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Abstract: We address distributed estimation of the state of a linear plant by a set of agents.
The problem is cast in a setting where the communication capabilities of an agent might be
deactivated from time to time, due to failures in the communication devices or malicious attacks.
An observer architecture is proposed to achieve our estimation goal, based on a multi-hop
subspace decomposition, which allows each agent to identify its observable and unobservable
subspaces and asymptotically estimate the plant state by using its own measurement and the
information exchanged with the neighboring agents. Uniform exponential convergence to zero
of the estimation errors is proven in the presence of communication failures, under a persistence
of excitation assumption. Finally, the observer performance is evaluated in simulation, showing
the merits of the proposed method and suggesting directions for future developments.
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1. INTRODUCTION

Traditional control systems consist of a centralized con-
troller that collects all the measurements from a plant
and carries out the necessary computations to assign
the control input. To accomplish this goal, it is of cru-
cial importance to place the controller node close to the
plant, namely both near the sensors and the actuators.
An alternative is to introduce point-to-point communi-
cation networks exclusively devoted to the control loop.
In contrast to this centralize framework, the concept of
Networked Control Systems (NCS) arose at the end of the
last century. NCSs are spatially distributed systems for
which the communication among the sensors, actuators
and controllers is supported by a shared communication
network. The use of a multipurpose shared network to
connect spatially distributed elements results in flexible
architectures and generally reduces both installation and
maintenance costs. Despite of the apparent advantages of
NCS, new challenges arise for the scientific community,
some of them being summarized in Zhang et al. (2015);
Ge et al. (2017).

One of the problems that received a great deal of attention
in the last years is distributed estimation, as a first
step towards achieving distributed control, or simply for
monitoring purposes. The distributed estimation goal is
to estimate the state of a plant by a network of agents
that need to share (partial) information to accomplish a
collective estimation goal. The reader is referred to Rego
et al. (2019) for a recent survey of results in this area.

The above-mentioned survey papers emphasize that dis-
tributed estimators must deal, among several issues related
to communications, with the occurrence of failures in the
communication links/devices. These failures may suddenly
isolate one agent or limit its ability to receive and send
information. Therefore, proposing a distributed estimator
capable of coping with link and communication failures,
is the main purpose of this paper. The problem itself
fits perfectly one of the challenges of the cyber-physical
systems community, which is the operation continuum, see
Engell et al. (2015).

The literature on distributed estimation is huge and many
approaches can be found. This revision will start by
presenting the main active research lines in the last years
from a broad point of view. Later, the scope will be
narrowed to the end of framing the paper contributions
against the latest advances in this area.

When considering perturbed systems, there are mainly
three families of distributed observers, namely, distributed
Kalman, H∞ and set-membership filters, each one valid
and optimized for specific models of disturbances and
noises. Distributed Kalman filters (DKF) (first presented
in Olfati-Saber (2007)) provide an optimal state estima-
tion when the system model and the measurements of
the agents are affected by Gaussian noises. However, an
accurate model of these noise distributions is needed and
sometimes this is difficult to obtain. The H∞ filtering
theory is used to develop distributed estimators providing
state estimates with guaranteed performance. This strat-



egy have been successfully applied in Ugrinovskii (2011)
and Shen et al. (2010). Usually, distributed H∞ filters rely
on costly LMI design methods. Finally, set-membership
approaches aim at finding a compact set where the plant
state is certainly confined, see Orihuela et al. (2018);
Wang et al. (2017). They are conservative approaches that
are adequate when the exogenous signals satisfy known
bounds.

Regarding unperturbed and noiseless systems, different
modifications of distributed Luenberger observers have
been proposed. In pursuing of a decentralized design of the
observers with minimum information, the authors of Park
and Martins (2017) use state augmentations. With similar
objectives, but using subspace decompositions (observable
and unobservable modes), recent results have been pre-
sented in del Nozal et al. (2019); Kim et al. (2016); Mitra
and Sundaram (2018). The most interesting feature of
these approaches is that they can provide necessary and
sufficient design conditions, based on detectability prop-
erties accounting for the presence of the communication
network, and to exploit this fact in the proposed observer
structure.

The literature of distributed observers dealing with link
failures and communication losses is less dense. The com-
munication failures are modeled with different methods.
For instance, in Ugrinovskii (2013), Markov processes are
employed to model random communication topologies.
However, the local mode information of the entire network
topology is non-Markovian, which complicates the prob-
lem solvability. To overcome this difficulty, Ugrinovskii
(2013) emploies a two-step design procedure. The corre-
sponding solution requires solving linear matrix inequali-
ties subject to rank constraints, which are generally dif-
ficult. A different approach to model the communication
failures can be found in Liu et al. (2017) where Bernoulli
variables are used. Liu et al. (2017) introduces a weighted
matrix in the consensus steps in order to implement dis-
tributed filtering. In addition, boundedness properties are
thoroughly investigated, using statistic information of the
random link failures. Regarding the strategy used to deal
with the distributed estimation problem two main ap-
proaches can be found in the literature. On the one hand,
the use of H∞ strategies as discussed in Yan et al. (2017)
and Yu et al. (2013). In Yan et al. (2017), neural net-
works are used to estimate the system state using learning
methods for the corresponding matrices. Instead, Yu et al.
(2013) designs a filter on each node in the sensor network
ensuring that the dynamics of the filtering error is mean-
square stable and the prescribed average H∞ performance
constraint is met. On the other hand, the behaviour of
the Kalman filter dealing with communication problems
has been also studied. In Battilotti et al. (2018) a failure
detection device is introduced in every agent to detect link
failures in the network at the receiving side. In addition,
by using the maximum a posteriori probability decision
rule, the authors propose a method to identify online
the generally correlated multiple-valued stochastic output
delay which guarantees (with some approximation) the
minimum probability of error, given the available observa-
tions. Finally, the algorithm presented in Alonso-Román
and Beferull-Lozano (2016) provides unbiased estimations

when the steady-state value of the average consensus pro-
cess becomes a random variable.

Within this setting, we focus here on distributed estima-
tion in the presence of communication losses, and provide:
• A distributed observer structure based on a multi-hop
decomposition, which decomposes the state space in the
observable subspace of each agent and the innovation in-
troduced by the neighbors at each hop.
• A sufficient condition on the distributed observer gains
ensuring uniform global exponential stability of the error
dynamics over all possible communication losses satisfying
a suitable persistence of excitation assumption.
• A set of assumptions (some necessary and some suffi-
cient) under which it is always possible to design the gains
of the distributed observers in order to meet the above
mentioned sufficient conditions.

This paper is organized as follows. Section 2 states the
main problem and presents the necessary assumptions.
Section 4 presents the proposed observation structure and
the main results of the paper concerning stability and
feasibility. Section 5 shows the observer performance in
simulations. Finally, conclusions are drawn in Section 6.

Notation. A graph is a pair G = (V, E) comprising a set
V = {1, 2, . . . , p} of vertices or agents, and a set E ⊂ V×V
of edges or links. A directed graph is a graph in which
edges have orientations, so that if (j, i) ∈ E , then agent
i obtains information from agent j. A directed path from
node i1 to node ik is a sequence of edges such as (i1, i2),
(i2, i3), . . ., (ik−1, ik) in a directed graph. The neighborhood

of i, Ni , {j : (j, i) ∈ E}, is defined as the set of nodes
with edges incoming to node i. Given ρ ∈ Z+, the ρ-hop
reachable set of i, Ni,ρ, is defined as the set of nodes with
a direct path to i involving ρ edges. Note that the 1-hop
reachable set of i corresponds to the neighborhood of i and
the 0-hop reachable set of i matches with i.

Operators col(·, ·), row(·, ·) stacks subsequent matrices into
a column/row vector, e.g. for A and B of appropriate
dimensions, col(A,B) = [A> B>]> and row(A,B) =

[A B]. |x| is the Euclidean norm of vector x. ||A|| stands
for the induced matrix norm of matrix A.

2. PROBLEM STATEMENT

Consider a set of agents V = {1, 2, . . . , p} intending to
distributedly estimate the state of the discrete-time LTI
system

x(k + 1) = Ax(k), (1)

yi(k) = Cix(k), ∀i ∈ V, (2)

where x is the state vector, A is the system matrix,
yi ∈ Rmi is the output locally measured by agent i and
Ci ∈ Rmi×n is its output matrix.

Since the agents are not able to reconstruct the whole
state x based only on the local measurement yi (i.e.
detectability of (Ci, A) is not assumed), a communication
network among them is required.

Thus, let G = (V, E) represents the directed graph mod-
elling the communication network where no communica-
tion failures are allowed. For this directed graph, E ⊂ V×V



represents every communication channel between pairs of
agents.

2.1 Collective detectability assumption

We introduce here some key concepts, useful for the
developments of the rest of the paper.

Definition 1. For the communication graph G, the ρ-hop
output matrix of agent i, Ci,ρ, is defined as:

Ci,ρ :=

[
Ci,ρ−1

col(Cj,ρ−1)j∈Ni

]
, ∀ρ ≥ 1, (3)

where Ci,0 := Ci.

Intuitively speaking, the ρ-hop output matrix Ci,ρ of agent
i, recursively defined in (3), comprises its output matrix
Ci and the output matrices of all the agents j with a
direct path to i involving ρ or less edges. Based on this
concept, we can formulate our first assumption. A similar
assumption was introduced in del Nozal et al. (2019).

Definition 2. System (1)-(2) is collectively detectable if,
for any i ∈ V, there exists a finite number of hops `i ∈ Z>0

such that pair (Ci,`i , A) is detectable.

Assumption 1. System (1)-(2) is collectively detectable.

As shown in del Nozal et al. (2019), Assumption 1 is
necessary for the existence of a converging distributed
state estimator. According to Definition 2, system (1)-(2)
is collectively detectable if, for each agent, the complete
information provided by the network (that is, the ρ-hop
output matrix with ρ sufficiently large) is sufficient to build
a converging state observer. Recall that a strongly con-
nected communication network is not required in contrast
with other approaches as Wang et al. (2019)

2.2 Communication model and persistence assumption

In this paper, we consider that the topology of the network
G can vary with time due to failures in the communica-
tion devices, jamming attacks (see Jin (2010)) or packet
dropouts.

To this end, a logic variable k 7→ δi(k) ∈ {0, 1} is
associated to each node i to represent communication
failures for agent i at time k. Using δi, the set of links
pointing to agent i, (i, j) : ∀j ∈ Ni, are active at time k
if and only if δi(k) = 1. Otherwise, when δi(k) = 0, these
links are inactive due to a communication failure. As a
result, E(k) and G(k) = (V, E(k)) represent, respectively,
the set of active links at time k and characterize the time-
varying graph at time k.

Whenever a loss occurs, agent i cannot receive information
from its neighborhood. Consequently, it would be reason-
able to operate based only on the system model and on
the local measurement yi. However, if this situation is
extended in time, the plant state cannot be detected in
the directions that are not observable from that output. To
rule out this scenario, we assume the following persistence
of excitation property.

Definition 3. Graph k 7→ G(k) = (V, E(k)) enjoys a
uniform local persistence property if for each i ∈ V
there exist a finite time horizon τi ∈ Z>0 and an integer
nτ i ∈ Z>0 such that

τi−1∑
h=0

δi(k + h) ≥ nτ i, ∀k ∈ Z≥0, (4)

namely, for each time interval {k, . . . , k+ τi−1}, k ∈ Z>0,
there exist at least nτ i distinct values of s ∈ {k, . . . , k +
τi − 1} satisfying δi(s) = 1.

Assumption 2. The graph k 7→ G(k) = (V, E(k)) enjoys a
uniform local persistence property.

Assumption 2 requires that each agent i experiences no
more than τi − nτ i communication losses in each time
window spanning τi time instants. This implies that the
agent receives enough information from the neighboring
agents, which corresponds to some kind of persistence of
excitation. While Assumption 2 is not necessary, in gen-
eral, we emphasize that it does not hold true only in cases
where the communication instants (when δi = 1) become
increasingly rare as time flows. Such a scenario is quite
undesirable if one wants to achieve uniform convergence
properties like those in our problem statement below.

2.3 Problem statement

Based on our standing Assumptions 1 and 2, we are ready
to state our problem statement.

Problem 1. Consider system (1)-(2) and an interconnec-
tion graph G(k) = (V, E(k)). Under Assumptions 1 and 2,
design a distributed observer providing, at each node i,
an estimate x̂i of the state x of (1)-(2), such that these
estimates converge uniformly and exponentially to x. In
particular, for each δi, i = 1, . . . , p, satisfying Assumption
2, there must exist scalars M > 0 and λ ∈ (0, 1) such that,
for any x(0) and any x̂i(0), i ∈ V,

|x(k)− x̂i(k)|2 ≤Mλk
p∑
j=1

|x(0)− x̂j(0)|2, ∀i ∈ V. (5)

The distributed observer that we design to solve the prob-
lem above generalizes the linear time-invariant solution
in del Nozal et al. (2019). The novelty that we propose
here is that we focus on linear dynamics subject to the
“external” time-varying logical inputs δi(k). Due to these
extra inputs, the linear cascaded arguments of del Nozal
et al. (2019) cannot be adopted, but we may resort to
nonlinear Input to State Stability (ISS) results for time-
varying systems.

3. MULTI-HOP SUBSPACE DECOMPOSITION

Before presenting the observer dynamics, we recall the ba-
sic concepts behind the multi-hop subspace decomposition
presented in del Nozal et al. (2019).

There always exists a coordinate transformation matrix[
V̄i,ρ Vi,ρ

]
∈ Rn×n associated to pair (Ci,ρ, A), such that

the change of variable [V̄i,ρ Vi,ρ]
>x ∈ Rn transforms the

original state-space representation into the observability

staircase form Hespanha (2009). Note that V̄i,ρ ∈ Rn×n
ō
i,ρ

is composed by nōi,ρ column vectors in Rn that form an
orthogonal basis of the unobservable subspace of pair
(Ci,ρ, A). Correspondingly, Vi,ρ ∈ Rn×n

o
i,ρ is an orthogonal

basis of its orthogonal complement.



Definition 4. The ρ-hop unobservable subspace from agent
i, denoted Ōi,ρ, is composed of all system modes that
cannot be observed from the output locally measured by
agent i and those measured by all the agents belonging
to the s-hop reachable nodes from i, ∀s ∈ {0, . . . , ρ}.
Equivalently, the ρ-hop unobservable subspace from agent
i is the unobservable subspace related to pair (Ci,ρ, A)
using the above coordinate transformation:

Ōi,ρ := Im(V̄i,ρ).

The orthogonal complement of Ōi,ρ, with some abuse of
notation, is denoted ρ-hop observable subspace from agent
i, Oi,ρ := Im(Vi,ρ). We denote noi,ρ = dim(Oi,ρ).

According to Definition 4, it is clear that:

Oi,ρ−1 ⊆ Oi,ρ, ∀i ∈ V, ρ ≥ 0. (6)

where we consider Oi,−1 = ∅. Then, the vectors of the
“innovation” basis that generates Oi,ρ ∩ (Oi,ρ−1)⊥ can be
stacked into a matrix Wi,ρ ∈ Rn×ni,ρ , where ni,ρ = noi,ρ −
noi,ρ−1, in such a way that:

Im(Wi,ρ) := Oi,ρ ∩ (Oi,ρ−1)⊥, ρ ≥ 0, (7)

Let us define `i ∈ Z>0, to be selected later, as an arbitrary
number of hops. From these definitions it is clear that for
all ρ ∈ {0, . . . , `i} and all i ∈ V, it holds that

Im(Vi,ρ) = Im ([Wi,ρ Vi,ρ−1]) , (8)

Im(V̄i,ρ−1) = Im
([
Wi,ρ V̄i,ρ

])
, (9)

with V̄i,−1 := In.

It is worth pointing out that Im(Wi,ρ) corresponds to the
innovation introduced by the ρ-hop reachable set Ni,ρ of
agent i, that is, the observable modes for agent i at hop ρ
that are not observable at hop ρ− 1. Accordingly

the transformation matrix Ti ∈ Rn×n, defined as Ti =
[V̄i,`i Vi,`i ], can be partitioned as follows, using the inno-
vations at each hop:

Ti :=
[︸ ︷︷ ︸

V̄i,ρ

V̄i,`i Wi,`i · · · Wi,ρ+1 ︸ ︷︷ ︸
Vi,ρ

Wi,ρ · · · Wi,0

]
, (10)

for all ρ ∈ {0, . . . , `i}, where it is easy to identify the
observable and unobservable subspaces of the system by
agent i at hop ρ. Note also that Ti is orthogonal by
construction, namely T−1

i = T>i .

The following lemma, proven in (del Nozal et al., 2019,
Lemma 3), introduces some important properties that are
central for the derivations of this paper.

Lemma 1. (del Nozal et al., 2019, Lemma 3) For each
agent i ∈ V, and any `i > Z>0, the next properties hold,
∀ρ, ρ′ ∈ {1, . . . , `i} such that ρ 6= ρ′:

(i) W>i,ρWi,ρ′ = 0,
(ii) Im(Wj,ρ−1) ⊆ Im(Vi,ρ), ∀j ∈ Ni,
(iii) Im(Wi,ρ) ⊆

⊕
j∈Ni

Im(Wj,ρ−1).

4. OBSERVER DESIGN FOR STABILITY DEALING
WITH COMMUNICATION FAILURES

This section contains the main results of the paper. First
we present the observer structure and then we derive the
ensuing error dynamics. Finally, we provide design rules for
the observer gains solving Problem 1 and we show that,

under the prescribed assumptions, the design of these gains
is feasible.

4.1 Observer structure and error dynamics

For any agent i, we propose the following observer struc-
ture:

x̂i(k + 1) = Ax̂i(k) +Wi,0Li(yi(k)− ŷi(k))

+ δi(k)

`i∑
ρ=0

∑
j∈Ni

Wi,ρNi,j,ρW
>
j,ρ−1(x̂j(k)− x̂i(k)), (11)

where Li and Ni,j,ρ are, respectively, a local gain and
consensus gains to be selected later in such a way that
Problem 1 is solved. The value of `i is chosen so that
collective detectability is fulfilled as per Assumption 1.
This structure was presented in del Nozal et al. (2019)
for δi(k) = 1,∀k. For a more detailed explanation of the
proposed observer structure, the reader is referred to that
paper.

For each agent i ∈ V, let us define the corresponding
estimation error ei(k) := x(k) − x̂i(k). Similarly, it is
possible to define the transformed estimation error as

εi := col(εi,`i+1, . . . , εi,0) := T>i ei, (12)

using the multi-hop subspace decomposition (10) in-
troduced in Section 2. More specifically, the estima-
tion error of agent i ∈ V, at hop ρ, is defined as:
εi,ρ(k) := W>i,ρei(k), ∀ρ = 0, . . . , `i + 1, where we

denote Wi,`i+1 = V̄i,`i corresponding to the collectively
unobservable but detectable system modes.

The following proposition clarifies the dynamics of these
estimation errors. Its proof is a straightforward extension
of the results in del Nozal et al. (2019) and is therefore
omitted.

Proposition 1. Consider the network of agents described
by the graph G(k), where every agent i implements the
observer structure (11) to estimate the state of system
(1). Then the dynamics of the errors in (12) corresponds
to

εi,0(k + 1) = (W>i,0AWi,0 − LiCiWi,0)εi,0(k), (13)

εi,ρ(k + 1) =

ρ∑
r=0

Di,(ρ,r)(δi)εi,r(k) (14)

+δi(k)
∑
j∈Ni

Ni,j,ρεj,ρ−1(k), ρ ∈ {1, . . . , `i},

with

Di,(ρ,r)(δi) = W>i,ρAWi,r − δi
∑
j∈Ni

Ni,j,ρW
>
j,ρ−1Wi,r.

The dynamics in Proposition 1 for ρ ∈ {1, . . . , `i} can be
compactly written as (we remove the dependence on k for
simplicity):

ε+
i,0 = (W>i,0AWi,0 − LiCiWi,0)εi,0, (15a)

ε+
i,ρ = Di,(ρ,ρ)(δi)εi,ρ +Bi,ρ(δi)ui,ρ, if ρ 6= 0 (15b)

where



Bi,ρ(δi) =
[
row

(
Di,(ρ,r)(δi)

)
r∈{0,...,ρ−1} |

| row (δiNi,j,ρ)j∈Ni

]
,

ui,ρ(k) =

[
col(εi,r)r∈{0,...,ρ−1}

col(εj,ρ−1)j∈Ni

]
,

which shows an interesting cascaded structure exploited in
our main results of the next section.

4.2 Main result and tuning of the observer gains

By exploiting the cascaded dynamics (15), this section
presents a design requirement that will be proven to be
sufficient to guarantee the exponential estimation proper-
ties of Problem 1.

Note that, since the evolution of the transformed estima-
tion error at hop ρ = 0 does not depend on the agents
connectivity, the local gain Li can be easily tuned to
ensure uniform exponential convergence to zero of the
solutions to (15a). Instead, the connectivity properties in
Assumption 2 are fundamental for the effectiveness of the
design of the consensus gains Ni,j,ρ, for which the cascade
structure revealed with the multi-hop decomposition be-
comes crucial.

Property 1. For each agent i, the local gain Li and con-
sensus gains Ni,j,ρ for hops ρ ∈ {1, . . . , `i} are designed in
such a way that the matrix

(W>i,0AWi,0 − LiCiWi,0) (16)

is Schur, and the following inequalities are met:

Di,(ρ,ρ)(δi)
>Pi,ρDi,(ρ,ρ)(δi) < µi,ρ(δi)Pi,ρ, δi ∈ {0, 1}

(17)

µ
i,ρ

:= µi,ρ(0)τi−nτ iµi,ρ(1)nτ i < 1, (18)

where µi,ρ(δi), δi = 0, 1 are two a scalar parameters
depending on the switching signal δi, satisfying µi,ρ(1) ≤
µi,ρ(0) and Pi,ρ is a positive definite matrix with appro-
priate dimensions.

Now, we are in position to introduce the main result of
the paper in Theorem 1, which establishes that observer
(11) solves Problem 1 whenever Property 1 is satisfied. Its
proof is postponed to Section 4.3 to avoid breaking the
flow of the exposition.

Theorem 1. Consider plant (1) observed by a set of agents
that can measure their local outputs (2), each of them
implementing the observer structure (11). Under Assump-
tions 1 and 2, if the observer gains are designed according
to Property 1, then Problem 1 is solved, namely the esti-
mation errors satisfy (5).

The next theorem completes the statement of Theorem 1.

Theorem 2. It is always possible, under Assumptions 1
and 2, to design matrices Li, Ni,j,ρ,∀i, ρ and j ∈ Ni, that
satisfy Property 1.

Proof. According to (del Nozal et al., 2019, Theorem
14), in the absence of communication failures, namely
δi(k) = 1 for all i and for all k, under Assumption 1 it
is possible to design gain matrices Li, and Ni,j,ρ to fix
the convergence rate of the estimator arbitrarily fast (a
detailed design method is presented there). In other words

the value µi,ρ(1) can be selected arbitrarily close to zero
by appropriate choices of the gains. Due to the fact that
the value of µi,ρ(0) is determined by the open-loop system
dynamics, and therefore independent of the observer gains,
it is then possible to choose µi,ρ(1) sufficiently small to
ensure µi,ρ(0)τi−nτ iµi,ρ(1)nτ i < 1 for any given pair τi, nτi
from Assumption 2. 2

4.3 Proof of Theorem 1

Before proving the theorem, we introduce some prelimi-
nary results. Our proof is based on Input to State Stability
(ISS) properties for systems of the form

ξ(k + 1) = f(ξ(k), u(k), k), (19)

which well represent dynamics (15b). In particular, we
make use of the following property.

Definition 5. System (19) is uniformly globally exponen-
tially finite-gain ISS with respect to u if there exist scalars
M > 0, λ ∈ (0, 1) and γ > 0, such that for any initial time
k0, any initial condition ξ(k0) and any uniformly bounded
input k 7→ u(k), the corresponding solution k 7→ ξ(k)
satisfies 1

|ξ(k)|2 ≤Mλk−k0 |ξ(k0)|2 + γ‖u‖2∞, ∀k ≥ 0,

where ‖u‖∞ := supk≥k0
|u(k)| denotes the l∞ norm of the

input u.

To prove the above ISS property for each one of the
subsystems in (15b), for each i ∈ V and each ρ ∈
{1, . . . , `i} we will use the following quadratic Lyapunov
function

Vi,ρ(εi,ρ(k)) = εi,ρ(k)>Pi,ρεi,ρ(k), (20)

where Pi,ρ is a symmetric positive definite matrix. With
some abuse of notation, we will use Vi,ρ(k) in place of
Vi,ρ(εi,ρ(k)) in the next derivations.

Lemma 2. If Property 1 holds, then for each i ∈ V and
each ρ ∈ {1, . . . , `i} there exists a scalar γi,ρ ∈ R+ such
that the Lyapunov function (20) satisfies

Vi,ρ(k + 1) < µi,ρ(δi)Vi,ρ(k) + γi,ρ |ui,ρ(k)|2 (21)

along the solutions to (15b).

Proof. Let us write the derivative of the Lyapunov func-
tion (20) along the error dynamics in (15). To this end, and
to keep the notation more compact, let us denote Vi,ρ(k)
merely by Vi,ρ and Vi,ρ(k+ 1) by V +

i,ρ (and similarly for δi
and εi,ρ and ui,ρ). We then have

V +
i,ρ = (ε+

i,ρ)
>
Pi,ρε

+
i,ρ

= ε>i,ρDi,(ρ,ρ)(δi)
>Pi,ρDi,(ρ,ρ)(δi)εi,ρ

+ 2ε>i,ρDi,(ρ,ρ)(δi)
>Pi,ρBi,ρ(δi)ui,ρ

+ u>i,ρBi,ρ(δi)
>Pi,ρBi,ρ(δi)ui,ρ

≤ ε>i,ρDi,(ρ,ρ)(δi)
>Pi,ρDi,(ρ,ρ)(δi)εi,ρ

+ 2
∣∣∣∣Di,(ρ,ρ)(δi)

>Pi,ρBi,ρ(δi)
∣∣∣∣ · |εi,ρ| · |ui,ρ|

+
∣∣∣∣Bi,ρ(δi)>Pi,ρBi,ρ(δi)∣∣∣∣ · |ui,ρ|2 .

1 Note that the standard definition of ISS does not include square
powers in signals norms. Nevertheless, if this expression is fulfilled it
is trivial to go back to the standard definition.



By completing squares and using the Cauchy–Schwarz
inequality, the following bound holds for any selection of
ηi,ρ ∈ R+:

2 |εi,ρ| |ui,ρ| ≤ ηi,ρ |εi,ρ|2 +
1

ηi,ρ
|ui,ρ|2 (22)

Moreover, from Property 1, there exists a positive scalar
νi,ρ ∈ R+ such that

Di,(ρ,ρ)(δi)
>Pi,ρDi,(ρ,ρ)(δi) < µi,ρ(δi)Pi,ρ − νi,ρI.

Therefore, selecting ηi,ρ in (22) small enough to sat-
isfy

∣∣∣∣Di,(ρ,ρ)(δi)
>Pi,ρBi,ρ(δi)

∣∣∣∣ ηi,ρ < νi,ρ, we may com-
bine the previous bounds to prove (21) with the se-
lection γi,ρ = max

δi∈{0,1}

(
η−1
i,ρ

∣∣∣∣Di,(ρ,ρ)(δi)
>Pi,ρBi,ρ(δi)

∣∣∣∣ +∣∣∣∣Bi,ρ(δi)>Pi,ρBi,ρ(δi)∣∣∣∣ ). 2

Based on the previous lemma, we can now prove an ISS
property, in the sense of Definition 5, for dynamics (15b)
for each i ∈ V and each ρ ∈ {1, . . . , `i}. This is established
next.

Lemma 3. If Property 1 and Assumption 2 hold, then for
each i ∈ V and each ρ ∈ {1, . . . , `i} the error system with
dynamics (15b) is uniformly globally exponentially finite-
gain ISS with respect to ui,ρ.

Proof. The proof is based on demonstrating that the sys-
tem error dynamics meets Definition 5 and consequently,
it is exponentially finite-gain ISS with respect to ui,ρ.

First, exploiting µi,ρ(1) ≤ µi,ρ(0) in Property 1 and using
Assumption 2, we may recursively apply expression (21)
to τi successive time instants to obtain

Vi,ρ(k + τi) < µ
i,ρ
Vi,ρ(k) + γi,ρ||ui,ρ||2∞, (23)

where ||ui,ρ||∞ = supk≥0 |ui,ρ(k)| the bound on ui,ρ(k),∀k,
µ
i,ρ
< 1 is defined in (18), and

γi,ρ =

(
τi−2∑
t=0

(
τi−1∏
s=t+1

µi,ρ(δi(k + s))

)
+ 1

)
γi,ρ,

By recursively applying equation (23) evaluated at times
of k = hτi, we obtain (we focus on the case k0 = 0 because
the extension to the case k0 6= 0 is straightforward)

Vi,ρ((h+ 1)τi) < µ
i,ρ
Vi,ρ(hτi) + γi,ρ||ui,ρ||2∞

... (24)

< µh+1
i,ρ

Vi,ρ(0) + γi,ρ||ui,ρ||2∞,
where we used the fact that µ

i,ρ
< 1 implies that the

following geometric series converges:

γi,ρ := γi,ρ
1

1− µ
i,ρ

= γi,ρ

+∞∑
s=0

µs
i,ρ
≥

h∑
s=0

µs
i,ρ
γi,ρ.

Consider now the intersample behavior of Vi,ρ and note
that linearity of the dynamics (15b) implies that there
exists a large enough scalar σ such that

Vi,ρ(hτi + s) ≤ σVi,ρ(hτi) + σ||ui,ρ||2∞, ∀s ∈ {0, . . . , τi − 1}.
(25)

Combining bounds (24) and (25), we obtain the following
bound for some suitable λV ∈ (0, 1), MV > 0 and γV > 0:

Vi,ρ(k) ≤MV λ
k
V Vi,ρ(0) + γV ‖u‖2∞, ∀k ≥ 0. (26)

Finally, from standard properties of positive definite ma-
trices, we get

λmin(Pi,ρ)|εi,ρ(k)|2 ≤ Vi,ρ(k) ≤ λmax(Pi,ρ)|εi,ρ(k)|2,
which can be used twice in (26) to prove the desired ISS
bound

|εi,ρ(k)|2 < λM (Pi,ρ)

λm(Pi,ρ)
MV λ

k
V |εi,ρ(0)|2 +

γV
λm(Pi,ρ)

||ui,ρ||2∞,

as to be proven. 2

From Lemma 3, the proof of Theorem 1 can be presented.

Proof of Theorem 1. Since matrix (16) in Property 1
is Schur by assumption, the dynamics of the estimation
error at hop ρ = 0 is exponentially stable for all agents,
namely there exist M0 > 0 and λ0 ∈ (0, 1) such that
|εi,0(k)| ≤M0λ

k
0 |εi,0(0)| for all k > 0 and all i ∈ V.

Using this bound, and due to the cascaded-like expression
of ui,ρ in (15b), we may concatenate the ISS bounds
established in Lemma 3 to obtain that there exits λε ∈
(0, 1) and Mε > 0 such that vector ε = col(ε1, . . . , εp)
satisfies the ISS bound

|ε(k)|2 ≤Mελ
k
ε |ε(0)|2. (27)

Since ε is equivalent (through linear transformation) to
e = col(e1, . . . , ep) (where we recall that ei = x− x̂i), then
the previous bound implies bound (5) in Problem 1, thus
completing the proof. 2

Remark 1. We emphasize that the proof technique of this
section, based on the time-varying dynamics (19), en-
sures that for each persistently exciting selection of δi,
i = 1, . . . , p, as per Definition 3, there exist Mε and λε sat-
isfying (27) (equivalently (5) in Problem 1). However, we
don’t give here a guarantee that those scalars be uniform
over the infinitely many persistently exciting selections
of δi. Nevertheless, we conjecture that a different proof
technique may be used to prove a uniform exponential
bound, valid for all such selections. Proving this uniform
exponential convergence property is left as future work.

5. SIMULATION RESULTS

This section presents some simulation results that demon-
strate the effectiveness of the proposed estimation algo-
rithm. To this end, let us consider the following LTI
autonomous system:x1

x2

x3

x4


+

=

0.95 0 0 0
0 0.8606 −1.3368 0
0 0.1485 0.9315 0
0 0 0 1.015


x1

x2

x3

x4

 .
The system is observed by a set of three agents that
communicate according to the following diagram 1↔ 2↔
3. Then, the interconnection graph is composed by V =
{1, 2, 3} and the set of edges is E = {(1, 2), (2, 1), (2, 3),
(3, 2)}, generating graph G = (V, E). In all of the examples
discussed below, we consider the following output matrices
for the three agents:

C1 =

1 0
0 0
0 0
0 1


>

, C2 =

0
1
0
0


>

, C3 =

1 0
0 0
0 0
0 1


>

.



Example 1. Let us assume a scenario where the agents
experience communication failures. We assume that at
every time interval {k, . . . , k+τi−1}, where τi = 100, ∀i ∈
V, there exists at least nτi = 20 times when every agents
i = 1, 2, 3, can communicate with their neighborhood.

According to (11), when the agent i cannot communicate,
the observer dynamics only uses the local measurements
yi. Thus, the error dynamics of the locally unobservable
subspaces will evolve in open loop. In the case of unstable
dynamics, the estimation error will accordingly grow.
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10 20 30 40 50 60 70 80 90 100

1

0

Fig. 1. Estimation error of agent 2 in Example 1.

Figure 1 shows the evolution of the estimation error of
agent 2, estimating states x1 and x4. Recall that these
states are measured by agents 1 and 3 and, according to
the communication topology, these agents are one hop
away from agent 2. When agent 2 can communicate,
the estimation error decreases significantly. This is a
consequence of the fast convergence rate fixed in the
observer design. However, when agent 2 is not able to
communicate with its neighbors the estimation error grows
according to the unstable open-loop dynamics.

Example 2. This second example shows the unstable re-
sponse of the state estimation error when Property 1 is
not met. The consensus matrices designed in the previous
example for τi = 100, nτi = 20, do not satisfy Property 1
in the worsened scenario with τi = 100, nτi = 2, for all
i ∈ V, namely with increased communication losses.

By performing a parallel simulation to the one of the
previous example, we now observe a diverging error re-
sponse. In particular, Figure 2 shows the evolution of the
estimation error of agent 2 estimating state x4. Note that
the estimation error decreases when the communications
are active. However, this is not enough to stabilize the
estimation error.

Example 3. Let us present in this example an extension of
the work proposed in this paper in which, instead of total
communication losses, we consider that each link in the
network can individually fail. In this case one may select
the same observer structure (11) by setting δi(k) = 0 when
just one link incoming to agent i is failing. However this
approach may be quite conservative.

Here we propose an alternative observer structure where
the failure-related logical variables δ are associated to the
links (that is, we call them δi,j(k)) rather than to the
nodes. In particular, we may modify (11) as follows
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Fig. 2. Estimation error of agent 2 estimating state x4 in
Example 2.
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Fig. 3. Estimation error of Agent 2 estimating state x4 in
Example 2.

x̂i(k + 1) = Ax̂i(k) +Wi,0Li(yi(k)− ŷi(k))

+

`i∑
ρ=0

∑
j∈Ni

δi,j(k)Wi,ρNi,j,ρW
>
j,ρ−1(x̂j(k)− x̂i(k)),

where δi,j(k) is a binary variable indicating whether link
(i, j) is active (δi,j(k) = 1) or not (δi,j(k) = 0) at time k.

Due to the topology considered in our example, only
agent 2 can benefit from the proposed modification. Hence,
Figure 3 shows the evolution of the estimation error
of Agent 2 estimating state x4 when using this revised
structure. With the same gains Ni,j,ρ used in the previous
examples, the new structure successfully estimates the
fourth state.

This last example encourages the authors to work towards
a generalization of our approach to the case where the
agents have partial communication or link failures, but
still can make use of the information received from the
rest their neighbors.

6. CONCLUSIONS

In this paper, the distributed state estimation problem of
an autonomous LTI system by a lossy network of agents
has been addressed. By using an observer structure based
on a multi-hop subspace decomposition, each agent in-
volved in the network can identify its observable subspace
and the innovations introduced (whenever a communica-
tion loss does not occur) by its neighbors at each hop.
Under some reasonable assumptions on the network con-
nectivity, we have shown that it is always possible to find
observer gains guaranteeing uniform exponential conver-
gence to zero of all the estimation errors. Our architecture
has been tested by means of simulations and the main
results of the paper have been illustrated by a network
of three agents. Future work includes proving a uniform
version of our exponential bound.
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