\chi_{\Omega_{2}} L^{2}$, we conclude that

$$
\left(\Delta_{w_{2}} f_{3} \Delta_{w_{1}}-m_{1} w_{1} \varphi_{2} A_{0} \vartheta_{1}\right) \varphi_{1} L^{2}\left(\Delta_{1} \mathbb{C}^{2}\right)=\left(\Delta_{w_{2}} f_{3} \Delta_{w_{1}}-m_{1} w_{1} \varphi_{2} A_{0} \vartheta_{1}\right) \chi_{\Omega_{1}} L^{2} \subseteq \chi_{\Omega_{1} \cap \Omega_{2}} L^{2}=\chi_{\Omega_{2}} \chi_{\Omega_{1}} L^{2}
$$

Taking into account the orthogonal decomposition

$$
\left[\begin{array}{c}
H_{2}^{2} \\
\chi_{\Omega_{2}} L^{2}
\end{array}\right]=\left[\begin{array}{c}
H_{2}^{2} \\
\chi_{\Omega_{2} \backslash\left(\Omega_{1} \cap \Omega_{2}\right)} L^{2}
\end{array}\right] \oplus\left[\begin{array}{c}
0 \\
\chi_{\Omega_{2}} \chi_{\Omega_{1}} L^{2}
\end{array}\right],
$$

if we apply to the last equality the orthogonal projection from $\left[\begin{array}{c}H_{2}^{2} \\ \chi \Omega_{2} L^{2}\end{array}\right]$ onto the space

$$
\left[\begin{array}{c}
H_{2}^{2} \\
\chi_{\Omega_{2} \backslash\left(\Omega_{1} \cap \Omega_{2}\right)} L^{2}
\end{array}\right]=\left[\begin{array}{c}
H_{2}^{2} \\
\chi_{\Omega_{2}}\left(1-\chi_{\Omega_{1}}\right) L^{2}
\end{array}\right],
$$

whose matrix is $\left[\begin{array}{cc}I & 0 \\ 0 & \left(1-\chi_{\Omega_{1}}\right)\end{array}\right]$, we obtain

$$
\left[\begin{array}{c}
H_{2}^{2} \\
\chi_{\Omega_{2} \backslash\left(\Omega_{1} \cap \Omega_{2}\right)} L^{2}
\end{array}\right]=\operatorname{clos}\left\{\left[\begin{array}{cc}
I & 0 \\
0 & \left(1-\chi_{\Omega_{1}}\right)
\end{array}\right]\left[\begin{array}{cc}
A_{*} & \Theta_{2} \\
\Delta_{w_{2}} f_{3} \bar{m}_{1} \bar{w}_{1} \vartheta_{1}^{*}+\varphi_{2} A_{0} \Delta_{* 1} & \Delta_{w_{2}} \varphi_{2}
\end{array}\right]\left[\begin{array}{l}
H_{2}^{2} \\
H_{2}^{2}
\end{array}\right]\right\},
$$

because $\left(\Delta_{w_{2}} f_{3} \Delta_{w_{1}}-\varphi_{2} A_{0} \vartheta_{1}\right) \varphi_{1} L^{2}\left(\Delta_{1} \mathbb{C}^{2}\right) \subseteq \chi_{\Omega_{2}} \chi_{\Omega_{1}} L^{2}$. Since $\operatorname{clos}\left\{\varphi_{2} H_{2}^{2}\right\}=H^{2}$ we have

$$
\begin{aligned}
{\left[\begin{array}{c}
H_{2}^{2} \\
\chi_{\Omega_{2} \backslash\left(\Omega_{1} \cap \Omega_{2}\right)} L^{2}
\end{array}\right] } & =\operatorname{clos}\left\{\left[\begin{array}{cc}
I & 0 \\
0 & 1-\chi_{\Omega_{1}}
\end{array}\right]\left[\begin{array}{cc}
A_{*} & \Theta_{2} \\
\Delta_{w_{2}} f_{3} \bar{m}_{1} \bar{w}_{1} \vartheta_{1}^{*}+\varphi_{2} A_{0} \Delta_{* 1} & \Delta_{w_{2}} \varphi_{2}
\end{array}\right]\left[\begin{array}{l}
H_{2}^{2} \\
H_{2}^{2}
\end{array}\right]\right\} \\
& =\operatorname{clos}\left\{\left[\begin{array}{cc}
I & 0 \\
0 & 1-\chi_{\Omega_{1}}
\end{array}\right]\left[\begin{array}{cc}
A_{*} & m_{2} w_{2} \vartheta_{2} \\
\Delta_{w_{2}} f_{3} \bar{m}_{1} \bar{w}_{1} \vartheta_{1}^{*}+\varphi_{2} A_{0} \Delta_{* 1} & \Delta_{w_{2}}
\end{array}\right]\left[\begin{array}{l}
H_{2}^{2} \\
H^{2}
\end{array}\right]\right\} .
\end{aligned}
$$

If we multiply the matrices and use that $\vartheta_{1} \vartheta_{1}^{*}+\left(\vartheta_{1}^{\text {ad }}\right)^{*} \vartheta_{1}^{\text {ad }}=I$, that $w_{1} H_{2}^{2}$ is dense in H_{2}^{2} and that

$$
\left(1-\chi_{\Omega_{1}}\right) \Delta_{* 1}=\left(1-\chi_{\Omega_{1}}\right)\left(\left(\vartheta_{1}^{\mathrm{ad}}\right)^{*} \vartheta_{1}^{\mathrm{ad}}+\Delta_{w_{1}} \vartheta_{1} \vartheta_{1}^{*}\right)=\left(1-\chi_{\Omega_{1}}\right)\left(\vartheta_{1}^{\mathrm{ad}}\right)^{*} \vartheta_{1}^{\mathrm{ad}}
$$

the last equality can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
H_{2}^{2} \\
\chi_{\Omega_{2} \backslash\left(\Omega_{1} \cap \Omega_{2}\right)} L^{2}
\end{array}\right] } & =\operatorname{clos}\left\{\left[\begin{array}{cc}
A_{*}\left[\vartheta_{1} \vartheta_{1}^{*}+\left(\vartheta_{1}^{\mathrm{ad}}\right)^{*} \vartheta_{1}^{\mathrm{ad}}\right] & m_{2} w_{2} \vartheta_{2} \\
\left(1-\chi_{\Omega_{1}}\right)\left(\Delta_{w_{2}} f_{3} \bar{m}_{1} \bar{w}_{1} \vartheta_{1}^{*}+\varphi_{2} A_{0}\left(\vartheta_{1}^{\mathrm{ad}}\right)^{*} \vartheta_{1}^{\mathrm{ad}}\right) & \left(1-\chi_{\Omega_{1}}\right) \Delta_{w_{2}}
\end{array}\right]\left[\begin{array}{c}
w_{1} H_{2}^{2} \\
H^{2}
\end{array}\right]\right\} \\
& =\operatorname{clos}\left\{\left[\left[\begin{array}{c}
m_{2} w_{2} \vartheta_{2} \\
\left(1-\chi_{\Omega_{1}}\right) \Delta_{w_{2}}
\end{array}\right]\left[\begin{array}{ll}
f_{3} \bar{m}_{1} \vartheta_{1}^{*} & 1
\end{array}\right]+\left[\begin{array}{c}
A_{*}\left(\vartheta_{1}^{\mathrm{ad}}\right)^{*} \\
\left(1-\chi_{\Omega_{1}}\right) \varphi_{2} A_{0}\left(\vartheta_{1}^{\mathrm{ad}}\right)^{*}
\end{array}\right]\left[\begin{array}{lll}
w_{1} \vartheta_{1}^{\mathrm{ad}} & 0
\end{array}\right] H_{3}^{2}\right\}\right.
\end{aligned}
$$

where we have also used that $\left(1-\chi_{\Omega_{1}}\right)\left|w_{1}\right|^{2}=\left(1-\chi_{\Omega_{1}}\right)$ and, from (3.1) and (3.2), that

$$
m_{2} w_{2} f_{3} \vartheta_{2} \bar{m}_{1} \vartheta_{1}^{*}=w_{1} f_{2} \vartheta_{2} \vartheta_{1}^{*}=w_{1} A_{*} \vartheta_{1} \vartheta_{1}^{*}
$$

Since the matrix above acting on H_{3}^{2} is the sum of two rank one matrices, its rank must be at most two, thus $\chi_{\Omega_{2} \backslash \Omega_{1} \cap \Omega_{2}} L^{2}=\{0\}$ or, equivalently, $\Omega_{2} \subseteq \Omega_{1}$ almost everywhere.

Finally, taking $f=f_{2}^{\mathrm{i}}$, the inner part of f_{2}, we have $f \wedge m_{2}=1$. Moreover, since f_{1} is an outer function, if f_{4}^{0} is the outer part of f_{4}, we have from (3.1) and (3.2) that

$$
\frac{1}{f_{1}} A_{*}^{\text {ad }}, \frac{1}{f_{4}^{\mathrm{o}}} A \in \mathcal{N}_{2 \times 2}^{+}, \quad \frac{1}{f_{1}} A_{*}^{\text {ad }} \vartheta_{2}=\vartheta_{1}, \quad \text { and } \quad \frac{1}{f_{4}^{\mathrm{o}}} A \varphi_{1}^{\mathrm{ad}}=f_{4}^{\mathrm{i}} \varphi_{2}^{\mathrm{ad}}
$$

with

$$
\begin{aligned}
& \left(\operatorname{det}\left(\frac{1}{f_{1}} A_{*}^{\text {ad }}\right)\right)^{\mathrm{i}}=\left(\operatorname{det} A_{*}^{\text {ad }}\right)^{\mathrm{i}}=\left(\operatorname{det} A_{*}\right)^{\mathrm{i}}=\left(f_{1} f_{2}\right)^{\mathrm{i}}=f_{2}^{\mathrm{i}}=f \quad \text { and } \\
& \left(\operatorname{det}\left(\frac{1}{f_{4}^{\mathrm{o}}} A\right)\right)^{\mathrm{i}}=(\operatorname{det} A)^{\mathrm{i}}=\left(f_{3} f_{4}\right)^{\mathrm{i}}=\frac{m_{1}}{m_{2}} f_{2}^{\mathrm{i}} f_{4}^{\mathrm{i}}=\frac{m_{1}}{m_{2}} f f_{4}^{\mathrm{i}}
\end{aligned}
$$

thus $f \in \operatorname{det}\left(\vartheta_{2} \rightarrow \vartheta_{1}\right)^{\mathrm{i}}$ and, taking $u=f_{4}^{\mathrm{i}}, \frac{m_{1}}{m_{2}} u f \in \operatorname{det}\left(\varphi_{1}^{\mathrm{ad}} \rightarrow u \varphi_{2}^{\mathrm{ad}}\right)^{\mathrm{i}}$. This finishes the proof that the conditions are necessary.

Now, we suppose that m_{2} divides m_{1}, that $\Omega_{2} \subseteq \Omega_{1}$ a.e., and that there exist two inner functions $f, u \in H^{\infty}$ such that

$$
f \in \operatorname{det}\left(\vartheta_{2} \rightarrow \vartheta_{1}\right)^{\mathrm{i}}, \quad f \wedge m_{2}=1, \quad \text { and } \quad \frac{m_{1}}{m_{2}} u f \in \operatorname{det}\left(\varphi_{1}^{\mathrm{ad}} \rightarrow u \varphi_{2}^{\mathrm{ad}}\right)^{\mathrm{i}}
$$

We will prove that there exists a bounded operator $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that $X T_{1}=T_{2} X$ and $\operatorname{clos}\left\{X \mathcal{H}_{1}\right\}=\mathcal{H}_{2}$, by finding an adequate parametrization to produce a suitable lifting Y of X. According to Lemma 2.2 we need to build a lifting

$$
Y=\pi_{* 2} A_{*}\left(\pi_{* 1}\right)^{*}+\tau_{2} \Delta_{2} A \pi_{1}^{*}+\tau_{2} A_{0}\left(\tau_{* 1}\right)^{*}
$$

whose parameters satisfy the hypothesis of that lemma. Those conditions are:
(1) $\Theta_{2} A=A_{*} \Theta_{1}$,
(2) $\left[\begin{array}{ll}A_{*} & \Theta_{2}\end{array}\right]$ outer,
(3) $\operatorname{clos}\left\{\left(\Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}\right) L^{2}\left(\Delta_{1} \mathbb{C}^{2}\right)\right\}=L^{2}\left(\Delta_{2} \mathbb{C}^{2}\right)$,
where $A, A_{*} \in H_{2 \times 2}^{\infty}$.
Since there exists a function $f \in \operatorname{det}\left(\vartheta_{2} \rightarrow \vartheta_{1}\right)^{\mathrm{i}}$ such that $f \wedge m_{2}=1$, it follows that there exists $\Lambda \in \mathcal{N}_{2 \times 2}^{+}$satisfying $\Lambda \vartheta_{2}=\vartheta_{1}$ and $(\operatorname{det} \Lambda)^{\mathrm{i}}=f$. Let λ_{*} be an outer function such that $\lambda_{*} \Lambda \in H_{2 \times 2}^{\infty}$ and $\lambda_{*} \operatorname{det} \Lambda \in H^{\infty}$. If we denote $M^{\text {ad }}=\lambda_{*} \Lambda$, we have $M^{\text {ad }} \vartheta_{2}=\lambda_{*} \vartheta_{1}$. Let $f_{1}=\left(\lambda_{*} \operatorname{det} \Lambda\right)^{0}$ be the outer part of $\lambda_{*} \operatorname{det} \Lambda$. Then

$$
\begin{aligned}
& \lambda_{*} \operatorname{det} \Lambda=\left(\lambda_{*} \operatorname{det} \Lambda\right)^{\mathrm{i}}\left(\lambda_{*} \operatorname{det} \Lambda\right)^{0}=f f_{1}, \\
& \operatorname{det} M=\operatorname{det} M^{\mathrm{ad}}=\lambda_{*}^{2} \operatorname{det} \Lambda=\lambda_{*} f f_{1},
\end{aligned}
$$

and

$$
M\left(\lambda_{*} \vartheta_{1}\right)=M\left(M^{\mathrm{ad}} \vartheta_{2}\right)=\left(\operatorname{det} M^{\mathrm{ad}}\right) \vartheta_{2}
$$

consequently

$$
M \vartheta_{1}=\frac{\operatorname{det} M^{\text {ad }}}{\lambda_{*}} \vartheta_{2}=f f_{1} \vartheta_{2}
$$

Let h be an inner function such that $m_{1}=h m_{2}$. Since $h u f \in \operatorname{det}\left(\varphi_{1}^{\text {ad }} \rightarrow u \varphi_{2}^{\text {ad }}\right)^{\mathrm{i}}$ we have, analogously, a matrix $\Gamma \in \mathcal{N}_{2 \times 2}^{+}$such that $\Gamma \varphi_{1}^{\text {ad }}=u \varphi_{2}^{\text {ad }}$ and $(\operatorname{det} \Gamma)^{\text {i }}=h u f$. Thus there exists an outer function λ such that $N=\lambda \Gamma \in H_{2 \times 2}^{\infty}$, $\lambda \operatorname{det} \Gamma \in H^{\infty}, N \varphi_{1}^{\text {ad }}=\lambda u \varphi_{2}^{\text {ad }}$ and $\operatorname{det} N=\lambda^{2} \operatorname{det} \Gamma=\lambda(\lambda \operatorname{det} \Gamma)=\lambda h u f f_{2}$, where $f_{2}=(\lambda \operatorname{det} \Gamma)^{\mathrm{o}}$. Moreover, it follows that $N^{\text {ad }} \varphi_{2}^{\text {ad }}=h f f_{2} \varphi_{1}^{\text {ad }}$ and, therefore, $\varphi_{2} N=h f f_{2} \varphi_{1}$.

We choose $A_{*}=w_{2} f_{2} M$ and $A=w_{1} f_{1} N$. Let us check that our three conditions hold.
(1) The equality $\Theta_{2} A=A_{*} \Theta_{1}$ holds because

$$
A_{*} \Theta_{1}=w_{2} f_{2} M m_{1} w_{1} \vartheta_{1} \varphi_{1}=m_{1} w_{1} w_{2} f_{2}\left(M \vartheta_{1}\right) \varphi_{1}=m_{1} w_{1} w_{2} f_{2}\left(f f_{1} \vartheta_{2}\right) \varphi_{1}
$$

and

$$
\Theta_{2} A=m_{2} w_{2} \vartheta_{2} \varphi_{2} w_{1} f_{1} N=m_{2} w_{1} w_{2} f_{1} \vartheta_{2}\left(\varphi_{2} N\right)=m_{2} w_{1} w_{2} f_{1} \vartheta_{2}\left(h f f_{2} \varphi_{1}\right) .
$$

(2) To prove that [$A_{*} \Theta_{2}$] is outer, we will check that

$$
\operatorname{clos}\left\{\left[\begin{array}{ll}
A_{*} & \Theta_{2}
\end{array}\right] H_{4}^{2}\right\}=H_{2}^{2}
$$

Now, since w_{2}, f_{2} and φ_{2} are outer functions and $A_{*}=w_{2} f_{2} M$, we have

$$
\operatorname{clos}\left\{\left[\begin{array}{ll}
A_{*} & \Theta_{2}
\end{array}\right] H_{4}^{2}\right\}=\operatorname{clos}\left\{\left[\begin{array}{ll}
M & m_{2} \vartheta_{2}
\end{array}\right] H_{3}^{2}\right\}
$$

consequently, it is enough to prove that [$\left.\begin{array}{lll}M & m_{2} \vartheta_{2}\end{array}\right]$ is outer or, equivalently, that the three 2×2 minors have no common inner divisors or, in other words, that the components of the vector

$$
\left[\begin{array}{lll}
\operatorname{det} M & m_{2} \vartheta_{2}^{\mathrm{ad}} M
\end{array}\right]=\left[\begin{array}{lll}
\lambda_{*} f f_{1} & m_{2} \lambda_{*} \vartheta_{1}^{\mathrm{ad}}
\end{array}\right]=\left[\begin{array}{lll}
\lambda_{*} f f_{1} & m_{2} \lambda_{*} b_{1} & -m_{2} \lambda_{*} a_{1}
\end{array}\right]
$$

have no common inner divisors. But this is true because $f \wedge m_{2}=1, a_{1}$ and b_{1} have no common inner divisor, and λ_{*} and f_{1} are outer functions.
(3) To check the third condition we need to specify the parameter A_{0}. We take $A_{0}=a_{0} \chi_{\Omega_{2}} \varphi_{2}^{*} \vartheta_{1}^{*}$, where a_{0} is chosen depending on f, namely, we put $a_{0}=0$ if $f \neq 0$ and $a_{0}=1$ if $f=0$. Since $L^{2}\left(\Delta_{i} \mathbb{C}^{2}\right)=\varphi_{i}^{\text {ad }} L^{2} \oplus \varphi_{i}^{*} \chi_{\Omega_{i}} L^{2}$, we can rewrite the required equality as follows

$$
\begin{equation*}
\operatorname{clos}\left\{\left(\Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}\right) \varphi_{1}^{\mathrm{ad}} L^{2},\left(\Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}\right) \varphi_{1}^{*} \chi_{\Omega_{1}} L^{2}\right\}=\varphi_{2}^{\mathrm{ad}} L^{2} \oplus \varphi_{2}^{*} \chi_{\Omega_{2}} L^{2} \tag{3.5}
\end{equation*}
$$

Let us consider the first term. Using formulas from Lemma 3.1 and the definition of the functions A and A_{0} we get

$$
\operatorname{clos}\left\{\left(\Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}\right) \varphi_{1}^{\mathrm{ad}} L^{2}\right\}=\operatorname{clos}\left\{w_{1} f_{1} \Delta_{2} N \varphi_{1}^{\mathrm{ad}} L^{2}\right\}=\operatorname{clos}\left\{w_{1} f_{1} \lambda u \Delta_{2} \varphi_{2}^{\mathrm{ad}} L^{2}\right\}=\operatorname{clos}\left\{w_{1} f_{1} \lambda u \varphi_{2}^{\mathrm{ad}} L^{2}\right\}=\varphi_{2}^{\mathrm{ad}} L^{2}
$$

Thus, to prove (3.5) it is sufficient to check that the orthogonal projection of the second term in the left-hand side of (3.5) onto $\varphi_{2}^{*} \chi_{\Omega_{2}} L^{2}$ gives the whole subspace, i.e., that

$$
\varphi_{2}^{*} \chi_{\Omega_{2}} \varphi_{2} \operatorname{clos}\left\{\left(\Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}\right) \varphi_{1}^{*} \chi_{\Omega_{1}} L^{2}\right\}=\varphi_{2}^{*} \chi_{\Omega_{2}} L^{2}
$$

Let us check this identity:

$$
\begin{aligned}
\varphi_{2}^{*} \chi_{\Omega_{2}} \varphi_{2} \operatorname{clos}\left\{\left(\Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}\right) \varphi_{1}^{*} \chi_{\Omega_{1}} L^{2}\right\} & =\varphi_{2}^{*} \operatorname{clos}\left\{\chi_{\Omega_{2}}\left[\left(\varphi_{2} \Delta_{2}\right)\left(w_{1} f_{1} N\right)\left(\Delta_{1} \varphi_{1}^{*}\right)-\varphi_{2}\left(a_{0} \varphi_{2}^{*} \vartheta_{1}^{*}\right)\left(m_{1} w_{1} \vartheta_{1} \varphi_{1}\right) \varphi_{1}^{*}\right] L^{2}\right\} \\
& =\varphi_{2}^{*} \operatorname{clos}\left\{\chi_{\Omega_{2}}\left[w_{1} f_{1} \Delta_{w_{2}} \Delta_{w_{1}} \varphi_{2} N \varphi_{1}^{*}-a_{0} m_{1} w_{1}\right] L^{2}\right\} \\
& =\varphi_{2}^{*} \operatorname{clos}\left\{\chi_{\Omega_{2}}\left[w_{1} f_{1} \Delta_{w_{2}} \Delta_{w_{1}} h f f_{2}-a_{0} m_{1} w_{1}\right] L^{2}\right\}
\end{aligned}
$$

Note that the function within the brackets is different from zero almost everywhere on Ω_{2}. Indeed, since $\Omega_{2} \subset \Omega_{1}$ and $\Delta_{i} \neq 0$ on Ω_{i}, all the functions in the first summand are different from zero on Ω_{2}, except possibly the function f. If $f \neq 0$, then being an analytic function in the unit disc, f is different from zero a.e. on the circle, and we have non-zero first summand with the second equal to zero, because, in this case, we took $a_{0}=0$. If, on the other hand, $f=0$, then the second summand is nonzero. In either case we have that $\varphi_{2}^{*} \chi_{\Omega_{2}} L^{2}$, which is what we need.

Lemma 3.3. There exists an operator $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that $X T_{1}=T_{2} X$ and $\operatorname{ker}(X)=\{0\}$ if and only if the following conditions hold:
(i) m_{1} divides m_{2},
(ii) $\Omega_{1} \subseteq \Omega_{2}$ a.e., and
(iii) there exist two inner functions $g, v \in H^{\infty}$ such that $g \in \operatorname{det}\left(\varphi_{1}^{\text {ad }} \rightarrow \varphi_{2}^{\text {ad }}\right)^{\mathrm{i}}, g \wedge m_{1}=1$, and $\frac{m_{2}}{m_{1}} v g \in \operatorname{det}\left(\vartheta_{2} \rightarrow v \vartheta_{1}\right)^{\mathrm{i}}$.

Proof. To consider an operator $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that $X T_{1}=T_{2} X$ and $\operatorname{ker}(X)=\{0\}$ we apply Lemma 3.2 to the operator $X^{*}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$, for which we have $T_{1}^{*} X^{*}=X^{*} T_{2}^{*}$ and $\operatorname{clos}\left\{X^{*} \mathcal{H}_{2}\right\}=\mathcal{H}_{1}$.

If we denote $\bar{\Omega}=\{\bar{z}: z \in \Omega\}$ for a domain Ω and $\widetilde{A}(z)=A^{*}(\bar{z})$ for any operator-valued analytic function A then the characteristic functions of T_{i}^{*} are $\widetilde{\Theta}_{i}=\widetilde{m}_{i} \widetilde{w}_{i} \widetilde{\varphi}_{i} \widetilde{\vartheta}_{i}$ and, for the corresponding sets $\Omega_{i}, \bar{\Omega}_{i}$ are the supports of the functions $\Delta_{w_{i}}$. According to Lemma 3.2 the existence of such operator X^{*} is equivalent to the conditions:
(1) \widetilde{m}_{1} divides \widetilde{m}_{2},
(2) $\bar{\Omega}_{1} \subseteq \bar{\Omega}_{2}$ a.e., and
(3) there exist two inner functions $f, u \in H^{\infty}$ such that $f \in \operatorname{det}\left(\widetilde{\varphi}_{1} \rightarrow \widetilde{\varphi}_{2}\right)^{\mathrm{i}}, f \wedge \widetilde{m}_{1}=1$ and $\frac{\widetilde{m}_{2}}{\widetilde{m}_{1}} u f \in \operatorname{det}\left(\left(\widetilde{\vartheta}_{2}\right)^{\text {ad }} \rightarrow u\left(\widetilde{\vartheta}_{1}\right)^{\text {ad }}\right)^{\mathrm{i}}$.

It is clear that \tilde{m}_{1} divides \tilde{m}_{2} if and only if m_{1} divides m_{2} and that $\bar{\Omega}_{1} \subseteq \bar{\Omega}_{2}$ if and only if $\Omega_{1} \subseteq \Omega_{2}$. Finally, it is easy to see that (iii) and (3) are equivalent by taking $g=\widetilde{f}$ and $v=\widetilde{u}$.

Lemma 3.4. Let $T_{i} \in \mathcal{B}\left(\mathcal{H}_{i}\right)$ ($i=1,2$) be completely non-unitary contractions having 2×2 characteristic functions $\Theta_{i}=$ $w_{i} m_{i}\left[\begin{array}{c}a_{i} \\ b_{i}\end{array}\right]\left[\begin{array}{ll}c_{i} & d_{i}\end{array}\right]=w_{i} m_{i} \vartheta_{i} \varphi_{i}$. There exists a bounded operator $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ satisfying

$$
X T_{1}=T_{2} X, \quad \operatorname{clos}\left\{X \mathcal{H}_{1}\right\}=\mathcal{H}_{2}, \quad \text { and } \quad \operatorname{ker}(X)=\{0\}
$$

if and only if the following conditions hold:
(i) $m_{1}=m_{2}=m$,
(ii) $\Omega_{1}=\Omega_{2}=\Omega$ a.e., and
(iii) there exists $f \in \operatorname{det}\left(\vartheta_{2} \rightarrow \vartheta_{1}\right)^{\mathrm{i}} \cap \operatorname{det}\left(\varphi_{1}^{\mathrm{ad}} \rightarrow \varphi_{2}^{\text {ad }}\right)^{\mathrm{i}}$ such that $f \wedge m=1$.

Proof. We suppose that there exists a bounded operator $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ satisfying

$$
X T_{1}=T_{2} X, \quad \operatorname{clos}\left\{X \mathcal{H}_{1}\right\}=\mathcal{H}_{2}, \quad \text { and } \quad \operatorname{ker}(X)=\{0\} .
$$

Using Lemmas 3.2 and 3.3, we know that
(i) $m_{2}=m_{1}=m$,
(ii) $\Omega_{2}=\Omega_{1}$ a.e., and
(iii) there exist two inner functions $f, u \in H^{\infty}$ such that $f \in \operatorname{det}\left(\vartheta_{2} \rightarrow \vartheta_{1}\right)^{\mathrm{i}}, f \wedge m=1$ and $u f \in \operatorname{det}\left(\varphi_{1}^{\text {ad }} \rightarrow u \varphi_{2}^{\text {ad }}\right)^{\mathrm{i}}$.

Starting as in the proof of Lemma 3.2, there exist four functions $f_{1}, f_{2}, f_{3}, f_{4} \in H^{\infty}$ such that the parameters $A, A_{*} \in$ $H_{2 \times 2}^{\infty}$ of the lifting of X satisfy (3.1), i.e.,

$$
\vartheta_{2}^{\mathrm{ad}} A_{*}=f_{1} \vartheta_{1}^{\mathrm{ad}}, \quad A_{*} \vartheta_{1}=f_{2} \vartheta_{2}, \quad \varphi_{2} A=f_{3} \varphi_{1}, \quad \text { and } \quad A \varphi_{1}^{\mathrm{ad}}=f_{4} \varphi_{2}^{\mathrm{ad}}
$$

where, moreover, $u=f_{4}^{\mathrm{i}}$.
Now, according to Lemma 2.3, the matrix $\left[\begin{array}{c}A \\ \Theta_{1}\end{array}\right]$ is $*$-outer, hence

$$
H_{2}^{2}=\operatorname{clos}\left\{\left[\begin{array}{ll}
A^{T} & \Theta_{1}^{T}
\end{array}\right] H_{4}^{2}\right\}=\operatorname{clos}\left\{A^{T} H_{2}^{2}+m_{1} w_{1} \varphi_{1}^{T} \vartheta_{1}^{T} H_{2}^{2}\right\} .
$$

As w_{1} is outer and $a_{1} \wedge b_{1}=1$, we have $\operatorname{clos}\left\{w_{1} \vartheta_{1}^{T} H_{2}^{2}\right\}=H^{2}$ and, therefore,

$$
H_{2}^{2}=\operatorname{clos}\left\{\left[\begin{array}{ll}
A^{T} & \Theta_{1}^{T}
\end{array}\right] H_{4}^{2}\right\}=\operatorname{clos}\left\{A^{T} H_{2}^{2}+m_{1} \varphi_{1}^{T} \operatorname{clos}\left\{w_{1} \vartheta_{1}^{T} H_{2}^{2}\right\}\right\}=\operatorname{clos}\left\{\left[\begin{array}{ll}
A^{T} & m_{1} \varphi_{1}^{T}
\end{array}\right] H_{3}^{2}\right\}
$$

thus the matrix

$$
\left[\begin{array}{ll}
A^{T} & m_{1} \varphi_{1}^{T}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{21} & m_{1} c_{1} \\
a_{12} & a_{22} & m_{1} d_{1}
\end{array}\right]
$$

is outer and, consequently, the three components of the vector

$$
\begin{aligned}
{\left[\begin{array}{lll}
\operatorname{det} A^{T} & m_{1}\left(d_{1} a_{11}-c_{1} a_{12}\right) & m_{1}\left(d_{1} a_{21}-c_{1} a_{22}\right)
\end{array}\right] } & =\left[\begin{array}{ll}
\operatorname{det} A & m_{1}\left(\varphi_{1}^{T}\right)^{\mathrm{ad}} A^{T}
\end{array}\right]=\left[\begin{array}{ll}
\operatorname{det} A & m_{1}\left(A \varphi_{1}^{\mathrm{ad}}\right)^{T}
\end{array}\right] \\
& =\left[\begin{array}{ll}
f_{3} f_{4} & m_{1} f_{4}\left(\varphi_{2}^{\mathrm{ad}}\right)^{T}
\end{array}\right]
\end{aligned}
$$

have no common inner divisor. In particular, f_{4} is an outer function. We conclude that $u=f_{4}^{\mathrm{i}}=1$ and, therefore, $f \in$ $\operatorname{det}\left(\vartheta_{2} \rightarrow \vartheta_{1}\right)^{\mathrm{i}} \cap \operatorname{det}\left(\varphi_{1}^{\mathrm{ad}} \rightarrow \varphi_{2}^{\text {ad }}\right)^{\mathrm{i}}$. This finishes the proof that the conditions are necessary.

To prove that the conditions are sufficient we will use again the proof of Lemma 3.2. Bearing in mind that $u=1$ and $\frac{m_{1}}{m_{2}}=1$, take the parameters for the lifting of X as chosen in that lemma, that is, $A_{*}=w_{2} f_{2} M$ and $A=w_{1} f_{1} N$, where $M, N \in H_{2 \times 2}^{\infty}$ satisfy

$$
\begin{aligned}
& M^{\mathrm{ad}} \vartheta_{2}=\lambda_{*} \vartheta_{1}, \quad \operatorname{det} M=\lambda_{*} f f_{1}, \quad M \vartheta_{1}=f f_{1} \vartheta_{2}, \\
& N \varphi_{1}^{\mathrm{ad}}=\lambda \varphi_{2}^{\mathrm{ad}}, \quad \operatorname{det} N=\lambda f f_{2}, \quad \varphi_{2} N=f f_{2} \varphi_{1},
\end{aligned}
$$

with $f_{1}, f_{2}, \lambda_{*}, \lambda \in H^{\infty}$ being outer functions.
According to Lemmas 3.2 and 3.4, we have to prove that $\left[\begin{array}{c}A \\ \Theta_{1}\end{array}\right]$ is $*$-outer and that the following equality holds $\operatorname{clos}\left\{\left(\Delta_{* 1} A_{*}^{*} \Delta_{* 2}-A_{0}^{*} \Theta_{2}^{*}\right) L^{2}\left(\Delta_{* 2} \mathbb{C}^{2}\right)\right\}=L^{2}\left(\Delta_{* 1} \mathbb{C}^{2}\right)$, where $A_{0}=a_{0} \chi_{\Omega} \varphi_{2}^{*} \vartheta_{1}^{*}$, and we choose $a_{0}=0$ if f is not a null function and $a_{0}=1$ otherwise.

To show that $\left[\begin{array}{c}A \\ \Theta_{1}\end{array}\right]$ is $*$-outer, it is enough to prove that $\left[\begin{array}{ll}A^{T} & \Theta_{1}^{T}\end{array}\right]$ is outer. Now, since $f \wedge m=1, c_{2} \wedge d_{2}=1$, and the functions λ and f_{2} are outer, it follows that the elements of the vector

$$
\left[\begin{array}{lll}
\operatorname{det} N^{T} & m\left(\varphi_{1}^{T}\right)^{\mathrm{ad}} N^{T}
\end{array}\right]=\left[\begin{array}{lll}
\lambda f f_{2} & m \lambda\left(\varphi_{2}^{\mathrm{ad}}\right)^{T}
\end{array}\right]=\left[\begin{array}{lll}
\lambda f f_{2} & m \lambda d_{2} & -m \lambda c_{2}
\end{array}\right]
$$

have no common inner divisor. This implies that

$$
\operatorname{clos}\left\{\left[\begin{array}{ll}
N^{T} & m \varphi_{1}^{T}
\end{array}\right] H_{3}^{2}\right\}=H_{2}^{2} .
$$

Therefore, since $A=w_{1} f_{1} N, w_{1}$ and f_{1} are outer functions and $\cos \left\{\vartheta_{1}^{T} H_{2}^{2}\right\}=H^{2}$, we conclude that [$A^{T} \quad \Theta_{1}^{T}$] is outer.
Using the functional representations given in Lemma 3.1, we reformulate the required identity $\operatorname{clos}\left\{\left(\Delta_{* 1} A_{*}^{*} \Delta_{* 2}-\right.\right.$ $\left.\left.A_{0}^{*} \Theta_{2}^{*}\right) L^{2}\left(\Delta_{* 2} \mathbb{C}^{2}\right)\right\}=L^{2}\left(\Delta_{* 1} \mathbb{C}^{2}\right)$ as follows

$$
\begin{equation*}
\operatorname{clos}\left\{\left(\Delta_{* 1} A_{*}^{*} \Delta_{* 2}-A_{0}^{*} \Theta_{2}^{*}\right)\left(\vartheta_{2}^{\text {ad }}\right)^{*} L^{2},\left(\Delta_{* 1} A_{*}^{*} \Delta_{* 2}-A_{0}^{*} \Theta_{2}^{*}\right) \vartheta_{2} \chi_{\Omega} L^{2}\right\}=\left(\vartheta_{1}^{\text {ad }}\right)^{*} L^{2} \oplus \vartheta_{1} \chi_{\Omega} L^{2} \tag{3.6}
\end{equation*}
$$

For the first term we have

$$
\begin{aligned}
\operatorname{clos}\left\{\left(\Delta_{* 1} A_{*}^{*} \Delta_{* 2}-A_{0}^{*} \Theta_{2}^{*}\right)\left(\vartheta_{2}^{\text {ad }}\right)^{*} L^{2}\right\} & =\operatorname{clos}\left\{\Delta_{* 1} \bar{w}_{2} \bar{f}_{2} M^{*}\left(\vartheta_{2}^{\mathrm{ad}}\right)^{*} L^{2}\right\}=\operatorname{clos}\left\{\Delta_{* 1} \bar{w}_{2} \bar{f}_{2}\left(\vartheta_{2}^{\text {ad }} M\right)^{*} L^{2}\right\} \\
& =\operatorname{clos}\left\{\Delta_{* 1} \bar{w}_{2} \bar{f}_{2}\left(\lambda_{*} \vartheta_{1}^{\mathrm{ad}}\right)^{*} L^{2}\right\}=\left(\vartheta_{1}^{\mathrm{ad}}\right)^{*} L^{2}
\end{aligned}
$$

And the projection onto the second component of the second term in (3.6) gives us

$$
\begin{aligned}
\operatorname{clos}\left\{\vartheta_{1} \chi_{\Omega} \vartheta_{1}^{*}\left(\Delta_{* 1} A_{*}^{*} \Delta_{* 2}-A_{0}^{*} \Theta_{2}^{*}\right) \vartheta_{2} \chi_{\Omega} L^{2}\right\} & =\vartheta_{1} \chi_{\Omega} \operatorname{clos}\left\{\left(\Delta_{w_{1}} \Delta_{w_{2}} \bar{w}_{2} \bar{f}_{2} \vartheta_{1}^{*} M^{*} \vartheta_{2}-\vartheta_{1}^{*} a_{0} \vartheta_{1} \varphi_{2} \bar{m} \bar{w}_{2} \varphi_{2}^{*} \vartheta_{2}^{*} \vartheta_{2}\right) L^{2}\right\} \\
& =\vartheta_{1} \chi_{\Omega} \operatorname{clos}\left\{\left(\Delta_{w_{1}} \Delta_{w_{2}} \bar{w}_{2} \bar{f}_{2} \bar{f}_{1} \bar{f}-a_{0} \bar{m} \bar{w}_{2}\right) L^{2}\right\} \\
& =\vartheta_{1} \chi_{\Omega} L^{2} .
\end{aligned}
$$

This finishes the proof of the lemma.

Finally, let us note that Lemma 3.4 directly implies the Main Theorem.

4. Concluding remarks

The conditions (iii) and (iv) in the Main Theorem, namely,
(iii) there exists $f \in \operatorname{det}\left(\vartheta_{2} \rightarrow \vartheta_{1}\right)^{\mathrm{i}} \cap \operatorname{det}\left(\varphi_{1}^{\mathrm{ad}} \rightarrow \varphi_{2}^{\mathrm{ad}}\right)^{\mathrm{i}}$ such that $f \wedge m=1$, and
(iv) there exists $g \in \operatorname{det}\left(\vartheta_{1} \rightarrow \vartheta_{2}\right)^{\mathrm{i}} \cap \operatorname{det}\left(\varphi_{2}^{\mathrm{ad}} \rightarrow \varphi_{1}^{\text {ad }}\right)^{\mathrm{i}}$ such that $g \wedge m=1$
are unpleasant because they mix the roles of factors $\left[\begin{array}{l}a_{i} \\ b_{i}\end{array}\right]$ and $\left[\begin{array}{ll}c_{i} & d_{i}\end{array}\right]$.
It is obvious that if there exists $f \in \operatorname{det}\left(\vartheta_{2} \rightarrow \vartheta_{1}\right)^{\mathrm{i}}$, then $\mathcal{N}^{+}\left\{a_{1}, b_{1}\right\} \subset \mathcal{N}^{+}\left\{a_{2}, b_{2}\right\}$. This lead us to conjecture that it would be possible to substitute conditions (iii) and (iv) by the following pair of conditions:
(iii') $\mathcal{N}^{+}\left\{a_{1}, b_{1}\right\}=\mathcal{N}^{+}\left\{a_{2}, b_{2}\right\}$, and
(iv') $\mathcal{N}^{+}\left\{c_{1}, d_{1}\right\}=\mathcal{N}^{+}\left\{c_{2}, d_{2}\right\}$.
These conditions are the most natural ones for the problem at hand because, according to [2], condition (iii') is equivalent to the assertion that the parts of operators corresponding to the inner $*$-outer factors $\left[\begin{array}{l}a_{i} \\ b_{i}\end{array}\right]$ are quasi-similar and condition (iv') is equivalent to the assertion that the parts of operators corresponding to the outer $*$-inner factors [$c_{i} \quad d_{i}$] are quasi-similar as well.

More precisely, we have the following conjecture.
Conjecture. Conditions (iii') and (iv') imply conditions (iii) and (iv) for every inner function m.
If the conjecture is true, the Main Theorem states that the quasi-similarity of the operators is equivalent to the separate quasi-similarity of each of its parts $m_{i}, w_{i}, \vartheta_{i}$ and φ_{i}. However, as we mentioned in the introductory part, our next result tells us that this would not imply that each operator is quasi-similar to the direct sum of its parts.

Consider the characteristic functions

$$
\Theta_{1}=\left[\begin{array}{l}
m a \tag{4.1}\\
m b
\end{array}\right]\left[\begin{array}{ll}
w c & w d
\end{array}\right]=(m \vartheta)(w \varphi), \quad \Theta_{2}=\left[\begin{array}{ccc}
m a & 0 & 0 \\
m b & 0 & 0 \\
0 & w c & w d
\end{array}\right]=\left[\begin{array}{cc}
m \vartheta & 0 \\
0 & w \varphi
\end{array}\right],
$$

where $a, b, c, d \in H^{\infty}$ are such that $a \wedge b=c \wedge d=1$ and $|a|^{2}+|b|^{2}=|c|^{2}+|d|^{2}=1, m$ is inner and w is outer. We can take the auxiliary spaces as $\mathcal{E}_{1}=\mathcal{E}_{* 1}=\mathbb{C}^{2}$ and $\mathcal{E}_{2}=\mathcal{E}_{* 2}=\mathbb{C}^{3}$. Then

$$
\begin{aligned}
& \Delta_{1}=\varphi^{\mathrm{ad}}\left(\varphi^{\mathrm{ad}}\right)^{*}+\Delta_{w} \varphi^{*} \varphi, \quad \Delta_{* 1}=\left(\vartheta^{\mathrm{ad}}\right)^{*} \vartheta^{\mathrm{ad}}+\Delta_{w} \vartheta \vartheta^{*}, \\
& \Delta_{2}=\left[\begin{array}{cc}
0 & 0 \\
0 & \Delta_{1}
\end{array}\right], \quad \Delta_{* 2}=\left[\begin{array}{cc}
\left(\vartheta^{\mathrm{ad}}\right)^{*} \vartheta^{\mathrm{ad}} & 0 \\
0 & \Delta_{w}
\end{array}\right], \\
& L^{2}\left(\Delta_{1} \mathcal{E}_{1}\right)=\varphi^{\mathrm{ad}} L^{2} \oplus \varphi^{*} \chi_{\Omega} L^{2}, \quad L^{2}\left(\Delta_{* 1} \mathcal{E}_{* 1}\right)=\left(\vartheta^{\mathrm{ad}}\right)^{*} L^{2} \oplus \vartheta \chi_{\Omega} L^{2}, \\
& L^{2}\left(\Delta_{2} \mathcal{E}_{2}\right)=\left[\begin{array}{c}
0 \\
\varphi^{\mathrm{ad}} L^{2} \oplus \varphi^{*} \chi_{\Omega} L^{2}
\end{array}\right], \quad L^{2}\left(\Delta_{* 2} \mathcal{E}_{* 2}\right)=\left[\begin{array}{c}
\left(\vartheta^{\mathrm{ad}}\right)^{*} L^{2} \\
\chi_{\Omega} L^{2}
\end{array}\right] .
\end{aligned}
$$

Proposition 4.1. The operators T_{1} and T_{2} with respective characteristic functions given in (4.1) are quasi-similar if and only if $\mathcal{N}^{+}\{m a, m b, c, d\}=\mathcal{N}^{+}$, i.e., if there exist four functions $f_{1}, f_{2}, f_{3}, f_{4} \in H^{\infty}$ such that maf $f_{1}+m b f_{2}+c f_{3}+d f_{4}$ is an outer function.

Proof. We suppose that T_{1} and T_{2} are quasi-similar, then there exists an operator $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that $X T_{1}=T_{2} X$, $\operatorname{ker}(X)=\{0\}$ and $\operatorname{clos}\left\{X \mathcal{H}_{1}\right\}=\mathcal{H}_{2}$. The parameters A, A_{*}, and A_{0} of its lifting

$$
Y=\pi_{* 2} A_{*} \pi_{* 1}^{*}+\tau_{2} \Delta_{2} A \pi_{1}^{*}+\tau_{2} A_{0} \tau_{* 1}^{*}=\pi_{2} A \pi_{1}^{*}+\pi_{* 2} A_{*} \Delta_{* 1} \tau_{* 1}^{*}+\tau_{2} A_{0} \tau_{* 1}^{*}
$$

satisfy $\Theta_{2} A=A_{*} \Theta_{1}$ and $\left[\begin{array}{c}A \\ \Theta_{1}\end{array}\right]$ is $*$-outer.
If we denote $A=\left[\begin{array}{c}A_{1} \\ A_{2}\end{array}\right]$ and $A_{*}=\left[\begin{array}{c}A_{* 1} \\ A_{* 2}\end{array}\right]$ with $A_{1} \in H_{1 \times 2}^{\infty}, A_{2} \in H_{2 \times 2}^{\infty}, A_{* 1} \in H_{2 \times 2}^{\infty}, A_{* 2} \in H_{1 \times 2}^{\infty}$, then we have

$$
\Theta_{2} A=\left[\begin{array}{cc}
m \vartheta & 0 \\
0 & w \varphi
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]=A_{*} \Theta_{1}=\left[\begin{array}{l}
A_{* 1} \\
A_{* 2}
\end{array}\right] m w \vartheta \varphi,
$$

thus

$$
\begin{align*}
\vartheta A_{1} & =w A_{* 1} \vartheta \varphi, \tag{4.2}\\
\varphi A_{2} & =m A_{* 2} \vartheta \varphi . \tag{4.3}
\end{align*}
$$

Multiplying (4.2) by $\vartheta^{\text {ad }}$ from the left we get $\vartheta^{\text {ad }} A_{* 1} \vartheta=0$ and, by Lemma 5.2 from [2], there exists a function $\alpha \in H^{\infty}$ such that $A_{* 1} \vartheta=\alpha \vartheta$, and therefore (4.2) yields

$$
\begin{equation*}
A_{1}=\alpha w \varphi \tag{4.4}
\end{equation*}
$$

Rewriting (4.3) as $\varphi\left[A_{2}-m\left(A_{* 2} \vartheta\right) I\right]=0$ we conclude, again according to Lemma 5.2 from [2], that there exists a function $\psi \in H_{1 \times 2}^{\infty}$ such that $A_{2}-m\left(A_{* 2} \vartheta\right) I=\varphi^{\text {ad }} \psi$, i.e.,

$$
\begin{equation*}
A_{2}=m\left(A_{* 2} \vartheta\right) I+\varphi^{\mathrm{ad}} \psi \tag{4.5}
\end{equation*}
$$

Note that $\left[\varphi^{\text {ad }} \psi-\left(\psi \varphi^{\mathrm{ad}}\right) I\right] \varphi^{\text {ad }}=0$, whence $\varphi^{\text {ad }} \psi-\left(\psi \varphi^{\mathrm{ad}}\right) I=\delta \varphi$ for some $\delta \in H_{2 \times 1}^{\infty}$. Thus, denoting $\beta=m A_{* 2} \vartheta+\psi \varphi^{\mathrm{ad}}$ we can rewrite (4.5) in the form $A_{2}=\beta I+\delta \varphi$. Together with (4.4) this yields

$$
A=\left[\begin{array}{c}
\alpha w \tag{4.6}\\
\delta
\end{array}\right] \varphi+\beta\left[\begin{array}{l}
0 \\
I
\end{array}\right]
$$

and therefore

$$
\left[\begin{array}{c}
A \\
\Theta_{1}
\end{array}\right]=\left[\begin{array}{c}
\alpha w \\
\delta \\
m w \vartheta
\end{array}\right] \varphi+\beta\left[\begin{array}{l}
0 \\
I \\
0
\end{array}\right]
$$

Since the first summand is of rank one, all minors of the $*$-outer matrix $\left[\begin{array}{c}A \\ \Theta_{1}\end{array}\right]$ have a common factor β, and hence this function has to be outer. Recalling that $\beta=m A_{* 2} \vartheta+\psi \varphi^{\text {ad }}$ we conclude that $\mathcal{N}^{+}\{m a, m b, c, d\}=\mathcal{N}^{+}$, i.e., this condition is necessary for quasi-similarity.

To prove that the condition is sufficient we suppose that for some $f_{i}, f_{i} \in H^{\infty}$, the function $\beta=f_{1} m a+f_{2} m b+f_{3} c+f_{4} d$ is outer. We need to find two bounded operators $X: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ and $X^{\prime}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ such that

$$
\begin{array}{lc}
X T_{1}=T_{2} X, & \operatorname{clos}\left\{X \mathcal{H}_{1}\right\}=\mathcal{H}_{2},
\end{array} \quad \operatorname{ker}(X)=\{0\}, ~ 子, ~ \operatorname{clos}\left\{X^{\prime} \mathcal{H}_{2}\right\}=\mathcal{H}_{1}, \quad \operatorname{ker}\left(X^{\prime}\right)=\{0\} .
$$

It will be enough to find two suitable liftings $Y=\pi_{* 2} A_{*} \pi_{* 1}^{*}+\tau_{2} \Delta_{2} A \pi_{1}^{*}+\tau_{2} A_{0} \tau_{* 1}^{*}$ and $Y^{\prime}=\pi_{* 1} A_{*}^{\prime} \pi_{* 2}^{*}+\tau_{1} \Delta_{1} A^{\prime} \pi_{2}^{*}+\tau_{1} A_{0}^{\prime} \tau_{* 2}^{*}$ of X and X^{\prime}, respectively. According to Lemmas 2.2 and 2.4 it is sufficient to find six matrix-valued functions $A \in H_{3 \times 2}^{\infty}$, $A_{*} \in H_{3 \times 2}^{\infty}, A_{0} \in L_{3 \times 2}^{\infty}, A^{\prime} \in H_{2 \times 3}^{\infty}, A_{*}^{\prime} \in H_{2 \times 3}^{\infty}$, and $A_{0}^{\prime} \in L_{2 \times 3}^{\infty}$ satisfying the following ten conditions:
(1) $\Theta_{2} A=A_{*} \Theta_{1}$,
(2) $\left[\begin{array}{ll}A_{*} & \Theta_{2}\end{array}\right]$ is outer,
(3) $\left[\begin{array}{c}A \\ \Theta_{1}\end{array}\right]$ is $*$-outer,
(4) $\operatorname{clos}\left\{\left(\Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}\right) L^{2}\left(\Delta_{1} \mathcal{E}_{1}\right)\right\}=L^{2}\left(\Delta_{2} \mathcal{E}_{2}\right)$,
(5) $\operatorname{clos}\left\{\left(\Delta_{* 1} A_{*}^{*} \Delta_{* 2}-A_{0}^{*} \Theta_{2}^{*}\right) L^{2}\left(\Delta_{* 2} \mathcal{E}_{* 2}\right)\right\}=L^{2}\left(\Delta_{* 1} \mathcal{E}_{* 1}\right)$,
(6) $\Theta_{1} A^{\prime}=A_{*}^{\prime} \Theta_{2}$,
(7) $\left[\begin{array}{ll}A_{*}^{\prime} & \Theta_{1}\end{array}\right]$ is outer,
(8) $\left[\begin{array}{c}A^{\prime} \\ \Theta_{2}\end{array}\right]$ is $*$-outer,
(9) $\operatorname{clos}\left\{\left(\Delta_{1} A^{\prime} \Delta_{2}-A_{0}^{\prime} \Theta_{2}\right) L^{2}\left(\Delta_{2} \mathcal{E}_{2}\right)\right\}=L^{2}\left(\Delta_{1} \mathcal{E}_{1}\right)$,
(10) $\operatorname{clos}\left\{\left(\Delta_{* 2}\left(A_{*}^{\prime}\right)^{*} \Delta_{* 1}-\left(A_{0}^{\prime}\right)^{*} \Theta_{1}^{*}\right) L^{2}\left(\Delta_{* 1} \mathcal{E}_{* 1}\right)\right\}=L^{2}\left(\Delta_{* 2} \mathcal{E}_{* 2}\right)$.

Checking the first five conditions is easy by taking the following matrices:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
w c & w d \\
f_{1} m a+f_{2} m b+f_{4} d & -f_{3} d \\
-f_{4} c & f_{1} m a+f_{2} m b+f_{3} c
\end{array}\right]=\left[\begin{array}{c}
w \\
-f_{3} \\
-f_{4}
\end{array}\right] \varphi+\beta\left[\begin{array}{l}
0 \\
I
\end{array}\right], \\
& A_{*}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
f_{1} & f_{2}
\end{array}\right]=\left[\begin{array}{cc}
I & \\
{\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right]}
\end{array}\right], \quad A_{0}=\left[\begin{array}{cc}
0 & 0 \\
a_{0} \bar{a} \bar{c} & a_{0} \bar{b} \bar{c} \\
a_{0} \bar{a} \bar{d} & a_{0} \bar{b} \bar{d}
\end{array}\right]=\left[\begin{array}{c}
0 \\
a_{0} \varphi^{*} \vartheta^{*}
\end{array}\right],
\end{aligned}
$$

where the function a_{0} is chosen as follows: if $f_{1} a+f_{2} b=0$, then $a_{0}=1$; otherwise, $a_{0}=0$.
(1) Let us compute

$$
\begin{aligned}
\Theta_{2} A & =\left[\begin{array}{cc}
m \vartheta & 0 \\
0 & w \varphi
\end{array}\right]\left(\left[\begin{array}{c}
w \\
-\left[\begin{array}{l}
f_{3} \\
f_{4}
\end{array}\right]
\end{array}\right] \varphi+\beta\left[\begin{array}{l}
0 \\
I
\end{array}\right]\right)=\left[\begin{array}{c}
m w \vartheta \\
w\left(\beta-f_{3} c-f_{4} d\right)
\end{array}\right] \varphi=\left[\begin{array}{c}
\vartheta \\
f_{1} a+f_{2} b
\end{array}\right] m w \varphi=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
f_{1} & f_{2}
\end{array}\right] \vartheta \varphi \\
& =A_{*} \Theta_{1}
\end{aligned}
$$

(2) The matrix

$$
\left[\begin{array}{ll}
A_{*} & \Theta_{2}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & m a & 0 & 0 \\
0 & 1 & m b & 0 & 0 \\
f_{1} & f_{2} & 0 & w c & w d
\end{array}\right]
$$

is outer because two of its 3×3 minors are the functions $w c$ and $w d$, which have no common inner divisors.
(3) The matrix $\left[\begin{array}{c}A \\ \Theta_{1}\end{array}\right]$ is $*$-outer because the matrix A is. Indeed, two of its 2×2 minors are the functions $w c \beta$ and $-w d \beta$, which have no common inner divisors.
(4) We have

$$
\operatorname{clos}\left\{\left(\Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}\right) L^{2}\left(\Delta_{1} \mathcal{E}_{1}\right)\right\}=\operatorname{clos}\left\{\left(\Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}\right) \varphi^{\mathrm{ad}} L^{2},\left(\Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}\right) \varphi^{*} \chi_{\Omega} L^{2}\right\}
$$

and the first term yields

$$
\operatorname{clos}\left\{\left[\begin{array}{cc}
0 & 0 \\
0 & \Delta_{1}
\end{array}\right]\left(\left[\begin{array}{c}
w \\
-\left[\begin{array}{l}
f_{3} \\
f_{4}
\end{array}\right]
\end{array}\right] \varphi+\beta\left[\begin{array}{l}
0 \\
I
\end{array}\right]\right) \varphi^{\mathrm{ad}} L^{2}\right\}=\left[\begin{array}{c}
0 \\
\operatorname{clos}\left\{\beta \Delta_{1} \varphi^{\mathrm{ad}} L^{2}\right\}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\varphi^{\mathrm{ad}} L^{2}
\end{array}\right] .
$$

And the projection onto the orthogonal complement of the second term gives us

$$
\begin{aligned}
& \operatorname{clos}\left\{\left[\begin{array}{cc}
0 & 0 \\
0 & \chi_{\Omega} \varphi^{*} \varphi
\end{array}\right]\left(\Delta_{2} A \Delta_{1}-A_{0} \Theta_{1}\right) \varphi^{*} \chi_{\Omega} L^{2}\right\} \\
& \quad=\operatorname{clos}\left\{\left[\begin{array}{cc}
0 & 0 \\
0 & \chi_{\Omega} \varphi^{*} \varphi
\end{array}\right]\left(\left[\begin{array}{cc}
0 & 0 \\
0 & \Delta_{w}^{2}
\end{array}\right]\left(\left[\begin{array}{c}
w \\
-\left[\begin{array}{c}
f_{3} \\
f_{4}
\end{array}\right]
\end{array}\right]+\beta\left[\begin{array}{c}
0 \\
\varphi^{*}
\end{array}\right]\right)-A_{0} m w \vartheta\right) \chi_{\Omega} L^{2}\right\} \\
& =\left[\begin{array}{c}
0 \\
\operatorname{clos}\left\{\chi_{\Omega} \varphi^{*}\left(\Delta_{w}^{2}\left(\beta-f_{3} c-f_{4} d\right)-m w a_{0}\right) L^{2}\right\}
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
\operatorname{clos}\left\{\chi_{\Omega} \varphi^{*}\left(\Delta_{w}^{2} m\left(f_{1} a+f_{2} b\right)-m w a_{0}\right) L^{2}\right\}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\chi_{\Omega} \varphi^{*} L^{2}
\end{array}\right] .
\end{aligned}
$$

Indeed, in order to see that the function $\Delta_{w}^{2} m\left(f_{1} a+f_{2} b\right)-m w a_{0}$ is different from zero almost everywhere on Ω, simply consider the cases $a f_{1}+b f_{2}=0$, so that $a_{0}=0$, and $a f_{1}+b f_{2} \neq 0$, so that $a_{0}=1$.
(5) In a similar way, we have

$$
\operatorname{clos}\left\{\left(\Delta_{* 1} A_{*}^{*} \Delta_{* 2}-A_{0}^{*} \Theta_{2}^{*}\right) L^{2}\left(\Delta_{* 2} \mathcal{E}_{* 2}\right)\right\}=\operatorname{clos}\left\{\left(\Delta_{* 1} A_{*}^{*} \Delta_{* 2}-A_{0}^{*} \Theta_{2}^{*}\right)\left[\begin{array}{c}
\left(\vartheta^{\mathrm{ad}}\right)^{*} L^{2} \\
\chi_{\Omega} L^{2}
\end{array}\right]\right\}
$$

The first component is

$$
\operatorname{clos}\left\{\left(\Delta_{* 1} A_{*}^{*} \Delta_{* 2}-A_{0}^{*} \Theta_{2}^{*}\right)\left[\begin{array}{c}
\left(\vartheta^{\mathrm{ad}}\right)^{*} L^{2} \\
0
\end{array}\right]\right\}=\operatorname{clos}\left\{\Delta_{* 1} A_{*}^{*}\left[\begin{array}{c}
\left(\vartheta^{\mathrm{ad}}\right)^{*} L^{2} \\
0
\end{array}\right]\right\}=\operatorname{clos}\left\{\Delta_{* 1}\left(\vartheta^{\mathrm{ad}}\right)^{*} L^{2}\right\}=\left(\vartheta^{\mathrm{ad}}\right)^{*} L^{2}
$$

And the projection of the second component onto the orthogonal complement is

$$
\begin{aligned}
\operatorname{clos}\left\{\chi_{\Omega} \vartheta \vartheta^{*}\left(\Delta_{* 1} A_{*}^{*} \Delta_{* 2}-A_{0}^{*} \Theta_{2}^{*}\right)\left[\begin{array}{c}
0 \\
\chi_{\Omega} L^{2}
\end{array}\right]\right\} & =\operatorname{clos}\left\{\left(\vartheta \vartheta^{*} \Delta_{w}^{2}\left[\begin{array}{c}
\bar{f}_{1} \\
\bar{f}_{2}
\end{array}\right]-\left[\begin{array}{cc}
0 & \bar{a}_{0} \vartheta \varphi
\end{array}\right]\left[\begin{array}{c}
0 \\
\bar{w} \varphi^{*}
\end{array}\right]\right) \chi_{\Omega} L^{2}\right\} \\
& =\operatorname{clos}\left\{\vartheta\left(\Delta_{w}^{2}\left(\bar{a} \bar{f}_{1}+\bar{b} \bar{f}_{2}\right)-\bar{a}_{0} \bar{w}\right) \chi_{\Omega} L^{2}\right\}=\vartheta \chi_{\Omega} L^{2}
\end{aligned}
$$

This completes the verification of the first five conditions.
It is a bit more difficult to chose parameters to satisfy conditions (6)-(10). Since the functions a and b are mutually prime, according to Lemma 5.3 of [2], we can find a pair of numbers γ_{1} and γ_{2} such that $\left(\gamma_{1} a+\gamma_{2} b\right) \wedge m=1$ and, analogously, another pair δ_{1} and δ_{2} such that $\left(\delta_{1} c+\delta_{2} d\right) \wedge m=1$. Again by Lemma 5.3 of [2], we can find a number t such that $\left(c f_{3}+d f_{4}\right)+t\left(\gamma_{1} a+\gamma_{2} b\right)\left(\delta_{1} c+\delta_{2} d\right) \wedge m=1$. Then we take

$$
\left.\begin{array}{l}
A_{0}^{\prime}=0, \quad A^{\prime}=\left[\begin{array}{lll}
f_{3}+t \delta_{1}\left(\gamma_{1} a+\gamma_{2} b\right) & 1 & 0 \\
f_{4}+t \delta_{2}\left(\gamma_{1} a+\gamma_{2} b\right) & 0 & 1
\end{array}\right], \quad \text { and } \\
A_{*}^{\prime}=\vartheta\left[w t \gamma_{1}\left(\delta_{1} c+\delta_{2} d\right)-w m f_{1}\right. \\
w t \gamma_{2}\left(\delta_{1} c+\delta_{2} d\right)-w m f_{2}
\end{array} \quad m\right]+w \beta\left[\begin{array}{ll}
I & 0
\end{array}\right] .
$$

(6) First we check the intertwining relation

$$
\begin{aligned}
A_{*}^{\prime} \Theta_{2} & =m w \vartheta\left[\begin{array}{lll}
t\left(\gamma_{1} a+\gamma_{2} b\right)\left(\delta_{1} c+\delta_{2} d\right)-m\left(a f_{1}+b f_{2}\right) & \varphi
\end{array}\right]+w \beta\left[\begin{array}{ll}
m \vartheta & 0
\end{array}\right] \\
& =m w \vartheta\left[\begin{array}{lll}
t\left(\gamma_{1} a+\gamma_{2} b\right)\left(\delta_{1} c+\delta_{2} d\right)+\left(c f_{3}+d f_{4}\right) & \varphi
\end{array}\right] \\
& =m w \vartheta \varphi\left[\begin{array}{lll}
f_{3}+\delta_{1} t\left(\gamma_{1} a+\gamma_{2} b\right) & 1 & 0 \\
f_{4}+\delta_{2} t\left(\gamma_{1} a+\gamma_{2} b\right) & 0 & 1
\end{array}\right]=\Theta_{1} A^{\prime} .
\end{aligned}
$$

(7) The matrix [$A_{*}^{\prime} \Theta_{1}$] is outer because the matrix A_{*}^{\prime} is. Indeed, its three 2×2 minors are $w^{2} \beta\left(t\left(\gamma_{1} a+\gamma_{2} b\right)\left(\delta_{1} c+\right.\right.$ $\left.\left.\delta_{2} c\right)+\left(c f_{3}+d f_{4}\right)\right),-m w a \beta, m w b \beta$ and due to our choice of the parameter t these functions have no common inner factor.
(8) Since the three 3×3 minors of the matrix

$$
\left[\begin{array}{c}
A^{\prime} \\
\Theta_{2}
\end{array}\right]=\left[\begin{array}{ccc}
f_{3}+t \delta_{1}\left(\gamma_{1} a+\gamma_{2} b\right) & 1 & 0 \\
f_{4}+t \delta_{2}\left(\gamma_{1} a+\gamma_{2} b\right) & 0 & 1 \\
m a & 0 & 0 \\
m b & 0 & 0 \\
0 & w c & w d
\end{array}\right]
$$

including the first two lines are ma, mb, and $t\left(\gamma_{1} a+\gamma_{2} b\right)\left(\delta_{1} c+\delta_{2} d\right)+\left(c f_{3}+d f_{4}\right)$, the matrix is $*$-outer.
(9) We have

$$
\operatorname{clos}\left\{\Delta_{1} A^{\prime} \Delta_{2} L^{2}\left(\Delta_{2} \mathcal{E}_{2}\right)\right\}=\operatorname{clos} \operatorname{span}\left\{\Delta_{1} A^{\prime}\left[\begin{array}{c}
0 \\
\varphi^{\mathrm{ad}} L^{2}
\end{array}\right], \Delta_{1} A^{\prime} \Delta_{w}\left[\begin{array}{c}
0 \\
\varphi^{*} \chi_{\Omega} L^{2}
\end{array}\right]\right\}
$$

The first term is

$$
\operatorname{clos}\left\{\Delta_{1} A^{\prime}\left[\begin{array}{c}
0 \\
\varphi^{\mathrm{ad}} L^{2}
\end{array}\right]\right\}=\operatorname{clos}\left\{\Delta_{1} \varphi^{\mathrm{ad}} L^{2}\right\}=\varphi^{\mathrm{ad}} L^{2}
$$

and the projection of the second one onto the orthogonal complement is

$$
\operatorname{clos}\left\{\varphi^{*} \varphi \chi_{\Omega} \Delta_{1} A^{\prime}\left[\begin{array}{c}
0 \\
\varphi^{*} \chi_{\Omega} L^{2}
\end{array}\right]\right\}=\operatorname{clos}\left\{\varphi^{*} \varphi \chi_{\Omega} \Delta_{w} \varphi^{*} L^{2}\right\}=\varphi^{*} \chi_{\Omega} L^{2}
$$

Finally, (10) is proven in a similar way.

Example 1. Consider the characteristic functions

$$
\Theta_{1}=\left[\begin{array}{l}
a_{1} \\
b_{1}
\end{array}\right]\left[\begin{array}{ll}
c_{1} & d_{1}
\end{array}\right]=\vartheta_{1} \varphi_{1} \quad \text { and } \quad \Theta_{2}=\left[\begin{array}{l}
a_{2} \\
b_{2}
\end{array}\right]\left[\begin{array}{ll}
c_{2} & d_{2}
\end{array}\right]=\vartheta_{2} \varphi_{2}
$$

and assume that $\mathcal{N}^{+}\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}=\mathcal{N}^{+}$for $i=1,2$. This implies, by direct application of Proposition 4.1, that each operator $T_{\Theta_{i}}$ is quasi-similar to the direct sum $T_{\vartheta_{i}} \oplus T_{\varphi_{i}}$.

In this case, the conjecture is true: The conditions $\mathcal{N}^{+}\left\{a_{1}, b_{1}\right\}=\mathcal{N}^{+}\left\{a_{2}, b_{2}\right\}$ and $\mathcal{N}^{+}\left\{c_{1}, d_{1}\right\}=\mathcal{N}^{+}\left\{c_{2}, d_{2}\right\}$ are both necessary and sufficient for $T_{\Theta_{i}}$ to be quasi-similar because, if these conditions hold, then, by our results in [2], $T_{\vartheta_{1}}$ is quasi-similar to $T_{\vartheta_{2}}$ and $T_{\varphi_{1}}$ is quasi-similar to $T_{\varphi_{2}}$, so it follows that $T_{\vartheta_{1}} \oplus T_{\varphi_{1}}$ is quasi-similar to $T_{\vartheta_{2}} \oplus T_{\varphi_{2}}$ and, by the assumption above, $T_{\Theta_{1}}$ and $T_{\Theta_{2}}$ are quasi-similar.

On the other hand, as announced in the Introduction, the necessary and sufficient assumption of Proposition 4.1 may fail, as the following example shows.

Example 2. There exist functions $a, b, c, d \in H^{\infty}$ such that $a \wedge b=1=c \wedge d$ and $|a|^{2}+|b|^{2}=1=|c|^{2}+|d|^{2}$ that do not satisfy the conditions of Proposition 4.1: for instance, if we take the functions

$$
a(z)=c(z)=\frac{1}{\sqrt{2}} \exp \left(-\frac{1+z}{1-z}\right) \quad \text { and } \quad b(z)=d(z)=\frac{1}{\sqrt{2}} \prod_{n}\left(\frac{\lambda_{n}-z}{1-\bar{\lambda}_{n} z}\right)
$$

where $\lambda_{n}=1-\frac{1}{2^{n}}$, then, as easily seen, there exist no functions $f_{1}, f_{2}, f_{3}, f_{4} \in H^{\infty}$ such that $a f_{1}+b f_{2}+c f_{3}+d f_{4}$ is an outer function.

Finally, let S be the shift operator of multiplicity one and consider $S \oplus S^{*}$. Then we obtain the following nice corollary of our Main Theorem and Proposition 4.1.

Corollary 4.2. Let $\Theta=\left[\begin{array}{l}a \\ b\end{array}\right]\left[\begin{array}{ll}c & d\end{array}\right]$, where $a, b, c, d \in H^{\infty}$ are such that $|a|^{2}+|b|^{2}=|c|^{2}+|d|^{2}=1$, and $a \wedge b=c \wedge d=1$. Let further M_{z} denote the multiplication operator by the independent variable in L^{2} and $\Omega=\{z \in \mathbb{T}:|w(z)|<1\}$. Then the operator T_{Θ} is quasi-similar to $S \oplus S^{*}$ if and only if $\mathcal{N}^{+}\{a, b\}=\mathcal{N}^{+}\{c, d\}=\mathcal{N}^{+}$, i.e., there exist $f, g, h, k \in H^{\infty}$ such that af $+b g$ and $c h+d k$ are outer.

References

[1] H. Bercovici, Operator Theory and Arithmetic in H^{∞}, Math. Surveys Monogr., vol. 26, Amer. Math. Soc., Providence, RI, 1980.
[2] S. Bermudo, C.H. Mancera, P.J. Paúl, V. Vasyunin, Quasi-similarity of contractions having a 2×1 characteristic function, Rev. Mat. Iberoamericana 23 (2007) 677-704.
[3] N.G. Makarov, V. Vasyunin, Quasisimilarity of model contractions with unequal defects, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 149 (1986) 24-37 (in Russian); English translation in J. Soviet Math. 42 (1998) 1550-1561.
[4] N.K. Nikolski, Treatise on the Shift Operator, Springer-Verlag, Berlin, 1986.
[5] N.K. Nikolski, Operator, Functions, and Systems: An Easy Reading, vol. 2: Model Operators and Systems, Math. Surveys Monogr., vol. 93, Amer. Math. Soc., Providence, RI, 2002.
[6] N.K. Nikolski, V. Vasyunin, Elements of spectral theory in terms of the free function model. Part I: Basic constructions, in: S. Axler, J.E. McCarthy, D. Sarason (Eds.), Holomorphic Spaces, in: Math. Sci. Res. Inst. Publ., vol. 33, Cambridge Univ. Press, Cambridge, 1998, pp. 211-302.
[7] B. Sz.-Nagy, C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, Akadémiai Kiadó/North-Holland, Budapest/Amsterdam, 1970.
[8] P.Y. Wu, Quasi-similarity of weak contractions, Proc. Amer. Math. Soc. 69 (1978) 277-282.
[9] P.Y. Wu, Jordan model for weak contractions, Acta Sci. Math. (Szeged) 40 (1978) 189-196.

[^0]: सै This research has been partially supported by la Consejería de Educación y Ciencia de la Junta de Andalucía and by la Dirección General de Enseñanza Superior e Investigación Científica, project number BFM2001-3735, the fourth named author was partially supported by RFBR grant \#05-01-00925.

 * Corresponding author.

 E-mail addresses: sbernav@upo.es (S. Bermudo), mancera@ma2.us.es (C.H. Mancera), piti@us.es (P.J. Paúl), vasyunin@pdmi.ras.ru (V. Vasyunin).

