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ABSTRACT In this paper we address the problem of offline handwritten text recognition (HTR) in historical

documents when few labeled samples are available and some of them contain errors in the train set. Our three
main contributions are: first, we analyze how to perform transfer learning (TL) from a massive database to
a smaller historical database, analyzing which layers of the model need fine-tuning. Second, we analyze
methods to efficiently combine TL and data augmentation (DA). Finally, we propose an algorithm to
mitigate the effects of incorrect labeling in the training set. The methods are analyzed over the ICFHR
2018 competition database, Washington and Parzival. Combining all these techniques, we demonstrate a
remarkable reduction of CER (up to 6 percentage points in some cases) in the test set with little complexity
overhead.

INDEX TERMS Connectionist temporal classification (CTC), convolutional neural networks (CNN), data
augmentation (DA), deep neural networks (DNN), historical documents, long-short-term-memory (LSTM),
offline handwriting text recognition (HTR), outlier detection, transfer learning.

I. INTRODUCTION
The transcription of historical manuscripts is paramount for
a better understanding of our history, as it allows for direct
access to the contents, quite facilitating searches and studies.
Also, the classification and indexing of transcript text can be
easily automated. Handwritten text recognition (HTR) tasks
in historical datasets have been studied bymany authors in the
last few years [1]–[10]. In HTR, transcribing each author can
be considered a different task, since the distribution of both
model input and output varies from writer to writer. At the
input, we have variations not only in the calligraphy but also,
depending on the digitization process, in the image resolu-
tion, contrast, color, or background. On the other hand, at the
output, the labels usually correspond to different languages

The associate editor coordinating the review of this manuscript and

approving it for publication was Gang Mei .

and historical periods, with differences in the character set,
the semantics and the lexicon.

Usually, the process for automatic transcription of a docu-
ment comprises 4 phases: 1) digitization of the document to
obtain an image of every page in the document in electronic
format; 2) segmentation of each page into corresponding
regions with lines of text; 3) transcription of each line of text
and finally 4) application of a dictionary or language model
to correct errors in the transcription of texts as well as in the
composition of the complete texts from the lines obtained in
step 3).

While segmentation is an important issue in
HTR [2], [11]–[13], this paper focuses on the transcription
phase. In recent years, there has been a trend towards models
based on deep neural networks (DNNs) [8]. Once the DNN
model to be used has been designed, an enormous number
of training samples are required to minimize the number
of transcription errors, measured in character error rate
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(CER) or word error rate (WER), given by the Levenshtein
distance [14] between the ground truth (GT) and the output
of the model.

However, in reality most of the times we might only have
a limited number of lines for a given author and document.
Besides, transcription of part of the documents to get labeled
samples is expensive either in time or money. Take [1] as an
example, where the manual transcription process of a docu-
ment by an expert in paleography took an average of 35 min-
utes per page. In this scenario, allowing for a reduction in the
transcript neededwould greatly improve the viability and cost
of the process.

The goal of the methods proposed in this paper is to signifi-
cantly reduce the number of annotated lines, thus reducing the
monetary cost of the process. Contributions are as follows:

• A DNN model with transfer learning (TL) by studying
in detail which layers should be retained and which ones
should be retrained. We found this model to provide the
best performance within the models using long-short-
term-memory (LSTM).

• A thoughtful analysis of HTR when little labeled data
is available, studying the evolution with the number of
transcript lines, highlighting how sensitive the models
are to the number of lines in the train set when this
number is low.

• A model combining TL and data augmentation (DA).
We show that for a reduced number of lines, using DA
can be counterproductive.

• An algorithm to detect and avoid mislabeled lines is
proposed and tested, with good results in small training
datasets. Furthermore, in some scenarios, wrong labels
are fixed.

The remaining of the paper is organized as follows: in
Section II previous works reporting solutions to the problem
of HTR over small datasets are summarized; in Section III
the architecture and models used in this paper are presented;
in Section IV the application of TL and DA for HTR is
analyzed; in Section V an algorithm is proposed to detect and
prone mislabeled lines in the training set; the paper ends with
Section VI, drawing main conclusions.

II. RELATED WORK AND CONTRIBUTIONS
A. DNN MODEL
State-of-the-art architectures combine a convolutional neural
network (CNN) [15] with a recurrent neural network (RNN)
with LSTMcells [16]. This type of networkmodels the condi-
tioned probability, p(l|x), of a character sequence of arbitrary
length, l, given an image, x, of fixed height and arbitrary
width. Note that varying the number of characters yields a
new design of the last layer of the DNNmodel. These models
are configured to minimize the connectionist temporal clas-
sification (CTC) cost function proposed by Graves in [17].
In some works 2D-LSTM [16] networks are used [18]–[21].
This RNN has two main drawbacks. On the one hand, it has
an extremely large number of parameters that make learning

difficult. On the other hand it is not parallelizable [22]. For
these reasons, it has been discarded here.

Regarding the state-of-the-art DNNmodels for HTR, some
recent works are in the line of avoiding recurrence in the
models, developing models based in fully-convolutional net-
works such as the (Gated) Fully Convolutional Networks
(G)FCN [23]–[26]. This kind of model reduces the number
of parameters in the architecture.

B. TRANSFER LEARNING
In the HTR problem with a reduced training set, TL was
applied by Soullard et al. in [7]. The main idea behind TL
is initializing the parameters of a model by those learned
from a huge dataset beforehand, denoted as source. Then,
the available labeled set of samples of the dataset of interest,
the target, is used to refine the parameters of the model,
usually just a subset of them [27]–[30]. In [30], they ana-
lyze how to reduce the dataset shift and enhance the fea-
ture transferability in task-specific layers of deep networks.
Hence, with TL we start learning a different task to avoid
learning the whole set of parameters from scratch, preventing
overfitting and favoring convergence. In [7], they proposed
a method that applies TL in both the optical and the lan-
guage model. In this and other similar previous proposals
on TL, the authors applied DA in both training and test
steps.

C. DATA AUGMENTATION
DA consists in augmenting the training set with synthetically
generated samples. Similar to TL, it reduces the tendency to
overfit when training models with a large number of param-
eters and limited labeled data. In DA for image classifica-
tion problems, the training set is increased by modifying the
original images through transformations such as scaling, rota-
tion, or flipping images, among others [31]. Several authors
have proposed specific DA techniques for HTR: in [32] the
authors apply methods for augmentation and normalization
to improve HTR by allowing the network to be more tolerant
of variations in handwriting by profile normalization. In [33]
they show some affine transformation methods for data aug-
mentation in HTR. In [34] and [35] they synthesize new lines
images by concatenating characters from different datasets.
[34] does it from cursive characters while in [35] they do it
from a database of handwritten Chinese characters. Similar
to [32], in [36] they also apply some elastic distortions to the
original images. In [4] the authors improve the performance
by augmenting the training set with specially crafted multi-
scale data. They also propose a model-based normalization
scheme that considers the variability in the writing scale at
the recognition phase. In these works, they apply DA in rel-
atively large well-known datasets, but here we show that the
regularization effect of any DA technique has no impact when
doing the fine-tuning adaptation to a singular writer in small
databases. Accordingly, we conclude that the combination of
TL and DA applied to small datasets has to be done carefully,
to reduce the final error.
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FIGURE 1. The adapted CRNN architecture from [39] used as baseline. The number of channels of each CNN
layer is shown in this scheme. Pooling layers after the first, second and third CNN layer are also depicted.

D. MISLABELED SAMPLES
Mislabeled detection in HTR has been seldom faced. In [37]
they face a specific problem in the IAM database: crossed
out words that are labeled with the symbol ‘‘#’’. The authors
propose a method to avoid how this specific label affects
the performance. That method is focused on the specific
problem of crossed-out text and how it is annotated in the
GT. The algorithm we propose in Section V is more general,
addressing this and other possible problems. In further related
work in [38], the authors apply a method to align the output
of a segmentation process with the available GT.

III. ARCHITECTURE AND DATABASES
In the HTR pipeline, there are several ways to improve per-
formance of a DNNmodel: preprocessing steps, the architec-
ture used, regularization techniques, optimization, language
model and dictionary, among others. The methods proposed
in this paper are developed for an exemplary state-of-the-art
DNN architecture but can be easily used in the pipeline of
any other HTR system to reduce transcript errors. For fair
comparison, in this paper, we use the same DNN model for
all the experiments. Extra correction steps such as adding a
language model (LM) are not included but could be applied
to further improve the performance. In this section, we focus
on the selection of the model of the DNN and the databases
used.

A. ARCHITECTURE
In this work, we implement a network architecture based
on the convolutional recurrent neural network (CRNN)
presented in [39]. This approach avoids the use of
two-dimensional LSTM (2D-LSTM) layers, applying
convolutional layers as feature extractors and a stack of 1D
bidirectional LSTM (BLSTM) layers to perform classifica-
tion. Previous DNN architectures for HTR consisted of a

combination of 2D-LSTM layers and convolutional layers,
with a collapsing stage before the output layer in order
to reshape the features tensors from 2D to 1D [18], [19].
The use of 2D-LSTM layers at the first stages has several
drawbacks such as the need of more memory in the allocation
of activations and buffers during back-propagation and a
longer runtime is required to train the networks since parallel
computation cannot be implemented in contrast to a CNN
[22]. Recently, it has been shown that CNN in the lower
layers of an HTR system obtains similar features than an
RNN containing 2D-LSTM units [22].

The CRNN architecture proposed in [39] is comprised of
seven CNN with a max-pooling step at the output of four
of them, followed by a stack of two BLSTM layers at the
top of the network. In [6] we have shown that the CRNN in
Fig. 1, the one used in this work,1 achieves better performance
than the original one proposed in [39]. It uses a CNN with 5
layers at the bottom, with a 3 × 3 and 1 × 1 stride kernel,
the number of filters are 16, 32, 48, 64 and 80, respectively.
We use LeakyReLU as the activation function. A 2× 2 max-
pooling is also applied at the output of the first 3 layers,
to reduce the size of the input sequence. At the output of the
CNN, a column-wise concatenation is carried out with the
purpose of transforming the 3D tensors of size w × h × d
(width× height× depth) into 2D tensors of size w× (h× d)
where w and h are the width and height of the input image
divided by 8, i.e., after 3 stages of 2 × 2 max-pooling. The
depth, d = 80, is the number of features of the last CNN
layer. Therefore, at the output of the CNN, we have sequences
of length w and depth h× 80 features.

After the CNN stage, 5 1D BLSTM recurrent layers of 256
units with hyperbolic tangent functions and without peephole
connections.. Since at the output of each BLSTM layer we

1Implementation is publicly available in https://github.com/josarajar/
HTRTF
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FIGURE 2. IAM handwritten text sample: image of a line and its transcript.

FIGURE 3. Washington handwritten text sample: image of a line and its transcript.

have 256 features in each direction, we perform a depth-wise
concatenation to adapt the input of the next layer, to the over-
all size of 512. Dropout regularization [18], [40] is applied
at the output of every layer, except for the first convolutional
one, with rates 0.2 for the CNN layers and 0.5 for the BLSTM
layers.

Finally, each column of features after the 5th BLSTM
layer, with depth 512, is mapped into the L + 1 output
labels with a fully connected layer, where L is the num-
ber of characters in the alphabet of each database, e.g., 79,
83, 96 or 102 in the IAM, Washington, Parzival or Inter-
national Conference on Frontiers in Handwriting Recog-
nition (ICFHR) 2018 Competition databases, respectively.
The additional dimension is needed for the blank symbol
of the CTC [17], which concludes this architecture. Overall,
this CNN-BLSTM-CTC model has 9.58 × 106 parameters
roughly, depending on the number of characters in each
database.

The architecture is implemented in the open-source frame-
work TensorFlow in Python, using the GPU-enabled ver-
sion. We use the Adam algorithm, a learning rate of 0.003,
β1 = 0.9 and β2 = 0.999. The parameters are updated using
the gradients of the CTC loss on each batch of 16 text lines.
We apply an early stopping criterion of 10 epochs without
average improvement.

The selected model was the one with the best performance
out of the 7+ 3, 8+ 0, 4+ 4, 5+ 5, and 6+ 6 configurations,
where A + B corresponds to A convolutional followed by
B BLSTM layers. On the other hand, for the CTC we tried
best path decoding and beam search decoding, with no sig-
nificant improvement of the later, despite its computational
complexity.

B. DATABASES
In this paper we focus on HTR over eight databases: IAM
[41], Washington [42], Parzival [42], and the five ones pro-
vided at the ICFHR 2018 Competition [5].

1) THE IAM DATABASE
The IAM database [41] contains 13353 labeled text lines of
modern English handwritten by 657 different writers. The
images were scanned at a resolution of 300 dpi and saved as
PNG images with 256 gray levels. An image of this database
is included in Fig. 2 alongside the GT transcript. The database

is partitioned into training, validation, and test sets of 6161,
900, and 2801 lines, respectively.2 Here, the validation and
test sets provided are merged in a unique test set. There are
79 different characters in this database, including capital and
small letters, numbers, some punctuation symbols, and white
space.

2) THE RIMES DATABASE
The RIMES database is a collection of French letters hand-
written by 1,300 volunteers who have participated in the
RIMES database creation by writing up to 5 emails. The
RIMES database thus contains 12,723 pages corresponding
to 5605 mails of two to three pages. In our experiments,
we take a set of 12111 lines extracted from the Interna-
tional Conference on Document Analysis and Recognition
(ICDAR) 2011 line-level competition. There are 100 different
characters in this database.

3) THE WASHINGTON DATABASE
The Washington database contains 565 text lines of the
George Washington letters, handwritten by two writers in the
18th century. Although the language is also English, the text
is written in longhand script and the images are binarized as
illustrated in Fig. 3, see [3] for a description of the differences
between binarized and binarization-free images when apply-
ing HTR tasks. In this database, four possible partitions are
provided to train and validate. In this work, we have randomly
chosen one of them. The train, validation, and test set contain
325, 168 and 163 handwritten lines, respectively. There are
83 different characters in the database.

4) THE PARZIVAL DATABASE
The Parzival database contains 4477 text lines handwritten
by three writers in the 13th century. In this case, the lines are
binarized like in theWashington database, but the text is writ-
ten in gothic script. A sample is included in Fig. 4. There are
96 different characters in this database. Note that the Parzival
database has a large number of text lines in comparison to the
Washington one. We have randomly chosen a training set of
the approximately same size as in the Washington training to
emulate learning with a small dataset, the main goal of this
work.

2 The names of the images of each set are provided in the Large Writer
Independent Text Line Recognition Task.
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FIGURE 4. Parzival handwritten text sample: image of a line and its
transcript.

5) THE ICFHR 2018 COMPETITION OVER READ DATASET
The set of documents of the ICFHR2018 Competition
on Automated Text Recognition on a READ Dataset
(https://readcoop.eu/) was proposed to compare the perfor-
mance of approaches learning with few labeled pages. The
dataset provided for the competition consists of 22 documents
segmented at line level [5]. They are written in Italian and
modern and medieval German. Each of them was written by
only onewriter but in different periods and various languages.
The training data is divided into a general set (of 17 docu-
ments) and a document-specific set (of 5 documents) called
Konzilsprotokolle_C, Schiller, Ricordi, Patzig, and Schwerin
of an equal script as in the test set. Hereafter, general is
used to denote available source labeled databases different
from the one of interest, while document-specific denotes
particular target documents. Also, the Konzilsprotokolle_C
dataset, of the University of Greifswald, will be abbreviated
as Konzil. The general database comprises roughly 25 pages
per document (the precise number of pages varies such that
the number of contained characters is almost equal per doc-
ument). It will be denoted hereafter by ICFHR18-G. For the
5 document-specific databases the authors provide 16 labeled
pages plus 15 unlabeled pages. One can check for the error in
the transcription of these databases by sending the authors the
transcription of these 15 pages. The results of the transcrip-
tion are then published on the web of the contest. In Fig. 5,
samples from five specific target documents are displayed.
The standard Unicode Normalization Form Compatibility
Decomposition - NFKD is applied to the GT to provide a
common character set over such different documents, with
102 characters. The goal of the competition is to fit a model
to transcript each of the 5 specific target documents with the
lowest CER possible, using the 17 source documents avail-
able for training. For each document-specific target dataset,
four experiments are conducted, simulating that you have 0,
1, 4, or 16 annotated pages available for training.

In Table 1 we include the number of training and test lines
available for every database. While all lines in the test sets
will be used, the number of lines of the training set used vary
through the experiments and will be indicated in every case.

IV. ON THE DATA AUGMENTATION AND TRANSFER
LEARNING TRADEOFF
As our first contribution, in this section, we analyze the joint
performance of TL and DA methods when applied to HTR.

A. TRANSFER LEARNING
To cope with a reduced set of labeled inputs, we could first
train the DNN model using as source available labeled large

TABLE 1. Number of lines available for training and test in each dataset.

datasets. Then, we could apply TL or domain adaptation
strategies [43] to tune the learned model to transcript a target
document. As discussed in Section I, we usually deal with
different tasks, where TL has shown useful to share the results
of the learning between tasks.

Formally, in HTR, deep learning algorithms have been
usually used to solve problems over a domainD = {X ,P(x)},
where P(x) is the marginal probability. Typically x is the
image for a segmented line in the text. The task consists of
two components: a label space Y and an objective predictive
function f (· ) (denoted by T = {Y, f (· )}), which can be
learned from the training data. The data consists of pairs
{xi, yi}, where xi ∈ X and yi ∈ Y [44] and f (x) = Q(y|x)
can be interpreted as the conditional probability distribution.

Given a source domain DS and a learning task TS , transfer
learning aims to help improve the learning of another target
predictive function fT (· ) in DT using the knowledge in DS
and TS . In this work, we are interested in inductive transfer
learning in which the target task is different from the source
task, as the domains are different (DS 6= DT ). Here we
perform TL by retraining a DNN model where 1) all weights
are initialized to the ones of the DNN learned for DS and TS
and 2) the parameters of lower layers can be frozen to the
values of the ones obtained after training with other available
source datasets, used as off-the-shelf feature extractors [45].

In [6] we analyzed preliminary TL results over the
Washington and Parzival databases, by using the IAM
database as the source, and we investigated which layers
should be kept fixed to then apply a fine-tuning process to
the others. We concluded that the best choice is to unfreeze
all the layers, where the first one can be eventually fixed. In
most cases, fixing only the first CNN layer leads to the best
performance.

In Table 2 we extend the analysis in [6] to the five specific
documents in the ICFHR 2018 Competition dataset, where
the 17 documents of the general set of the database, in the
ICFHR18-G, are used as the source. Results are included
when fixing layers 1 to 3 of the CNN, as fixing other layers
provided larger errors in all cases. The lowest achieved errors
are highlighted in boldface. Training set size is given in the
number of lines. It can be observed that, among all databases,
the best performance is achieved when unfreezing all layers
or, at most, only the first layer is kept frozen. Hereafter the TL
is applied by freezing just the first layer of the DNN model.
The results shown in all tables hereafter indicate mean values
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FIGURE 5. From top to bottom: Konzil, Schiller, Ricordi, Patzig and Schwerin handwritten text
samples with their transcripts.

TABLE 2. TL performance: Mean CER (%) and bootstrapped confidence
interval at 95%, in brackets, of the model in Fig. 1 using TL for the
Washington, Parzival, Konzil, Schiller, Ricordi, Patzig and Schwerin
datasets (see Section III) as target domains.

of CER or WER. To get the statistics, the model in Fig. 1
is trained 10 times, where the parameters to initialize are
independently and randomly set. In Table 2, a non-parametric
bootstrapped confidence interval at 95% [46] is also included.
For the remaining tables, the confidence intervals can be
found in the supplementary material.

In Table 2 we analyze different strategies of applying TL,
with no DA, for the Washington and Parzival target datasets
with the IAM database as the source and Konzil, Schiller,
Ricordi, Patzig, and Schwerin datasets (see Section III) as
target domains with ICFHR18-G as the source. In each of
ICFHR 2018 document-specific datasets, 12 pages are used
for training, see the corresponding number of lines in Table 1.
We conclude that the good choice is to freeze the first convo-
lutional layer of the model (column ‘‘CNN1’’). This solution
will be used later in Subsection IV-C.

B. DATA AUGMENTATION
In [32] the authors compare various DA approaches using
both RIMES [42] and IAM [41] databases as benchmarks,

where transcription is made on the word level. Note that these
databases have a considerably large number of labeled lines.

When not applying any augmentation technique, they get
a CER of 5.35 % (IAM) and 3.69 % (RIMES). The best CER
values reported in [32] by using various DA techniques are
3.93 % and 1.36 %, respectively. Which is equivalent to an
improvement of approximately 2 percentage points in both
databases.

Let us now extend the same analysis to scenarios with small
training datasets: Washington, Parzival, Konzil, Schiller,
Ricordi, Patzig, and Schwerin databases. As throughout the
paper, the transcriptions aremade on line level. Results for the
IAM, RIMES, and the ICFGH18-G, i.e., the 17 documents
of the general dataset in the ICFHR 2018 database, are also
analyzed as references. In Table 3 we include the CER of our
DNN model with no DA and two different DA techniques,
affine transformation [33] and random warp grid distortion
(RWGD) [32], for all databases in Subsection III-B.

We augment the training set by generating ten copies of
every line in the training set. One of these copies is the
original line without distortions.

In Table 3, for the largest databases, the DA improvement
is around 2 percentage points (2 percentage points in IAM,
1.9 percentage points in RIMES, and 2.5 percentage points
in ICFHR18-G). However, in the small databases, the CER
reduction is remarkable, in the range of 5 percentage points
to 23.6 percentage points, see CERs highlighted in boldface.
Note that the results in [32] are different to the ones in
Table 3 because while in [32] transcription is done at the
word level here whole lines are processed. This explains that
in IAM without DA we get CER 7.2% while in [32] 5.35%
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TABLE 3. DA performance: Mean CER and WER (%) with affine
transformations [33] and RWGD [32] DA approaches evaluated for all
datasets in Subsection III-B. The DNN is trained from scratch using the
number of lines indicated by ‘Train size’. Largest DA CER reductions are
highlighted in boldface.

is reported. In any case, it can be concluded that, since the
DA acts as a regularization technique to avoid overfitting,
the CER reduction is greater as the size of the training set
is reduced. At this point, it is most interesting to compare the
results of TL andDA techniques when applied independently.
It can be observed that TL exhibits, by far, a much larger
CER reduction. Next, we face the design and analysis of both
techniques combined, where RWGD will be used as the DA
approach.

C. COMBINING DATA AUGMENTATION AND TRANSFER
LEARNING
When comparing DA with TL, the large databases are
excluded from the comparison. They play the role of source
databases in the TL approach, specifically, the IAM is the
source dataset when Washington and Parzival are targets
and ICFHR18-G in the Konzil, Schiller, Ricordi, Patzig, and
Schwerin case. The RIMES database is only used to enhance
the comparisons in this section.

In the combination of TL and DA techniques, there are
several possible designs. Here we propose the following two
schemes. In a first approach we perform DA at both the
learning from the source dataset and the retraining of the
model with the target one:

1) Train the model from scratch with a source dataset,
applying DA.

2) Retrain the model with the target dataset, applying DA.
We name this proposal DA-TL-DA. In a second proposal,
denoted by DA-TL, no DA is applied to the target:

1) Train the model from scratch with a source dataset,
applying DA.

2) Retrain the model with the target dataset, without
applying DA.

We perform the same experiments as in Subsection IV-A,
obtaining the results included in Table 4. For the sake of
completeness we also report the results in the two previous
subsections for TL with the first layer frozen and DA with
RWGD. In the first step of the DA-TL and DA-TL-DA meth-
ods, the model has been trained from scratch with the IAM
database. After that, we fine-tune the model using data from
the Parzival and Washington databases. In Table 5 the results
are shownwhen training themodel in Fig. 1 from scratch with

TABLE 4. TL and DA combined performance: Mean CER (%) evaluated for
Washington and Parzival datasets using TL and DA with IAM database as
the source. The number of annotated lines used in training is included as
‘Train size’.

TABLE 5. TL and DA combined performance: Mean CER (%) evaluated in
ICFHR 2018 Competition Specific datasets as targets using TL and DA with
ICFHR18-G as source. The number of annotated pages used in the training
is included as ‘Train size’.

the ICFHR18-G, and being fine-tuned on the 5 specific target
data sets provided. For the sake of completeness we include in
Table 5 the results for 0 pages in the target dataset, i.e., when
no labeled sampled from the target is used. Note that in this
case DA-TL-DA cannot be applied.

In the light of Table 4 and Table 5, it can be concluded that
applying DA over the target training set once TL is applied,
i.e., DA-TL-DA, either does not reduce the CER or even
it slightly increases it, compared to the result of the TL
approach alone or the DA-TL method. Except for Schwerin,
in which DA-TL-DA slightly improves DA-TL. Put in other
words, in general, it is harmful to apply DA to the target
dataset if TL has been applied, when just a reduced number
of labeled lines are available in the target. On the other hand,
DA+TL achieves improvements up to 5 % in the ICFHR
2018 target documents, usually increasing with the reduction
of the training set.

From the discussion above, and bearing Table 4 and
Table 5 in mind, it can be concluded that DA-TL is a robust
approach. When fine-tuning a DNN that has been previ-
ously trained with a similar task (a huge database of HTR
samples), the starting point is reasonably good as we can
observe in Table 5 for the training set sizes of 0 pages in
all datasets. We show a good generalization ability of the
model for the TL and DA+TL without further training with
the target dataset. Afterwards, the DNNmodel is trained with
the target database. Only a few samples are available in the
target set, which represent just a limited part of the support
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FIGURE 6. (a) CER (%) divided by the number of annotated lines, l , used and (b) decrement of
CER (%) divided by the number of new labeled lines added to obtain it, 1l , in the training of the
DNN model with DA-TL approach using the ICFHR18-G dataset as the source and the Konzil
dataset as the target with no artificial errors (×) corrupted with artificial errors (�).

of its marginal distribution, PT (x). After TL, the parameters
of the DNN encode information from both the source and the
target training sets. At this point, we conjecture that by using
DA in the target dataset and further refining the parameters,
the DNN model overfits to the augmented versions of the
target samples, forgetting the knowledge learned from the
source one, that very much helps to transcript inputs out of
the support generated by augmenting the target set.

This leads to an increase of the final CER.

V. THE CORRUPTED LABEL PURGING (CLP) ALGORITHM
In this section, we focus on the impact of the number of
lines and their quality in the target dataset on the learning
process of the DNNmodel. We first analyze the impact of the
performance on the number of healthy lines, i.e., lines with
no transcription errors in the training dataset. Then we study
how this performance degrades with label errors. Finally,
we propose an algorithm to detect and remove potential label
errors in the dataset.

A. PERFORMANCE VARIATION WITH THE NUMBER OF
LABELED SAMPLES
When a small number of lines is available in the target
training set, deep learning models are quite sensitive to small
variations in the number of labeled lines. In this subsection,
this sensitivity is evaluated on a specific dataset from the
ICFHR 2018 Competition [5]. The chosen training dataset
consists of 16 pages from the Konzil, which is segmented

at line level. Similar results were obtained for the other
datasets.

The ICFHR 2018 target datasets have 16 labeled pages
each. Unless otherwise indicated, 4 of them will be used for
testing purposeswhile up to 12 pageswill be used for training.
Usually, 10 % out of the used training set is devoted to vali-
dation. The ICFHR18-G dataset is used as source database in
the TL-DA approach.

In Fig. 6.(a) the blue curve in× represents the TL-DACER
versus the available number of lines, l, of the target training
set in the range 29-350 lines, corresponding to 1 and 12 pages,
respectively. In the left part of the figure, the CER decreases
at a rate of 1 percentage point every 4 new lines added to
the training set. After approximately 50 lines, the decreasing
rate of the CER changes to approximately 1 percentage point
every 100 lines. This is evidenced in Fig. 6.(b) where the
absolute value of the variation of the CER in percentage
points is depicted 1CER, with the increment of the number
of annotated lines used in the target to achieve it, 1l. It can
be concluded that the sensitivity to the number of samples in
the training set is significantly larger for small training sets.

In Fig. 6 we also include the ‘‘Training set with errors’’
curve (�) which corresponds to the analysis above but where
labeling errors have been artificially introduced, as follows.
The annotation of a line is modified with probability L. Then,
with modified labeling, a character is changed with prob-
ability R. In both cases following a Bernoulli distribution.
Every changed character is replaced by an independently and

VOLUME 9, 2021 76681



J. C. Aradillas et al.: Boosting Offline HTR in Historical Documents With Few Labeled Lines

FIGURE 7. Sample of a completely mislabeled text at Ricordi dataset.

FIGURE 8. Sample of special annotations in the GT at the Ricordi dataset.

randomly selected character, following a discrete uniform
probability. In Fig. 6, where L = 0.2 and R = 0.3, it is
interesting to note that the impact of labeling errors in the
CER value is more dramatic for small training sets while the
rate at which the CER decreases with the number of lines
added remains roughly unaltered.

B. TYPES OF TRANSCRIPTION ERRORS
Before proposing approaches to detect mislabels in the train-
ing set, we discuss three typical types and causes of errors in
the datasets, as follows.

1) Mislabeled characters. When labeling a training set,
themost commonmistake is to confuse a character with
another, usually a similar one. This can be seen in the
well-known IAM database [41], where it is indicated
that some lines could have some annotation errors in
the labels. This type of error is the one simulated in
Fig. 6.

2) Label Misalignment. The second kind of detected error
happens due to a misalignment in the labels. This could
be caused by, e.g., a mistake in the name given to
some images in the database. This error is encountered
several times in the Ricordi dataset from the ICFHR
2018 Competition [5] as illustrated in Fig. 7. It can be
observed in this example that the transcript does not
correspond to the handwritten text in the image above.
On the contrary, it is quite close to the model output,
after being trained with several lines of the dataset.

3) Special annotations in the ground truth. Perhaps,
themost common source of error is due to special anno-
tations that some transcribers or database managers
introduce in some datasets to include some notes inline.
In [37] they found this problem in the IAM database:
crossed out words that are labeled with the symbol
‘‘#’’ followed by the word behind the blot. Training the
model with this labeling might lead to unpredictable
behavior, since the model could replace the text using
‘‘#’’ at different parts of the text. The model will either
be able to recognize the text behind the blot or replace
the word with the symbol ‘‘#’’, or both. Another special
annotation is included in Fig. 8, where they write in
brackets extra characters that are not in the handwritten

text. The output of a model trained with samples of the
same dataset is shown below the GT. Despite in this
line, the CER is about 35%, it can be observed that the
model output is quite similar to the handwritten text.

Manually annotating historical documents remains a chal-
lenging task that is prone to errors, even for experts in the
field. As discussed in the previous section, when a huge
set of annotated samples is available, deep learning models
do not suffer from a few mislabeled samples, as they better
generalize. However, when a limited set of annotated lines of
a specific writer is available to train, mislabeled lines induce
overfitting to transcripts with errors, which are quite hard to
tackle via regularization. In the example shown in Fig. 6 we
illustrate this problem when just a few mislabeled lines are
introduced.

Algorithm 1 Corrupted Labels Purging (CLP)
Given inputs: source set xS ∈ XS and yS ∈ YS , target set
xT ∈ XT and yT ∈ YT and threshold, ε.
1) Fit the prediction function fS (yS |xS ) with the source
training set {xS , yS}.
2) Split the target training set into N subsets
{xT1 , xT2 , . . . , xTN }, {yT1 , yT2 , . . . , yTN }.

for n = 1, . . . ,N do
3) Initialize the prediction function fTn (·) = fS (·).
4) Fine tune the prediction functionwith the whole target
set except for the nth, {xTi 6=Tn}, {yTi 6=Tn}.
5) Include in the new target set, {xT ′ , yT ′}, all pairs
{x(i)Tn , y

(i)
Tn} whose predictions fTn (y

(i)
Tn |x

(i)
Tn ) have errors

below a CER threshold, ε.
end for
6) Initialize the prediction function fT (·) = fS (·).
7) Fine tune the prediction function, fT ′ (yT ′ |xT ′ ), to the
modified target set {xT ′ , yT ′}.
Output:
Function fT (yT |xT ) over the target domain DT .

C. MISLABEL DETECTION ALGORITHM
As one of our main contributions, we propose an algorithm
to detect and remove mislabeled lines from the training set,
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FIGURE 9. Corrupted labels purging algorithm. The algorithm applied over target subset n is depicted. The same
procedure should be applied to all the subsets to build the Target dataset modified.

detailed in Algorithm 1. A block diagram of the algorithm is
also depicted in Fig. 9. It divides the target training dataset
into N subsets. For every subset, n, the method performs
DA-TL using the rest of subsets, k = 1, . . . ,N , k 6= n,
as training sets and it evaluates the CERmetric over the subset
n. Lines with CER above a threshold, ε, in the nth subset are
detected as wrongly transcribed and discarded. Hence, we are
implementing some sort of k-fold validation, inwhich the size
of each validation partition is reduced after removing prob-
lematic lines. Finally, the DA-TL is applied to the resulting
target database. Note the algorithm performs N + 1 different
training steps. However, the N steps concerning the target
subsets could be run in parallel, since they are independent
of each other. Hence, the run time of applying this algorithm
is approximately double the run time of regular training.

In Fig. 10 we include the histogram of the CER per line
for the 5 ICFHR 2018 document-specific datasets using the
CLP algorithm with N = 2. The ICFHR18-G was used as
the source. The histograms were estimated with the CER of
the outputs of the n = 1, 2 stages computed with the lines
not used during training, see the output of ‘‘Target subset n’’
blocks in Fig. 9. In the left column, models have been trained
with 4 pages while in the right column they have been trained
with 12 pages. Lines are corrupted with artificial errors with
probability L = 0.1, while every character in the label of a
line is changed with probability R = 0.3 to a random value.
Conservatively, we believe that a 10% average number of

corrupted lines represent a label error rate similar to the one
we encounter in real databases. It is interesting to observe that

the results for the Schwerin dataset are remarkably better than
for the others because it has a significantly larger number of
lines per page. Besides, in the Ricordi dataset, the histogram
for 12 pages exhibits large values around 0.8. This dataset is
known to have label misalignments.

D. CLP THRESHOLD ANALYSIS
The selection of the threshold is central to the algorithm
performance. In Fig. 10 the CER of the healthy lines is mainly
distributed around a mode value, to the left of each histogram,
while outliers exhibit larger values. As representative values
to be studied, after extensive simulations, we restrict our
analysis to the thresholds ε = 0.5 and ε = 0.7, for an average
rate L = 0.1 of artificially modified lines, and R = 0.3.
In Fig. 10 we indicate the percentage of lines with CER
equal or lower than 0.5 and 0.7, left and right red dashed lines
in the subfigures, respectively. We conclude that almost 10%
of lines have a CER above ε = 0.7 when 4 pages for training
are available and the same occurs in the case of 12 pages when
ε = 0.5.

The selection for ε should not lead to the deletion of healthy
lines, otherwise, the overall CER would raise. On the other
hand, the threshold must ensure a sensitivity when corrupted
lines are encountered.

In the following, we study the CLP algorithm in two
different scenarios. The first experiment we perform con-
sists in applying the CLP algorithm to the ICFHR 2018 tar-
get datasets, with 4 and 12 pages as target training set
size. Then we evaluate the CLP for the Washington and
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FIGURE 10. Histogram of CER with DA-TL and ICFHR18-G as source dataset for the 5 document-specific
datasets using 4 pages (left) and 12 pages (right) of the target dataset. Lines and characters were corrupted
with probabilities L = 0.1 and R = 0.3 respectively. The histograms were evaluated with the outputs of the
N = 2 target subsets. Red dashed lines indicate the percentage of lines with CER≤ ε with ε = 50% and
ε = 70%, left and right lines, respectively.

Parzival databases, with 150 and 325 lines as target training
set size. The same procedure is followed through all the
scenarios:

1) Fit the model to the source set.
2) Run DA-TL plus CLP with N = 2.

1) ICFHR 2018 COMPETITION RESULTS
We test the CLP algorithm over real databases where we do
not have any prior knowledge about the pattern of labeling
errors. We do also include artificial errors to evaluate the CLP
robustness.
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TABLE 6. Mean CER (%) evaluated in Konzil, Schiller, Ricordi, Patzig and
Schwerin target documents in the ICFHR2018 Competition datasets for
DA-TL, DA-TL+CLP with ε = 50% and ε = 70%. DA-TL was applied with
both a training set of 4 pages and 12 pages. The annotation for a line is
corrupted with probability L = 0.1 and a character within it randomly
replaced with probability R. R = 0 indicates no error introduced in the
labelings. The number of removed lines by the CLP algorithm is included
in parentheses in the last two columns. The best-achieved value in every
row is in boldface.

The results of these analyses are reported in Table 6 and
Table 7. Their three last columns include the results for the
DA-TLwith no CLP as ‘Baseline’, for the DA-TL+CLPwith
ε = 50%, and then for the DA-TL+CLP with ε = 70%. For
every target dataset and training set size three rows are used to
report the CER (%) when no artificial errors are introduced,
R = 0, for R = 30% and R = 50%.

In this first case, the ICFHR18-G dataset is used as the
source. The 17 documents of this corpus have a total number
of 11424 lines. The DA-TL plus CLP was applied to the
five target documents in the competition: Konzil, Schiller,
Ricordi, Patzig, and Schwerin. The results are included in
Table 6, where it is included the average value for the CER
and the number of removed lines by the CLP algorithm.

In view of the results, we highlight the following aspects.
First note that, when errors are induced, the threshold
ε = 70% performs better in most of the cases when the train-
ing set is of 4 pages while the threshold ε = 50% is the best
choice for 12 pages. Exceptions can be observed in Patzig and
Schwerin corpora. For the Patzig dataset, we conclude that
ε = 70% is the best choice for every case. This is due to the
distribution of the errors in this dataset, which has a larger
variance, and therefore more lines are above the ε = 50%
CER, it can be seen in Fig. 10. In the Schwerin corpus,
the threshold 50% has the best CER in all cases, the opposite
that in the Patzig dataset. This is due to the distribution of the
errors in this dataset that, due to the larger number of lines

used, has lower variance and most lines are below 10% CER
(see Fig. 10).

It is also interesting to remark that in the Ricordi case,
the algorithm improves the CER in the original dataset,
i.e., without synthetic errors. This is explained by the fact that
in this dataset, as already discussed, there are some misla-
beled lines like in the case illustrated in Fig. 7. Additionally,
note that for R = 0 and ε = 70% a large number of removed
lines is quite an indicator of the dataset containing errors in
the annotated lines.

For the sake of completeness, we include in Fig. 11 the
evolution of the CER versus the number of lines, l, in Fig. 6
including the CER for the proposed algorithm (CLP) (◦). The
introduction of the CLP improves the TL-DA approach when
the dataset has corrupted lines. In the range, l = [40, 50] the
TL-DA with CLP with l = 40 achieves the same CER as the
DA-TL with l = 50 lines in the training set.

2) WASHINGTON AND PARZIVAL RESULTS
In this second analysis, the model is pre-trained with the IAM
database as the source dataset to train the model with DA-TL
for the Washington and Parzival targets. There are two main
differences to the previous study of the ICFHR 2018 datasets:
1) the number and set of characters are different from the
source and targets datasets and 2) we compare the CER of
both targets in terms of the number of lines instead of the
number of pages, where we consider two cases, 150 lines and
325 lines, similar to the number of lines used in the previous
scenario.

The first rows in Table 7 include the results obtained after
fine-tuning themodel to theWashington dataset. In this study,
the threshold ε = 70% is the best option when the number of
lines is 150 while ε = 50% exhibits the lowest CER when
the number of lines is 325. This is equivalent to the 4 and
12 pages in the Konzil, Schiller, and Ricordi cases in which
the number of lines is similar. For these thresholds: we get an
improvement of 0.8 and 0.63 in the case of 150 lines and no
deterioration over the original dataset. In the case of 325 lines,
we get a boost of 0.4 and 0.5 and no deterioration over the
original dataset.

Results obtained after fine-tuning the model to the Parzival
dataset are also included in Table 7, see the lower rows.
Similar conclusions can be drawn except for R = 30% and
150 lines, where the 50% exhibits the best CER. If we choose
the threshold as in the previous cases, 70% and 50%, we still
get a slight improvement or at least, no deterioration.

E. CORRECTING LABEL MISALIGNMENT
In Section V-B we summarized the different types of tran-
scription errors. One of these errors is due to themisalignment
of the annotations with the images. When a high number
of lines are classified as mislabels, this type of error can
be addressed by searching within the outputs of the DNN
model for the whole target dataset, the transcript best fitting
every annotation in the GT, hence aligning annotations and
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FIGURE 11. CER (%) divided by the number of annotated lines, l , with the DA-TL approach using
the ICFHR18-G dataset as source and the Konzil dataset as target with no artificial errors (×), with
artificial errors (�) and with artificial errors and CLP used (•).

TABLE 7. Mean CER (%) evaluated in Washington and Parzival
documents for DA-TL, CLP with threshold ε = 50% and CLP with threshold
ε = 70%. DA-TL was applied with the IAM dataset as the source and using
150 and 325 lines from the target. The annotation for a line is corrupted
with probability L = 0.1 and a character within it randomly replaced with
probability R. R = 0 indicates no error introduced in the labelings. The
number of removed lines by the CLP algorithm is included in parentheses
in the last two columns.

images in the dataset. This approach is quite similar to the
one proposed in [38].

In the case of the Ricordi dataset in the ICFHR 2018 com-
petition, we realized that the CLP detected a high number
of mislabeled lines in the dataset. Note the large numbers
of removed lines in Table 6 for ε = 70% and this dataset
with R = 0. By simply visual inspection we confirmed
that the error was of the type of misalignment of images
and annotations. Here, we apply the CLP plus the simple
automatic alignment approach described above.

The comparison between simply removing the mislabeled
lines and correcting the alignment of the database is shown
in Table 8. In this table, one can observe a significant drop-
ping in the CER when correcting these misalignments of the
lines. In the training with 4 pages, the overall decrease is
3.7 percentage points. In the 12 pages analysis, the CER drops
0.3 percentage points when removing the lines while it further
decreases 0.8 percentage points when correcting them. Note
also that the gain is higher when a lower number of annotated
lines are used.

F. COMPARISON TO THE STATE-OF-THE-ART
By using the proposed 5+5 DNN model with CNN and
BLSTM layers followed by a CTC, we conclude by analyzing
the results of the novel DA-TL approach over the ICFHR

TABLE 8. Comparison between the CLP algorithm with line removal and
the CLP plus alignment of the GT after detection. The mean CER (%) is
evaluated for the Ricordi document with a training set of size 4 pages
(88 lines) and 12 pages (295 lines).

TABLE 9. CER ICFHR 2018 Competition results for LSTM based models:
upper part, other previous approaches and, in the lower part, the results
for the approaches in this work. Lowest mean values in both parts are
highlighted in boldface.

2018 Competition.3 The results included in Table 9 were
reported by the organizers of the competition. The contestants
provide the transcript of the 15 test pages for every docu-
ment in the target set: Konzil, Schiller, Ricordi, Patzig, and
Schwerin. Then, the organizers evaluate the CER, publicly
publishing the results. In this table our results are compared
against the 5 original contestants in the competition: OSU
[32], ParisTech [4], LITIS [47], PRHLT and RPPDI. These
approaches use DNN models based on CNN, LSTM, and
CTC, where some variant of the LSTM is used. Some of them
use DA in the target and LM. The recent work published
by Yousef et al. [9] using a DNN model based on a fully
gate convolutional network (GCN), outperformed the LSTM
based approaches, with a mean value of 13.02 % providing a
23.35 % CER for a 0-page training size.

The results of the proposal in this work are included in the
lowest rows of Table 9 where, following the conclusions in
Subsection V-D, we used ε = 70% for the 1 and 4 pages
training and ε = 50% for the 16 pages. Also, the CLP
includes an alignment stage. Results are presented in three
groups of columns. First, the average CER (%) for the 5 target
dataset is included when 0, 1, 4 and 16 pages of the target
datasets are used. The second group of 5 columns reports the

3 The results are publicly available in the ICFHR competition website:
https://scriptnet.iit.demokritos.gr/competitions/10/viewresults/
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average CER (%) for the learning with 0, 1, 4, and 16 pages
in the dataset for every document. The mean value per row is
included in the last column.

VI. CONCLUSION
In this paper, we analyze, for small training sets and in the
framework of historical HTR, two well-known techniques in
almost every deep learning application: TL and DA.We show
that TL improves the CER between 10-40 percentage points
when applied to small training sets, of the order of 300 text
lines. DA also drops the CER in a range of 2-20 percentage
points when a network is trained from scratch. Before per-
forming TL, applying DA in the source dataset does reduce
the CER. However, applying DA to the target datasets jointly
with TL exhibits worse results than using TL alone. Hence,
we propose the DA-TL approach where the DA is applied to
the source dataset in the TL process.

Besides, we highlight that the DNN models are very sensi-
tive to the number of lines in the train set when this number
is low. Therefore, errors in annotated lines of small target
datasets have a greater impact than in large datasets, for the
same proportions of mislabels. To avoid that, we propose a
method that can detect the mislabeled lines and remove it
from the training set. Furthermore, we fix errors of the mis-
alignment type, by searching for the true labels in the datasets.

Comparing to the state-of-the art in the ICFHR 2018 Com-
petition, it can be observed that the DA-TL and CLP out-
perform all approaches within the CNN+LSTM+CTC class
hence underlining the importance of the issues discussed: DA
is important but in the source dataset, TL is to be considered,
and mislabeling detection and correction is important if the
dataset exhibits errors. Besides, the CLP introduces a residual
0.01 percentage points of loss if the datasets have no errors
in the labels while the reduction is important if they have,
see the results for the Ricordi corpus where a reduction
of 6.58 percentage points is achieved. The presence of errors
in this database was detected by checking the number of
removed lines by the CLP.

At this point, it is interesting to mention that other vari-
ations of the algorithm have been tried to further improve
the performance. In this sense, we tried to evaluate the CTC
loss [17] to select a threshold ε. We found it complex to deal
with because it depends on several factors like the number
of epochs in the training or if batch normalization has been
applied. In future work, we expect to improve the algorithm in
this way. Another promising research line could be introduc-
ing TL-DA and CLP in other DNNmodels, such as the based
on GCN [9], that has a quite low value for 0 pages, to further
improve the CER. Besides, introducing LM in the proposed
DA-TL and CLP approaches could be also investigated.
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