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ABSTRACT The optimal execution of stock trades is a relevant and interesting problem as it is key in
maximizing profits and reducing risks when investing in the stock market. In the case of large orders,
the problem becomes even more complex as the impact of the order in the market has to be taken into
account. The usual solution is to split large orders into a set of smaller suborders that must be executed
within a prescribed time window. This leads to the problem of deciding when in the time window execute
each suborder. There are popular ways of executing the trading of these split orders like those which try
to track the ‘‘Time Weighted Average Price’’ and the ‘‘Volume Weighted Average Price’’, usually called
TWAP and VWAP orders. This paper presents a strategy to optimize the splitting of large trade orders
over a given time window. The strategy is based on the solution of an optimization problem that is applied
following a receding horizon approach. This approach reduces the impact of prediction errors due to the
uncertain market dynamics, by using new values of the price time series as they are available as time goes
on. Suborder size constraints are taken into account in both market and limit orders. The strategy relies on
price and traded volume forecast but it is independent of the prediction technique used. The performance
index weighs not only the financial cost of the suborders, but also the impact on the market and the
forecasting accuracy. A tailored optimization algorithm is proposed for efficiently solving the corresponding
optimization problem. Most of the computations of the algorithm can be parallelized. Finally, the proposed
approach has been tested through a case study composed by stocks of the Chinese A-share market.

INDEX TERMS Algorithmic trading, receding horizon optimization, large stock orders, limit orders, TWAP,
VWAP.

I. INTRODUCTION
Stock trading is becoming an increasingly complex field as
investors try to maximize their profits and reduce their risks
with increased emphasis in recent years on optimal execution.
After an investor has decided to buy or sell stocks, there are
many options on how to execute this trade. In large stock
orders, it is very frequent to split orders into smaller orders
in an attempt not to impact the market. For instance, a buy
order to purchase a large amount of stock could push the price
of the stock up if executed in one single block. The market
impact of that order can be potentially reduced by splitting
that single order into smaller orders and executing them over
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time rather than in one go. There are many ways in which this
can be accomplished. One of the simplest approaches is called
‘‘Time Weighted Average Price’’, commonly referred to as
TWAP. A TWAP order splits the order in blocks of shares of
the same size that are then executed at regular time intervals.
A more sophisticated trade is a ‘‘Volume Weighted Average
Price’’, commonly referred to as VWAP. This type of order
is very common as it represents around 50% of all the insti-
tutional investors’ trading [1]. In a VWAP order, rather than
slicing the original order in smaller trades of equal size (equal
number of shares), a forecasted traded volume for the desired
interval is estimated. The size of each (sliced) transaction is
proportional to the forecasted volume for the corresponding
time bucket. Thus, a critical step in this approach is to be
able to generate volume forecasts. Besides these two popular
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ways of trading sliced orders, there are basically two types
of trading orders: market orders and limit orders. A market
order is an order to be executed immediately at the prevailing
market price. The focus on this type of order is speed rather
than price optimization. Limit orders, on the other hand, focus
on price efficiency. A limit order necessarily has an associ-
ated price over (below) which the buy (sell) order cannot be
executed. There is a tradeoff between speed of execution and
price optimization.Moreover, in the case of limit orders, there
is no certainty of execution as it is possible to not have enough
time buckets in the execution period for which the price meets
the limit. Thus, in these orders, success is measured not only
by the price attained, but also by the percentage of the order
that has been executed.

There is relatively limited existing literature on the topic
of optimal execution of split trade orders using learning
techniques, with more papers covering stock forecasting by
means of different techniques like neural networks [2] or deep
learning [3], support vector machines [4], [5], adaptive line
combiners [6] or local data-based techniques [7]. There
are however some interesting articles in the field of trade
execution optimization such as for instance [8]. In this article,
the authors proposed a genetic algorithm to optimize a limit
order book used for price formation in an artificial stock mar-
ket. Genetic algorithms are also used in [9] to generate trad-
ing strategies, not based on forecasting, that are back-tested
against historical data of the Australian Stock Exchange.

Recurrent neural networks have been used in [10] to pre-
dict price-flip events in limit order books by classifying
sequences of observations of the book depths and market
orders. Forecasting the traded volume has also been used
in [11] to improve the execution of VWAP orders. That is,
by forecasting the traded volume one can track the VWAP
price matching it at the end of the chosen time window.
On the other hand, [12] derives analytical solutions of a static
optimal execution strategy of a VWAP trade, in which the
optimal execution strategy can be calculated by an iteration of
a single variable optimization, rather than by a multivariable
optimization. In that work, the market is modelled using
non-anticipating and Brownian motion processes.

Particle swarm optimization has been used by [13] in a
high-frequency trading system based on moving averages,
used to determine the trading sequence that maximizes the
net returns over a series of consecutive time steps. This
optimization technique has also been used by [14] to train
a kernel-based nonlinear predictor that was also applied to
forecast the VWAP price in the Shanghai market.

Optimal control methods have been also considered for
generating the sequence of suborders in split large orders.
For instance, [15] presented an optimal VWAP algorithm
based on the linear quadratic regulator (LQR) subject to
limits in the size of the suborders. The linear model for
the stock prices is based on Brownian motion, a type of
model that has also been used by [16] to find the stock
prices also in the context of VWAP operations. Hamilton-
Jacobi-Belmann methods and in general variational calculus

have been used in [17]–[19] based on Brownian motion and
random walks models. A recent paper [20] has studied opti-
mal VWAP strategies using unconstrained optimization on
models based on the assumption that the stock prices can be
modelled as martingales and the traded volume as autoregres-
sive processes.

Time series methods have been used in [21], where an
autoregressive fractionally integrated moving average model
is used to forecast intraday trading volumes in the Chinese
equity market, and its application to VWAP tracking, obtain-
ing better results than static approaches. VWAP tracking has
also been tackled in [22], where an interesting combination
of historical averages and SVM to forecast intraday trading
volumes in the gold and S&P 500 futures markets was used.
Another interesting approach to forecasting trading volumes
in a VWAP tracking context has been presented in [23]. In this
paper, the authors used the fast Fourier transform algorithm to
identify the periodic and the non-periodic part of the trading
volume, using historical values of 50 stocks contained in the
Shanghai 50 stock index. A similar approach is followed
in [24].

In this paper, we propose a data-based method that relies
on price and volume forecasts, and the use of dynamic opti-
mization over a finite horizon, to obtain optimal sequences of
suborders to fulfil large trade orders. The optimal sequence
is computed by minimizing a cost index, in which several
terms are taking into account. Besides the price, the trading
impact factor is considered along with a term related to
forecasting accuracy. The technique is based on solving an
optimization problem each time bucket of the time window
in which the order has to be executed. Thus, at each time
bucket, a complete sequence of suborders for the remaining
time window is obtained, but only the first component of
the sequence is effectively used. This strategy is similar to
the feedback receding horizon or predictive control strategy
used in automatic control [25], but with a shrinking prediction
horizon. Using such an approach allows us to split the order
into different suborders each of them computed with the
most recent available information (and thus with improved
forecastings). Therefore, this approach reduces the effects of
the prediction errors that are bound to arise, especially if the
prediction horizon is large.

The optimization is carried out by means of a tailored,
efficient algorithm that can solve the optimization problem
very fast. Furthermore, most of its computations can be done
in parallel if necessary. This computational efficiency can
be very useful if high-frequency trading is considered, or if
learning or simulation-based strategies are used to tune the
hyperparameters of the algorithm. Regarding the type of
orders, both market and limit orders are considered in the
paper and treated in a unified way. Finally, as a case study,
stocks from the onshore Chinese A-share market are used to
show the performance of the proposed strategy.

The rest of the paper is outlined as follows: Section II
describes the problem statement for each type of order.
Section III presents the optimization algorithm. Section IV
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presents the results of applying the proposed technique to the
case study. Finally, section V presents the conclusions.

II. PROBLEM STATEMENT
The objective of this paper is to design a strategy to execute
large stock orders that, in order to limit their impact on the
market, have to be split into a number of smaller suborders.
Thus, an order to buy M ∈ <+ shares will be executed by
splitting the order into up toN subordersm(t+k) ∈ <+, with
k ∈ [1,N ], such that the sum of all the suborders is equal to
M or, in the case of limit orders, the closest possible to M .
Note that in practice, the number of shares to be traded must
be a natural number, so the number of shares in the suborders
that are sent to the market are rounded to the nearest smaller
integer, that is bm(t + k)c. Given that the number of shares
considered in these orders is quite large, often hundreds of
thousands or millions of shares per order, the difference
in financial cost between considering real or integer-valued
suborders is negligible. However, from a computational point
of view, the difference is quite significant, being much more
efficient an algorithm based on real-valued suborders.

The proposed strategy computes the splitting of the original
order in an optimal way, that is, achieving themost convenient
price. The strategy is based on forecasting both the price of
the stock and its total traded volume over the time window
defined by N , i.e., from t + 1 to t + N . The price and
trade volume forecasts are used to compute a performance
index that should be optimized. Thus the strategy will rely
on an optimization problem in which a performance index,
denoted as VN , is optimized. The formulation of VN must
weigh certain aspects of concern, such as the total cost of
the order, but also the impact on the market of each of the
suborders. Besides that, given that forecasts are used to com-
pute the performance index, a term penalizing the potential
degradation of forecasts with the prediction horizon is also
included in VN . Let p̂(t + k|t) be the price forecast for t + k ,
v̂(t + k|t) the total traded volume forecast1 for t + k and
m(t+k|t) the number of shares to be bought at t+k , meaning
the notation t + k|t that these values are computed at time t .
Then the proposed performance index is:

VN (mN (t), p̂N (t), v̂N (t)) =
N∑
k=1

(
ap̂(t + k|t)

+ α

(
m(t+k|t)
v̂(t + k|t)

)β)
m(t + k|t)

+µ

N∑
k=1

σ km(t + k|t), (1)

where a = 1 in buy orders or a = −1 in sell orders, the tuning
parameters α, µ, σ , β are nonnegative with β ≥ 1, and

mN (t) = [m(t + 1|t), . . . ,m(t + N |t)] ,

1It is assumed that price and volume forecast are greater than zero. While
this is met almost always for the price, the trade volume can be indeed zero,
thus zero volume forecasts should be changed for an arbitrarily small value.

p̂N (t) =
[
p̂(t + 1|t), . . . , p̂(t + N |t)

]
,

v̂N (t) =
[
v̂(t + 1|t), . . . , v̂(t + N |t)

]
,

the sequences of suborders, price and traded volume fore-
castings respectively. Note that the first term represents the
forecasted amount or economic figure of the buy or sell
operation, and that in this term an impact factor correction
has been included. Impact factor correction represents the
influence of the suborder volume in the price for that time
bucket. Impact factors can be modelled as linear terms, like
in [15] or be more elaborate like the exponential form used
here based on [26]. The second term assigns a greater cost
to suborders that are far in the future, because the prediction
error grows with the prediction horizon. Note that for this
effect the exponential weight σ k must have σ > 1.

The proposed strategy aims to find the optimal sequence
of suborders

m∗N (t) = [m∗(t + 1|t),m∗(t + 2|t), . . . ,m∗(t + N |t)], (2)

that minimizes the performance index VN over the time
window N . However, depending on the type of order, some
constraints have to be taken into account.

In the case of market orders, the suborders must meet a
certain size limit so that the impact in the market is limited,
i.e.,

0 ≤ m(t + k|t) ≤ m, ∀k ∈ [1,N ],

being m = 0.1M a typical value (i.e., a suborder cannot
exceed a 10% of the whole order). On the other hand, in limit
orders, the size limit will be the same, but only if the price
forecast meets the price limit pl . Notice that, in the case of a
buy limit order, p̂(t + k|t) > pl implies that m(t + k|t) = 0,
that is, the buy suborder cannot be sent to the market. Sim-
ilarly, in sell limit orders p̂(t + k|t) < pl implies that
m(t + k|t) = 0. These situations can be addressed with the
following constraint

0 ≤ m(t + k|t) ≤ mk , ∀k ∈ [1,N ] (3)

where

mk =

{
0 if limit order & a(p̂(t + k|t)− pl) > 0
m otherwise

(4)

On the other hand, the sum of all suborders should be,
in principle, equal to the total number of shares to be traded
(M ) thus the equality constraint

N∑
k=1

m(t + k|t) = M

should be taken into account. In the case of limit orders,
the possibility of not having enough time buckets in which
the price limit is met, must be taken into consideration.
To illustrate this consider that if every suborder must be at
most 10% of the original order and the price forecast is only
under the limit in 7 time buckets, the original order can only
be completed at most at a 70%, which would be equal to
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the sum of the corresponding mk for all the time window.
That is, when the order cannot be fully executed, the largest
percentage of fulfilment of the order is attained forcing

N∑
k=1

m(t + k|t) =
N∑
k=1

mk .

Note that if
N∑
k=1

mk ≥ M

then the order can be fully executed. Thus, to be able to
address both situations, we include the following constraint
that maximizes the degree of fulfilment of the order,

N∑
k=1

m(t + k|t) = Mc, (5)

with

Mc = min

{
M ,

N∑
k=1

mk

}
. (6)

Note that this constraint will work for either market or limit
orders.

Once all the necessary constraints have been formulated,
the optimal sequence of suborders will be obtained by solving
the optimization problem:

m∗N (t) = arg min
mN (t)

VN (mN (t), p̂N (t), v̂N (t))

s.t. (3) and (5). (7)

After problem (7) is solved, one could apply the entire
optimal sequence m∗(t) executing the suborders m∗(t +
1|t), . . . ,m∗(t+N |t) at the corresponding time buckets. This
approach suffers from two related issues: first, as the index
k grows, the forecastings p̂(t + k|t) and v̂(t + k|t) have a
higher prediction error. Thus the suborders m(t + k) will rely
on progressively more inaccurate forecastings and thus the
computed optimal value will differ from the ideal optimal
value that could be computed if the real values of p(t+k) and
v(t + k) were known in advance. Second, as time advances,
new real values of p(t + k) and v(t + k) are available, but
they are not used. These new values could be used to obtain
better predictions of the remaining time window, allowing
to compute optimal suborders that would be closer to their
ideal values, i.e., those obtained without prediction errors.
Thus, in this paper it is proposed to use a feedback receding
horizon optimization strategy, typical of predictive control
techniques [25], in which at each time bucket t problem (7)
is solved to obtain m∗N (t) sending only m∗(t + 1|t) to the
market and discarding the rest of the sequence m∗N (t). To
apply this receding horizon strategy it is necessary to take
into account that the time window length shrinks with time,
thus an initial time window length, denoted as Np, must be
considered. In this way, initially N = Np, and then it will be
decreasing at each time step. Furthermore, constraint (5) must

reflect the fact that M would be decreasing as suborders are
being sent to the market. Thus, an initial size orderMI will be
considered, i.e., for the first time M = MI , and then updated
as necessary.

Besides the aforementioned changes, the receding horizon
strategy can help in mitigating the negative effect of price
prediction error in limit orders. This error can affect in two
ways, one is that the price limit is met by the predicted price,
whereas the real price fails to meet the limit. The other is the
reverse, that is, the predicted price does not meet the limit, but
the real one does. The solution to these issues is to compute
the optimal sequence of suborders for the case that p̂(t + 1|t)
fails to meet pl and for the case that it meets pl , and then,
at time t + 1, apply the one that corresponds to the value
of p(t + 1). For the first case, it is not really necessary to
perform any computation as it is obvious thatm∗(t+1|t) = 0.
For the second case, problem (7) must be solved with the
bound m1 = m regardless the value of p̂(t + 1|t). So, this
modification can be easily implemented by just changing (4)
to

mk =


0 if limit order &

a(p̂(t + k|t)− pl) > 0 & k > 1
m otherwise

(8)

and sending to the market m∗(t + 1|t) only if p(t + 1) meets
pl . Algorithm 1 summarizes the proposed strategy.

Algorithm 1 Optimal Execution of Large Orders
Require: MI ,Np, a, α, β, µ, σ,m.
1: M ← MI .
2: N ← Np.
3: repeat
4: Compute the forecasts p̂N (t) and v̂N (t).
5: Compute the bounds mk as in (8).
6: Compute Mc as in (6).
7: Solve (7) to obtain m∗N (t).
8: Wait for next time bucket, that is, t + 1.
9: Compute

m∗t+1=

{
0 if limit order & a(p(t+1)−pl)>0
m∗(t+1|t) otherwise

10: if m∗t+1 > 0 then
11: Send m∗t+1 to the market.
12: M ← M − m∗t+1.
13: end if
14: N ← N − 1.
15: until N = 0 or M = 0.

Remark 1: The initial prediction horizon Np can be quite
long; thus the prediction errors can affect the performance of
the proposed strategy. The receding strategy helps to mitigate
such effects by using forecastings obtained with the most up
to date information. Note also that the time window shrinks
at each step, reducing the prediction horizon and allowing
us to work with progressively better forecasts. Furthermore,
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the receding horizon only sends to the market the first sub-
order in m∗N (t), that mostly depends on short term forecast-
ings, which are the most accurate. Finally, the forecasting
errors in long prediction horizons are also compensated by
the second term of (1), assigning more weight to suborders
that are placed far in the prediction horizon depending on the
accuracy of the forecasting method.

The performance of the strategy depends, not only on the
price and traded volume forecastings, but also on the choice
of the performance function (1) hyperparameters. Regard-
ing the tuning of such hyperparameters, α and β should be
chosen by the user so that they reflect the impact of each
suborder in the stock price. This implies a modelling task
that is previous to the decision of investing in a particular
stock and that it is beyond the scope of this paper (see [26]).
On the other hand, σ and µ can be chosen considering the
length of the prediction horizon and the long term accuracy
of the forecastingmethod used to predict the price time series.
Alternatively, the algorithm hyperparameters can be tuned by
performing a search of optimal values running simulations
based on historical data, choosing the values that optimize
a certain performance metric, e.g., the total financial cost of
executing the whole order.

Finally, note that at each time bucket, problem (7) must be
solved. Because of the high frequency of nowadays trading
systems, it is clear that an efficient solving method for (7) is
needed. Furthermore, having an efficient optimization algo-
rithm is important if the optimization of the hyperparameters
is carried out, as this implies solving (7) many times.

III. OPTIMIZATION ALGORITHM
The nonlinear optimization problem (7) is relatively easy to
solve, as the performance index and constraints are convex.
Note that the equality constraint (5) is the cause of most of the
computational burden of problem (7). This constraint is the
one that is coupling the N decision variables of problem (7).
Without this constraint, theN decision variables optimization
problem could be solved as N independent problems of just
one decision variable. This would be much more efficient
from a computational point of view, as these N problems
could even be solved in a parallel way. In order to decouple
the decision variables, we resort to a dual formulation. Con-
sider, for a given λ ≥ 0, the problem:

J∗(λ) = min
mN (t)

VN (mN (t), p̂N (t), v̂N (t))

+ λ

(
Mc −

N∑
k=1

mk

)
s.t. 0 ≤ mk ≤ mk , ∀k ∈ [1,N ], (9)

where, for notational convenience, mk denotes m(t + k|t).
This optimization problem does not have in general the same
solution as (7), but as will be shown in the following, for a
certain value of λ its solution would be the same and can be
obtained with a closed formula.

Taking into account the definition on VN in (1) and that this
problem is free of the constraint (5), the solution of (9) can
be computed by solving for every k ∈ [1,N ] the following
problem:

m∗k (λ) = argmin
mk

Jk (mk , λ) (10)

s.t. 0 ≤ mk ≤ mk (11)

where m∗k (λ) denotes the optimal value of mk for a given λ
and

Jk (mk , λ) =
(
ap̂(t + k|t)+ α

(
mk

v̂(t + k|t)

)β
+ µσ k − λ

)
mk

which in turn can be rewritten as

Jk (mk , λ) = (dk − λ)mk + ekm
β+1
k

with

dk = ap̂(t + k|t)+ µσ k

and

ek =
α

v̂(t + k|t)β
≥ 0. (12)

Note that each m∗k (λ) for k = 1, . . . ,N can be computed
independently, thus the N problems (10) can be solved in
parallel.

To find m∗k (λ) consider the partial derivative of Jk (mk , λ):

∂Jk (mk , λ)
∂mk

= dk − λ+ (β + 1)ekm
β
k .

From (11) and (12) we have that mk and ek are non-negative.
This implies that the partial derivative is strictly positive if
dk − λ > 0. Thus, in this case, Jk (mk , λ) is a monotonically
growing function of mk and the minimum is attained at mk =
0. That is,

m∗k (λ) = 0 if λ ≤ λ−k = dk . (13)

On the other hand, if

dk − λ ≤ 0,

then the zero of the derivative, i.e. the minimizer of the
unconstrained problem is attained at(

λ− dk
(β + 1)ek

) 1
β

. (14)

We notice that, in this case, the minimizer of the uncon-
strained problem coincides with the minimizer of the con-
strained problem only if(

λ− dk
(β + 1)ek

) 1
β

≤ mk ,

This is equivalent to

λ ≤ λ+k = mβk (β + 1)ek + dk . (15)
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Thus, for all λ ≥ λ+k the constraint (11) determines the
minimizer, i.e., m∗k (λ) = mk . Summing up, the solution
of (10) is

m∗k (λ) =


0 if λ ≤ λ−k(
λ− dk

(β + 1)ek

) 1
β

if λ ∈ [λ−k , λ
+

k ]

mk if λ ≥ λ+k ,

(16)

where λ−k and λ+k are given in (13) and (15).
Note that the values of λ providing values different from

0 and mk are those in the interval [λmin, λmax], where

λmin = min
k∈[1,N ]

λ−k , (17)

and

λmax = max
k∈[1,N ]

λ+k . (18)

Once the value ofm∗k (λ) has been obtained, considerM
∗(λ)

defined as

M∗(λ) =
N∑
k=1

m∗k (λ). (19)

In what follows, it will be shown that there exist λ∗ ∈
[λmin, λmax] such that

M∗(λ∗) = Mc, (20)

which implies that constraint (5) holds and the combined
solutions m∗k (λ

∗) will be equal to that of (7), i.e.,

m∗N (t) = [m∗1(λ
∗),m∗2(λ

∗), . . . ,m∗N (λ
∗)]. (21)

The following property is key to show that λ∗ exists.
Property 1 (Extreme Values of m∗k and M

∗): The extreme
values of m∗k (λ) and M

∗(λ) as functions of λ are{
m∗k (λmin) = 0, ∀k ∈ [1,N ]
M∗(λmin) = 0,

and 
m∗k (λmax) = mk , ∀k ∈ [1,N ]

M∗(λmax) =
N∑
k=1

mk ≥ Mc.

Proof: These values stem directly from (16) and the
definitions of λmin and λmax. Taking into account that λmin ≤

λ−k , it is clear thatm
∗
k (λmin) = 0, for all k . This in turn, makes

that, by definition, M∗(λmin) = 0.
On the other hand, λmax ≥ λ+k , which implies that

m∗k (λmax) = mk , for all k . Furthermore, M∗(λmax) =∑N
k=1 mk , which due to (6) is greater or equal to Mc.
Note that, taking into account (16) it is obvious that m∗k (λ)

is continuous, as at λ = λ−k , m
∗
k (λ
−

k ) = 0 from both sides and
at λ = λ+k its value is m∗k (λ

+

k ) = mk .

TABLE 1. Stock dataset. The following levels of market capitalization
were follow for stock classification: small (<80 bn RMB), mid (from 80 to
300 bn) and large (>300 bn).

Moreover, consider the derivative of m∗k (λ), which is

∂m∗k (λ)

∂λ
=

(
1

β((β + 1)ek )
1
β

)
(−dk + λ)

1
β
−1

if λ ∈ (λ−k , λ
+

k ) and 0 otherwise. Taking into account that
ek ≥ 0 and that, by definition,−dk+λ

−

k = 0, and−dk+λ
+

k ≥

0, it follows that the derivative is nonnegative, thus m∗k (λ) is
a nondecreasing function.

Given that m∗k (λ) is a continuous nondecreasing function
and considering (19), it follows that M∗(λ) is also a continu-
ous nondecreasing function. Furthermore, Mc is nonnegative
and by property 1,

Mc ∈

[
0,

N∑
k=1

mk

]
= [M∗(λmin),M∗(λmax)].

This implies that a certain value λ∗ ∈ [λmin, λmax] exists,
such that M∗(λ∗) = Mc.
The value λ∗ that makes (20) and, therefore, (5) hold,

is computed by performing a simple bisection search in the
interval [λmin, λmax]. Once this λ∗ is found, the optimal value
of the suborders, that ism∗k (λ

∗), will already be computed, and
the solution of problem (7) will be (21).
Remark 2: The proposed strategy can be easily adapted to

other forms of stock orders which require other constraints,
like the so-called ‘‘max’’ orders in which the suborder size
is also limited by a fraction of the forecasted traded volume
for each time bucket. In these cases, the multiple inequality
constraints should be reduced to one using a simple redundant
constraint elimination.

IV. CASE STUDY: CHINESE STOCK MARKET
The proposed approach has been validated using stocks from
the Chinese Stock Market. Every working day has two con-
tinuous trading sessions, each one two hours long. Thus,
the objective of the case study will be to split large orders
over a 120 minute session, being the time bucket 1 minute
long.

To validate the proposed strategy, nine stocks from the
Chinese StockMarket have been chosen, splitting the choices
between small, mid or large-capitalization stocks. Table 1
show the names and tickers of the nine stocks ordered accord-
ing to their capitalization. The validation consists on the
optimization of market orders of 2, 000, 000 shares over a
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FIGURE 1. Validation data set for 002040.

FIGURE 2. Validation data set for 688012.

FIGURE 3. Validation data set for 000333.

validation set of 20 two hour sessions randomly chosen from
the range 1/4/2017 to 12/29/2020 (except the newer stock
688012 which is 1/2/2020 to 12/29/2020). For conciseness,
only three of the validation datasets are shown in figures 1
to 3. It can be seen that the sessions in each set show bearish,
bullish and sideways trends.

The proposed trading strategy relies on forecasts of prices
and traded volumes, but it is not linked to any particular
forecasting technique. Here, neural networks and the local
data-based technique proposed in [7] have been considered.
In order to forecast prices using either technique, the market
state, denoted as zp(t) has been described as composed by the
last 100 prices and the last traded volume,2 i.e.,

zp(t) = [p(t), p(t − 1), . . . , p(t − 99), v(t)].

2This paper is not focused on the forecasting task but on the optimization
of the splitting of the large order. Better forecastings could be obtained by
carefully testing and choosing othermarket state vectors, e.g., using technical
indicators, but this task is outside the scope of this paper.

On the other hand, to forecast the traded volume, the market
state, denoted by zv(t) is formed in this case by

zv(t) = [v(t), v(t − 1), . . . , v(t − 99), p(t)].

The components of both state vectors are lightly smoothed
with an exponential moving average of 5 minutes (EMA5),
that is,

pEMA(t) =
2
6
p(t)+

(
1−

2
6

)
pEMA(t − 1),

but the target prices to be forecasted are unsmoothed. The
number of market states in the local data set used by the
technique of [7] has been chosen to be 350 and the weighting
factor γ = 0, whereas in the case of the neural network
predictors, a Multilayer Perceptron with one hidden layer of
40 neurons has been used. Note that in the case of the local
data technique of [7] it is not necessary to train the predictor,
whereas in the case of the neural network, 120 networks
have been trained using the Levenberg-Marquardt rule, one
for each time bucket in the time window. It is noteworthy
that the prediction horizon, determined by the time window
and time bucket, is quite long, being Np = 120, thus it is
quite challenging in relation to the prediction errors, that are
bound to arise. Taking into account that both price and volume
have to be forecasting using one of these techniques, four
possible prediction models have been considered, one using
only neural networks (denoted as NN-NN), other relying
only on the local data approach of [7] (LD-LD), and two
combining these two techniques, i.e., LD-NN that predicts
prices using the local data approach and volumes with neural
networks and the reverse case, i.e., NN-LD.

We first analyze market orders in which the objective is
to split the large stock order, over each of the sessions of the
validation set, optimizing the buying price. Thus the proposed
strategy must solve (7) with an initial prediction horizon of
N = Np = 120 that will shrink down to N = 1 as the
receding horizon optimization is applied through the entire
time window. Other parameters of VN used in this case study
are, a = 1 (buy orders), α = 0.001, β = 1.1, µ = 0.6, σ =
1.05. The average prices obtained when using the proposed
approach over the validation set of each stock with each of the
four predictionmodels are shown in table 2. It can be seen that
no model can be chosen as the best for all the stocks, even if
they are close in their results (especially for models LD-LD
and LD-NN). In fact, when considering the size of the orders,
it is clear that even minute differences in prices count, thus,
in general, for each stock it would be necessary to pick the
best available model.

To validate the results, two well-known benchmark prices
will be considered for comparison purposes. The first one is
the VWAP price assuming knowledge of the traded volume
(which has to be forecasted in practice). This price is com-
puted as

VWAP(t) =

∑Np
k=1 v(t + k)p(t + k)∑Np

k=1 v(t + k)
. (22)
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TABLE 2. Average prices in the validation set (RMB) using the proposed
approach with each of the prediction models. The best value for each
stock highlighted in bold.

TABLE 3. Validation of the results by comparing to benchmark prices
(RMB).

The second baseline strategy is the TWAP price, which is the
average price of the stock over the time window, that is,

TWAP(t) =
Np∑
k=1

p(t + k)
Np

. (23)

Furthermore, the price attained with the proposed strategy
if historical data, i.e., not forecasted, are used will be also
considered. This price cannot be achieved in practice, but
it is useful to find the maximum performance that could be
reached in the absence of prediction errors, and therefore
properly calibrate their impact on the performance of the
strategy. Table 3 shows the average prices over the validation
set using both historical and forecasted prices and volumes,
along with the VWAP and TWAP prices.

It can be seen that the proposed strategy obtains a lower
price than VWAP or TWAP in all the validation sets.3 Clearly,
the prediction error in the price and volume forecasting
reduces the difference, but even with forecasted prices and
volumes the proposed strategy obtains lower prices than
the baseline approaches. Regarding the capitalization of the
stocks, it appears that the proposed strategy gets worse
results in the case of small-cap stocks, but this could be
related to the differences in the price per share, getting better
results in stocks with a higher price per share. On the other
hand, it is quite remarkable that for some of the stocks,
even the prices obtained with historical data are very close
to VWAP or TWAP, e.g. stocks with ticker 300239 and
600000. In these cases, there is clearly a very small margin

3Note that, in the simulation, the impact of each suborder in the market
has not been taken into account, as this impact is very difficult to model (the
term in the performance function (1) acts as a de-tuning factor and does not
constitute an accurate model of market impact). Thus, in practice, the results
could be even better provided that the parameters α and β are properly chosen
and adapted to the market conditions.

TABLE 4. Savings on the validation set over VWAP and TWAP when using
historical or forecasted data (RMB).

of improvement, meaning that in these cases it proved very
difficult to beat the market on the validation set. There are
other stocks, like 688012, in which the hypothetical benefit
that could be obtained is greatly wasted by the prediction
errors. Regarding this, it is noteworthy that the prediction
horizon is quite large in this case study, forcing the forecast
up to 120 steps ahead. This is much longer than usual, given
the fact that most of the stock forecasting applications focus
on one step ahead predictions. On the other hand, higher
prediction errors do not always imply a worse result as long
as the price trend is correctly predicted. The reason for this
is that in the proposed strategy price forecasting accuracy
is not what really allows better results, but the ability to
forecast the position of the lower prices in the time window.
Finally, even if the price difference attained in practice seems
small, given the high number of shares traded in this type of
orders, the overall benefit can be significant. To illustrate this,
consider table 4 in which the savings of the proposed strategy
over VWAP and TWAP are shown for the case of using the
real or forecast prices and volumes.

It can be seen that the savings are substantial in most cases
and very substantial in some cases like the stocks with tickers
688012 and 600519. Furthermore, considering the savings
that can be obtained over the many large orders that are traded
over a year, it is evident that even a modest improvement on
the price can justify the use of strategies like the proposed in
this paper.

The proposed approach has also been validated when using
limit orders with the case study. Table 5 shows the average
prices and the percentage of order execution in the validation
set for all the stocks. Different price limits have been set
for each session in the validation set according to the price
levels so that the price limit is not very stringent but not
trivial to meet (which would result, in practice, in a de facto
market order). Regarding the benchmark price comparison,
it is noteworthy that in the case of limit orders the TWAP
and VWAP prices cannot be considered, as they do not con-
sider the limit in the price. Instead, TWAP limit and VWAP
limit orders have been used as benchmarks. These orders
work in the same way as conventional TWAP and VWAP
orders except they are forced to meet the price limit. Thus,
a TWAP or VWAP limit order cannot be started until the
price limit is met, and they have to be stopped whenever
the current price does not meet the limit. If the limit is met
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TABLE 5. Average prices and percentage of execution in the case of limit orders.

TABLE 6. Limit orders, stock 002040.

again, a new TWAP or VWAP limit order is started for the
remaining quantity to be executed and set to be executed in
the remaining time window. As a result, TWAP and VWAP
limit orders have no guarantee of being executed completely
and their success can be judged by the percentage of the
original order that it is executed. Thus, when comparing the
proposed strategy to these benchmarks, the price should be
taken into account only if the percentage of execution is the
same. Note, however, that the attained price must always
meet the price limit or the order will be considered failed
(and the brokerage firm forced to pay the excess over the
limit). The results in table 5 show that the proposed strategy
manages to reach a higher percentage of order execution than
TWAP or VWAP limit orders while meeting the price limit.
It is clear that the forecasting errors induce negative effects
in both the price and execution percentage attained, but even
using forecasted data the proposed strategy beats both TWAP
and VWAP limit orders while meeting the price limit.

Limit orders are more complex than market orders, thus
it is interesting to examine in more detail the results shown
in table 5. For conciseness, the results of only three stocks
are shown in tables 6 to 8 (these are the same stocks whose
dataset is shown figures 1 to 3). It can be seen that the
proposed approach usually achieves higher percentages of
execution, although prediction errors can have a great impact
on this percentage, e.g., session 18 in stock 002040 has 100%
execution when using historical data but only 10% when

using forecasted data. Even though, the latter result nearly
doubles that of TWAP and VWAP limit orders. Another fact
that can be observed is that there are sessions in which all
the approaches are able to complete the orders. In these situ-
ations, the proposed approach using historical data achieves
a better price, but when using forecasted data the price can
be worse (e.g., session 7 in stock 002040 or session 6 in
stock 688012 in which the results are better than the TWAP
limit but worse than the VWAP limit). This is to be expected,
as no approach can be the best in all situations in a task as
difficult as trying to beat the market. Nevertheless, the pro-
posed approach show on average better results (as illustrated
in tables 5 to 8). Furthermore, there are sessions in which
the proposed approach, even with forecasted data, obtains a
better price and a better percentage of execution (e.g., session
9 in stock 002040 or session 17 in stock 688012). On the
other hand, the price limit can be so stringent that even with
historical data is not possible to execute completely the order.
This can be seen in sessions 4 and 19 of stock 002040 or in
session 3 of stock 000333. Note that in those cases the pro-
posed approach reached higher execution percentages than
the benchmarks.

Finally, regarding the computational burden of the opti-
mization algorithm, the average time to solve the optimiza-
tion problem in a serial Matlab implementation on a budget
mobile processor Core i5-8265U clocked at 1.6 GHz is just
1.2 milliseconds. This is much lower than the time bucket but
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TABLE 7. Limit orders, stock 688012.

TABLE 8. Limit orders, stock 000333.

could be improved with a more powerful computer or with a
more efficient implementation, like a parallel C++ one using
the NVIDIA CUDA GPU computing platform. Note that the
algorithm relies only on simple operations that can be easily
coded in a low-level programming language.

V. CONCLUSION
In this paper, a trading strategy has been proposed for large
orders that have to be split to minimize the impact on the mar-
ket. The strategy is based on the well-known receding hori-
zon optimization scheme used in predictive controllers. The
proposed algorithm can handle market and limit orders and,
although relies on forecasting the future prices and traded
volumes, is independent of the forecasting method used. The
strategy has been validated with an assorted set of Chinese
stocks of different capitalization levels. The results have been
very positive despite the fact that the prediction horizon is
quite large. The amount of potential savings over well-known
trading strategies is quite relevant when the size of orders is

taken into account. Moreover, from a risk management point
of view, the savings are related to improved execution risk,
and does not have any impact on the investment risk. This is
due to the fact that savings are carried out after the investment
decision is made, therefore there are no effects on investment
risk.

The proposed strategy will certainly benefit from future
research on how to reduce the impact of prediction errors.
In this regard, most forecasting techniques are focused on
one-step price prediction, whereas the needs of the pro-
posed strategy are quite different. The topic of research
would be to develop methods to forecast the position
of most advantageous time moments, that is, those with
the lowest prices (or greatest in sell orders), on a given
time window, rather than predicting the prices them-
selves. Also, it would be interesting to modify the strat-
egy to be able to use prediction horizons shorter than
the time window without affecting the performance of the
strategy.
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